
Adaptive Counting Networks

Srikanta Tirthapura
Department of Electrical and Computer Engineering

Iowa State University, Ames, IA 50011
snt@iastate.edu

Abstract

Counting networks are well studied parallel and dis-
tributed data structures, which are useful in synchronization
applications such as distributed counting and load balanc-
ing. However, current constructions of counting networks
are static, since their width (the degree of parallelism), and
hence the size of the network, have to be fixed in advance.
This present an obstacle in efficiently implementing them in
a large distributed system whose size may be changing, due
to nodes joining and leaving the network.

We present an adaptive construction of the bitonic count-
ing network. Our network tunes its width to the system size
in a distributed and local way.

• With high probability, the effective “width” of the
network is Ω(N/log2 N), where N is the number
of nodes currently in the system, and the effective
“depth” of the network is O(log2 N). In contrast, a
static implementation would have the same width irre-
spective of the system size.

• When the system size changes, the network adapts by
splitting or merging its components. All decisions and
actions are decentralized: these include the decision
of when to split and merge the components, and the
action of splitting and merging them.

Our construction is layered on an overlay network which
provides an efficient peer-to-peer lookup service, and uses
the recursive structure present in the bitonic network to
adapt its implementation. Though we discuss the bitonic
network, our technique could be applied to build an adap-
tive implementation of any distributed data structure which
can be decomposed in a recursive way.

1. Introduction

Counting networks [AHS94] are well studied distributed
data structures which are useful in distributed counting, load

balancing, and other synchronization applications. Count-
ing networks route tokens from input to output wires,
through many layers of simple computing elements called
balancers. They ensure that irrespective of the distribution
of tokens on the input wires, the tokens are always uni-
formly distributed across the output wires to the maximum
extent possible. The construction and properties of count-
ing networks have been studied in detail [AHS94, AVY94,
HT03, KP92, Wat98].

However, all currently known constructions of counting
networks are static. The degree of parallelism (the “width”
of the network), and the number of processing elements
(balancers) required to implement have to be fixed in ad-
vance, and cannot change with time. In a distributed sys-
tem, however, the set of processors can change over time.
A small value of the width might be efficient for a small
system size, but will not provide enough parallelism if the
system becomes larger. Conversely, choosing a large width
will lead to unnecessary overhead for small system sizes,
due to the large number of processing elements that would
be needed. Ideally, the degree of parallelism of the counting
network should adapt to the system size and load.

We present such an adaptive construction of counting
networks, which can scale with the system size. The ba-
sic units of our construction are variable width components
as opposed to fixed width balancers. When the system
size increases, the number of components implementing the
network increases by “splitting” currently existing compo-
nents, and when the system size decreases, the number of
components decreases, by “merging” different components
together.

We layer our implementation of counting networks
on top of an overlay network which provides an effi-
cient lookup service, such as provided by many of the
current peer-to-peer systems[PRR99, HKRZ02, SMK+01,
RFH+01].

Our adaptive counting network has the following prop-
erties. Let N denote the current number of nodes in the
system.

• With high probability, the effective width (degree of

parallelism) of the counting network is Ω(N/log2 N),
and the effective depth (a measure of the latency) is
O(log2 N).

• With high probability, the total number of components
in the counting network is O(N). The expected num-
ber of components that are mapped to a node is Θ(1)
and the maximum number of components on any node
is O(log N/log log N) with high probability.

• When the system size changes, the counting network
adapts by splitting or merging its components. All de-
cisions and actions are decentralized: these include the
decisions of splitting and merging the components, and
the actions of splitting and merging them.

In contrast, the effective width and depth of a static im-
plementation does not change with the system size, and is
thus independent of N . For a width of w, the bitonic and
periodic networks have depths of O(log2 w), and use a total
of O(w log2 w) balancers.

1.1. Counting and Balancing Networks

Counting networks have been built out of simple com-
puting elements called balancers. A balancer is an asyn-
chronous switch with two input wires and two output wires.
The two input wires are labeled 0 and 1 and the two output
wires are labeled 0 and 1. A balancer accepts a stream of
tokens on its input wires, and the i-th token entering the bal-
ancer leaves on output wire i mod 2. A balancing network
is an acyclic network of balancers where output wires of
some balancers are linked to input wires of others. Count-
ing networks are balancing networks with the following step
property w.r.t. the distribution of the tokens across the out-
put wires.

Let w denote the number of output wires of the balanc-
ing network. Let X = x0x1 . . . xw−1 denote the sequence
of the numbers of tokens that are emitted out of output
wires labeled 0, 1, . . . (w − 1) respectively. A network is
said to be in a quiescent state if every token that has en-
tered the network has also left it. A balancing network is a
counting network if in every quiescent state of the network,
the sequence X satisfies the following condition: for every
0 ≤ i < j ≤ (w − 1), it is true that 0 ≤ xi − xj ≤ 1.

Applications A counting network can be used in a scal-
able implementation of a distributed counter object. In a
large scale distributed system, a counting network can be
used to generate consecutive token numbers on demand in
a parallel and distributed manner.

A counting network can also be used to build a dis-
tributed data structure which can match producer resources
with consumer resource requests. In this application,

consumers may asynchronously generate “request tokens”
requesting use of a resource, and producers may asyn-
chronously generate “supply tokens” whenever resources
are available for use. The word “resource” is used in a gen-
eral sense: for example, they could be CPU cycles, or a
permission to access a service. Synchronization is required
to ensure that each request token is matched with exactly
one supply token (if enough supply is available), and vice-
versa. As illustrated in [AHS94], this producer-consumer
matching problem can be solved by using two back to back
counting networks, one for producers and the other for con-
sumers.

1.2. Overview of Solution

We focus on the bitonic counting network [AHS94,
Bat68], but the same technique can be used for any dis-
tributed data structure which can be decomposed recur-
sively. Our solution has two parts.

Firstly, we use the inductive structure present in the
bitonic network to increase or decrease the number of com-
ponents implementing the network, whenever the nodes de-
cide to. Initially, the entire bitonic network resides on one
node, as a single component. If the system size increases,
and more parallelism in necessary, then the bitonic net-
work splits into “components” and these components are
re-mapped to different nodes and connected by (applica-
tion level) wires. These components can further split into
smaller components, and so on. When the nodes sense that
the system size has decreased, then many smaller compo-
nents can be merged together to form a larger component,
and this is also a local action involving only those compo-
nents being merged. The mapping of the components to the
nodes is done using the distributed hash function provided
by the underlying layer.

The second part of our solution is the distributed decision
about when to split and merge components. Each node es-
timates the appropriate level of parallelism for the network
using an estimate of the number of nodes in the system.
Knowing the system size exactly is infeasible in a large sys-
tem. However, it is possible to obtain good estimates in a
local way, if the nodes in the system have random identi-
fiers, as is the case in most structured peer-to-peer systems.
Each node in the system uses its local estimate of the net-
work size in making a decision on splits and merges.

Combining the two, we find that the decentralized split-
ting and merging decisions of the different nodes are coor-
dinated enough so that we get a network whose effective
width and depth closely match the width and depth of the
“ideal” counting network that one could statically construct
for the current system size.

2

1.3. Related Work

Diffracting Trees [SZ96] are another class of balanc-
ing networks, where the balancers are organized as a tree,
and whose outputs also have the step property. The orig-
inal diffracting trees also had the problem that no single
set of parameters (such as the the size of the tree) worked
well across a range of system loads. To remedy this, re-
active diffracting trees [DLS00] were proposed, which can
grow and shrink as the system load varies. Recently, self-
adjusting trees [HHPT03] have been proposed, which can
react faster to changes in system size, and which need less
manual configuration.

The above work is focused on the shared memory model,
while we assume a message passing distributed system.
Diffracting trees depend on efficient “diffraction through a
prism” for ensuring that there is no contention at the root of
the tree. This involves the choice of a good waiting strat-
egy at the nodes implementing the prism. The counting
networks that we consider do not have a single root node.
Tokens can enter the counting network at one of many input
nodes and hence counting networks do not face the problem
of contention at the root.

In order to construct efficient distributed hash tables
(DHTs), many systems and algorithms overlay parallel
interconnection architectures over peer-to-peer networks.
The Viceroy system [MNR02] overlays a Butterfly net-
work, while the Chord system [SMK+01] and the algo-
rithm of Plaxton et. al. [PRR99] use Hypercubes in their
overlays. Other work in building overlay networks in-
clude [AS03, MBR03, KK03]. Our counting network con-
struction differs in its goal from the above. The above are
built for purposes of routing in a DHT, while we assume the
presence of a routing facility, and aim to build distributed
structures on top.

Many counting network constructions have been pro-
posed. The bitonic and periodic networks proposed
in [AHS94] are isomorphic to the bitonic sorting
network[Bat68] and the periodic sorting network[DPRS89]
respectively, and both have O(log2 w) depth (where w is
the width). Constructions of smaller depth for the same
width were proposed in [KP92], who showed the existence
of counting networks of depth O(log w) and gave explicit
constructions of networks of depth O(clog∗ w log w) (where
c is a constant) using deterministic balancers. The construc-
tions in [KP92] are however not practical, since the hidden
constants are very high. The above constructions do not
consider the problem of reconfiguration for changing sys-
tem sizes.

1.4. Model

We assume an underlying routing service which pro-
vides efficient routing to an object given the object’s
name, through a distributed hash table [SMK+01, PRR99,
RFH+01, MNR02] . We also assume that the processing
nodes are assigned random identifiers, as is the case in most
structured peer-to-peer networks; for example, [SMK+01,
RFH+01] make this assumption. The adaptive counting
network is overlaid on top of this routing layer.

The adaptive counting network is a directed acyclic
graph whose vertices are components (a component is de-
fined precisely in the next section) and whose edges are sets
of wires between components. The input layer of the net-
work is the set of components which accept tokens and have
‘input wires pointing into them, and the output layer of the
network is the set of components from which the tokens are
emerge. The width of a counting network is the number of
input wires, which equals the number of output wires for
the bitonic network.

The width of the network is a limit on the maximum par-
allelism that the network can achieve, but says nothing of
the current level of parallelism in the network. To capture
the current degree of parallelism and latency in using the
adaptive counting network, we define the effective width and
the effective depth of an adaptive network.

Definition 1.1 The effective width of an adaptive network
is the number of vertex disjoint paths from the input layer
components to the output layer components.

Definition 1.2 The effective depth of an adaptive network
is the length of the longest path from a component in the
input layer to a component in the output layer.

If N is the number of nodes in the network, we show
that the expected number of components per node of the
network is O(1), the effective width of the network is
Ω(N/log2 N), and the effective depth is O(log2 N) (the
above two also hold with high probability).

How to use this network Each of the input components
of the bitonic network has a unique name (the exact nam-
ing scheme is described in the next section), and the client
can send tokens to any input component. Due to network
reconfiguration, it is possible that the set of input compo-
nents will change with time, but we show in Section 3 that
the client has to try no more than log w different names be-
fore it can find an input component which currently exists
in the network (assuming that the structure of the counting
network does not change during the lookup process). The
client tokens are routed through the network and exit some
output component with a correct counter value.

3

Road map In Section 2, we show how we use the induc-
tive structure of the bitonic network in building our adaptive
network. In Section 3, we describe how the nodes make dis-
tributed decisions about splitting and merging components,
and prove the depth and width properties of our adaptive
network.

2. The Bitonic Network Implementation

We will first consider a simple implementation of the
bitonic network on a peer-to-peer system. We first decide
upon a width w = 2k, for some k ≥ 1, based on an
estimate of the parallelism necessary for the network. A
bitonic network of width w has w log w(log w+1)

4 balancers.
In the simple approach, we implement each balancer as a
separate object. Each balancer object is assigned a unique
name which can be constructed from its coordinates in the
bitonic network; all input balancers get names in the range
(0, 0), (0, 1) . . . (0, w−1), and all components at depth i get
names in the range (i, 0) . . . (i, w − 1). The balancer with
name b is mapped to node h(b) where h is the distributed
hash function that is provided by the underlying system.

Each balancer knows the names of its two out-neighbors,
and can obtain their locations through applying the hash
function. Tokens arriving into the balancer are sent alter-
nately to the out-neighbors, with the first token going into
the “top” out-neighbor.

The problem with this implementation is that it always
uses O(w log2 w) objects irrespective of the underlying sys-
tem size. Suppose we had set the width w = 100, expecting
the system to grow to up to 500 nodes. There would be
about 1000 balancer objects implementing this network. If
the actual number of nodes currently in the system is 50,
then a centralized low parallelism implementation might be
the best choice, and a distributed implementation might be
unnecessary overhead.

2.1. Components

We now describe our adaptive bitonic network, whose
size and effective width can change with time. Let w de-
note the width of the counting network, which is a limit
on the maximum possible parallelism the network can
achieve. We will construct an adaptive implementation of
the BITONIC[w] network.

We first inductively define the notion of a component of
the network. A component of width k has k input wires and
k output wires. A BITONIC[w] is a component. From the
recursive structure of BITONIC[w], as shown in Figure 1,
we arrive at a recursive decomposition of a component into
smaller components.

The BITONIC[k] component (k = 2i, i > 1) can
be divided into six smaller components, the top and

BITONIC[w/2]

BITONIC[w/2]

MERGER[w/2]

MERGER[w/2]

MERGER[w]

w−1

w/2

w/2−1

1

0

MIX[w]

Figure 1. The recursive structure of the
BITONIC[w] network

bottom BITONIC[k/2] components, the top and bot-
tom MERGER[k/2] components and the top and bottom
MIX[k/2] components. The connections between the var-
ious components are as follows.

• The input wires to BITONIC[k] are split between the
top BITONIC[k/2], and the bottom BITONIC[k/2],
which get the top and bottom halves of the input re-
spectively.

• Even numbered outputs of the top BITONIC[k/2] go
into the topmost k/4 inputs of the top MERGER[k/2],
and the odd outputs go into the topmost k/4 inputs of
the bottom MERGER[k/2].

• The outputs of the bottom BITONIC[k/2] are split sim-
ilarly. The even numbered outputs become the bot-
tommost inputs of the top MERGER[k/2] and the odd
numbered outputs become the bottommost inputs of
the bottom MERGER[k/2].

• The top k/4 outputs of the top MERGER[k/2] form
the even numbered inputs into the top MIX[k/2] and
the bottom k/4 outputs form the even numbered inputs
into the bottom MIX[k/2]. The corresponding outputs
of the bottom MERGER[k/2] make up the odd num-
bered inputs of the two MIX[k/2] components.

• The output wires of the network are the output wires of
the top MIX[k/2] and the bottom MIX[k/2] networks
(in order).

A MERGER[k] component can be divided into four com-
ponents, two MERGER[k/2] components and two MIX[k/2]
components. The connection of the wires between compo-
nents is similar to the connections between the MERGER[]
and MIX[] networks in the decomposition of BITONIC[k].

4

A MIX[k] component can be divided into two MIX[k/2]
components in the natural way, by dividing the balancers
into two sets of k/2 balancers each. There are no connec-
tions between the two MIX[] components.

The smallest components are the individual balancers.
All the components can be organized into a natural hierar-
chy, as shown in Figure 2. The decomposition tree of all the
components starting from BITONIC[w] is denoted by Tw.

Each component has a name which is assigned as fol-
lows: the name of a component is its position in a pre-order
traversal of Tw.

2.2. Adaptive Implementation using Tw

Definition 2.1 A cut on Tw is another tree formed by prun-
ing away a set of subtrees from Tw (except for the complete
subtree Tw itself).

Two example cuts of T8 are shown in Figure 2. The adap-
tive bitonic network is based on the following observation.
Given any cut of Tw, BITONIC[w] can be implemented by
the set of components at the leaves of this cut. There are
many possible cuts for a tree, each leading to a different set
of components for implementing the bitonic network, and
the distributed system selects that cut which fits its current
parameters. Moreover, the system can change to an imple-
mentation based on a different cut in a decentralized way
by splitting and merging components, as we describe fur-
ther. An example implementation based on cut1 in Figure 2
is shown in Figure 3.

Implementing a Component The strength of the
above decomposition is that each component, whether
BITONIC[k] or MERGER[k] or MIX[k], can be implemented
in a very simple way on a single node. At first glance, it
might seem necessary that to implement BITONIC[k], it is
necessary to simulate all balancers and wires in the compo-
nent. However, it is not necessary to do so. In fact, the im-
plementation of all three types of components is the same,
and is described below.

The component of width k has k input and k output
wires, numbered from 0 . . . k − 1. Each component has a
single local variable x, which can take values ranging from
0 . . . k − 1. The current value of x denotes wire on which
the next input token is to be output; initially x = 0. The
next token entering the component exits it on wire x, and x
is incremented modulo k.

We first claim that a network constructed in the above
manner counts. We omit the proof from this paper due to
space constraints, and note that the proof is very similar to
the proof that BITONIC[w] counts [AHS94].

Theorem 2.1 Given the above implementation of the
BITONIC[], MERGER[] and MIX[] components, the network

constructed by any cut of Tw is a counting network of width
w.

Splitting a Component A component is always imple-
mented at a single node. The node can split the component
recursively if it estimates that greater parallelism is neces-
sary.

A node splits component c as follows. (1)Insert new
components with names equal to the children of c in Tw.
(2)Initialize the new components appropriately, based on
the current state of c, and form connections between the
components as described in the recursive decomposition
and (3)Remove component c from the system.

Merging Components The merging of smaller compo-
nents into a component of a larger width is initiated by the
node which had split the component in the first place. When
a node v estimates that the network size has decreased, it
might decide to initiate the merging of components. To im-
plement this, v must keep a list of all the components that it
has previously split, and which have not yet been merged.

When v decides that a component c (that it had split ear-
lier) has to be merged, the procedure is as follows. Let Cc

denote the set of the children components of c.
First, v contacts all the nodes which are hosting the com-

ponents in Cc. If any of these components have been fur-
ther split, then these components are recursively merged.
Now, suppose Cc = {c1, c2 . . . ck} (note that k ≤ 6) and
these components are residing at nodes v1, v2, . . . , vk re-
spectively. The merging of Cc into c is done as follows.
(1)Temporarily stop routing tokens through c1 . . . ck. i.e. if
node vj receives a token for component cj , then vj stores
the tokens until the merging has completed, and will then
forward it to v. (2)Construct a new component c whose
state is initialized based on the current states of c1, . . . ck.
(3)Remove components c1, . . . ck from the system and in-
sert the newly constructed component c at node v.

2.3. The Network Properties

Consider any cut, T , of the tree Tw. A counting network
can be formed by the nodes at the leaves of T . The nodes
of T are organized into levels: the root is at level 0, and the
children of each node are at one level greater than the node
itself. Note that we use the word “depth” to mean the depth
of the overlay counting network, and that this is different
from the level of the components in the decomposition tree
T . Different leaves of T can be at different levels, so that
the components of the network could be of different sizes.

Lemma 2.2 If every leaf of T is at a level at most k, then
the effective depth of the resulting network is at most (k +
1)(k + 2)/2.

5

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

M[4]

B[8]

B[4] M[4] X[4] X[4]B[4]

B[2] B[2] M[2] M[2] X[2] X[2]

M[2] M[2] X[2] X[2]

X[2] X[2]

cut1

cut2

level=0

level=1

level=2

Figure 2. T8: The hierarchical decomposition of BITONIC[8]
Each node in this tree is a component. The tree is not completely shown, as indicated by the solid subtrees. The boxes

labeled B[w], M [w], X [w] represent BITONIC[w], MERGER[w], MIX[w] components respectively. Two example cuts, cut1
and cut2 are shown in the figure.

B[4] M[4]

M[4]

X[4]

X[2]

X[2]

X[2]

X[2]M[2]

M[2]

B[2]

B[2]
inputs 4−5

inputs 6−7

outputs 4−5

outputs 6−7

inputs 0−3 outputs 0−3

effective width = number of vertex disjoint paths from input to output = 2

effective depth = longest path from input to output = 5

Figure 3. A network of width 8 constructed out of 12 components of varying widths, from cut1 in
Figure 2. The arrows between components represent groups of wires.

6

Proof: Each vertex v of T represents a subnetwork that is
formed by the subtree of T rooted at v. Some of these are
bitonic networks, some merger and others mix networks.
Let dB

i denote the maximum effective depth of a bitonic
subnetwork formed by a vertex at level i. We are interested
in upper bounding dB

0 . Similarly, let dM
i and dX

i respec-
tively denote the maximum effective depths of a merger and
a mix network formed by a vertex at level i.

Consider an internal vertex which represents a bitonic
subnetwork. Its children are two bitonic, two merger and
two mix networks. Any token entering this bitonic subnet-
work has to pass through exactly one of the smaller bitonic
networks, one of the smaller merger networks and one of
the smaller mix networks. Similarly, the effective depth of
a merger subnetwork is equal to the sum of the depths of
a smaller merger and a mix network. The effective depth
of a mix network is always 1. Thus, we have the following
inequalities:

dB
i ≤ dB

i+1 + dM
i+1 + dX

i+1

dM
i ≤ dM

i+1 + dX
i+1

dX
i = 1

In addition, we know dB
k = dM

k = dX
k = 1, since no leaf

is at a level greater than k. Solving the above recurrences,
we obtain dB

0 ≤ (k+1)(k+2)/2, which proves the lemma.

Lemma 2.3 If the level of every leaf of T is at least k, then
the effective width of the network is at least 2k.

Proof: If every leaf of T is at a level of exactly k, then
the network formed by the components is isomorphic to a
bitonic counting network of width 2k+1, and hence the ef-
fective width of the network is exactly 2k. According to our
definition of effective width, a single balancer, which has
two input and output wires, is a counting network of effec-
tive width 1, since the number of vertex disjoint paths from
input to the output is 1.

Next, we note that the effective width of a network does
not decrease if any of its components split, due to the fol-
lowing reason: vertex disjoint paths which existed before
the components split are still vertex disjoint paths after the
split. Thus, if every leaf of T is at a level of k or greater,
then the effective width of the network is at least 2k.

3. Distributed Decisions: When to
Split/Merge?

We use the word “node” to mean a physical (computing)
node in the distributed system. Each component is mapped
to a node through a distributed hash function h. We assume
that the nodes all have random identifiers in the range [0, 1],
and that the underlying distributed hash function is provided
by the Chord system[SMK+01].

Notation: For integral k > 0, let succk(v) denote the
kth (clockwise) successor of node v on the Chord ring.
Let d(u, v) denote the distance between nodes u and v
on the circumference of the Chord ring. We assume that
the circumference of the ring is 1 unit. For each � =
0 . . . (log w−1), let φ(�) denote the number of components
at level � of Tw, the decomposition tree of a bitonic network
of width w. Thus, φ(0) = 1, φ(1) = 6, and φ(2) = 24 and
so on.

Fact 1 For integral 0 ≤ k ≤ log w − 2, we have:
φ(k + 1) ≤ 6φ(k) and φ(k + 1) ≥ 2φ(k).

3.1. System Size Estimation

An important component of the algorithm is a dis-
tributed way to estimate the size of the system, so
as to decide the degree of parallelism that is appro-
priate. Size estimation has been studied in previ-
ous works on peer-to-peer DHT construction, includ-
ing Manku[Man03], the Viceroy system[MNR02] and
Horowitz and Malkhi[HM03]. Specifically, Manku gives
an algorithm which gives an accurate estimate of the sys-
tem size by measuring the size of the interval spanned by
Θ(log N) successive nodes. Our size estimation scheme is
similar to that of Manku. Let N be the system size. We
show that the size estimates of all the nodes are within a
factor of 10 of the actual size N with high probability. A
node v estimates N (locally) in two steps.

Step 1: v first obtains an estimate ev of log N as follows:

ev = log
{

1
d(v,succ1(v))

}

Step 2:v uses ev to get nv, an estimate of N as follows.
Let k = 4�ev�. The estimate is: nv = k

d(v,succk(v)) . The
above step is accomplished by stepping through k nodes on
the Chord ring.

We show the following bounds on the size estimates ob-
tained by the nodes. The proofs use Chernoff bounds.

Lemma 3.1 For each node v in the sys-

tem, Pr
{
ev > log N

2

}
≥ 1 − 1

N3 and

Pr {N/10 ≤ nv ≤ 10N} ≥ 1 − 3
N3

Proof:

Pr[ev <
log N

2
] = Pr[

1
d(v, succ1(v))

<
√

N]

= Pr[d(v, succ1(v)) > 1/
√

N]

The latter probability means that in a region of the cir-
cumference of length 1/

√
N , no other node was mapped

in. Since each node chooses a random point on the circle

of circumference 1, this probability is: [1 − 1/
√

N]
N ≤

exp−√
N ≤ 1

N3 for large N .

7

Node v’s estimate of the system size is nv =
k

d(v,succk(v)) .
Pr[nv > α] = Pr[d(v, succk(v)) < k/α]. Let X denote

the number of nodes falling in a region of length k/α of the
circle. The probability of each node falling in this region is
k/α (since the circumference is 1 unit). The above proba-
bility is Pr[X > k] ≤ (

n
k

)
(k/α)k ≤ (ne/α)k. By plugging

in α = 3Ne and k = 2 logN , the above is bounded by
1/N3.

Pr[nv < β] = Pr[d(v, succk(v)) > k/β]. Let Y de-
note the number of nodes falling in a region of the cir-
cle of length k/β. The above probability is Pr[Y < k].
E[Y] = Nk/β. Choosing β = N/10, we get Pr[Y < k] =
Pr[Y < E[Y](1 − 9/10)] ≤ e−E[Y](9/10)2/3 = e−2.7k,
where we have used the Chernoff bounds. By plugging in
k = 2 log N , the above probability is less than 1/N3.

Summing the probabilitites over all the nodes, and using
the union bound, we obtain the desired result.

Henceforth, by the word “with high probability”, we
mean “with probability at least 1−1/Nα where α > 0. The
above lemma immediately leads to the following lemma,
using the union bound on probabilities:

Lemma 3.2 With high probability, the size estimates of all
the nodes in the system are within N/10 and 10N .

Local Level Estimates: Given its estimate of the system
size, each node v determines a level �v as follows: �v is the
largest integer k such that φ(k) < nv. If N is the actual size
of the system, then define �∗ as follows: �∗ is the largest
integer k such that φ(k) < N .

The intuition is that if every node v’s size estimate
matched N , then the “best” implementation of BITONIC[w]
(which has as many components as the number of nodes
in the system) would use the components at level �∗ of the
decomposition tree Tw.

Lemma 3.3 With high probability, the level estimates (�v’s)
of all the nodes in the system are in the range [�∗−4, �∗+4].

Proof: By the definition of φ, we have 2φ(k) ≤ φ(k +
1) ≤ 6φ(k). Consider any node v in the system. If
�v > �∗ + 4, then φ(�v − 4) > N and φ(�v) < nv , which
implies that nv > 16N , which is not possible (with high
probability) due to Lemma 3.2.

Similarly, for some node v, if �v < �∗ − 4, then φ(�v +
5) < N and φ(�v + 1) > nv, which implies that nv <
N/16, which is not possible (with high probability) from
Lemma 3.2.

3.2. Splitting and Merging Rules

Node v maintains the following local invariant: all com-
ponents residing on v must be at level �v of Tw or greater.

Splitting Rule Split all the components in v whose level
is less than �v.

Merging Rule A node v reconsiders its earlier splitting
decisions every time its level estimate �v decreases. Node
v has a list of all components that it has currently split, but
have not been merged yet. For each component i in this list,
it checks to see if the level of i is still less than the (new)
level of the node, �v. If not, then it initiates a merging of the
component using the procedure described in Section 2.

The following lemma gives a characterization of the type
of components that are finally implementing BITONIC[w].

Lemma 3.4 If the level of every node in the system was in
the range [�1, �2], then the level of every component in the
network is also in the range [�1, �2].

Proof: First, we note that there cannot be any component
whose level is less than �1. Regardless of which node this
was mapped to, the component would be split.

We now show that there cannot be any component whose
level is greater than �2. Suppose there was such a compo-
nent i. Suppose v was the node which split a component
(say j) to form component i (other components are also
formed along with i). Since v’s level is less than the level
of component i, v will initiate a merge, which merges com-
ponent i into j.

3.3. Properties of the resulting network

The final state of the network, resulting from the above
splitting and merging rules, have the following properties.

Lemma 3.5 The total number of components in the net-
work is O(N) with high probability. The expected number
of components per node is O(1) and the maximum number
of components at any node is O(log N

log log N) with high proba-
bility.

Proof: From Lemmas 3.3 and 3.4, we have that all the
components in the network have levels in the range [�∗ −
4, �∗ + 4], with high probability. If all the components are
at level �∗ − 4, then the network would have the minimum
number of components. This number is at least N/65, since
φ(�∗ − 4) ≥ φ(�∗ + 1)/65 > N/65 (where we have used
Fact1).

Similarly, if all the components were at level �∗ + 4, we
would have the greatest number of components, and this
number is not more than 64N , since φ(�∗+4) ≤ 64φ(�∗) ≤
64N (where we have used Fact1). Thus, with high proba-
bility, the number of components in the network is in the
range [c1N, c2N], where c1 = 1/65 and c2 = 64.

All these components are mapped to N nodes uniformly
at random by the distributed hash function. Thus, the ex-
pected number of components per node is O(1) and the

8

maximum number of components per node is O(log N
log log N),

by the balls and bins analysis (Page 45 in [MR95]).

Theorem 3.6 For the final network formed, the following
are true with high probability:
(1)The effective depth of the network is O(log2 N).
(2)The effective width of the network is Ω(N/ log2 N)

Proof: From Lemma 3.3 and Lemma 2.2, we have that the
depth of the network is less than (�∗ + 5)(�∗ + 6)/2. Since
φ(�∗) < N ≤ φ(�∗ + 1), and φ(x) lies between 2x and 6x

(from Fact 1), we have �∗ = O(log N), and thus the depth
of the network is O(log2 N).

Similarly, from Lemma 3.3 and Lemma 2.3, we have that

the width of the network is at least 2�∗−4 = 2�∗

16 . Since
φ(�∗) ≤ N ≤ φ(�∗ + 1), the number of components at
level �∗ is Ω(N).

We can write the number of components of the counting
network formed at level �∗ as the effective width times the
effective depth. This gives: 2�∗ · log2 N = Ω(N). Thus, the
effective width of the network is Ω(N/ log2 N).

3.4. Node Joins and Leaves

Node Joins the p2p Network No change is needed for
the state of the counting network, other than the actions re-
quired to maintain the distributed routing state of the p2p
network. If the system size increases significantly, then the
size estimation mechanism will alert the nodes, and they
will split individual components.

Node v Leaves the Network Before leaving, the node has
to move all the components it currently holds to the new
home of those objects in the p2p network. In the case of
Chord, this new home (say w) is just v’s successor node in
the ring. In addition, v has to transfer the state of all compo-
nents that it has split, but which have not been merged yet.
Node w takes over the responsibility of merging nodes that
v has earlier split.

Node Crashes When a node crashes, all the state of the
counting network that is contained in it is lost along with the
components that the node contains. One approach to recov-
ering from such faults is through self-stabilization [Dij74].
We first assume that the underlying p2p routing layer (such
as Chord) is self-stabilizing. On top of this, we can layer a
self-stabilizing counting network.

The state of the balancing network is the union of the
state of all its components. The state of each component is
an integer, which denotes which output wire the next to-
ken should go out on. In recent work [HT03], we have
shown how to make balancing networks self-stabilizing. If
the network was reset to an illegal state by a fault, then it

will recover to reach a legal state, through local stabiliza-
tion actions. Though the algorithm in [HT03] is intended
for balancers, it can be easily extended to the more general
components.

3.5. Routing Efficiency

Each component needs to know the location of all its
out-neighbors (the components that its output wires lead to)
so that it can route tokens appropriately. We can show that
the expected number of out-neighbors of any component is
a constant, and since the expected number of components
mapped to a node is O(1) (Lemma 3.5), the expected num-
ber of out-neighbors that a node has to keep track of is also
O(1).

Further, a node does not need to recompute the address
of the out-neighbors every time that it has to route a token.
If we assume that changes in the structure of the counting
network are infrequent when compared to the rate of to-
ken arrivals, then the addresses of the out-neighbors can
be cached and tokens routed directly to them. These ad-
dresses have to recomputed whenever the locations of the
out-neighbors change, either due to nodes joining and leav-
ing the network, or due to component splits or merges.

Finding an Input Component Finally, we return back to
the question of finding an input component to send tokens
to. Suppose a node v chooses an input balancer’s identifier
to send tokens to (it could choose any of the w possible in-
put balancers). This balancer is a leaf in Tw. Either the bal-
ancer currently exists as a component, or one of its ancestors
in Tw exists as a component. Since there are (log w − 2)
ancestors of any leaf in Tw, node v has to lookup at most
(log w − 1) names in the worst case before it can find an
input component which currently exists in the network, as-
suming that the structure of the counting network does not
change during the lookup. In a typical case, v might need
to lookup far fewer names, if it remembers the component
that it had sent its previous tokens to.

References

[AHS94] J. Aspnes, M. Herlihy, and N. Shavit. Counting
networks. Journal of the ACM, 41(5):1020–
1048, 1994.

[AS03] J. Aspnes and G. Shah. Skip graphs. In Pro-
ceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2003.

[AVY94] W. Aiello, R. Venkatesan, and M. Yung. Coins,
weights and contention in balancing networks.
In Proceedings of the annual ACM symposium

9

on Principles of Distributed Computing, pages
193–205, August 1994.

[Bat68] K. E. Batcher. Sorting networks and their ap-
plications. In Proceedings of the AFIPS Spring
Joint Computer Conference, volume 32, pages
338–334, 1968.

[Dij74] E. Dijkstra. Self stabilizing systems in spite
of distributed control. Communications of the
ACM, 17:643–644, 1974.

[DLS00] G. Della-Libera and N. Shavit. Reactive
diffracting trees. Journal of Parallel and Dis-
tributed Computing, 60(7):853–890, 2000.

[DPRS89] M. Dowd, Y. Perl, L. Rudolph, and M. Saks.
The periodic balanced sorting network. Jour-
nal of the ACM, 36(4):738–757, October 1989.

[HHPT03] P. Ha-Hoai, M. Papatriantafilou, and P. Tsi-
gas. Self-adjusting trees. Technical Report
2003-09, Chalmers University of Technology
and Goteborg University, 2003.

[HKRZ02] K. Hildrum, J. Kubiatowicz, S. Rao, and
B. Zhao. Distributed data location in a dynamic
network. In Proceedings of the ACM Sympo-
sium on Parallel Algorithms and Architectures,
2002.

[HM03] K. Horowitz and D. Malkhi. Estimating net-
work size from local information. Information
Processing Letters, 88(5):237–243, December
2003.

[HT03] M. Herlihy and S. Tirthapura. Self stabiliz-
ing smoothing and counting. In Proceedings
of the 23rd International Conference on Dis-
tributed Computing Systems (ICDCS), pages
4–11, 2003.

[KK03] F. Kaashoek and D. R. Karger. Koorde: A sim-
ple degree-optimal hash table. In Proceedings
of the 2nd International Workshop on Peer-to-
Peer Systems, February 2003.

[KP92] M. R. Klugerman and C. G. Plaxton. Small-
depth counting networks. In Proceedings of
the 24th Annual ACM Symposium on Theory
of Computing, pages 417–428, 1992.

[Man03] G. S. Manku. Routing networks for distributed
hash tables. In Proceedings of the ACM Sympo-
sium on Principles of Distributed Computing,
July 2003.

[MBR03] G. S. Manku, M. Bawa, and P. Raghavan. Sym-
phony: Distributed hashing in a small world.
In Proceedings of the 4th USENIX Symposium
on Internet Technologies and Systems (USITS),
pages 127–140, 2003.

[MNR02] D. Malkhi, M. Naor, and D. Ratajczak.
Viceroy: A scalable and dynamic emulation of
the butterfly. In Proceedings of the 21st ACM
Symposium on Principles of Distributed Com-
puting, August 2002.

[MR95] R. Motwani and P. Raghavan. Randomized Al-
gorithms. Cambridge University Press, 1995.
page 45.

[PRR99] C. G. Plaxton, R. Rajaraman, and A. W. Richa.
Accessing nearby copies of replicated objects
in a distributed environment. Theory of Com-
puting Systems, 32:241–280, 1999.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A scalable content-addressable
network. In Proceedings of the ACM SIG-
COMM, August 2001.

[SMK+01] I. Stoica, R. Morris, D. Karger, M. F.
Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for inter-
net applications. In Proceedings of the ACM
SIGCOMM, pages 149–160, August 2001.

[SZ96] N. Shavit and A. Zemach. Diffracting
trees. ACM Transactions on Computer Sys-
tems, 14(4):385–428, 1996.

[Wat98] R. Wattenhofer. Distributed Counting: How to
Bypass Bottlenecks. PhD thesis, Swiss Federal
Institute of Technology (ETH) Zürich, 1998.

10

