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NOMENCLATURE 

A = Penalization	for	quality	loss, surface	roughness	(€)	
AVG = Average	
AGE = Average	Geometric	Error	
A� = Penalization	for	rework, surface	roughness	B = Penalization	for	quality	loss, width	error	(€)		
C = Penalization	for	quality	loss, form	error	(€)		
&'(')'* =	Cost	per	pass	(€)	c, = Overhead	cost	(	€/hr	)	c/ = Labour	cost	(	€/hr	)	c2 = Labour	cost + overhead	cost		(	€/hr	) c4 = Tool	cost		(€)	c674 = Cost	of	raw	material	per	part	F = Feedrate	(mm/min)	
GE9 = Evaluated	form	error	(%)	GE; = Evaluated	width	error	(%) PGE9 = Predicted	form	error	(%)	  PGE967< = Maximum	form	error	defined	by	specifications	(%)	PGE94?4 = Target	value	for	form	error	(%)	PGE; = Predicted	width	error	(%)  PGE;67< = Maximum	width	error	defined	by	specifications	(%)	PGE;4?4 = Target	value	for	width	error	(%)		Ra = Average	Surface	Roughness	(μm)	
Ra67< = Maximum	Ra	defined	by	specifications	(μm)				Ra4?4 = Target	value	for	Ra	(μm)			N = Spindle	speed	(rev/	min)	
T = Cutting	tool	life	
DE)'* = Machining	time	for	the	ith	tool	pass	Vf	=	Feedrate	(mm/min)	
βG4H2 = Mean	square	deviation	for	R7	∆2= Maximum	permissible	square	deviation	
%ICF = Percentage	of	increment	in	cutting	forces	
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Abstract 
 

Nowadays, the miniaturization of many consumer products is extending the 

use of micro-milling operations with high quality requirements. However, the 

impacts of cutting-tool wear on part dimensions, form and surface integrity are 

not negligible and part quality assurance for a minimum production cost is a 

challenging task. In fact, industrial practices usually set conservative cutting 

parameters and early cutting replacement policies in order to minimize the 

impact of cutting-tool wear on part quality. Although these practices may 

ensure part integrity, the production cost is far away to be minimized, 

especially in highly tool-consuming operations like mold and die micro-

manufacturing.  In this paper, an Adaptive Control Optimization (ACO) system 

is proposed to estimate cutting-tool wear in terms of part quality and adapt 

the cutting conditions accordingly in order to minimize the production cost, 

ensuring quality specifications in hardened steel micro-parts. The ACO 

system is based on: i) a monitoring sensor system composed of a 

dynamometer; ii) an estimation module with Artificial Neural Networks 

models; iii) an optimization module with evolutionary optimization algorithms; 

and iv) a CNC interface module. In order to operate in a nearly real time basis 

and facilitate the implementation of the ACO system, different evolutionary 

optimization algorithms are evaluated such as Particle Swarm Optimization 

(PSO), Genetic Algorithms (GA) and Simulated Annealing (SA) in terms of 

accuracy, precision and robustness. The results for a given micro-milling 

operation showed that PSO algorithm performs better than GA and SA 

algorithms under computing time constraints. Furthermore, the 

implementation of the final ACO system reported a decrease in the 

production cost of 12.3% and 29% in comparison with conservative and high 

production strategies, respectively. 
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1. Introduction  

 

Micro-milling operations have been commonly applied in industries such as 

medical and electronics. Nowadays, the miniaturization of many consumer 

products has moved micro-milling systems to be part of conventional shop 

floors, extending their use to other industries. The process flexibility and high 

quality of these machining systems make them to be a suitable technique for 

manufacturing micro injection molds used for mass production of metal and 

plastic micro components [1, 2] and forming dies from hardened tool steels [2, 

3]. Furthermore, recent studies have increased the attention on micro-milling 

operations of hardened steels because of their outperforming capability with 

respect to Electric Discharge Machining (EDM) processes [4]. 

 

In spite of the extended use of micro-milling systems in recent years, the 

performance of these processes is still specially challenging because of 

unpredictable tool life of micro end mills, high wear rates and the negative 

impact of tool wear on dimensional accuracy and surface quality [5]. In 

practice, essential product attributes in micro machined parts are nano-range 

surface finish, high dimensional accuracy and minimal burr size. To meet 

these requirements the selection of optimum cutting conditions and adequate 

monitoring systems are essential but demanding [6]. In most cases, in order 

to avoid negative impacts of tool wear in part quality, conservative cutting 

conditions are set, lowering the productivity and increasing manufacturing 

costs. In traditional machining systems where surface roughness and part 

quality are less demanding, machining parameters can be optimized 

according to different production strategies [7]: production time, production 

cost and profit rate. The maximum production rate objective (minimum 

production time) seeks to identify the cutting conditions that best balance the 

material removal rate (MRR) and tool life to produce at the highest rate. The 

production cost objective seeks to find a balance between MRR and tool life 

to produce at the lowest cost. For the case of the maximum rate of profit 
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criterion, there is a balance between the contributions of both minimum 

production cost and production time criterion into the objective function. The 

maximum profit rate criterion tends to lie close to the minimum production 

cost criterion unless the profit margin is high. 

 

In machining systems where the minimum production cost is applied, the 

objective function, according to [7], can be defined as: 

 

&K = 	LEM' + (L/ + L,)DN + (L/ + L,)DE + (L/D'O + L' + L,D'O) 'PQ      (1) 

 

where LEM' is the cost of the raw material per part, L, is the overhead cost, L/ 
is the labor cost,	DN is the set-up time, DE is the machining time, D'O is the time 

for tool change, L' is the cutting tool cost and  R is the tool life. 

 

Generally, the objective function in Eq. (1) is optimized off-line in order to 

define the optimal cutting parameters that will be set in the machine-tool 

throughout the machining operation. This common practice is adequate in 

most of the machining processes, however, this approach can be only applied 

if the following assumptions hold: i) the tool state does not affect the final 

quality of the work-piece or it can be considered negligible; ii) the machining 

process is consistent in time. Thus, this function does not reflect the impact of 

tool life in the workpiece surface quality, which is the real effect to consider in 

actual machining processes. 

 

In general, micro-milling processes do not hold the assumptions listed above, 

and the use of previous optimization strategies can set cutting conditions far 

away from optimal. In fact, tool life and premature failure of micro tools is a 

major process constraint. Tool wear is critical since it influences component 

tolerance, quality, production times and costs [5]. As the cutting tool wears 

out surface quality is affected and thus, a set of cutting parameters may not 

be appropriate for the entire life of the cutting-tool [8]. Furthermore, in the 
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regime of micro-milling, the ploughing phenomenon prevents to accurately 

model the process [5]. To deal with this problem, it is necessary to estimate 

the cutting-tool wear state and its impact on dimensional and surface quality 

in order to set the most convenient cutting parameters.   

 

In this work, an Adaptive Control Optimization (ACO) system is proposed to 

optimize cutting parameters according to the estimation of cutting-tool wear 

state and the prediction of the part quality outcome. The proposed system is 

composed of the following modules: i) monitoring sensor system module 

based on a dynamometer, ii) an estimation module based on ANN models 

that evaluate tool wear state and predict part quality outcome, and iii) an 

optimization module that looks on-line for the optimal cutting conditions 

according to the estimation of process performance. The last unit is critical 

due to the rapid wear of micro end mills and its influence on part quality, 

which means that the optimization unit should be able to response in few 

seconds to let the ACO system operate nearly in real time. Under this 

constrain and in order to obtain the best performance of the optimization unit, 

different optimization approaches such as Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO) and Simulated Annealing (SA) are evaluated in 

terms of computational time, solution consistency and robustness.  

 

This work is organized as follows. Section 2 reviews previous research works 

related to ACO systems in machining and latest studies in micro-milling of 

hardened steels. Section 3 describes the micro-milling process analyzed in 

this work. Section 4 describes the ACO system proposed and overviews its 

modules and performance. Section 5 shows in detail the modeling procedure 

to acquire the process behavior and Section 6 shows a comparison of 

different optimization algorithms in order to implement the most adequate in 

the ACO system.  Section 7 shows the validation results of the ACO system, 

which outperforms the traditional off-line optimization approach. Finally, 

Section 8 concludes the paper. 
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2. State of the art 

 

2.1. Adaptive Control Optimization (ACO) in machining 

 

In the literature, the adaptation of cutting parameters according to the state of 

the machining operation has been successfully implemented under three 

major strategies [9]: 

  

a) Geometric Adaptive Control (GAC), where process parameters are 

modified to maintain dimensional accuracy and/or surface finish quality [10]. 

b) Adaptive Control with Constrains (ACC), where the cutting conditions are 

adjusted to maximize one or more output parameters such as feedrate or 

cutting force [11]. 

c) Adaptive Control with Optimization (ACO), where a performance index 

such as MRR or production cost is maximized or minimized adjusting cutting 

parameters (feed-rate, spindle speed, depth of cut) to an optimum value [8]. 

 

According to these definitions, an ACO system is the strategy that better 

deals with the micro-milling problem stated above. In general, an ACO system 

is composed of four interrelated modules: i) a monitoring module; ii) an 

estimation module; iii) an optimization module; and iv) a CNC interaction 

module. The main characteristics of these modules are defined as follows: 

 

2.1.1. Monitoring Module 

 

In order to optimize a machining performance index, an estimation of the 

state of the machine-tool is required, and thus, some kind of sensor 

information should be available. As the critical aspect of the operation is the 

cutting-tool state (cutting-tool wear), sensors applied in tool condition 

monitoring are commonly used. A large number of research works have been 
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conducted for cutting-tool monitoring and some of them applied to micro-

milling operations on hardened steels can be found in [12-15]. In general, the 

monitoring module is composed of a sensor system unit, amplification and 

conditioning unit, and a signal processing and feature extraction unit. In tool 

condition monitoring systems for machining operations, different sensors 

have been successfully applied, such as dynamometers [12, 14, 16, 17], 

accelerometers [12, 15], acoustic emission [13, 14], etcetera. Different studies 

have been also conducted in signal processing and feature extraction [18-21]. 

According to Abellán & Subirón [19], the most relevant feature extraction 

techniques applied in machining are time domain (Root Mean Square, Peak, 

Mean, Standard Dev, Kurtosis, etc.), frequency domain (Single Harmonic and 

Power Spectral Density), and wavelet domain (Root Mean Square and Peak).  

 

2.1.2. Estimation module 

 

The estimation module defines the process models that estimate the state of 

the machining process. Some variables that are usually estimated are surface 

roughness, tool wear, cutting-force, etc. The models defined are usually 

developed from a previous experimentation by some kind of design of 

experiments (DoE) or from data mining approaches. Process models are 

defined using cutting parameters (feedrate, spindle speed, depth of cut, etc.) 

and the features extracted from the monitoring sensor system.  

 

For micro and macro milling operations different modeling techniques have 

been applied for tool wear or part quality estimation and they include 

response surfaces [8, 22-25], and Artificial Intelligence (AI) models such as 

Artificial Neural Networks (ANN) [8, 11-13, 15, 23-27], Adaptive Neuro Fuzzy 

Inference Systems (ANFIS) [28, 29], Fuzzy Systems [12, 30, 31], Hidden 

Markov Models (HMM) [24], Bayesian Networks (BN) [32, 33] and Least 

Squares Support Vector Machines (LS-SVM) [34-36]. Comprehensive 
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reviews about modeling techniques applied in machining can be found in [19, 

37, 38]. 

 

2.1.3. Optimization module 

 

The core of the ACO system is the optimization unit which optimizes the 

machining process in terms of production cost, material removal rate, tool life, 

etcetera, according to the real state of the machining process which is 

estimated by the process models using the monitoring sensor system 

information.  

 

It is worth to remind that the ACO system adapts the cutting parameters on-

line, so the time response of the optimization unit is critical. An extensive 

review of the optimization techniques used in machining can be found in [39] 

and [40]. In [39], Yusup et al. reported the use of evolutionary techniques to 

optimize models based on Artificial Intelligent approaches such as ANN, 

ANFIS, and so on. Most of these technics are inspired by nature or animal 

behavior such Genetic Algorithms (GA), Simulated Annealing (SA), Ant 

Colony Optimization (ACOP), Artificial Bee Colony (ABC) and Particle Swarm 

Optimization (PSO). 

 

2.1.4. CNC interaction module 

 

After the optimal cutting policy is obtained, the new cutting parameters have 

to be sent to the machine-tool. In most common machine-tools, the interaction 

between the optimization module and the CNC can be done through the use 

of analog inputs or via communication ports. The modification of machine 

parameters such as spindle speed, cutting feed, depth of cut, etc., can be 

then conducted in nearly real time.  
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2.2. Previous Adaptive Control systems 

 

In the literature, some researches have been made in adaptive control 

systems applied to machining operations.  

 

In Chiang et al. [11], a neural network based adaptive control optimization 

system (NNBACO) was analyzed. They proposed the use of two neural 

networks, a first one to model the cutting process and the second one, which 

used the Augmented Lagrange multiplier algorithm (ALM), to find the optimal 

cutting parameters to maximize the MRR.  

 

Liu et al. [27] proposed an ACO system to maximize MRR using ANN for 

modeling purposes and GA for optimizing. The same work presented an ACC 

system to adapt the feedrate in order to keep a specific force value, using 

ANN and expert rules.  

 

Both Chiang’s and Liu’s research works applied an online parameter 

optimization procedure in an efficient way to maximize the MRR, but the 

modeling of cutting-tool wear and how it affects the part quality outcome was 

not considered. 

 

In Saikumar & Shunmugam [25] a feedrate adaption control system for high 

speed milling was proposed. In the research work, different control strategies 

were used for rough and finishing operations. At the roughing operation the 

objective was to maximize the MRR whereas the objective of keeping the 

surface quality under certain level was set at finishing operation. The impact 

of cutting-tool wear on part quality was considered and modeled by response 

surfaces and artificial neural networks.  

 

An adaptive control strategy of feedrate was also reported in Zuperl et al. 

[26]. The feedrate was maximized with the constraint of an allowable cutting 
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force on the tool. The purposes were to adjust feedrate to prevent excessive 

tool wear and breakage and to maintain a high MRR. 

 

Vallejo & Morales-Menendez [24] proposed an ACO system where the main 

goal was the achievement of a specific surface roughness and production 

cost. The system integrates four modules: data acquisition, surface 

roughness monitoring, tool wear monitoring and intelligent process planning. 

Genetic algorithms and Markov decision process (MDP) were implemented to 

compute an optimal machining policy. The solution found with the MDP is a 

policy mapping tool states (fresh, half new, half worn and worn) to actions, 

where the state transitions must minimize the cost according to a 

performance criterion that depends on depreciation, energy, labor and cutting 

tool cost.  

 

Abellán et al. [8] proposed an ACO system to optimize a multi objective 

function based on desirability functions where MRR, surface roughness and 

cutting tool life were considered in face milling of hardened steels. A 

performance comparison was made between the traditional off-line 

optimization approach and the ACO system, using i) statistical regression 

models and ii) ANN models. The ACO system outperformed the traditional 

approach and a better performance was observed using ANN models. 

However, their work presents a generic multi-objective function based on 

desirability functions and the process of setting the weights of the multi-

objective function may tend to be subjective.   

 

Despite previous research efforts, the ACO systems analyzed do not deal 

with a real optimization of the production cost considering the impact of 

cutting-tool wear on part quality. Recently, Silva et al. [23] overcame this 

limitation by defining a cutting-tool pass cost that has to be optimized 

according to the current cutting-tool state. They proposed an ACO system for 

face milling operations in hardened steels where ANN were used to model 
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surface roughness, cutting-tool wear and tool life. An optimization algorithm 

based on genetic algorithms combined with a mesh adaptive direct search 

algorithm was used to optimize the cutting-tool pass cost. Although the 

system minimized the production cost better than other approaches, the 

optimization algorithms applied require some computing time which make 

them unfeasible to be applied in a more demanding real-time environment 

such as micro-milling processes.  

 

In this research, an ACO system is proposed for micro-milling operations 

where quality requirements are much demanding, not only in terms of quality 

(surface roughness and geometric quality) but also in terms of time response 

since the cutting tool wears out much faster that in traditional milling 

operations. Besides considering geometric constraints, a study of different 

optimization algorithms is conducted in order to ensure minimum computing 

time and make the system suitable for micro-milling operations. 

 

3. Process description 

 

The machining process analyzed is a micro-milling (grooving) operation for 

manufacturing micro geometric features for miniature molds and dies. The 

channels are 20 mm long and 30 µm depth and the raw material are ground 

workpieces of 30 mm x 65 mm made of AISI H13 tool steel at 56-58 HRC 

(Rockwell Hardness C).  

 

The cutting-tool used is a two-flute uncoated WC (tungsten carbide) end mill 

with a diameter of 500 µm and 30° helix angle. A ve rtical machining center 

brand Makino F3 with a mini dynamometer Kistler 9256C installed in the 

machine-tool table was used to perform the micro-milling operations.  Figure 

1 shows the micro end-mills used and the machined features. Tables 1 and 2 

indicate the equipment specifications. 
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Table 1. Machine-tool specifications. 
 

Variable Name Unit Data 

Max N rev/min 30,000 
Max Vf mm/min 20,000 

Travels (X x Y x Z) Mm 650 x 500 x 450 

Positioning Accuracy µm 1.5 
Coolant Air 

Spindle Nose Interface HSK – A63 

Power (30 min rating) Hp 20 

 
 

Table 2. Kistler 9256C Mini-dynamometer specifications. 
 

Variable Name Parameter Unit Data 

Measuring Range Fx, Fy and Fz N -250 to 250 
Threshold  N < 0,002 

Sensitivity 
Fx and Fz 

Fy 
pC/N 

≈ -26 
≈ -13 

Rigidity 
Cx and Cz 

Cy 
N/µm 

>250 
>300 

Dimensions  mm 75 x 80 x 25 

Natural Frequency 
Fn(x) 
Fn(y) 
Fn(z) 

kHz 
 

5,1 
5,5 
5,6 

Working piece clamping 
area 

 mm 39 x 80 

 

 

Figure 1. Stereoscopic microscope photography of micro end mill and micro-

channels approximate dimensions. 

       

The resulting micro-milled channels require a high dimensional and surface 

quality. Three key aspects define the quality of the product: dimensional 

accuracy in terms of dimensional error (width reduction) and form error 

(perpendicularity of wall channels); and surface quality in terms of surface 
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roughness. To inspect these key quality characteristics, a confocal 

microscope Zeiss Axio CSM 700 with 20X objectives and resolution of 0.05 

µm was used. The difference between a new tool and a worn tool is 

presented in Figure 2. Figures 3, 4 and 5 show the inspection measurement 

of the key quality characteristics and the effect of the cutting-tool wear over 

them. It can be easily noted that the cutting-tool wear effect is critical to 

ensure part quality in this micro-milling operation. 

 

  

Figure 2. Stereoscopic microscope photography of tool wear in micro end mills. 

 

 

Figure 3. Example of cutting-tool wear impact on surface roughness. 
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Figure 4. Examples of geometric errors generated on the workpiece by new tool. 

 

 

Figure 5. Examples of geometric errors generated on the workpiece by a worn tool. 

 

4. Proposed ACO System  

 

The ACO system proposed is shown in Figure 6 and the characteristic of its 

modules are as follows: 
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4.1. Monitoring Module 

 

Cutting forces are measured with the mini dynamometer Kistler 9256C and 

then amplified with a 3 channel charge amplifier Kistler 5010 series with 

sensitivity of -25.7 pC/N for the X axis, -13.0 pC/N for the Y axis and -26.1 

pC/N for the Z axis. In order to design a proper filter and to choose a correct 

sampling rate, the machining frequency was calculated as follows: 

 

SEMO*(TU) = V	×	XYZ[\]^
_, 	     (2) 

 

For this research the spindle speed, denoted by N, is set in a range from 

15,000 to 30,000 rev/min and the number of flutes, denoted as nflutes, is 2 so 

the machining frequency is within 500 Hz – 1 kHz. According to the Nyquist-

Shannon sampling theorem, the sampling frequency has to be at least two 

times the frequency of the signal that wants to be acquired [19]. The sampling 

frequency of the data acquisition was set to 10 KHz and the data acquired 

was digitally filtered by a Matlab© routine using a 6th order Butterworth low-

pass filter with a cut-off frequency of 3 kHz. This frequency lets extract the 

information at the machining frequency and tries to minimize the effects of the 

natural frequency of the dynamometer.  
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Figure 6. Diagram of proposed ACO system for micro-milling of hardened steels. 

 

After the cutting force data in X, Y and Z direction is filtered, the root mean 

square (RMS) value of all cutting components are used as a significant 

descriptor. This descriptor has been widely used in the literature for both tool 

wear and part accuracy monitoring systems [19].  

 

The RMS value for a cutting component is obtained as follows: 

 

àbc = d/X∑ )̀2X)f/         (3) 

 

After the RMS value for each axis is obtained, the resultant cutting force is 

calculated as follows: 
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Q̀ =	g( àbchi)2 + ( àbchj)2 + ( àbchk)2     (4) 

 

Since micro-milling operations can present slight differences when a new 

cutting-tool is loaded or a new workpiece is mounted (variability in the depth 

of cut due to inaccuracy in the setup may produce an unexpected increase of 

the cutting force for a new cutting-tool), the final descriptor that is used from 

the monitoring sensor module is the percentage of increment of cutting force 

(%ICF) with respect to a first cutting pass. This value, denoted as %ICF, is 

defined as:  

 

%l&` = mnop\qhnornor s × 100       (5) 

 

where Q̀ )'* is the actual resultant average force and  Q̀, is the resultant 

average force of the first machined micro channel.  

 

4.2. Estimation Module 

 

The estimation module is composed of two units. The first unit, named quality 

and tool wear evaluation unit, evaluates the current part quality and cutting-

tool state according to the increment of cutting forces measured (%ICF) and 

current cutting parameters. The evaluation is conducted using AI models that 

have been built off-line previously, as it is explained in Section 5. Two key 

aspects define the part quality at the macro-geometric level: dimensional error 

(width reduction) and form error (lack of perpendicularity of the channel 

walls). To estimate each aspect, two AI models are used; the GEW model and 

the GE-P model, respectively. Unlike other works where a flank wear value is 

estimated to define cutting-tool state, the cutting-tool wear is estimated in 

terms of part quality error since tool wear and part quality are directly related.  
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The second unit, named geometric error prediction unit, predicts part quality 

for the next tool pass given the evaluation of the cutting-tool state and the 

new cutting parameters. The prediction is based on three AI models. The first 

and second models (PGEW & PGEP) predict the dimensional and form error, 

respectively, for a given cutting-tool state and cutting parameters. The third 

model predicts the surface roughness (Ra) given the Average Geometric 

Error (AGE) -defined as the average of width error prediction (PGEW) and 

form error prediction (PGEP)- and cutting parameters. Note that this prediction 

unit requires the evaluation of the current operation so the inputs of these 

models are the outputs of the models existing in the first unit (GEW & GEP). 

When a new tool is used, the value of width and form deviation percentage is 

set to 0.  

 

Figure 7 shows the elements that integrate the estimation module and how 

they are interconnected. 

 

 

Figure 7. Estimation module composed of the Evaluation unit and the Prediction unit. 
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4.3. Optimization Module 

 

As the cutting-tool wear impacts on part quality, the optimal cutting conditions 

will vary throughout the cutting-tool wearing process. In order to evaluate the 

product costs along the cutting-tool life, the cutting-tool cost per pass criterion 

is applied [23]. According to the above-mentioned research, the cost per 

cutting pass can be expressed as in Eq. 6:  

  

&'(')'* = (L/ + L,)DE)'* + (L/D'O + L' + L,D'O) 'Pp\qQ + vwx yp\q
z
∆z            (6) 

where 

								{)'*2 = (|} − |}	'Mw��')2                                    (7) 

 

∆2= (|}	EMi − |}	'Mw��')2                                   (8) 

 

In the expression of Eq. 6, DE)'* is the machining time for the ith tool pass; vwx 

is the penalization for rework if the surface quality is not achieved; {)'*2  is the 

mean square deviation for |}, which is the surface roughness;  ∆2 is the 

maximum permissible square deviation for |}; |}	'Mw��' is the target value for 

the surface quality; and |}	EMi is the maximum permissible value for |}. 

 

As it can be seen in Eq. (6), the final cost per pass depends on three aspects: 

i) the machining cost which depends on the time DE)'* that the tool pass takes 

to be performed, ii) the cutting-tool cost which depends on the percentage of 

usage of the cutting tool expressed as 
'Pp\q
Q , and iii) the loss quality cost which 

depends on the surface roughness quality deviations. 

 

In this approach, additional non-quality terms are added since dimensional 

(width) and form errors in our micro-milling operation are key quality 

characteristics. Thus, the optimization unit will seek the best parameter 
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combination given an estimation of the cutting-tool state that minimizes the 

following cost function: 

 

&'(')'* = L2 ∗ DE)'* + (����h���)�(����h���)2∗/,, ∗ L' + �	�aMhaM\�\	�z
�aMP��haM\�\�z +

�	�����h����\�\	�
z

�����P��h����\�\�
z +

�	�����h����\�\	�
z

�����P��h����\�\�
z   ,            (9) 

 

 

where L2 is the labor cost + overhead cost, ���� and ���� are the predicted 

width and form errors, ��� and ��� are the evaluated width and form errors, 

����'�' is the target value for width error, ����EMi is the maximum width 

error defined by specifications, ����'�' is the target value for form error, 

����EMi is the maximum form error defined by specifications, v	, � and & are 

the penalizations for quality loss for surface roughness, width and form errors, 

respectively. Note that v in Eq. (9) refers to vwx in Eq. (6). 

 

In Eq. (9) the first term is time dependent, penalizing operations as the 

machining time increases. The second term penalizes combinations of cutting 

parameters that generate a higher cutting-tool wear, considering the 

intensification of cutting-tool wear as the cause of increment of the part 

geometric error. Specifically, the expected increase on cutting-tool wear 

defined by the increase in width (���� − ���) and form error (���� − ���) is 

penalized by the tool cost	L'. The last three terms are based on Taguchi’s 

Quality Loss function used in [23]. They are related to surface roughness, 

width error and form error, respectively, and they penalize the function 

depending on how far from the target is the predicted value. 
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4.4. CNC Interaction Module 

 

The ACO system is prepared to send the resulting optimal parameters 

through Digital/Analog output from the computer system to the CNC. An open 

controller able to read analog signals and CNC commands to interpret these 

analog signals as reference for cutting parameters is required. Without loss of 

generality, the optimized cutting conditions used in the prototype system are 

sent to the CNC controller through the human interface every cutting pass. 

Figure 8 shows the flow chart of the proposed ACO system. Note that the 

finishing criterion in the flow diagram refers to the maximum computing time 

set in the ACO system. This is because the studied application requires a fast 

response from the ACO system, so the computing time allowed in the 

optimization unit should be constrained.  

 

5. Modeling geometric errors and surface quality with AI techniques 

 

To operate the ACO system, the estimation module needs to be configured 

according to process knowledge. Although part quality (surface roughness 

and geometric errors) and cutting-tool wear are related, the physical 

relationships between cutting parameters, tool wear and part quality are 

process-dependent, especially in micro-milling. Thus, a DoE (Design of 

Experiments) is usually required to build models able to capture the inter-

relationships among performance and process variables. 
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Figure 8. Flow chart for the ACO system. 

 

5.1. Design of Experiments 

 

As it can be noted in most of the research works related to modeling 

machining operations, the models are not expected to be highly non-linear for 

the range of cutting conditions that cutting-tool vendors recommend. In 

general, to learn about the relationships of cutting parameters and 

performance variables, three levels may be enough to have an appropriate 

description of the process [19]. According to this statement and based on the 

cutting parameters obtained from the literature (Table 2), 3 levels of Spindle 

Speed (N) [15,000; 22,500; 30,000 rev/min] and Feedrate (Vf) [50 mm/min; 
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100 mm/min; 150 mm] were chosen for the Design of Experiments. Note that 

for the application studied, the axial depth of cut is kept constant. Thus, a 32 

design of experiments was prepared (Figure 9).   

 

 

Figure 9. Design of Experiments used for modeling width and form error. 

 

A new tool was used for each one of the 9 combinations of cutting 

parameters. Micro channels were machined until the geometric error 

exceeded specifications. In Saedon et al. [22] the channel width was used as 

an indirect measurement of tool wear and a reduction of 30 µm in width was 

defined as a criterion for tool life end. A similar practice is followed in this 

research, and the reach of a 6% of width and a 10% of form errors were used 

as tool life end criteria, i.e, as cutting-tool replacement policy. Note that the 

percentage error refers to the nominal value of width channel (500 µm), so 

6% and 10% means 30 µm and 50 µm of dimensional (width) and form error, 

respectively. Then 100% of GE-W corresponds to 6% of width error and 

100% of GE-P corresponds to 10% of form error. 

 

A confocal microscope was used to measure the following aspects: Surface 

roughness (Ra), dimensional and form errors. These features were measured 
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in the middle of every machined micro channel. Several channels were milled 

for each cutting parameter combination until the tool life end criterion was 

reached. An example of how geometric error progresses along the machining 

process could be seen in Figures 10 and 11. Figure 10 shows the evolution of 

width error for the cutting parameter combination (N=15,000 rev/min, Vf=50 

mm/min), denoted as point A in the DoE. Figure 11 shows the evolution of 

form error for the cutting parameter combination (N=15,000 rev/min, Vf=100 

mm/min), denoted as point D in the DoE. As it can be seen, both figures 

follow a typical tool wear progress with initial, uniform and accelerated wear 

zones as mentioned in Chen et al. [41]. This justifies the linking of the 

geometric degradation of the channels with tool wear progression.  

 

 

Figure 10. Width error (GEW) for point A in the Design of Experiments. 
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Figure 11. Form error (GEP) for point D in the Design of Experiments. 

 

5.2. Training, testing and validating AI models 

 

After conducting the DoE, 68 samples were obtained. All the samples include 

data for geometric error (width and form) and surface roughness modeling. 

Table 3 shows the results obtained from the cutting conditions (15,000 

rev/min; 50 mm/min) as an example. 
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Table 3. Geometric error and surface quality data obtained for Point A in the DoE. 
 

Machined 
distance 

[mm] 

Feedrate, Vf 
[mm/min] 

Spindle 
Speed, N 
[rev/min] 

Increment 
in cutting 

forces, 
%ICF 

Evaluated 
width error, 

GEW 

[%] 

Evaluated 
form error, 

GEP 
[%] 

Average 
Geometric 
Error, AGE 

[%] 

Surface 
Roughness, 

Ra 
[µm] 

10 50 15,000 0.0 0.0 56.5 28.3 0.278 

30 50 15,000 54.1 12.6 53.9 33.3 0.220 

50 50 15,000 88.9 23.3 57.8 40.5 0.266 

70 50 15,000 117.7 31.1 63.2 47.1 0.208 

90 50 15,000 171.0 37.3 66.9 52.1 0.259 

110 50 15,000 148.6 42.9 67.8 55.4 0.155 

130 50 15,000 170.4 49.2 66.5 57.8 0.239 

150 50 15,000 189.1 57.2 65.5 61.3 0.262 

170 50 15,000 221.2 68.1 69.1 68.6 0.267 

190 50 15,000 331.4 83.0 83.6 83.3 0.262 

210 50 15,000 475.6 103.1 117.0 110.0 0.285 

 

As explained above, the estimation module is composed of the evaluation 

and the prediction units and it is based on 5 different AI models: width error 

prediction (PGEW); form error prediction (PGEP); width error evaluation 

(GEW); form error evaluation (GEP); surface roughness prediction (Ra).  

 

In the literature, more than half of research works about intelligent machining 

systems apply ANN for modeling purposes, especially in surface roughness 

prediction, cutting-tool flank wear prediction and cutting-tool state diagnosis 

[19]. Recently, Support Vector Machines (SVM) such as Least Squares 

Support Vector Machines (LS-SVM) have been successfully applied in 

machining systems for surface roughness prediction [34, 35] and cutting-tool 

wear [36] and several research works remark the advantages of LS-SVM with 

respect to ANN in terms of better generalization, global minimum and less 

overfitting problems [35, 36]. In this work, both ANN and LS-SVM models are 

developed and analyzed in order to apply the most adequate in the ACO 

system. For this purpose, data samples were randomly divided in training 

samples (70%), validating samples (15%) and testing samples (15%). 
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The main properties of the ANN models trained are shown in Table 4. As 

recommended in previous reviews in intelligent machining systems [37], the 

Levenberg-Marquardt training algorithm and the tangent sigmoid mapping 

function were applied. A critical issue in ANN modeling is over-fitting. One can 

easily observe that increasing the number of neurons in the hidden layer the 

model fits better to the experimental training data. Thus, the ANN model 

obtained can avoid over-fitting in the zones where the DoE data come from. 

However, the model behavior for cutting parameters between the combination 

parameters tested in the DoE can be misleading. The ANN model may report 

senseless predictions such as excessive surface roughness values, negative 

dimension or form errors values, etc. To avoid these problems, the ANN 

models were tested with cutting parameter combinations different from the 

ones used in the DoE in order to ensure a reasonable behavior of the model, 

assuming as it was stated before, that the process behaves smooth between 

the combinations tested in the DoE. 

 

All networks were trained using Matlab © Neural Network Toolbox. After 

training/validating/testing up to 12 neurons in the hidden layer for each ANN 

model, the structure and properties of the best ANN models were defined as 

shown in Table 4. 

The fundamentals of LS-SVM models for surface roughness and tool wear 

prediction can be found in previous research works such as [34-36]. As 

suggested in these works, the LS-SVM models used are based on Gaussian 

radial basis functions as nonlinear kernels in order to improve the 

generalization capability. The parameters to be defined are the kernel 

parameter σ and the regularization parameter C which determines the trade-

off between the training error minimization and smoothness. These two 

parameters define the performance of the LS-SVM models. Therefore, to 

achieve a high level of performance with LS-SVM models, C and σ has to be 

tuned. A grid-search technique with fivefold cross-validation to the training 

and validating data set is applied to tune these parameters and find the 
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optimal parameter values for each model. All models were built using Matlab 

© and the LS-SVMlab1.8 Toolbox [42]. Table 4 shows the final parameters of 

the optimal LS-SVM models obtained for the ACO system.  

 
Table 4. AI models analyzed for the ACO system. 

 

AI model 
Modeling 
Variable 

Predicted 
Geometric 

Error – Width, 
PGEW 

Predicted 
Geometric 

Error – Form,  
PGEP 

Evaluated 
Geometric 

Error-Width, 
GEW 

Evaluated 
Geometric 

Error-Form, 
GEP 

Surface 
Roughness 

model, 
Ra 

ANN & 
LS-SVM 

Inputs F,N,GEW F,N,GEP F,N,%ICF F,N,%ICF F,N,AGE 
Outputs PGEW PGEP GEW GEP Ra 

ANN 

Type Backpropagation 

Hidden 
layers 

1 1 1 1 1 

Hidden  
neurons 

2 2 4 4 2 

Mapping 
Function 

Tangent sigmoid 

Training Lev-marq 

LS-SVM 

Kernel 
function 

Nonlinear radial basis  

Regularizati
on 

Parameter 
(C)  

273.5e3 62.24 93.7 73.7 62.1 

Kernel 
Parameter  

(σ
2
) 

116.3e3 11.84 1.91 8.1 2.38 

 
 
In order to evaluate the difference of LS-SVM and ANN models for the ACO 

application, the performance of both models was analyzed using the testing 

data. The root mean squared error (RMSE) and the coefficient of correlation 

(R) for each model were evaluated as it is shown in Table 5. For comparison 

purposes, a hypothesis testing was conducted for each pair of models to find 

out if there is a statistical significance between both models. A Welch’s test t-

test was conducted where the null hypothesis is defined as H0: µRMSE (LS-SVM) = 

µRMSE (ANN) whereas the alternative hypothesis is H1: µRMSE (LS-SVM) ≠ µRMSE 

(ANN). According to the results, the null hypothesis was not rejected in any 

case, which means that the LS-SVM model performance is not statistically 

different from the ANN model performance. At this point, since the ANN 

models are more commonly used in intelligent machining systems, the ACO 

system developed in this paper is based on this type of AI models. 
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Table 5. Comparison of ANN and LS-SVM model performance 
 

Modeling Variable 

Predicted 
Geometric 

Error – Width, 
PGEW 

Predicted 
Geometric Error 

– Form,  
PGEP 

Evaluated 
Geometric Error-

Width, 
GEW 

Evaluated 
Geometric Error-

Form, 
GEP 

Surface 
Roughness 

model, 
Ra 

RMSE R RMSE R RMSE R RMSE R RMSE R 

 
LS-SVM 

 

0.72
e1 

0.97 1.4e1 0.97 2.6e1 0.91 2.2e1 0.94 0.061 0.92 

 
ANN 

 

1.3e
1 

0.92 2.1e1 0.96 2.7e1 0.91 1.5e1 0.96 0.069 0.89 

 
Ho:  

µRMSE(LS-SVM) = 
µRMSE(ANN) 

 

Ho  
Non-rejected 

Ho  
Non-rejected 

Ho  
Non-rejected 

Ho  
Non-rejected 

Ho  
Non-rejected 

 

6. Selection and parameters definition of the Optimization Algorithm 

 

6.1. Optimization Algorithms  

 

As stated above, different optimization approaches have been applied in 

machining processes for cutting parameter optimization. For micro-milling 

applications where the cutting tool wears out faster than conventional 

machining operations and its impact on part quality is high, the optimization 

algorithm must be capable to compute the solution with the least amount of 

time in order to make feasible an adaption of cutting parameters during the 

machining. According to the literature [39], the most popular evolutionary 

algorithms to optimize objective functions based on AI models are Genetic 

Algorithms, Particle Swarm Optimization and Simulated Annealing. 

   

Genetic algorithms are computerized search and optimization algorithms 

based on the mechanics of natural selection. In order to solve a problem, the 

variables are coded into string structures in binary code. Three main 

operators then process the population: selection, crossover and mutation in 

order to create a new and improved group of individuals. Selection operator 
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finds the best individuals and gives them more chances to reproduce. 

Crossover operator combines the genetic information of the best individuals 

to form new ones with a certain probability (crossover rate). Finally the 

mutation operator modifies each new solution with a low probability (mutation 

rate). Readers interested in the applications of GA in machining optimization 

are referred to [43-46]. 

 

The Particle Swarm Optimization (PSO) approach simulates the behaviors of 

bird flocking in two-dimension space. Each single solution is a bird or particle 

in the search space and its location is represented by XY coordinates and its 

velocity is expressed by vx (for x axis) and vy (for y axis). Each bird knows its 

best value so far, called pbest, and its position XY. Moreover, each bird 

knows the best value so far in the group, called gbest. In other words, each 

bird knows which one is flying the best (closer to the optimum) and tries to 

follow it modifying its velocity (vx and vy) considering the distance (XY 

difference) between itself (pbest) and the best bird (gbest). Readers 

interested in the principles of PSO are referred to [47-49]. 

 

Simulated Annealing (SA) algorithm resembles the cooling process of heated 

metals through annealing. At high temperatures, the atoms in the heated 

metal can move freely, but as the temperature is reduced, the movement of 

the atoms gets restricted. The atoms start to get ordered, and finally form 

crystals having the minimum possible energy. Even though, it requires a high 

number of iterations to find the optimum solution, it can find the global 

optimum with high probability.  Readers interested in the principles of SA 

are referred to [50-53]. 

 

The majority of previous studies have been applied for off-line optimization in 

conventional machining processes, without making comparison of the 

performance of different optimization algorithms. Under that condition, 

computing time is not critical and the accuracy of the solution obtained is 
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similar. However, when dealing with ACO systems, especially in micro-milling 

processes with short cycle times, computing time is critical and the 

performance of the optimization algorithms may be different under time 

constraints. For this reason, an analysis of GA, PSO and SA performance 

should be conducted in terms of accuracy, consistency and robustness in 

order to implement the most efficient one.  

 

6.2. Performance Comparison of Optimization Algorithms  

 

6.2.1. Time, accuracy and variability of optimal solution 

 

The ACO application, especially for micro-milling operations, requires a fast 

response thus the optimization unit cannot be running for a long time to 

converge. Consequently, a comparison of optimization performance in terms 

of computing time, accuracy and variability of the optimal solution time should 

be conducted. 

  

After a preliminary analysis, it was shown that the cost function to be 

optimized is more complex after a cutting-tool wear value of 50% and the 

algorithms need some time to reach the optimal solution. Thus, the algorithm 

performance was analyzed for a tool life value of 60%, 70%, 80% and 90%. 

For comparison purposes, every algorithm was executed 20 times at each 

tool life value, and an average of computing time, accuracy and variability 

was obtained. All simulations were run using Matlab© Optimization Toolbox 

and the final values obtained were: mean value of the optimal solution; 

variability of the optimal solution; and computing time. The processor used for 

this evaluation was an Intel® Core™ i5-450M @ 2.40 GHz. 

 

Since the performance of the algorithms are related to their setting 

parameters, a first trial and error procedure was conducted to select the 

parameters that give better performance for each algorithm. One of the critical 
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parameter was the population size for GA and PSO algorithm. A higher 

population leads to more accurate solutions and lower variability but the 

computing time also increases and can make the optimization procedure 

unfeasible for the ACO system. A lower number of individuals or particles 

decrease the computing time but the accuracy of the solution and its 

variability decreases notably. For both cases, 1, 5, 10, 15, 20, 25 and 50 

elements were tested and it was found that 15 individuals or particles give a 

reasonable convergence time with moderate accuracy and variability. Other 

critical parameters such as the ones showed in Tables 6, 7 and 8 were fixed 

according to recommended practices reported in previous research works 

cited in Section 6.1. 

 
Table 6. Genetic Algorithm Configuration parameters. 

 
GA Configuration 

Parameter Value or Type 

Population Size 15 
Selection Function Binary Tournament 
Crossover Function Single Point Probability=0.8 

Mutation Function Uniform Rate=0.05 

 
 

Table 7. Particle Swarm Optimization Configuration parameters. 
 

PSO Configuration 
Parameter Value or Type 

Population Size 15 

Learning Constant c1 2 
Learning Constant c2 2 

Min and Max inertia weight 0.4 & 0.9 

 
 

Table 8. Simulated Annealing Configuration parameters. 
 

SA Configuration 

Parameter Value or Type 

Annealing Function Fast Annealing 
Temperature Function Exponential 

Initial Temperature 300 
Reannealing interval 50 

 

The average performance of each optimization algorithm in terms of 

computing time versus accuracy and variability are shown in Figures 12 and 
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13. As it can be noted, the GA and PSO algorithms performed better than the 

SA in both the average error and standard deviation. From 1.7 seconds 

onward, the PSO performs slightly better than the GA in both the average 

error and standard deviation.  

 

For the ACO system to be applied in this micro-milling process, a reasonable 

response time for each cutting parameter adaption is between 2 and 3 

seconds. Thus, the PSO algorithm seems to be more efficient in terms of 

computing time than GA or SA algorithms.  

 

Figure 12. Average error versus computing time for SA, PSO and GA. 
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Figure 13. Average standard deviation versus computing time for SA, PSO and GA. 

 

6.2.2. Robustness 

 

Optimization algorithms such as GA, PSO and SA can be hard to be 

configured without previous knowledge of evolutionary optimization 

algorithms. Therefore, one may be interested in the implementation of an 

optimization algorithm that is less sensitive to its configuration parameters or, 

in other words, is more robust in this kind of applications. 

 

Previous section has shown that SA optimization algorithm is not adequate 

for its use in the ACO system due to the excessive computing time required 

for convergence. Thus, the robustness analysis is only conducted for GA and 

PSO techniques. The sensitivity analysis is conducted through a Design of 

Experiment and statistical analysis. The parameters considered in the DoE 

are those that can notably modify the optimization performance. For GA, the 

parameters considered in the DoE are mutation constant, selection function 

and crossover probability.  For PSO, the parameters considered are the 

learning constants and the inertia weights. Only two levels are considered for 

the DoE, and their values are set as the extreme points of the common range 
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of application found in the literature. Tables 9 and 10 show the DoE for each 

optimization algorithm and the 2-level values. 

 

Table 9. DoE for sensitivity analysis for Genetic Algorithms. 

 
DoE for sensitivity analysis in GA 

Parameter Level 1 Level -1 

Mutation constant 0.05 0.01 
Selection Function Binary Tournament Roulette 

Crossover Probability 1 0.6 

 
Table 10. DoE for sensitivity analysis for Particle Swarm Optimization. 

 
DoE for sensitivity analysis in PSO 

Parameter Level 1 Level -1 

Learning Constants C1=C2=4 C1=C2=1 
Inertia Weights 0.1 & 1 0.5 & 0.7 

 

For each combination parameter of the DoE, 9 replicas were evaluated. The 

algorithm was executed to optimize the cutting process for a cutting-tool wear 

of 60%, 70%, 80% and 90% considering a response time (maximum 

computing time) of 2.5 seconds. For each replica, the average error of the 

final solution was calculated. This error depends on how far from the real 

optimum the final solution is and it is measured in terms of deviation with 

respect to the minimum cutting cost. The 9 replicas obtained from each 

combination parameter do not present a statistical normal distribution, so an 

Analysis of Variance (ANOVA) could not be used to check the significance of 

configuration parameters for each algorithm. Instead, non parametric tests 

were studied and Mood’s median test was selected since normal or equal 

distributions of the samples are not required. The results of the test to 

analyze the robustness of GA and PSO are shown in Table 11 and 12, 

respectively. 

  

As it can be seen in Table 11, there is a clear influence of GA parameters on 

the optimization performance. For instance, the selection parameter is 

statistically significant on the optimization solution when the crossover and 

the mutation values are set to their low levels 0.6 and 0.01, respectively. In 
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this case, a better performance of the optimization algorithm is obtained when 

binary tournament is applied. However, its influence seems to be not 

statistically significant when crossover and mutation values are different.  

 

Similarly, crossover parameter is significant when mutation and selection 

parameter values are set to their low levels, and in this case, the optimization 

algorithm performs better when crossover value is in its high level. Other 

combinations of mutation and selection seem to make the crossover 

parameter less important in the algorithm performance.  

 

Finally, the mutation parameter is statistically significant if crossover and 

selection parameters are set both to their high level. In this case, the mutation 

value is recommended to be its high value. As a conclusion, the GA 

parameters present some interrelationships that impact on the optimization 

performance and it may make the GA parameter definition not straight-

forward. 

 

Table 11. GA sensitivity analysis. 

 
GA 

Selection Crossover Mutation 
Fixed P-Value Best Fixed P-Value Best Fixed P-Value Best 

Crossover 
(-1) & 

Mutation 
(1) 

0.637 N/A 

Mutation 
(-1) & 

Selection 
(-1) 

0.018 
Crossover 
Probability 

0.8 

Crossover(1) 
& Selection 

(-1) 
0.157 N/A 

Crossover 
(-1) & 

Mutation 
(-1) 

0.018 
Binary 

Tournament 

Mutation 
(-1) & 

Selection 
(1) 

0.157 N/A 

Crossover 
(-1) & 

Selection 
(-1) 

0.157 N/A 

Crossover 
(1) & 

Mutation 
(-1) 

0.157 N/A 

Mutation 
(1) & 

Selection 
(-1) 

0.637 N/A 
Crossover 

(1) & 
Selection (1) 

0.018 
Mutation 
Constant 

0.05 

Crossover 
(1) & 

Mutation 
(1) 

0.157 N/A 

Mutation 
(1) & 

Selection 
(1) 

0.157 N/A 
Crossover 

(-1) & 
Selection (1) 

0.157 N/A 

 

Unlike GA, PSO algorithm presents a more robust performance according to 

the results shown in Table 12. As it is shown, there is no significant difference 

between the average error samples at any parameter combination.  
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Table 12. PSO sensitivity analysis. 

 
PSO 

Constant Weight 
Fixed P-Value Best Fixed P-Value Best 

Weight (-1) 0.157 N/A Constant (-1) 0.637 N/A 

Weight (1) 0.637 N/A Constant (1) 0.637 N/A 

 

The algorithm has, statistically, the same performance even if the parameter 

configuration is changed within their common range of application. Therefore, 

for the micro-milling operation analyzed and the ACO system proposed, the 

parameter setting is easier and less sensitive in the PSO algorithm than in the 

GA, and its implementation is recommended. The final parameters set in the 

PSO algorithm for the ACO system is shown in Table 13. 

 
Table 13. PSO Algorithm configuration. 

 
Parameter Value 

Number of particles 15 
Cognitive Constant (C1) 2 

Social Constant (C2) 2 

Max/Min Inertia Weight 0.9/0.4 

Iterations 10 

 

 

7. Validation of the ACO proposed system 

 

The performance of the proposed ACO system for the micro-milling process 

was compared with the conventional practices where an off-line optimization 

procedure is conducted and the cutting parameters are kept constant 

throughout the machining operation. The characteristics of the micro-milling 

process can be set as in Table 14.  
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Table 14. Fixed characteristics of the micro-milling process taken for validation of the 
ACO proposed system. 

 
Tool 

Diameter 500 µm 

Material Uncoated carbide(WC) 
Number of Flutes 2 

Wokpiece 

Material AISI H13 
Hardness 56-58 HRC 

Process parameters 

t6G4H (20	mm	/	Vf) min 

A 10		€ 

B 10		€ 

C 10		€ 

C4 20	€ 

c2 90	€/hr 
Ra67< 0.5	μm 

Ra4?4 0.2	μm 

PGE;67< 100	% 

PGE;4?4 10	% 

PGE967< 100	% 

PGE94?4 50	% 

 

For comparison purposes, three machining conditions were tested. The first 

set is the most conservative one of the DoE (Vf= 50 mm/min – N= 15,000 

rev/min). According to the machinist, these conditions lead to ensure part 

quality specifications because tool wear rate is lower. The second tested 

conditions refer to higher productive conditions such as (Vf= 100 mm/min – 

N= 22,500 rev/min). The machinist recommends these conditions if the 

production rate should be higher. The third tested conditions are the resulting 

ones from the ACO system, and thus, the cutting parameters changes along 

the cutting-tool life. 

 

The cost results from the three testing conditions are shown in Table 15. It 

can be shown that applying an adaptive control methodology a cost reduction 

of 12.69% and 29% is obtained in comparison with the conservative and the 

high production conditions, respectively.  
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Table 15. Cost comparison between different cutting strategies. 
 

 Conservative conditions High production conditions Optimized conditions 

Previous 
geometric 
error (%) 

Feedrate, 
Vf 

[m/min] 

Spindle 
speed, N 
[rev/min] 

&'('(€)
)'*

 
Feedrate, 

Vf 
[mm/min] 

Spindle 
speed, N 
[rev/min] 

&'('(€)
)'*

 
Feedrate, 

Vf 
[mm/min] 

Spindle 
speed, N 
[rev/min] 

&'('(€)
)'*

 

10 50 15,000 4.4 100 22,500 7.7 50 15,000 4.4 

20 50 15,000 4.1 100 22,500 7.8 50 15,000 4.1 

30 50 15,000 4.1 100 22,500 8.1 50 15,000 4.1 

40 50 15,000 4.3 100 22,500 8.7 50 15,000 4.3 
50 50 15,000 5.0 100 22,500 9.5 50 15,000 5.0 

60 50 15,000 6.5 100 22,500 10.6 50 15,000 6.5 
70 50 15,000 9.5 100 22,500 12.3 62 15,000 9.4 

80 50 15,000 15.7 100 22,500 15.0 67 19,820 13.7 

90 50 15,000 27.2 100 22,500 20.8 69 23,909 19.0 

  TOTAL 81.3  TOTAL 101.0  TOTAL 71.0 

 

As it can be shown, the ACO system estimates that, from around the 60% of 

cutting-tool wear onwards, the optimal cutting conditions look for increasing 

productivity. It seems that at the beginning, milling at conservative cutting 

conditions is better since the part quality is higher and this is a critical issue in 

micro-milling parts. However, when the cutting-tool wear increases, 

conservative cutting parameters do not keep the part quality lower than less 

conservative cutting conditions, and thus, the productivity gains importance to 

reduce the total production cost. The last statement could be explained with 

Figure 14; clearly the average surface roughness is not reduced using the 

conservative conditions after the 60% of AGE. Production time gains 

importance in the cost function at this point since the performance differences 

between optimized conditions and conservative, in terms of part quality are 

negligible. 
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Figure 14. Evolution of Average Surface Roughness vs tool wear in terms of 
Average Geometric Error for different conditions. 

 

Figures 15 and 16 demonstrate that as the Average Geometric Error (AGE) 

increases, the cost function gets more complex and not precisely the most 

conservative conditions are the optimal values to minimize the machining 

costs. The previous statement probes that with a correct monitoring and 

modeling of the tool status corrective actions could be applied to optimize 

complex machining operations as micro-milling of hardened steels. 
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           Figure 15. 	Cost per pass	&D�D�D�  [€] at Average Geometric Error, AGE=25%	
 

 

Figure 16. Cost per pass	&D�D�D�  [€] at Average Geometric Error, AGE=80% 
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8. Conclusions  

 

In the present work, an on-line adaptive control optimization (ACO) system for 

micro-milling is presented. The system is able to adapt the cutting conditions 

to reach a minimum production cost and considering the real cutting-tool wear 

state in terms of hardened steel parts quality. In micro-milling processes, 

traditional off-line optimization approaches cannot lead to optimal cutting 

conditions since part quality is influenced by cutting-tool wear, therefore 

cutting conditions should be adapted throughout the cutting-tool life. This 

research work considers the cutting cost pass as the optimization index to 

reach a global optimization of the cutting process, considering the costs 

related to machining time, cutting-tools and quality loss cost on surface 

roughness and dimensional and geometric errors. 

 

The process models required for estimating the cutting tool wear and predict 

the part quality were defined using AI models and DoE. Two AI models were 

briefly compared for this purpose, Artificial Neural Networks and Least 

Squared Support Vector Machine models, and the use of ANN was finally 

adopted. Due to the importance of computing time in ACO systems, the 

feasibility of different optimization approaches such as Genetic algorithm 

(GA), Particle Swarm Optimization (PSO) and Simulated Annealing (SA) was 

analyzed. A comprehensive analysis of the optimization algorithms in terms of 

computing time versus accuracy and precision was conducted. The study 

revealed that SA algorithms required more computing time to convergence 

than GA or PSO algorithms. Furthermore, the PSO algorithms seem to 

perform slightly better than GA for a computing time around 2-3 seconds, 

which is considered adequate for the application analyzed. In terms of 

robustness, the PSO outperforms the GA so the implementation of PSO in 

ACO systems seems to be less sensitive to its optimization parameters and 

easier to deal with than GA.  
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Finally, the ACO system based on a PSO optimization approach was proved 

to outperform off-line optimization strategies and a cost reduction of 12.3% 

and 29% was reported with respect to conservative and high production 

strategies, respectively. The optimum conditions resulted to be a combination 

of both. For a new cutting-tool, a conservative strategy to minimize the tool 

wear rate is the best strategy. However, when cutting-tool wear is around 50-

60% associated to its superior limit of acceptable wear, the best strategy is to 

progressively increase the feedrate and the spindle speed to increase the 

productivity since conservative conditions cannot keep surface quality errors 

much lower than a less conservative conditions.   

 

As future work, the authors suggest to try the implementation of ACO systems 

based on other non-intrusive sensors in order to expand its industrial 

application. 
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