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Abstract—The authors develop a systematic procedure for
obtaining robust adaptive controllers that achieve asymptotic
tracking and disturbance attenuation for a class of nonlinear
systems that are described in the parametric strict-feedback form
and are subject to additional exogenous disturbance inputs. Their
approach to adaptive control is performance-based, where the
objective for the controller design is not only to find an adaptive
controller, but also to construct an appropriate cost functional,
compatible with desired asymptotic tracking and disturbance
attenuation specifications, with respect to which the adaptive
controller is “worst case optimal.” In this respect, they also depart
from the standard worst case (robust) controller design paradigm
where the performance index is fixedpriori .

Three main ingredients of the paper are the backstepping
methodology, worst case identification schemes, and singular
perturbations analysis. Under full state measurements, closed-
form expressions have been obtained for an adaptive controller
and the corresponding value function, where the latter satisfies a
Hamilton–Jacobi–Isaacs equation (or inequality) associated with
the underlying cost function, thereby leading to satisfaction of a
dissipation inequality for the former. An important by-product of
the analysis is the finding that the adaptive controllers that meet
the dual specifications of asymptotic tracking and disturbance
attenuation are generally not certainty-equivalent, but are asymp-
totically so as the measure quantifying the designer’s confidence
in the parameter estimate goes to infinity. To illustrate the main
results, the authors include a numerical example involving a
third-order system.

Index Terms—Adaptive control, backstepping, disturbance at-
tenuation, nonlinear systems, tracking.

I. INTRODUCTION

T HE DESIGN of adaptive controllers for parametric un-
certain linear or nonlinear systems has been one of

the most researched topics in control theory for the past
two decades. For linear systems, adaptive controller designs
have been centered on the certainty-equivalence principle [1],
[2], where the controller structure is borrowed intact from a
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design with known parameter values and implemented using
identified values for these parameters. Many success stories
have been reported in achieving global boundedness of internal
states and asymptotic performance of the system output using
this approach in both stochastic and deterministic (noise-free)
settings [3]–[8]. However, establishment of counterparts of
these results for general nonlinear systems, using the certainty-
equivalence approach, has been quite elusive, with successes
reported initially mainly for the case when the nonlinearities
satisfy some global linear growth conditions [9]. For nonlinear
systems with severe nonlinearities, a breakthrough took place
after the much celebrated characterization of the class of
feedback linearizable systems[10], [11]. A pioneering work
in this area has been [12], which presented a systematic
design paradigm based on the novelintegrator backstepping
method to globally adaptively stabilize a subclass of feedback
linearizable systems described inparametric strict-feedback
form. This approach was further refined in [13], where over-
parameterization was removed and was generalized in [14] to
a larger class of nonlinear systems. It has also been applied
to decentralized systems [15], as well as to nonholonomic
nonlinear systems [16]. For an up-to-date list of references
on the development of the backstepping approach, we refer
the reader to [17].

Intuitively, an adaptive controller design uses (and generates
online) more information on the system uncertainties than non-
adaptive designs and therefore should lead to controllers with
better robustness properties. In spite of this, many adaptive
controllers have been shown to exhibit undesirable robustness
properties [18]–[20].Nonrobustnessof an adaptive controller
could lead to inferior transient behavior and burstiness in
the closed-loop system under external disturbance inputs. To
overcome these difficulties, various modifications to earlier
designs have been proposed to robustify the adaptive controller
design, for both linear and nonlinear systems [21]–[23], but
these still fall short of addressing directly the disturbance
attenuation property for the adaptive controller design.

General objectives of a robust adaptive controller design
are (and should be) to improve transient performance, attain
a finite (acceptable) level of disturbance attenuation, and sus-
tain unmodeled dynamics. These are precisely the objectives
that have motivated the study of the -optimal control
problem for linear systems (with known parameters), which
has more recently been extended to the nonlinear framework
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[24]–[31], motivated by the differential game approach [32].
It would therefore be natural to cast a robust adaptive control
problem in the framework of nonlinear optimal control,
where specific measures of asymptotic tracking, transient
behavior, and disturbance attenuation can all be incorporated
into a single cost functional. This has in fact been done
recently in the context of parameter identification (for lin-
ear and nonlinear systems) [33], [34]—a study that has led
to a new class of robust identifiers that guarantee desired
achievable levels of disturbance attenuation. The structure of
these worst case identifiers resembles that of a least squares
identifier, except for the presence of additional state esti-
mate dynamics and an extra negative-definite term in the
differential equation for the error covariance matrix. The fact
that these have been obtained as the result of aworst case
optimization process, leading to satisfaction of a dissipation
inequality, makes them an ideal candidate to use in any cost-
optimization-based adaptive controller design—which is what
we do here.

Accordingly, this paper studies robust adaptive controller
design using the worst case design methodology. To obtain
explicit formulas for the controller, we consider the special
(but important) class of nonlinear systems that is described in
the parametric strict-feedback form, which we further take to
be subject to additional affine exogenous disturbance inputs.
The design specifications for the robust adaptive controller are
asymptotic tracking of a given reference signal and achieve-
ment of a desired level of disturbance attenuation over the
entire time interval which would then translate into
much improved transient response. We present a systematic
design paradigm, which leads to robust adaptive controllers
with the following three appealing features: 1) asymptotic
convergence to certainty-equivalent controllers as the iden-
tification error covariance approaches zero; 2) utilization of
robust parameter identification schemes as basic building
blocks; 3) attenuation of exogenous disturbance inputs to any
desired level of performance over the entire time interval

Departing from the standard robust control setup, our ob-
jective for the controller design includes the characterization
of an appropriate cost functional, compatible with the given
asymptotic tracking and disturbance attenuation specifications,
under which the controller designed satisfies a dissipation
inequality, or equivalently, ensures a zero upper value for
a particular zero-sum differential game. The cost function
includes a positive-definite quadratic weighting on the tracking
error (and possibly also weighting on internal states) and a
negative-definite quadratic weighting on the exogenous inputs,
whose ratio reflects the desired disturbance attenuation level
for the closed-loop system. The freedom in the choice of the
cost function allows us to extend the backstepping methodol-
ogy of [12] and apply it to this robust adaptive control problem.
We make use of the identifier designs obtained in [33] as a first
step to the robust adaptive control design. Because of the two-
time-scale structure of the worst case identifier, the controller
design is based on the quasi-steady-state dynamics of the
identifier dynamics, which are precisely the dynamics under
the less restrictive measurement scheme that allows additional

access to the derivative of the state variables for feedback. In
this case, we show that one of the causes of the nonrobustness
of a certainty-equivalent controller design is the fact that,
in the closed-loop, the disturbance inputs enter the system
through the differentiation of the parameter estimates, also
known as theswapping termin the adaptive control literature.
A singular perturbations analysis is then naturally employed
to establish the robustness of the adaptive controller, when the
two-time-scale identifier dynamics are utilized. The closed-
loop system admits a value function that can be expressed
in closed form and satisfies a Hamilton–Jacobi–Isaacs (HJI)
equation (or inequality) associated with the underlying cost
function, thereby guaranteeing a desired level of performance
for the adaptive controller. Three main ingredients of the
paper that pervade the derivation and the analyses are the
backstepping methodology, worst case identification schemes,
and singular perturbations analysis. A numerical example is
included in Section IV to illustrate the theoretical findings
of the paper. With minor modifications, the design paradigm
presented here can be applied to a class of minimum phase
parametric uncertain linear systems, as briefly discussed in the
conclusions section.

The problem of asymptotic tracking and disturbance atten-
uation for parametric strict-feedback nonlinear systems has
been addressed also in the recent book [35]. However, the
approach adopted there is considerably different from the
one developed here and is related to the tuning function
approach introduced earlier in [13]. Here, we make use of
the robust identification schemes derived in [33], and as a
result of this combined identification and control design, the
adaptive controller obtained is only asymptotically certainty
equivalent, and it requires a smaller control magnitude to
achieve the same level of disturbance attenuation. On the topic
of transient performance, we should mention the two recent
references [36] and [37] which have focused on the analysis
of existing adaptive control algorithms, rather than on the
design of controllers with respect to an optimality criterion,
which puts direct weight on the transient performance of the
closed-loop system.

The balance of the paper is organized as follows. In the
next section, we provide a precise formulation for the non-
linear adaptive tracking and disturbance attenuation problem
to be studied in the paper. In Section III, we first present
a backstepping design tool for asymptotically tracking and
simultaneously disturbance attenuating controllers for a two-
level nonlinear system; then, we make repeated use of this
backstepping tool to design robust adaptive controllers using
the robust identifiers derived earlier in [33] and establish their
robustness with respect to exogenous disturbances. A numeri-
cal example that involves a third-order nonlinear system with
a single unknown parameter is presented in Section IV, which
clearly illustrates many appealing features of the designed
controller. The paper ends with the concluding remarks of
Section V and two Appendixes, the first of which presents
some derivations that lead to the identifier dynamics used in
the adaptive controller design, based on the results of [33]; the
second one provides relevant expressions for a robust adaptive
controller designed for a modified version of the main model.
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II. PROBLEM FORMULATION

Motivated by the results and formulation of [12] (and also
[23]), we consider in this paper a class of single-input/single-
output (SISO) nonlinear systems, in the followingnoise-prone
parametric strict-feedback form:

(1a)
...

...

(1b)

(1c)

(1d)

Here, is the -dimensional state vector,
with initial state being ; is the scalar control input;

is the -dimensional exogenous input
(disturbance) where is of dimension ; is
the scalar output; is an -dimensional vector
of unknown parameters of the system whereis of dimension

; and the nonlinear functions and
are known and satisfy the triangular structure

depicted in (1). Note that, as compared with the parametric
strict-feedback form introduced in [12], the above system
further incorporates additional additive disturbance inputs,
where the nonlinear functions multiplying the disturbance
terms are also in triangular form. We should further note that
the above form of the nonlinear system is block diagonal
in terms of the disturbance and the parameter vector

—this specific structure being essential for the applicability
of the backstepping design procedure for the derivation of an
adaptive controller when the parameter vectoris unknown.
In order to bring an original system into the noise-prone
parametric strict-feedback form as above, one may have to
treat any single parameter that enters (1) at different integration
stages as different parameters, which would then clearly lead
to overparameterization of the plant; one may also have to treat
any single disturbance that enters the dynamics (1) at different
integration stages as independent disturbances, which again
would lead to an additional level of conservatism.

For the nonlinear system (1), we make the following two
basic assumptions as a starting point of our study.

Assumption A1:The nonlinear functions and are
times continuously differentiable in all their arguments

(or simply are ), The nonlinear functions
and are in all their arguments.
Assumption A2:There exists a positive constantsuch that

Assumption A1guarantees the smoothness of the nonlinear
functions and which is required for
our design procedure.Assumption A2requires the disturbance
to enter every channel of the nonlinear system (1), which
is needed to avoid singularity in the identification of the
parameters when full state measurement is available.

Associated with (1), we are given a reference trajectory
that the output of the system,, is to track. We make the

following smoothness assumptions on this reference trajectory.
Assumption A3:The reference trajectory is times con-

tinuously differentiable, where the signal and the derivatives
are uniformly bounded, i.e., for some

and

with The signal and its first derivatives are
available for control design.

For future reference, we denote the vector
by

The uncertainty, both intrinsic as well as exogenous to
the system, is the triple that is the initial
state, the true values of the unknown parameters, and the
driving disturbance. Since we are interested in the worst case
performance, the exogenous input can be taken to be
any open-loop time function, as in the case of -optimal
control problems. In view of the results of [33], we take
to belong to some subset of all uniformly bounded
time functions, and the uncertainty triple to
belong to which is taken as an appropriate subset of

to be specified later.
The objective of the controller design is to force the

output to track the reference signal asymptotically, while
attenuating the effect of the exogenous input (disturbance)
the initial condition and the unknown parameter vector

A precise statement of this objective is now given below.
Definition II.1: A controller is said to beasymptotically

tracking with disturbance attenuation level if there exist
nonnegative functions and such that
for all the following dissipation inequality holds:

(2)

Here, denotes the Euclidean norm, is
the initial guess for the unknown parameters, and the
dimensional matrix is the quadratic weighting of error
between the true value ofand the initial guess quantifying
our level of confidence in the initial guess.

We will take to be of block diagonal structure:

block diagonal

where is of dimensions and corresponds to our
level of confidence in the initial guess

An important point to note here is that in the performance
function (2), there is no weighting on the control input. Hence,
any attenuation level can be achieved by allowing the
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magnitude of the control input to increase asdecreases. The
smaller the value of is, the better will be the disturbance
rejection property, but at the expense of a larger control
effort. Any controller that achieves the above objective has
the following property, for any :

Hence, the norm of the tracking error is always smaller than
times the norm of the disturbance input plus a constant

that depends only on the initial states of the system.
We will consider the class ofstate trajectory-feedback

controllers where is piecewise continuous
in and Lipschitz continuous in the state trajectory We
will refer to this measurement scheme underlying the given
controller as theunknown parameter full state information
(UPFSI), to differentiate it from the one where also the
trajectory of the derivative of is available for control
purposes—which we will refer to as theunknown parameter
full state with derivative information(UPFSDI); we will have
occasion to use this measurement scheme at a crucial interme-
diate step in the derivation of the robust adaptive controller.
For a more in-depth discussion of the controller design under
these two measurement schemes, as well as a third (more
expanded) measurement scheme that allows the controller to
have access to the true value of the parameter vector—called
known parameter full state information(KPFSI)—we refer the
reader to [38].

We now conclude this section by introducing some notation
and convention that we will adopt throughout the paper.
The vector will denote some transformed
state variables; the vector will denote the
estimate of the parameter vectorwith being the estimate
of the vector is then the
estimation error any function symbol with an “over bar”
will denote a function defined in terms of the transformed state
variables, such as denoting the equivalent form of function
(of ) in terms of transformed state variableFor any matrix

the vector is formed by stacking up its column vectors.
For any functional depending on a parameter vector
denotes the partial derivative which is a row vector.

III. A DAPTIVE CONTROLLER DESIGN

We first present a backstepping lemma that will be used
repeatedly in the controller design stage. The intuition behind
this result is that if a desired disturbance attenuation level
can be achieved through a virtual control input, then the same
attenuation level can be achieved using the actual control
law which generates the virtual control input through a first-
order dynamics. As compared with the existing backstepping
algorithms, the lemma below provides a recursive solution

for achieving disturbance attenuation without the necessity
of increasing the guaranteed attenuation level at each step
of recursion and takes advantage of the achieved disturbance
attenuation property in the original design. Therefore, this
algorithm leads to a controller with smaller controller gain,
while guaranteeing the same level of robustness with respect
to the disturbance.

Lemma III.1: Consider a noise perturbed nonlinear system
given by

(3a)

(3b)

where is dimensional, is scalar, is dimensional,
and the functions and are smooth with

for any Suppose that with picked
as the virtual control input to the subsystem dynamics (3a),
and with some arbitrary but fixed nonnegative-definite
function, there exists a control law such that the
following HJI inequality is satisfied by a nonnegative-definite
value function :

(4)

Then, there exists a control law and a nonnegative-definite
value function for the overall system such
that the following HJI inequality is satisfied for any desired
nonnegative-definite where

(5)

Proof: First we observe that satisfies the HJI inequal-
ity (4) if and only if it satisfies, along with the dynamics (3a),
the following inequality:

Now, to prove the lemma, we introduce a new disturbance
and a new state variable

In terms of these quantities, the system
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dynamics can be expressed as follows:

Introduce a candidate value function for the overall system

Differentiation of this function yields the inequality

where the control is given by

By the same observation as at the beginning of the proof
above, and some manipulations, we obtain that the inequality
for above, evaluated along the full system dynamics, is
equivalent to the HJI inequality (5). This completes the proof
of the lemma.

We now proceed to the derivation of the adaptive controller
design, by first obtaining a (worst case) parameter identifier
for (using the framework and results of [33]) and then
developing the control law using a backstepping procedure.

Worst case identifiers for in (1), with guaranteed dis-
turbance attenuation bounds, can be derived by making use
of the general approach and results of [33], as outlined in
Appendix A. These identifiers are parameterized in terms of

nonnegative-definite matrices where
is of dimensions and may depend on the variables

, i.e.,

Note that the dependence of the’s on the internal states
of the identifier is in a lower triangular form. Now, in terms
of these matrices and a small design parameterthe -
identifier for to be denoted by is generated by the

following1:

(6a)

(6b)

(6c)

where the functions are defined by

(7)

For small values of the identifier (6) exhibits a two-
time-scale behavior. The coordinate transformation that yields
the standard singularly perturbed form is given by

The identifier dynamics
in this coordinate system is given by

(8a)

(8b)

(8c)

For ease of reference, we introduce the notation
and The quasi-steady-state

behavior of the identifier is given by the following dynamics,
where 2:

(9a)

(9b)

We note here that the quasi-steady-state dynamics corre-
spond precisely to the dynamics of the identifier obtained
under the UPFSDI measurement scheme where the derivative
of the state variables are also available for feedback; see
Appendix A. The specific structure of the limiting identifier
(9) enables us to employ backstepping tools in the derivation
of a controller for the overall system that uses derivative in-
formation, i.e., a robust adaptive controller under the UPFSDI
measurement scheme. As it will become clear shortly, in the
actual implementation, we will retain the structure of the robust
control law but will replace the identifier part with the UPFSI
identifier (6). This leads to the desired UPFSI adaptive control
law, whose robustness with respect to exogenous disturbances
is then proven using a singular perturbations analysis under
additionalAssumptions A4 and A5,to be introduced shortly.

Using the UPFSDI identifier (9), the identification error
obeys the following dynamics:

where

1This identifier was derived in [33] as a limiting case of another full-
order identifier for a noise-perturbed measurement scheme, using singular
perturbations analysis. It was called there approximate noise-perturbed full-
state information (NPFSI) identifier.

2This is obtained by setting the LHS of (8c) tozero, solving for ei; and
substituting it into (8a) by also making use of the original system dynamics.
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Introduce a candidate value function associated with the
identifier

(10)

whose derivative is given by

where The left-hand side (LHS) of (2)
can then be equivalently written as follows, by adding the
identically zero function :

Thus, the attenuation problem with respect tohas been
effectively converted to an attenuation problem with respect
to the equivalent disturbance In terms of the system
dynamics (1) and the identifier (9) satisfy, for

(11a)

(11b)

(11c)

Thus settling the issue of design of the robust identifier, we
now move on to controller design underAssumptions A1–A3,
which involves steps of integrator backstepping by repeated
application of Lemma III.1. Let be any fixed, desired
level of disturbance attenuation.

Step 1: At this step, we consider the combined states
as and state as in the statement of Lemma
III.1. We choose as the value function for under
the virtual control input which allows the desired virtual
control law to be chosen as zero. For notational consistency,
we again let Following the steps of Lemma III.1, the
derivative of then satisfies

Choose a nonnegative function which is
again a design parameter. We introduce

Then, the dynamics for can be rewritten as

Introduce a value function

the derivative of which, along the dynamics of is

This completes the first step of the design.
Note that at this stage, the nonlinear functions and
do not depend on the covariance statesHence, if

the adaptive controller is a certainty-equivalent controller. But,
for the general case, this certainty equivalence property will
only hold asymptotically as as we will
shortly see.

Step : Assume that from the previous steps we
have the following structures:

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

(12g)

(12h)
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At this step, we first evaluate the dynamics of

Following the procedure of Lemma III.1, we will construct
a value function to include the state Fix a design parameter

which is a nonnegative function, according to

The dynamics of can be rewritten as

where we have introduced the following functions:

(13a)

(13b)

(13c)

(13d)

(13e)

The functions and depend on the variables
—a prop-

erty that is consistent with the corresponding hypotheses in
(12).

Introduce the value function for this step as

After some algebraic manipulations, we obtain

and this completes theth design step. Again, the defini-
tions above are consistent with the corresponding induction
hypotheses in (12), and the backstepping process can be
continued from to using the same methodology.
At step the actual control appears explicitly in the state
equation for which allows us to complete the controller
design process.

Remark III.1: The above derivation quite naturally takes
into account the disturbance inputs that enter the dynamics
of through differentiation with respect to the parameter
estimates —known in the adaptive control liter-
ature asswapping terms. The standard certainty-equivalent
controller design, however, does not take the presence of
these terms into account. A significance of this fact is that
these disturbance inputs are amplified by nonlinear gains

which gener-
ally disrupt the disturbance attenuation property of the system
when ’s are not zero—an observation that sheds light on the
poor transient behavior of certainty-equivalent controllers.

Step : First choose a design parameter which is a
nonnegative function, according to

Define the functions and as in (13),
with the index set to Then, the state dynamics for are
given by

This can further be rewritten as

with the control law defined as

(14)

For this final step, the value function for the closed-loop
system is given by
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whose derivative can be evaluated to be

This completes the backstepping design process for the
UPFSDI case. The closed-loop system under the control law
(14) and the identifier (9) is now described collectively by the
following set of differential equations:

(15a)

(15b)

(15c)
...

...

(15d)

(15e)

(15f)

(15g)

(15h)

(15i)

Introduce the vector

(16)

In terms of this notation, the set of (15) can be written in
compact form as

(17)

where the nonlinear functions and are defined accord-
ingly. The derivative of is given by

and hence satisfies the HJI equation

(18)

where This implies that
the control law (14) is asymptotically tracking with disturbance
attenuation level

To remove the dependence of the identifier on the derivative
information of the state variables we will supply the con-
troller (14) with the and that are generated
by the UPFSI identifier (6). To guarantee the robustness of
the resulting closed-loop system, we invoke the following two
assumptions.

Assumption A4:There exists a positive constant such
that for some

where the matrices ’s and ’s are functions of
and the inequalities

hold for all values of these variables.
Assumption A5:There exists a constant such that

for all values of their arguments.
Using the special structure of the matrices’s, as given in

A4, the identifier dynamics can be expressed as

(19a)

(19b)

(19c)

This then makes the identifier prescribed here correspond
to the worst case identifier obtained in [33, Section 7],
for the time-varying parameter case.

Remark III.2: Assumption A4on the specific form of the
design matrices ’s is introduced above for two reasons.
On the one hand, with this specific structure of’s, the
covariance matrices ’s are bounded away from zero (from
below) uniformly. Therefore, it is no longer necessary to use
covariance resetting to enable the identifier to track the slowly
time-varying parameters. This benefit is also evident from the
fact that the proposed identifier structure corresponds to the
worst case identifier for the time-varying parameter case, as
in [33]. Furthermore, the convergence rate of the parameter
estimates is guaranteed to be exponential as long as the’s
are uniformly upper bounded (which is the persistency of
excitation condition in this context), which is a critical step
in the proof of the main result of this section, as we will
shortly see. On the other hand, when the design matrices’s
are positive definite, it then mandates persistent excitations
in the measurements to keep the’s uniformly bounded
from above. In fact, a simple choice of letting ’s be time-
invariant positive-definite matrices exposes thedynamics to
possible finite escapes in the absence of sufficient excitation.
Accordingly, the positive-definite components, ’s, of ’s
are scaled by ’s. Consequently, the covariance matrices
will be bounded above for an arbitrary level of excitation,
even though the precise upper bounds will in general depend
on the level of excitation in the closed-loop system.
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In view of the corresponding result of [33, Th. 9], we
consider the following set of admissible uncertainty triples,
for an arbitrary positive constant :

(20)

We can employ a singular perturbation analysis to establish
the following robustness property of the proposed adaptive
controller under the above class of uncertainties.

Theorem III.1: Consider the nonlinear system (1), and let
be fixed. LetAssumptions A1–A5hold, and the set

be defined as in (20) for some Then we have the
following.

1) There exists a positive scalar such that for all
the control law defined by (14), with identi-

fier (19), achieves asymptotic tracking with disturbance
attenuation level for any uncertainty triple in the set

Furthermore, the closed-loop signals and
are uniformly bounded on

2) For any uncertainty triple in the set such that
the expanded state vector con-

verges to zero as for any

Proof: Introduce the value functions and defined
exactly as before. Let again denote the expanded state vector
defined as in (16), and let nonlinear functionsand be
defined exactly as in (17). In terms of state variablesand
the closed-loop system under the control law (14) and identifier
(19) can be expressed as

where

...
...

...

...
. ..

...
...

It is not necessary here to explicitly write down the analytic
forms of the functions and which turn out to
be quite complicated. It is important to note, however, that
these nonlinear functions all belong to and further satisfy
the following two relationships:

These two algebraic relationships are obtained using the fact
that the slow manifold of the above singularly perturbed
dynamics is exactly the dynamics (17). These nonlinear sin-
gularly perturbed dynamics are linear in the fast state variable

and the disturbance input Time-scale decomposition
and robust control of this class of systems has been studied
extensively in the earlier paper [39]. Motivated by the results

of that paper, we introduce here another function,
associated with the fast dynamics:

Let the overall value function be Then,
the derivative of along the closed-loop trajectory can be
written as (after some lengthy algebraic manipulations)

where the partial differential equation (18) has been used in
the derivation, and the function is defined as

Consider the following time-varying set:

(21)

where the positive scalar is sufficiently large such that

and

The significance of the first inequality above will be seen
shortly.

The first statement of the theorem can be established by
proving the following two statements.

1) If the state of the closed-loop system, be-
longs to for any then the controller
achieves asymptotic tracking with disturbance attenu-
ation level for any uncertainty triple in and

is uniformly bounded, for sufficiently small
values of

2) If the closed-loop system starts in then it
belongs to for any and for sufficiently
small values of
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Toward proving statement 1), suppose that
for any which implies that

Then, there exists a constant such that for
all since can be expressed as a continuous func-
tion of and which themselves are uniformly bounded.
Under the workingAssumption A3,corresponding to any
uncertainty triple in there exists a constant such
that Furthermore, the constant can be chosen
to be independent of the parameterbecause of the diagonal
structure of the dynamics for and Assumption A2.Because
of the uniform boundedness of the covariance matrices

’s are strictly larger than or equal to, in matrix sense, the
solutions of the following Riccati differential equations:

where is a positive constant such that

Hence, there exists a positive constant which generally
depends on the value of the constantsuch that

The covariance matrices ’s are then upper and lower
bounded in the following fashion:

over the entire time interval
Utilizing the above bounds on and ’s, there further

exist positive scalar constants such that the
following growth conditions are satisfied on for any

and any uncertainty triple in :

and, for each

where denotes any continuous nonlinear function, of no
direct interest to us in this derivation. These inequalities imply
that, for sufficiently small values of

for any uncertainty triple in the set
Let functions and be such that

Then the performance inequality (2) is satisfied for
sufficiently small, and this establishes statement 1).

For statement 2), let us fix any and any
such that Then the result will follow if we can

prove that for any uncertainty triple in By the
definition of the function and the fact that we
have either or In the former case,
we have the following set of inequalities, under the working
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Assumptions A4 and A5:

which yields the nonpositiveness of the derivative of In
the latter case, the uniform bounds onand imply that

and further for sufficiently small
values of This establishes statement 2) and therefore the
first statement of the theorem.

For any uncertainty triple in such that the

signals and all
belong to for sufficiently small values of Furthermore,
their derivatives are uniformly bounded for any fixed value
of Hence, these signals converge to zero asymptotically.
This verifies the second statement of the theorem, and thus
completes its proof.

Remark III.3: We note that the controller (14) depends on
the covariance information of the identifier and therefore is
not a certainty-equivalent controller. Yet, it is asymptotically
equivalent to a controller designed with fixed parameters, as

On the other hand, with the design
parameter matrices ’s chosen as inA4, the error covariance
matrices ’s become uniformly bounded from below by a
constant positive-definite matrix when the system stateis
uniformly bounded from above. The controller (14) will not
converge to a certainty equivalent controller in this case. When
the covariance matrices ’s, as well as their derivatives,
are small (in the spectral radius sense), the behavior of the
controller is close to that of the certainty-equivalent one.

Remark III.4: Consider the class of nonlinear systems

(22a)
...

...

(22b)

(22c)

(22d)

where the same disturbanceenters all subsystems, but the
nonlinear functions and have only as their arguments.
For the results of this section to be directly applicable to
this class of systems, overparameterization and overconser-
vativeness have to be introduced in order to transform the
system into the noise-prone parametric strict-feedback from
(1). This can be avoided, however, by utilizing the special
structure of the system, where the functions and

depend only on and are To avoid

singularity in identification, we must assume that the set of
vectors are linearly independent for all
The parameter identifier for this class of systems depends
only on the variable which then allows for a backstepping
procedure similar to the one described in Lemma III.1 to be
employed in the design of an asymptotically tracking and
disturbance attenuating controller. See Appendix B for the
design equations for this class of systems, and Section IV for
a numerical example involving this type of a nonlinear system.

IV. A N EXAMPLE

To illustrate the design procedure developed in the previous
sections, we consider a third-order nonlinear system with
an unknown scalar parameter To further corroborate the
statement of Remark III.4, the system is taken to be of the
special form (22), for which the relevant design equations can
be found in Appendix B

For this system, the reference signal is generated by a
third-order internal model with transfer function

In state space, the reference model can be represented by

where is a command signal, taken to be a step function,

The initial states for the plant and reference model are

The true value of the parameteris taken to be 1. The desired
attenuation level with respect to the disturbanceis taken
to be 3.

KPFSI Case: As a benchmark for comparison, we
first designed a robust disturbance attenuating controller

which uses full state measurements and
full knowledge of the parameter This was done by
employing recursively the backstepping procedure described
in Lemma III.1, and by picking the design parameter
which is the guaranteed level of disturbance attenuation.
Due to its complexity, we are not including here the explicit
form of the controller.
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UPFSDI Case: In this case, the parameteris unknown,
but the derivative of the state is available. We took the initial
guess to be with a confidence level of The
design parameter was taken to be zero. Note that this choice
of the parameter corresponds to a standard least squares
identifier. The identifier for the system in this case is given by

where the initial states are set to and
Using the expressions given in Appendix B, we arrived

at an asymptotically tracking controller with disturbance
attenuation level 3.

UPFSI Case: The parameter is again unknown. The
only measurement available is the state history In
this case, the design parameterwas chosen, according to
Assumption A4, to be where the parameters

and were both fixed at 0.1. Since the system output
is to asymptotically track 1, there is enough excitation

in the system to keep from escaping to infinity for a
large class of disturbance signals. When the outputtracks 1
exactly, the covariance will converge to
but not zero. We took the controller as designed in the
UPFSDI case. The additional design parameterwas fixed
at 0.05. In this case, the identifier is given by, after some
algebraic manipulations

where the initial conditions are and

Fig. 1. State trajectory of the reference model.

The design process for the above three controllers consisted
of programming in Mathematica, to arrive at the controller
formula, followed by implementation in Matlab codes, and
finally simulation of the closed-loop system using Simulink.
The state trajectory of the reference model can be seen in
Fig. 1.

We simulated the closed-loop system, under each of the
three controllers, against two sets of disturbance inputs. First,
the disturbances were set to zero, to demonstrate the command
following property of the controller. Next, the disturbance
inputs were picked as follows:

Band limited white noise signal

with power 0.01 and sample rate 5 Hz

The system response under the KPFSI controller is depicted
in Fig. 2. When the disturbances are set to zero, the output
tracks the reference signal exactly (the difference is in the
order of 10 ). Under sinusoidal and white noise disturbance
inputs, the system output still follows the reference signal,
with the tracking error bounded by 0.4.

The system response under the UPFSDI controller is de-
picted in Fig. 3. Despite the large initial error of the parameter
estimate, the system has a fair transient response which settles
in less than 5 s. The parameter estimateconverges to the
true value faster in the noisy case than in the noise-free case.
This is due to the increased level of excitation for the noisy
system. After the transient, the performance of the controller is
similar to that in the KPFSI case for both sets of disturbances.
The transient performance depicted here appears to be worse
than that of the UPFSI case. This is because of the relatively
slow convergence rate of the least squares identifier. As will
be pointed out later, in the UPFSI case the controller makes
use of the additionala priori excitation information about the
system, which leads to performance improvement.
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(a) (b)

Fig. 2. System response under the KPFSI controller. (a) System outputy and (b) control inputu: Solid line for noise-free case; dash line for noisy case.

(a) (b)

(c) (d)

Fig. 3. System response under the UPFSDI controller. (a) System outputy; (b) control inputu; (c) parameter estimatê�; and (d) error covariance�:

Solid line for noise-free case; dash line for noisy case.

The system response under the UPFSI controller is depicted
in Fig. 4. The closed-loop system has a very good transient
performance because of the fast convergence rate and robust-
ness of the identifier. It is important to note that this desirable

transient performance is made possible by utilizing thea priori
information of the excitation level of the system. The choice of
the parameter also limits the set of admissible uncertainties.
The performance of the controller is very similar to that in
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(a) (b)

(c) (d)

Fig. 4. System response under the UPFSI controller. (a) System outputy; (b) control inputu; (c) parameter estimatê�; and (d) error covariance�:

Solid line for noise-free case; dash line for noisy case.

the UPFSDI case in steady state, which validates the singular
perturbations analysis of Theorem III.1.

This example clearly illustrates the effectiveness of the
controller design tool developed in this paper. In the face of an
open-loop unstable plant (with possibility of a finite escape),
the controller designed achieves both asymptotic tracking and
disturbance attenuation with a moderate control effort.

V. CONCLUSIONS

For a class of SISO nonlinear systems described in noise-
prone parametric strict-feedback form, we have developed
design tools that lead to an explicit construction for a class
of (robust adaptive) controllers that asymptotically track a
given reference signal and achieve prespecified disturbance
attenuation levels with respect to exogenous system inputs.
We have presented an explicit design paradigm that leads to
robust adaptive controllers with the following three appealing
features:

1) asymptotic convergence to certainty-equivalent con-
trollers as the identification error covariance approaches
zero (in the UPFSDI case);

2) utilization of robust parameter identification schemes as
basic building blocks;

3) attenuation of exogenous disturbance inputs to desired
performance levels over the time interval

The design procedure developed is based on worst case
identification, the integrator backstepping methodology, and
singular perturbations analysis. The closed-loop system is
shown to admit a closed-form value function that satisfies
an associated HJI inequality, thereby guaranteeing a desired
level of performance for the adaptive controller. We have
shown that the certainty-equivalence principle holds in the
strict sense only for first-order systems, whereas for higher
order nonlinear systems it holds only asymptotically, as the
confidence in the parameter estimates reaches infinity. A nu-
merical example, included in Section IV, clearly demonstrates
the superior performance of the controller designed.

Viewed as an -control problem, we have here one of
the rare situations where there exists an explicit solution to
a genuine nonlinear problem with partial information (note
that, the parameters, which also constitute state, are not
directly measurable). The controllers are nonlinear and are
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parametrically defined with one of these parameters being the
prespecified level of disturbance attenuation.

An immediate extension of the results developed here would
be to the class of input–output linearizable systems whose zero
dynamics are bounded-input/bounded-state stable with respect
to control, disturbance, and the state variables
where is the relative degree. This includes, in particular,
the minimum phase parametric uncertain linear systems.

The general results of this paper can also be immediately
extended to the time-varying parameter case. In this case,
the parameter vector would, for example, be generated by
dynamics such as

where is an dimensional unknown exogenous input to the
system. The performance criterion (2) would then include a
negative cost penalty associated with the disturbance:

A parameter identifier appropriate for this case can be found
in [33], which again facilitates a backstepping design for an
asymptotically tracking and disturbance attenuating controller
for the system.

Future research on this topic lies in several directions. One
of these is the generalization of these results to the output
feedback measurements scheme. Two possible subcases are:

1) only the output trajectory is available for feedback;
2) only noisy measurements are available.

Another direction would be the investigation of the case when
there is an additional prescribed weighting with respect to the
control input in the performance criterion (2), as in [40] but
with the special nonlinear structure of the model adopted here.
Yet a further direction of study would be to study robustness
of these controllers to unmodeled dynamics.

APPENDIX A
DERIVATION OF WORST CASE IDENTIFIERS

In this Appendix, we present the derivations that lead to the
UPFSI and UPFSDI identifiers used in Section III, as well as
those used in the next section (Appendix B).

First, we derive the identifier in the UPFSDI case, that
is when both state and derivative information are available.
For the nonlinear system (1), we consider the following cost
function (to be minimized):

(23)

where ’s are the parameter estimates to be designed,is
a positive scalar, and ’s are the positive-definite design
parameter matrices.

When both the state and its derivative are available for
feedback, we view as the dynamic equation and
(1) as the set of measurements. Then following thecost-to-
come function analysis that led to [33, Th. 1], it is rather
straightforward to derive (9) as the worst case identifier
minimizing (23). It should be noted that the worst case
covariance matrices ’s here correspond to in the
notation of [33]. We also note that, in the present case, we have
the following counterpart of [33, eq. (11)] as the cost-to-come
function:

where ’s are defined by (7), and ’s satisfy the differential
equations (9a). The choice of then yields the identifier
(9).

In the UPFSI case, on the other hand, the identifier (6)
is obtained by the following process. First, we study the
identification design under noise perturbed full state measure-
ments—a measurement scheme that is informationally inferior
to the UPFSI measurement. In other words, we first assume
that we have the measurement equation

where is a scalar measurement noise affecting theth state
variable. Under the UPFSI measurement scheme, we simply
have This observation then allows us
to rewrite the system dynamics as

...
...

where we have replaced ’s by ’s on the right-hand side
(RHS) of the state equation (1). We associate with this system
the cost function
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where and the weighting matrix
depends on rather than

The solution to this worst case identification problem can
be obtained from [33], as a special case of Remark 4 of that
reference, under the correspondence

...

...

...

This is referred to in [33] as the full-order identifier. To arrive
at a reduced-order identifier, we follow the development of
[33] and replace the worst case covariance matrix with its
limiting solution as We work here with the inverse
of the worst case covariance matrix. First partition it into
2 2 subblocks, compatible with the partitioning of
to reveal the two-time-scale property as in [33, eq. (37)].
Setting in the resulting equations yields the quasi-steady-
state dynamics for the worst case covariance matrix. Using
this quasi-steady-state dynamics with the state and parameter
estimate dynamics yields the identifier (6).

A line of reasoning similar to the above yields the identifiers
(24) and (25), under UPFSI and UPFSDI measurements,
respectively, for the special class of nonlinear systems con-
sidered in Remark III.4.

APPENDIX B
DERIVATION UNDER CORRELATED DISTURBANCES

WITHOUT OVERPARAMETERIZATION

In this appendix, we present explicit design equations for the
special class of nonlinear systems considered in Remark III.4.
We start by noting that in view of [33, Th. 7], and the
discussion of Appendix A, a relevant identifier in this case
is given by

(24a)

(24b)

(24c)

where

is an dimensional positive-definite matrix to be chosen
by the designer, and is a small design parameter.

The quasi-steady-state dynamics of the identifier, as
are given by

(25a)

(25b)

which is exactly the identifier under the UPFSDI measurement
scheme.

Because of the simplified structure of the above quasi-
steady-state dynamics of the identifier, the controller design
will be based on these dynamics. After such a controller is
obtained, the estimate and the covariance are replaced
by those generated by the UPFSI identifier (24), to form an
implementable UPFSI adaptive controller. The performance
and robustness of this UPFSI adaptive controller can then be
established by using a singular perturbations analysis.

Under the UPFSDI identifier, the identification error
satisfies the following dynamics:

where
Introduce a candidate value function associated with the

identifier

the derivative of which is given by

Using this, we can (as in Section III) convert the attenuation
problem with respect to to one with respect to In terms
of dynamics (22) can be rewritten as

Hence, a backstepping design process, which is similar to the
one introduced in Section III, can be carried out here without
the overparameterization and overconservativeness associated
with the standard form (1). This again involves repeated use
of Lemma III.1.

Fix nonnegative functions which are the
design parameters:

We can then define the following functions recursively, for
where and are introduced for

notational consistency
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Then, the adaptive controller is given by

(26)

and the value function for the closed-loop system becomes

which satisfies a corresponding HJI equality.
The implementable adaptive controller is formed by com-

bining the control law (26) with the UPFSI identifier (24).
As in Section III, we will make some structural assump-
tions on the weighting matrix to guarantee the robustness
of the closed-loop adaptive system. The parameter matrix

is selected to be of the form

where
Using this structure, the dynamics for the covariance matrix
can be rewritten as

which is again recognized to be the identifier for the time-
varying parameter case (see [33, Th. 9]).

The admissible uncertainty set is then defined as follows,
for an arbitrary constant :

The counterpart of Theorem III.1 here can be established
for this controller (as in the earlier case) under additional
smoothness assumptions on the nonlinear functionsand
as delineated in Remark III.4.

This completes the derivation of the disturbance-attenuating
adaptive controllers for the class of nonlinear systems (22).
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[13] M. Krstić, I. Kanellakopoulos, and P. V. Kokotović, “Nonlinear design
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