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ADAPTIVE COVARIANCE ESTIMATION OF
LOCALLY STATIONARY PROCESSES
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It is shown that the covariance operator of a locally stationary process
has approximate eigenvectors that are local cosine functions. We model
locally stationary processes with pseudo-differential operators that are
time-varying convolutions. An adaptive covariance estimation is calculated
by searching first for a “best” local cosine basis which approximates the co-
variance by a band or a diagonal matrix. The estimation is obtained from
regularized versions of the diagonal coefficients in the best basis.
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1. Introduction. Second order moments characterize entirely Gaussian
processes and are often sufficient to analyze stochastic models, even though
the processes may not be Gaussian. When processes are wide-sense stationary,
their covariance defines a convolution operator. Many spectral estimation algo-
rithms allow one to estimate the covariance operator from a few realizations,
because it is diagonalized with Fourier series or integrals. When processes are
not stationary, in the wide sense, covariance operators may have complicated
time varying properties. Their estimation is much more delicate since we do
not know a priori how to diagonalize them. The ideas and methods of Calderon
and Zygmund [10] in harmonic analysis have shown that although we are not
able to find the basis which diagonalizes complicated integral operators in gen-
eral, it is nevertheless possible to find well structured bases which compress
them. This means that the operator is well represented by a sparse matrix
with such a basis. This approach allows characterization of large classes of
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operators by the family of bases which do the compression. We show here that
the ability to represent covariance operators by sparse matrices in a suitable
basis leads to their efficient estimation from a few realizations.

We concentrate attention on the class of locally stationary processes, that is,
processes whose covariance operators are approximately convolutions. Since
cosines and sines diagonalize the covariance of stationary processes, it is
natural to expect that local cosine functions are “almost” eigenvectors of lo-
cally stationary processes. This property is formalized by postulating that the
covariance operator is well approximated by a nearly diagonal one in an appro-
priate local cosine basis. We show that if the covariance operator is a pseudo-
differential operator of a specified class, then the process is locally stationary.

To estimate the covariance operator of a locally stationary process we search
for a local cosine basis which compresses it and estimate its matrix elements.
The size of the windows of a suitable local cosine basis must be adapted to
the size of the intervals where the process is approximately stationary. Since
we do not know in advance the size of approximate stationarity intervals, we
introduce an algorithm that searches within a class of bases for a “best” basis,
to compress the covariance operator. This search is done using data provided
by a few realizations of the process. For locally stationary processes, we have
a fast implementation of the search for a best local cosine basis based on the
local cosine trees of Coifman and Meyer [4] and Coifman and Wickerhauser [5].

In Section 2 we study the properties of locally stationary processes and in
Section 3 we analyze the estimation of covariance operators with a “best” basis
search. Fast numerical algorithms and their application to examples of locally
stationary processes are described in Section 4.

2. Locally stationary processes. Locally stationary processes appear in
many physical systems in which the mechanisms that produce random fluctua-
tions change slowly in time or space. Over short time intervals, such processes
can be approximated by a stationary one. This is the case for many compo-
nents of speech signals. Over a sufficiently short time interval, the throat be-
haves like a steady resonator which is excited by a stationary noise source. The
length of these stationary time intervals can, however, vary greatly depending
on the type of sound that is generated. In the next section we describe quali-
tatively the basics of locally stationary processes and explain how to construct
“almost” eigenvectors of the covariance operator with local Fourier analysis.
The corresponding “almost” eigenvalues are given by the time-varying spec-
trum. In Section 2.2 we discuss briefly a class of locally stationary processes
that depend on a small parameter and are therefore suitable for asymptotic
analysis.

The intuitive discussion of Section 2.1 is made precise in Section 2.3 by
defining locally stationary processes as those whose covariance operators are
well compressed in some local cosine basis. In Section 2.4 we prove that
pseudodifferential covariance operators are locally stationary. Such processes
may also be realized by filtering white noise with a time-varying filter whose
properties are described in Section 2.5.
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2.1. Time-varying spectrum. Let X�t� be a real valued zero-mean process
with covariance

R�t� s� = E�X�t�X�s���
The covariance operator is defined for any f ∈ L2�R� by

Tf�t� =
∫ +∞

−∞
R�t� s�f�s�ds�(1)

The inner product


f�X� =
∫ +∞

−∞
f�t�X�t�dt

is a random variable which is a linear combination of the process values at
different times. For any f�g ∈ L2�R�, the covariance operator gives the cross-
correlation

E�
f�X� 
g�X�∗� = 
Tf�g��(2)

The covariance can be expressed in terms of the distance between t and s
and the midpoint between them:

R�t� s� = C0

(
t+ s

2
� t− s

)
�(3)

When the process is stationary then

C0

(
t+ s

2
� t− s

)
= C0�t− s�

and the covariance operator is a convolution

Tf�t� =
∫ +∞

−∞
C0�t− s�f�s�ds = �C0 ∗ f��t��

If the process is locally stationary, we expect that in the neighborhood of
any x ∈ R, there exists an interval of size l�x� where the process can be
approximated by a stationary one. The size l�x� of intervals of approximate
stationarity may vary with the location x. For t ∈ x− l�x�/2� x+ l�x�/2�, the
covariance is well approximated by a function of t− s:

E�X�t�X�s�� ≈ C�x� t− s� if �t− s� ≤ l�x�
2
�(4)

The decorrelation length d�x� gives the maximum distance between two cor-
related points. For t ∈ x− l�x�/2� x+ l�x�/2�

E�X�t�X�s�� = C
(
t+ s

2
� t− s

)
≈ 0 if �t− s� ≥ d�x��(5)

Locally stationary processes have a decorrelation length that is smaller than
half the size l�x� of the stationarity interval

d�x� < l�x�
2
�(6)
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Conditions (4) and (5) imply that if t ∈ x− l�x�/2� x+ l�x�/2� then

C

(
t+ s

2
� t− s

)
≈ C�x� t− s� ∀ s ∈ R�(7)

With the change of variables (3), the covariance operator

Tf�t� =
∫ +∞

−∞
C0

(
t+ s

2
� t− s

)
f�s�ds

can be interpreted as a time-varying convolution. To analyze the properties
of this operator when C�u� v� is a smooth function of u, Martin and Flan-
drin [9] have introduced a real “time-varying spectrum”, which is the Fourier
transform of C0�u� v� with respect to v,

�0�u�ω� =
∫ +∞

−∞
C0�u� v�e−iωv dv(8)

=
∫ +∞

−∞
R

(
u+ v

2
� u− v

2

)
e−iωv dv(9)

=
∫ +∞

−∞
E

{
X

(
u+ v

2

)
X

(
u− v

2

)}
e−iωv dv�(10)

This “time-varying” spectrum is the expected Wigner–Ville distribution of the
process X�t�,

�0�u�ω� = E�WX�t���
where the Wigner–Ville distribution is defined by

Wf�u�ω� =
∫ +∞

−∞
f

(
u+ v

2

)
f

(
u− v

2

)
e−iωv dv�(11)

The terminology “spectrum” should be interpreted carefully because �0�u�ω�
is generally not equal to the eigenvalues of T. It may in fact take negative val-
ues, whereas T is a symmetric, positive operator whose spectrum is therefore
always positive.

The regularity of the time-varying spectrum is related to the size of station-
arity intervals l�x� and the decorrelation length d�x�. If u ∈ x − l�x�/2� x +
l�x�/2� then (5) shows that the covariance C�u� v� has a fast decay in v rela-
tively to d�x�. Its Fourier transform �0�u�ω� with respect to v thus remains
approximately constant over intervals of size 2π/d�x�. Since C�u� v� has neg-
ligible time-variation in x − l�x�/2� x + l�x�/2� we derive that for any ξ ∈ R

the spectrum �0�u�ω� can be approximated by a constant �0�x� ξ� in the time-
frequency rectangle

�u�ω� ∈
[
x− l�x�

2
� x+ l�x�

2

]
×

[
ξ − π

d�x� � ξ +
π

d�x�
]
�(12)
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If the processX�t� is stationary, the covariance operator T is a convolution
whose eigenvectors are therefore the complex exponentials e−iωv. In this case,
the eigenvalues are given by the spectrum

�0�u�ω� = �0�ω� =
∫ +∞

−∞
C0�v�e−iωv dv�

If the process X�t� is locally stationary, we show that �0�x� ξ� is an approxi-
mate eigenvalue of the covariance operator T. Approximate eigenvectors are
time-frequency atoms whose energy are concentrated in the time-frequency
rectangle (12), where �0�u� ξ� is approximately constant. The uncertainty
principle proves that it is possible to construct such a time-frequency atom
only if d�x� is smaller than l�x�, which corresponds to the local stationarity
condition (6).

Let gx�t� be a smooth window whose support is equal to x − l�x�/2� x +
l�x�/2�, and

φx�ξ�t� = gx�t� cos�ξt+ θ��(13)

We show with nonrigorous derivations that if X�t� is locally stationary then

Tφx�ξ�t� ≈ �0�x� ξ�φx�ξ�t��(14)

Applying the covariance operator to φx�ξ�t� gives

Tφx�ξ�t� =
∫ +∞

−∞
C

(
t+ s

2
� t− s

)
φx�ξ�s�ds�

The support of φx�ξ�s� is x−l�x�/2� x+l�x�/2�. The local stationarity condition
(7) thus implies that

Tφx�ξ�t� ≈
∫ +∞

−∞
C�x� t− s�φx�ξ�s�ds�

Parseval’s identity gives

Tφx�ξ�t� ≈
1

2π

∫ +∞

−∞
�0�x�ω�φ̂x� ξ�ω�eiωu dω�(15)

where φ̂x� ξ�ω� is the Fourier transform of φx�ξ�t�:

φ̂x� ξ�ω� = 1
2

[
eiθĝx�ω− ξ� + e−iθĝx�ω+ ξ�]�

If gx�t� is a smooth window function, the energy of its Fourier transform
ĝx�ω� is mostly concentrated in −π/l�x�� π/l�x��. The energy of φ̂x� ξ�ω� is
therefore localized in −ξ−π/l�x��−ξ+π/l�x��∪ξ−π/l�x�� ξ+π/l�x��. Since
�0�x�ω� = �0�x�−ω� and d�x� < l�x�/2, (12) implies that

�0�x�ω� ≈ �0�x� ξ� for �ω� ∈
[
ξ − π

l�x� � ξ +
π

l�x�
]
�
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Fig. 1. A modulated window φx�ξ has a time support centered at x of size proportional to l�x�.
Its Fourier transform is centered at ω = ξ and its energy is spread over an interval whose size is
proportional to 2π/l�x�. It is represented by a rectangle centered at �x� ξ� in the time-frequency
plane �t�ω�. Changing ξ translates the rectangle along the frequency axis.

It results from (15) that

Tφx�ξ�t� ≈
�0�x� ξ�

2π

∫ +∞

−∞
φ̂x� ξ�ω�eiωt dω = �0�x� ξ�φx�ξ�t��

In the time-frequency plane �t�ω�, for ω > 0 the approximate eigenfunction
φx�ξ has an energy mostly concentrated in the rectangle[

x− l�x�
2
� x+ l�x�

2

]
×

[
ξ − π

l�x� � ξ +
π

l�x�
]
�

Changing ξ modifies the location of the center of this rectangle as indicated
in Figure 1. To show that Tφx�ξ�t� ≈ �0�x� ξ�φx�ξ�t� we used the fact that
�0�t�ω� is approximately constant over the time-frequency support of φx�ξ.
This is a crucial property for locally stationary processes.

2.2. Locally stationary processes depending on a parameter. As we noted
earlier, locally stationary processes arise when the mechanism that generates
them changes slowly. Stochastic differential equations with slowly varying
coefficients will often generate processes that are locally stationary. Many
examples of geophysical interest are considered in [2] and [13]. The processes
depend on a parameter ε which is the ratio of a typical fast scale to a typical
slow one. Locally stationary time series that depend on a parameter in a
similar way are also considered by Dahlhaus [6]. We will explain briefly some
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of the ideas in [2] with a simple example. Spectral estimation for processes
that vary on two widely separated time scales can take advantage of this with
the use of asymptotics, as discussed in Appendix E of [2].

To generate simple examples of locally stationary processes with separation
of scales, we start with a family of stationary processes X�t� θ�, t ∈ R, that
depend on a real valued parameter θ. We assume that E�X� = 0 and that

E�X�t� θ�X�s�φ�� = Rθ�φ�t− s�
is the covariance that depands smoothly on the parameters θ and φ. Now let
ε be a small positive parameter and θ�t� a smooth real function and define

Xε�t� =X
(
t

ε
� θ�t�

)

This is a family of locally stationary processes when ε is small because they
are close to stationary over intervals that are small compared to 1/ε, which
is large. The covariance of Xε�t� is

Rε�t� s� = E�Xε�t�Xε�s�� = Rθ�t�� θ�s�
(
t− s
ε

)

To see more clearly the separation of scales at the level of the covariance we
introduce center point and scaled difference variables

u = t+ s
2
� v = t− s

ε
�

Then

Cε�u� v� = Rε
(
u− εv

2
� u+ εv

2

)
(16)

= Rθ�u−εv/2��θ�u+εv/2��v�(17)

∼ Rθ�u��θ�u��v�(18)

as ε → 0, which is the diagonal of the covariance of the original stationary
process modulated by the parametric curve θ�τ�. It is clear from this that the
time varying spectrum

�ε�u�ω� =
∫ ∞

−∞
Cε�u� v�e−iωv dv(19)

∼
∫ ∞

−∞
Rθ�u�� θ�u��v�e−iωv dv(20)

= R̂θ�u�� θ�u��ω� ≥ 0�(21)

One can thus show that �ε�u�ω� converges to the spectral value of the covari-
ance operator when ε→ 0. The issue is, of course, what to do when ε is small
but not zero and how to approximate the eigenvectors. General conditions on
the decay of Cε�u� v� in v and its regularity in u have been established to
prove that approximate eigenvectors are obtained with local cosine vectors
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defined over intervals of size ε [2]. The processes Xε are then locally station-
ary with intervals of approximate stationarity that remain constant l�t� = ε.
Several numerical experiments were carried out to assess the performance of
the resulting estimation in geophysics [2]. In the next section we consider the
more general case where l�t� varies as a function of t.

2.3. Local cosine approximations. For locally stationary processes, Sec-
tion 2.1 explains that one can construct local cosine vectors (13) that are
approximate eigenvectors of the covariance operator T. An orthogonal basis
�φn�n∈N of almost eigenvectors is formally defined as a basis which yields ma-
trix coefficients �
Tφn�φm���n�m�∈N

2 that have a fast off-diagonal decay. This
means that �
Tφm�φn�� converges rapidly to zero as �n − m� increases. We
first review the construction of Coifman, Malvar and Meyer [4, 8, 11] to build
orthogonal local cosine bases, and then define locally stationary covariances
as operators which have a fast off-diagonal decay in a well-chosen local cosine
basis.

The real line R is partitioned into intervals ap� ap+1� of size

lp = ap+1 − ap�
We suppose that the sequence ap is increasing and that

lim
p→−∞ap = −∞� lim

p→+∞ap = +∞

so that the whole line is segmented by these intervals. Each interval ap� ap+1�
is covered by a window function gp�t�. Let ap−ηp� ap+1+ηp+1� be the support
of gp�t�. We construct gp�t� so that its support intersects only the support of
gp−1�t� and the support of gp+1�t�, which means that

lp ≥ ηp + ηp+1�(22)

The supports of gp�t� and gp−1�t� intersect in ap − ηp� ap + ηp�. Over this
interval both windows must be symmetric with respect to ap

gp�t� = gp−1�2ap − t��(23)

The windows �gp�t��p∈Z are, moreover, constructed so as to cover uniformly
the time axis

∀ t ∈ R�
+∞∑
p=−∞

�gp�t��2 = 1�(24)

Such window functions are illustrated in Figure 2. The following theorem [4]
and [8] shows that the resulting local cosine family is an orthogonal basis.

Theorem 2.1 (Coifman and Meyer and Malvar). If (22), (23), (24) are sat-
isfied then {

φp�k�t� = gp�t�
√

2
lp

cos
[
π�k+ 1

2�
lp

�t− ap�
]}
k∈N� p∈Z

(25)

is an orthonormal basis of L2�R�.
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Fig. 2. Smooth cutoff window functions gp�t�� p ∈ N, used in local cosine bases. The supports
of adjacent windows gp�t� and gp−1�t� intersect over the interval ap − ηp� ap + ηp�. Over this
interval, both windows are symmetric with respect to ap.

The support of φp�k�t� is ap−ηp� ap+1+ηp+1�. The frequency of the cosine
modulation is

ξp�k =
π�k+ 1

2�
lp

�(26)

Let ĝp�ω� be the Fourier transform of gp�t�. The Fourier transform of φp�k�t�
is then

φ̂p�k�ω� =
exp�iapξp�k�√

2lp

(
ĝp�ω− ξp�k� + ĝp�ω+ ξp�k�

)
�

The bandwidth of φ̂p�k�ω� around ξp�k and −ξp�k is equal to the bandwidth of
ĝp�ω�. If gp�t� is a smooth function, its frequency bandwidth is proportional
to 2π/lp.

A local cosine basis can be attached to a partition (pavement) of the time-
frequency plane by representing each φp�k�t� with a rectangle which ap-
proximates the time support by ap� ap+1� and the frequency support with
ξp�k−π/lp� ξp�k+π/lp�. The time and frequency spread of φp�k goes beyond
the rectangle

ap� ap+1� ×
[
ξp�k −

π

lp
� ξp�k +

π

lp

]

but this correspondence has the advantage of associating an exact par-
tition of the time-frequency plane with any orthogonal local cosine basis
�φp�k�t��p∈Z� k∈N, as shown in Figure 3.

The qualitative analysis of locally stationary processes in Section 2.1 shows
that there exists local cosine vectors that are almost eigenvectors of the co-
variance operator T. This property is used as a characterization of locally
stationary processes by the following definition. It imposes the existence of an
orthogonal basis of local cosine vectors that are almost eigenvectors of T. In a
given time neighborhood, the size of the local cosine windows corresponds to
the size of the interval where X�t� is approximately stationary.
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Fig. 3. Time-frequency tiling of a local cosine basis. Each box represents the time-frequency lo-
calization �approximate support� of a function in the basis. The collection of all the boxes forms a
partition of the time-frequency plane.

Definition 1. A process X�t� is locally stationary if there exists a local
cosine basis {

φp�k�t� = gp�t�
√

2
lp

cos
[
π�k+ 1

2�
lp

�t− ap�
]}
k∈N� p∈Z

such that for some constants µ < 1 and A > 0 we have that for all p �= q,

max�lp� lq�
min�lp� lq�

≤ A�p− q�µ�(27)

and for all n > 1 we can find a constant Qn such that for all �p�q� k� j� ∈
Z

2 × N
2 the matrix elements of the covariance operator satisfy

�
Tφp�k�φq�j�� ≤
Qn

�1 + �p− q�n��1 + �max�lp� lq��ξp�k − ξq�j��n�
�(28)

The parameters �lp� specify the support of the windows gp�t�. They indicate
the size of the intervals whereX�t� is approximately stationary. Condition (27)
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demands that the size of these intervals should have a relatively slow variation
in time. Condition (28) imposes that the matrix elements of the covariance

Tφp�k�φq�j� have a fast decay when we increase �p−q� and �ξp�k−ξq�j�, which
depend, respectively, upon the distance between the time and the frequency
supports of φp�k and φq�j. This means that Tφp�k is a function that is mostly
localized in the same time-frequency region as φp�k. Each local cosine vector
φp�k is therefore “almost” an eigenvector of T.

The covariance operator T is not diagonal in the local cosine basis but if it
comes from a locally stationary process it can be approximated by a symmetric,
sparse operator BK constructed from T by keeping only the matrix elements

Tφp�k�φq�j� for which φp�k and φq�j are in the same time-frequency neigh-
borhood. Inserting the expression (26) of ξp�k and ξq�j, we define BK by


BKφp�k�φq�j� =





Tφp�k�φq�j�� if �p− q� ≤K and∣∣∣∣max�lp� lq�
(
k+ 1

2

lp
− j+

1
2

lq

)∣∣∣∣ ≤K�
0� otherwise.

For each �p�k�, 
BKφp�k�φq�j� �= 0 for at most �2K + 1�2 coefficients �q� j�.
When the window lengths lp are not all the same, BK does not have a band
structure exactly. However, it has fewer nonzero coefficients than the band
restriction of the T operator to elements for which �k−j� ≤K and �p−q� ≤K.

The sup operator norm of T is denoted

�T�s = sup
�f�=1

�Tf��

where �f� and �Tf� are the L2�R� norms. The following theorem shows that
�T�s is bounded and that �T−BK�s decays rapidly when K increases.

Theorem 2.2. If T is the covariance operator of a locally stationary process
then

�T�s < +∞�(29)

Moreover, there exist for all integers n > 1 constant An such that for allK > 0,

�T−BK�s ≤
An

1 +Kn �(30)

The proof of this theorem is given in Appendix A. The theorem guarantees
that the covariance operator of a locally stationary process is arbitrarily well
approximated by a sparse operator in an appropriate local cosine basis. The
next section connects our definition of local stationarity to the properties of
the covariance informally discussed in Section 2.1.

2.4. Pseudodifferential covariance operators. The covariance operators of
locally stationary processes introduced in Section 2.1 were qualitatively de-
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scribed as time varying convolution operators. Such operators can be con-
sidered as pseudodifferential operators. We study necessary conditions which
guaranty that the resulting process is locally stationary, in the sense of Defi-
nition 1.

To study the properties of the covariance, we make a nonorthogonal change
of variables in the covariance R�t� s�, as opposed to the orthogonal change of
variable (3), so that

R�t� s� = C1�t� t− s��(31)

The covariance operator can therefore be written as

Tf�t� =
∫ +∞

−∞
C1�t� t− s�f�s�ds�(32)

Let us define a new “time-varying spectrum” by

�1�t�ω� =
∫ +∞

−∞
C1�t� v�e−ivω dv�

The function �1�t�ω� has complex values because in general C1�t�−v� �=
C1�t� v�. Applying Parseval’s identity to (32) yields

Tf�t� = 1
2π

∫ +∞

−∞
�1�t�ω�f̂�ω�eiωt dω�

In the theory of pseudodifferential operators �1�t�ω� is called the symbol of T.
In Section 2.1 we give two qualitative conditions for a process to be approx-

imately stationary over an interval of size l�t� in the neighborhood of t. One
is that the covariance should vary slowly over t− l�t�/2� t+ l�t�/2�. This may
be done by supposing that for all k ≥ 0 there exists a constant Ak such that

∣∣∂kt �1�t�ω�
∣∣ ≤ Ak
lk�t� �

The other is that the decorrelation or decay of C1�t� v� as a function of v should
also be rapid compared to l�t�. This means that for any j ≥ 0 there exists Bj
such that ∫ +∞

−∞
�v�j�C1�t� v��dv ≤ Bj lj�t��(33)

Since the Fourier transform of �−iv�jC1�t� v� is ∂jω�1�t�ω� and the integral
(33) gives an upper bound on the Fourier transform, this condition implies
that ∣∣∂jω�1�t�ω�

∣∣ ≤ Bj lj�t��
We must now show that a process X�t� satisfying these two conditions is
locally stationary in the sense of Definition 1. This is the main theorem of
this paper and it gives sufficient conditions on the covariance function so that
there exists a basis of local cosine vectors that are almost eigenvectors of the
covariance operator.
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Theorem 2.3. Suppose that there exists a function l�t� such that for all
k ≥ 0 and j ≥ 0 we can find Ak�j, which satisfies∣∣∂kt ∂jω�1�t�ω�

∣∣ ≤ Ak�j lj−k�t��(34)

If for some α < 1
2 and a constant A,

∀�t� u� ∈ R
2� �l�t� − l�u�� ≤ A�t− u�α�(35)

and if

inf
t∈R

l�t� > 0�(36)

then T is the covariance operator of a locally stationary process in the sense of
Definition 1.

The function l�x� specifies the size of the neighborhood of x in whichX�t� is
approximately stationary. When l�t� = l is a constant, the covariance operator
T whose symbol satisfies (34) is a classical pseudodifferential operator. It is
well known [10] that such pseudodifferential operators are well compressed in
a local cosine basis where all windows have a constant size lp = l. When l�t�
varies and can potentially grow to +∞, condition (34) on the symbol defines
a larger and nonstandard class of scaled pseudodifferential operators.

The proof in Appendix B constructs an appropriate local cosine basis in
which T satisfies the off-diagonal decay conditions (28):

∣∣
Tφp�k�φq�j�∣∣ ≤ Qn
�1 + �p− q�n��1 + �max�lp� lq��ξp�k − ξq�j��n�

(37)

for all �p�q� k� j� ∈ Z
2 × N

2. Each window gp�t� covers an interval ap� ap+1�
of size lp = l�ap�. It corresponds to a time domain where �1�t�ω� have small
variations and where the underlined processX�t� is approximately stationary.
Conditions (35) and (36) guarantee that the windows length lp satisfies the
slow variation condition (27) imposed by the definition of local stationarity.

The stationarity length l�t� is not uniquely specified by �1�t�ω�. When
constructing the windows of the local cosine basis, we would like the matrix
elements �
Tφp�k�φq�j�� to have the fastest possible decay away from the
diagonal, so as to approximate as well as possible T with a sparse operator
BK. The constants Qn that appear in (37) grow with the values of Ak�j of
(34). It is thus important to know when these constants Ak�j are small and,
if possible, remain uniformly bounded for all k and j. In many cases we can
choose l�x� to be proportional to

1
supω∈R �∂t�1�x�ω��

�

which is a measure of the size of a neighborhood of x in which �1�t�ω� has
variations of order one, for all ω.
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2.5. Time-varying filtering of white noise. Stationary processes can be con-
structed by filtering white noise with a time invariant filter. We may therefore
expect that a locally stationary process can be synthesized by filtering white
noise with an appropriate time-varying filter. This approach to nonstationary
processes was followed by Priestley [15]. Here, by asking that the time-varying
filter be a pseudodifferential operator, we show that the resulting process is
locally stationary.

The Cramér representation gives a spectral decomposition of square inte-
grable stationary processes X�t�:

X�t� = 1
2π

∫ +∞

−∞
A�ω�eiωt dẐ�ω��

where Ẑ�ω� has orthogonal increments

E�dẐ�ω�dẐ∗�ω′�� = 2πδ�ω−ω′�dωdω′�(38)

This can be interpreted as filtering of white noise with a time-invariant filter
L defined for any f ∈ L2�R� by

Lf�t� = 1
2π

∫ +∞

−∞
A�ω�eiωtf̂�ω�dω =

∫ +∞

−∞
K�t− s�f�s�ds�

where f̂�ω� and A�ω� are, respectively, the Fourier transform of f�v� and
K�v�. The kernel K�v� is the impulse response of L.

Priestley [15] studied a class of nonstationary processes obtained through
a time-varying filtering of white noise

X�t� = 1
2π

∫ +∞

−∞
A�t�ω�eiωt dẐ�ω��(39)

The process Ẑ�ω� has orthogonal increments that satisfy (38). The correspond-
ing time-varying filter L is

Lf�t� = 1
2π

∫ +∞

−∞
A�t�ω�eiωtf̂�ω�dω =

∫ +∞

−∞
K�t� t− s�f�s�ds�(40)

where A�t�ω� is the Fourier transform ofK�t� v� with respect to v. The kernel
K�t� v� can be interpreted as a time-varying impulse response.

Priestley defines the evolutionary spectrum to be �A�t�ω��2. The kernel
A�t�ω� depends upon the covariance T of the process X�t�, since we only
specify the second order properties of dẐ�ω�. However, A�t�ω� and L are not
determined uniquely by T. Since the increments dẐ�ω� are uncorrelated, use
of (38) shows that

R�t� s� = E�X�t�X∗�s�� = 1
2π

∫ +∞

−∞
A�t�ω�A∗�s�ω�eiω�t−s� dω�

The covariance operator is thus related to the time-varying filter by

T = LLt�(41)
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where Lt is the adjoint operator. In other words, L is a “square root” of
the positive symmetric operator T. There exists, however, an infinite num-
ber of such square roots. If L is any solution of (41) then for any U such that
UUt = I, LU is also a solution of (41). Note that the real time-varying spec-
trum �0��t+ s�/2�ω� defined by (8) also satisfies

R�t� s� = 1
2π

∫ +∞

−∞
�0

(
t+ s

2
�ω

)
eiω�t−s� dω�

HoweverA�t�ω�A∗�s�ω� is in general not equal to �0��t+ s�/2�ω�. In particu-
lar, �A�t�ω��2 is always positive, whereas �0�t�ω� is not. To define A�t�ω� in a
unique way, Priestley imposes the condition that the inverse Fourier transform
of A�t�ω� with respect to ω is maximally concentrated around zero [14]. This
is equivalent to imposing a maximum smoothness conditions on A�t�ω� with
respect to ω. When trying to estimate the evolutionary spectrum �A�t�ω��2,
there is, however, no guarantee that we do estimate the maximally smooth
kernel. The nonuniqueness of the evolutionary spectrum has remained an is-
sue in Priestley’s approach, and we prefer to work directly with the covariance
operator, which is uniquely defined.

Benassi, Jaffard and Roux [3] have studied a class of nonstationary pro-
cesses, obtained with elliptic pseudodifferential filters L, that have weak reg-
ularity conditions. They proved that the covariance operator of these processes
is well compressed in a wavelet basis. These processes are not locally station-
ary but are used to construct multifractal models. The following theorem con-
centrates on locally stationary processes X�t� and gives sufficient conditions
on the symbol A�t�ω� of L.

Theorem 2.4. Suppose that there exists a function l�t� such that for all
k ≥ 0 and j ≥ 0 we can find Dk�j which satisfies∣∣∂kt ∂jωA�t�ω�∣∣ ≤ Dk�jlj−k�t��(42)

If for some α < 1
2 and a constant A,

∀�t� u� ∈ R
2� �l�t� − l�u�� ≤ A�t− u�α�(43)

and if

inf
t∈R

l�t� > 0�(44)

then

X�t� = 1
2π

∫ +∞

−∞
A�t�ω�e−iωt dẐ�ω��

is a locally stationary process.

The proof of this theorem is given in Appendix C. A simple class of time-
varying filters L is obtained by varying the scale, amplitude and frequency
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modulation of a linear filter. Let h�v� be the impulse response of a time-
invariant filter whose Fourier transform ĥ�ω� is concentrated at low frequen-
cies. We construct a filter L whose time-varying impulse response is

K�t� v� = a�t�
σ�t�h

(
v

σ�t�
)

cos�ξ�t�v��(45)

The Fourier transform of K�t� v� with respect to v is

A�t�ω� = a�t�(ĥσ�t��ω− ξ�t��� + ĥσ�t��ω+ ξ�t���)�(46)

A Gaussian process obtained by filtering a Gaussian white noise can be written

X�t� =
∫ +∞

−∞
K�t� t− s�dZ�s� = 1

2π

∫ +∞

−∞
A�t�ω�eiωt dẐ�ω��(47)

where Z�t� and Ẑ�ω� are Wiener processes.
To guarantee that X�t� is locally stationary, we suppose that h�t� is a

Schwartz function but we must also impose some smoothness conditions on
a�t�, σ�t� and ξ�t�. If a�t� and ξ�t� are constant and if for all k > 1,∣∣∂kt σ�t�∣∣ ≤ ∣∣∂tσ�t�∣∣ ≤ 1�

then it can be verified that the conditions (42) are satisfied with

l�t� = K0

supω∈R �∂tA�t�ω�� =
K1σ�t�
�∂tσ�t��

�

as long as �∂tσ�t�� > ε > 0 and �σ�t�� > ε for some ε > 0. The constants Bk�j
are then uniformly bounded for all k and j.

Figure 4 shows one realization of such a locally stationary Gaussian process
X�t�. The amplitude a�t� is a constant window inside 0�1�, with a smooth
increasing profile beginning at t = 0, and a smooth decreasing profile ending
at t = 1. The frequency shift ξ�t� = ξ is constant. The filter impulse response is
a Gaussian h�t� = �1/√π� exp�−t2/2�. It is scaled by σ�t� which increases on
0�1�. As a result, the Fourier transform ĥ�ω� of h�t� is scaled by a decreasing
factor 1/σ�t�. The integral (47) over time is discretized overM = 1024 samples
for discrete calculations.

The bottom of Figure 4 gives the time-varying spectrum �0�t�ω�. Only pos-
itive frequencies ω ≥ 0 are shown. For fixed time t, along ω the function
�0�t�ω� is similar to a Gaussian centered at ω = ξ and scaled by 1/σ�t�. At
early times t, �0�t�ω� is wide because σ�t� is close to zero. As σ�t� increases,
the bandwidth of �0�t�ω� decreases. For t in the neighborhood of 0 and 1,
�0�t�ω� is nearly zero because the amplitude a�t� is close to zero. Let us men-
tion that procedures have recently been introduced to estimate �0�t�ω� from
a single realization of X�t� with adaptive regularizations of localized peri-
odograms [1, 16]. Thresholding algorithms in wavelet orthonormal bases have
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Fig. 4. The graph at the top shows one realization of a locally stationary process generated by
filtering a Gaussian white noise. The image at the bottom displays the time-varying spectrum
�0�t�ω�. The darker the image the larger �0�t�ω�.

also been used to regularize the empirical time-varying spectrum calculated
from one realization [19, 12].

3. Estimation of covariance operators. For general nonstationary pro-
cesses, the covariance matrix cannot be estimated reliably from a few realiza-
tions of the process. However, if we can find a basis in which the covariance
operator is well approximated by a sparse matrix, it is possible to reduce sub-
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stantially the variance by estimating only the (essentially) nonzero matrix
elements. For example, locally stationary processes have covariances that are
well approximated by a sparse matrix in an appropriate local cosine basis,
whose windows depend on the size l�t� of the intervals of stationarity. How-
ever, we do not know in advance l�t� in general. It is thus necessary to estimate
from the data the basis in which the covariance operator is well approximated
by a sparse matrix as well as the nonzero matrix elements. We study this prob-
lem here in its full generality and present a best basis search algorithm which
optimizes an additive measure of departure from being sparse. To simplify the
explanations, we suppose that the sparse matrix is a band or near diagonal
matrix, although this condition is not required in the best basis search.

3.1. Approximation of covariance operators. FromN independent realiza-
tions Xk�t�, k = 1�2� � � � �N, of a zero mean process X�t�, we want to get
an estimate T̃ of the covariance operator T with a small mean square error
E��T − T̃�2

s�. By controlling the operator norm �T − T̃�s, we also bound the
maximum error between the eigenvalues of the estimated operator T̃ and the
true covariance operator T. Let λn and λ̃n be the eigenvalues of T and T̃,
respectively. From linear algebra we know that for all n,

inf
k

�λn − λ̃k� ≤ �T− T̃�s�(48)

Let �φn�n∈N be an orthonormal basis of L2�R�. A simple but naive algorithm
to compute T̃ is to estimate all the matrix elements

an�m = 
Tφn�φm� = E�
X�φn�
X�φm�∗�
with the sample means

ãn�m = 1
N

N∑
k=1


Xk�φn�
Xk�φm�∗�(49)

The sample mean estimator is clearly unbiased

E�ãn�m� = an�m�
In the Gaussian case its variance is given by the following proposition.

Proposition 3.1. If X�t� is a Gaussian process then

E��ãn�m�2� =
(

1 + 1
N

)
�an�m�2 +

1
N
an�nam�m�(50)

and thus

E��ãn�m − an�m�2� = 1
N

��an�m�2 + an�nam�m��(51)
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Proof.

E��ãn�m�2� = E
∣∣∣∣ 1
N

N∑
k=1


Xk�φn�
Xk�φm�∗
∣∣∣∣
2

= 1
N2

N∑
k=1

E�
Xk�φn�
Xk�φn�
Xk�φm�∗
Xk�φm�∗�

+ 1
N2

N∑
k� l=1
k �=l

E�
Xk�φn�
Xk�φm�∗�E�
Xl�φn�
Xl�φm�∗��

(52)

Each 
Xk�φn� are Gaussian random variables and for all k,

E�
Xk�φn�
Xk�φm�∗� = an�m�
If A1�A2�A3�A4 are Gaussian random variables, one can verify that

E�A1A2A3A4� = E�A1A2�E�A3A4� +E�A1A3�E�A2A4�
+E�A1A4�E�A2A3��

Applying this to (52) yields

E��ãn�m�2� = 1
N2
N�an�nam�m + 2a2

n�m� +
1
N2

�N2 −N�a2
n�m

which proves (50). Since E��ãn�m − an�m�2� = E�ã2
n�m� − E�a2

n�m�, we get
(51). ✷

Let T̃ be the covariance operator estimate whose matrix elements in
�φn�n∈N are


T̃φn�φm� = ãn�m�
The matrix elements of the error T̃−T are ãn�m − an�m. The previous propo-
sition shows that ifX�t� is Gaussian then E��ãn�m−an�m�2� does not depend
only on an�m but also on the diagonal elements an�n and am�m. Thus, even
though an�m may decay quickly to zero when �n−m� increases, since

E��ãn�m − an�m�2� ≥ an�nam�m
N

�(53)

the expected error remains large if the diagonal coefficients are large. The
errors ãn�m − an�m for the matrix elements accumulate and give a very large
operator norm error E��T− T̃�2

s�.
To avoid this accumulation of error, we approximate T with the estimated

coefficients in a band of size K around the diagonal. Let BK be the band
operator obtained by setting to zero all matrix elements an�m of T with �n −
m� > K,


BKφn�φm� =
{
an�m� if �n−m� ≤K�
0� otherwise.
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The estimated matrix elements in this band of width 2K + 1 define an esti-
mated band operator


B̃Kφn�φm� =
{
ãn�m� if �n−m� ≤K�
0� otherwise.

Since E�ãn�m� = an�m, we derive

E�B̃K� = BK�
The error when estimating T with B̃K is the sum of the bias due to the
difference between T and BK and the variance of the estimator of BK:

E��T− B̃K�2
s� = �T−BK�2

s +E��BK − B̃K�2
s��

The expected norm E��BK − B̃K�2
s� varies typically like �2K+ 1�2/N.

Indeed, E��an�m − ãn�m�2� is proportional to N−1 and (53) shows that these
coefficients do not decay away from the diagonal, within the band. The
squared norm is thus proportional to the band width squared �2K+ 1�2. This
shows that the variance term increases whenK increases. On the other hand,
the bias �T − BK�2

s decreases when K increases since the approximation
band gets larger. Given the number of realizations N, an optimal choice for
K is obtained by balancing the bias and variance terms. When N is very
small, which is the case in many applications, the best choice is often K = 0
because the variance term dominates.

3.2. Best basis selection. The covariance operators of some processes may
be well approximated by a band matrix in a particular basis that is chosen
from a limited collection of bases, called a dictionary. For locally stationary
processes, this dictionary is the collection of local cosine bases constructed
with windows of varying sizes.

Let � = ��γ�γ∈: be a dictionary of orthonormal bases �γ = �φγn�n∈N of
L2�R�, indexed by γ ∈ :. We denote the matrix elements of T in �γ by

aγn�m = 
Tφγn�φγm��
Let BγK be the restriction of the operator T to a band of size 2K + 1 in the
basis �γ:


BγKφγn�φγm� =
{
a
γ
n�m� if �n−m� ≤K�

0� otherwise.

Given a covariance operator, we would like to find the basis �α in the dictio-
nary which minimizes the bias �T−BαK�s so as to reduce the total estimation
error

E��T− B̃αK�2
s� = �T−BαK�2

s +E��B̃αK −BαK�2
s��

However, the bias �T − BαK�s cannot be computed directly since we do not
know T. We must therefore try to control this bias from the band coefficients
ã
γ
n�m of B̃αK. This can be done by using a Hilbert–Schmidt norm.
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The Hilbert–Schmidt norm of the operator T is the trace of TTt and it is
therefore equal to the L2�R2� norm of its kernel that we suppose to be finite:

�T�2
h = tr�TTt� =

∫ +∞

−∞

∫ +∞

−∞
�R�t� s��2 dtds < +∞�

One can verify that the Hilbert–Schmidt norm of T can be also written as the
sum of its matrix coefficients squared in any orthonormal basis �γ:

�T�2
h =

∑
n�m

�aγn�m�2�(54)

Applying the Cauchy–Schwarz inequality on the expression (1) of Tf proves
that the sup operator norm of T is bounded by its Hilbert–Schmidt norm

�T�s ≤ �T�h�(55)

Inequality (55) shows that we can control the bias �T−BγK�2
s by a Hilbert–

Schmidt norm

�T−BγK�2
s ≤ �T−BγK�2

h =
∑
n�m

�n−m�>K

�aγn�m�2�

and hence

�T−BγK�2
s ≤ �T�2

h −
∑
n�m

�n−m�≤K

�aγn�m�2�(56)

To minimize this upper bound we choose among the dictionary the basis that
maximizes

�BγK�2
h =

∑
n�m

�n−m�≤K

�aγn�m�2�(57)

It is important to realize that the Hilbert–Schmidt norm �T −BγK�h is of-
ten a crude upper bound for �T − BγK�s. In general, minimizing �T − BγK�h
is therefore not equivalent to minimizing �T − BγK�s. However, the Schur
lemma (see Lemma A.1 in the Appendix) shows that

�T−BγK�2
h −

∑
n�m

�n−m�>K

�aγn�m�2

provides an effective control on �T−BγK�s if we are also guaranteed that the
coefficients aγn�m have a fast off-diagonal decay as �n−m� increases. This will
be the case when approximating locally stationary processes in local cosine
bases. The maximization of �BγK�h then selects a basis in which the operator
norm �T−BγK�s is small.

Given N realizations of the process X�t�, we compute sample mean es-
timates ãγn�m (49) of the coefficients aγn�m in the band of BγK. It defines an
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estimated band operator B̃γK. The Hilbert–Schmidt norm �BγK�2
h is then esti-

mated by

�B̃γK�2
h =

∑
n�m

�n−m�≤K

�ãγn�m�2�

If X�t� is a Gaussian process then (50) shows that

E��B̃γK�2
h� = ∑

n�m

�n−m�≤K

{(
1 + 1

N

)
�an�m�2 +

an�nam�m
N

}

and hence

E��B̃γK�2
h� =

(
1 + 1

N

)
�BγK�2

h +
1
N

∑
n�m

�n−m�≤K

an�nam�m�(58)

The estimate �B̃γK�2
h is biased but its maximization is a reasonable procedure

for maximizing �BγK�2
h. We will denote by �α̃ the estimated “best” basis, which

maximizes the estimated sum of squares of matrix elements in the band of
size K:

�B̃α̃K�h = sup
γ∈:

�B̃γK�h�

The variable α̃ labels the estimated best basis. It is a random variable since
it is a functional of the observations.

3.3. Approximate Karhunen–Loeve basis. As mentioned earlier, when the
number of realizationsN is small, the variance term �B̃γK−BγK�s of the mean
square error grows like �2K+ 1�/√N and is often much larger than �T−BγK�s.
To reduce the variance, therefore, we often chooseK = 0. We let Dγ = Bγ0 and
D̃γ = B̃γ0 be the resulting diagonal matrices. The basis �α which minimizes
�T−Dγ�s can be interpreted as the best approximation, within the dictionary
of bases, of a Karhunen–Loeve basis. A Karhunen–Loeve basis is indeed a ba-
sis in which the covariance operator T is diagonal. If the dictionary � includes
a Karhunen–Loeve basis then �Dγ�h is maximized by this Karhunen–Loeve
basis. The approximation of a Karhunen-Loeve basis with a “best” basis se-
lected from a limited dictionary has already been studied by Coifman and
Wickerhauser [5]. Their searching algorithm maximizes a different criterion,
based on an entropy measure, which is not, however, directly related to the
norm of the error �T−Dγ�s.

Let dγn = aγn�n and d̃γn = ãγn�n be the diagonal coefficients of Dγ and D̃γ. The
Hilbert–Schmidt norm is the sum of the diagonal elements squared

�D̃γ�2
h =

∑
n

�d̃n�2�
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When K = 0, (58) shows that the expected trace norm of the estimated diag-
onal coefficients (in a fixed basis) is

E��D̃γ�2
h� =

(
1 + 2

N

)
�Dγ�2

h�(59)

The maximization of �D̃γ�2
h is thus equivalent to the maximization of an un-

biased estimator of �Dγ�2
h.

Let �α̃ = �φα̃n�n∈N be the estimated best basis which maximizes �D̃γ�2
h.

Since D̃α̃ is a diagonal matrix, its diagonal entries d̃n are the estimated eigen-
values of T. Note that for K = 0, we are guaranteed that the estimated co-
variance operator D̃α̃ is a positive operator, which is not always the case if
K > 0.

In the diagonal case, the estimated time-varying spectrum is easily cal-
culated from the Wigner–Ville distribution of each basis vector. Indeed, the
estimated covariance is

R̃α̃�t� s� = ∑
n

d̃n φ
α̃
n�t�φα̃n�s�

and the corresponding time-varying spectrum is

�̃0�u�ω� =
∫ +∞

−∞
R̃α̃

(
u+ v

2
� u− v

2

)
e−iωv dv�

Inserting the Wigner–Ville distribution Wφα̃n�u�ω� defined in (11) yields

�̃0�u�ω� =
∑
n

d̃n Wφ
α̃
n�u�ω��(60)

4. Basis selection and estimation algorithms. Theorem 2.2 proves
that the covariance operators of locally stationary processes are well approxi-
mated by band matrices in a local cosine basis where the size of the windows
is adapted to the size l�t� of intervals over which the process is approximately
stationary. We introduce a dictionary � of local cosine bases with windows of
varying sizes. From a few realizations of the process, we search in this dictio-
nary for the best approximate Karhunen–Loeve basis, as described in Section
3.3. To implement this search with a fast algorithm we use the tree structured
dictionary introduced in [4]. In Section 4.1 we describe this local cosine tree
and in Section 4.2 we give some numerical results for covariance estimation.
The consistency of our statistical estimator is not studied in this paper. We
refer the reader to a work of Donoho and von Sachs [7], which proves the
consistency of a modified version of this algorithm.

4.1. Local cosine binary trees. To reduce the complexity of the search for a
best local cosine basis with adapted window sizes, we limit the window sizes to
powers of 2. We consider signals and processes with compact support included
in 0�M�. Local cosine bases with dyadic window sizes are constructed along
a binary tree. We consider separately the dictionaries of local cosine bases for
continuous time and discrete time signals.
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Coifman and Wickerhauser [5] construct a dyadic tree of local cosine bases
by associating to each node of the tree a window that covers a subinterval of
0�M�. The root of the tree corresponds to a window which covers the whole
interval 0�M�. The left and right branch nodes are associated with the two
half windows which cover 0�M/2� and M/2�M�, respectively. Each of these
windows is divided further into a left and right window of half its size, and
so on. Each node of the binary tree is characterized by the pair �j�p�, which
specifies its depth j and its position p from left to right, at depth j. Such
a node corresponds to the window function gjp�t�, which covers the interval
pM2−j� �p+ 1�M2−j�, as illustrated in Figure 5.

All window functions gjp�t� have an increasing and decreasing profile con-
structed by translating a single, smooth function β�t� ≥ 0 such that

β�t� =
{

0� if t < −η�
1� if t > η�

and

β2�t� + β2�−t� = 1�

Fig. 5. Dyadic tree of local cosine bases. Each node is associated to a window modulated by
cosine functions whose frequencies are inversely proportional to the window length. The leaves of
any admissible subtree corresponds to a particular local cosine basis.
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The window gjp�t� is defined by

gjp�t� =



β�t− pM2−j�� if t < pM2−j + η�
1� if pM2−j + η ≤ t < �p+ 1�M2−j − η�
β��p+ 1�M2−j − t�� if t > �p+ 1�M2−j − η�

This is valid only if M2−j ≥ 2η, which limits the maximum depth of the tree
to J

j ≤ J = log2
M

2η
�

To each window we associate a local cosine family defined by{
φ
j
p�k�t� = gjp�t�

√
2

M2−j cos
[
π

(
k+ 1

2

)
t−M2−jp
M2−j

]}
k∈N

�

We call an admissible binary tree any binary tree whose nodes have either
0 or 2 branches. We denote by γ the index set of the nodes �j�p� of a particular
admissible binary tree. One can verify that the windows �gjp�t���j�p�∈γ define a
partition of the interval 0�M� into dyadic intervals of varying sizes. Figure 6
gives two examples of admissible binary trees and their corresponding window
decomposition of the interval 0�M�.

It can be shown from the local cosine Theorem 2.1 that, for any admissible
binary tree indexed by γ,

�γ = �φjp�k�t���j�p�∈γ� k∈N

is an orthogonal basis in a space V which includes L2�η�M−η��. The dictio-
nary � = ��γ�γ∈: of local cosine bases constructed with all admissible binary
trees puts the local cosine bases in correspondence with all combinations of
dyadic size windows that make an exact cover of 0�M�. There are more than
2J/2 different admissible binary trees of depth at most J and hence the dic-
tionary � = ��γ�γ∈: contains more than 2J/2 different local cosine basis.

Orthogonal bases for discrete time signals are obtained simply by discretiz-
ing the local cosine functions. It can be shown that for m = 1�2� � � � �M,{

φ
j
p�km� = gjp�m�

√
2

M2−j cos
[
π

(
k+ 1

2

)
m− 2−jp
M2−j

]}
0≤k<M2−j

is an orthogonal family of discrete cosine vectors. For any admissible binary
tree whose branches have indices �j�p� in a set γ, one can also prove that

�γ = �φjp�km���j�p�∈γ�0≤k<M2−j

is an orthogonal family of M discrete vectors. It is an orthogonal basis in the
space V which contains discrete signals having compact support in η�M−η�.
Since η > 1, the binary tree has depth

J = log2
M

2η
≤ log2M�
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Fig. 6. Examples of admissible binary trees corresponding to two partitions of the interval with
windows of varying sizes. The circles indicate the selected nodes. The resulting windows are drawn
under the binary trees.

At depth j of the binary tree there are 2j families of local cosine vectors
�φjp�km��0≤k<M2−j , which makes a total of M cosine vectors. By using a fast
discrete cosine transform, for any discrete signal fm� whose support is in
η�M− η�, all inner products

�
f�φjp�k��0≤p<2j�0≤k<M2−j

are calculated with O�M log2M� operations. To compute all discrete co-
sine products at all depths 0 ≤ j ≤ J of the binary tree thus requires
O�JM log2M� operations.

4.2. Best local cosine basis search. Let Xm� be the samples of a locally
stationary process whose support is included in η�M−η�. Let us consider the
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dictionary � of discrete local cosine bases constructed with a binary tree of
depth J. We search in the dictionary � for the best approximate Karhunen–
Loeve basis as described in Section 3.3.

For each realization Xqm�, we compute all inner products with the JM
cosine vectors stored in the binary tree:

�
Xq�φjp�k��0≤j≤J�0≤p<2j�0≤k<M2−j

with O�JM log2M� operations. We estimate the diagonal covariance matrix
elements for each cosine vector with the sample mean

d̃
j
p�k =

1
N

N∑
q=1

�
Xq�φjp�k��2�

To each local cosine basis �γ = �φjp�k��j�p�∈γ�0≤k<M2−j , corresponding to an
admissible binary tree indexed by γ, we associate the diagonal matrix D̃γ

whose diagonal elements are the estimated ones

�d̃jp�k��j�p�∈γ�0≤k<M2−j �

The best basis maximizes the sum of the squares of these M diagonal coeffi-
cients

�D̃γ�2
h =

∑
�j�p�∈γ

0≤k<M2−j

�d̃jp�k�2�(61)

Since �D̃γ�2
h is an additive quantity over the local cosine coefficients of an

admissible binary tree, we can use the fast dynamic programming algorithm
of Coifman and Wickerhauser to find the best basis (admissible binary tree)
which maximizes it. The dynamical programming algorithm uses a bottom up
strategy, which progressively constructs the best admissible tree by comparing
the energy of the estimated local cosine coefficients of a tree node and its two
branches. The best basis �α̃ is found with O�M log2M� operations.

To guarantee that a local cosine basis compresses the covariance operator
of a locally stationary process, the proof of Theorem 2.3 indicates that one
must also insure that the local cosine windows gp�t� have smooth rising and
decaying profiles. These profiles should vary over intervals of size 2ηp and
2ηp+1, comparable to the length of the interval ap� ap+1� covered by gp�t�.
This is a priori not satisfied by the windows included in the binary tree, which
all have rising and decaying intervals of the same length, equal to 2η. This
constraint is necessary in order to freely combine any window with any other
one when constructing a local cosine basis. The parameter 2η is the minimum
window size at the bottom of the binary tree. It is thus typically small com-
pared to M. This means that the large windows at the top of the binary tree
have rising and decaying intervals that are much smaller than the window
size that they cover (see Figure 7). Clearly, these window functions are not
as smooth as they could be. To bypass this constraint, once the best basis
�α̃ is selected we modify the rising and decaying profiles of the windows to
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Fig. 7. The figure at the top gives an example of windows for a local cosine basis. The figure at
the bottom shows how to dilate the rising and decaying profiles to obtain windows of maximum
smoothness, while maintaining the necessary properties for local cosine bases.

increase their smoothness. The best basis choice decomposes the interval
0�M� in dyadic size intervals, which we denote by ap� ap+1�. Over these
best basis intervals, we construct a new local cosine basis with nonsymmet-
ric windows whose profiles rise and decay over the largest possible intervals
compatible with the constraints imposed by the neighboring windows. The con-
struction of these windows is specified at the beginning of Appendix B by (74)
and (75). It is illustrated in Figure 7. The estimated variance matrix elements
are recomputed with this new basis by decomposing again the N realization
of the process in this modified best basis. The diagonal operator in this new
best basis is still denoted by D̃α̃.

4.3. Numerical experiments. The algorithm is tested with a locally sta-
tionary process synthesized by filtering a Gaussian white noise through a
time-varying filter specified by (45). Figure 4 shows one realization of this
locally stationary process and its time-varying spectrum �0�t�ω�.

Equation (51) for n =m proves that the error when estimating the diagonal
covariance coefficients from N realizations of the process is

E��d̃jp�k − djp�k�2� = 2�djp�k�2
N

�(62)

A first experiment is performed with N = 1000 realizations in order to get
accurate estimations of these coefficients, d̃jp�k ≈ djp�k. The time-frequency
tiling of the best estimated basis is shown in Figure 8. Each rectangle indi-
cates the time-frequency support of a local cosine window φjp�k in the selected
best basis �α̃. The gray level of these rectangles gives the value of d̃jp�k. The
darker the rectangle the larger d̃jp�k. The window sizes are adapted to the
time and frequency variations of �0�t�ω� that is shown at the bottom of Fig-
ure 9. The smoother the time variation of �0�t�ω� the larger the time support
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Fig. 8. Time-frequency tiling of the estimated best basis computed with 1000 realizations of the
process. The width and height of each rectangle indicates the time and frequency spread of the a
cosine window φjp�k. The darkness is proportional to estimated variance d̃jp�k. The distribution
is very similar to the time-varying spectrum �0�t�ω� of the process displayed at the bottom of
Figure 9.

of the local cosine windows. For t close to zero, the frequency bandwidth of
�0�t�ω� decreases quickly, which requires short time windows. As the rate of
modification of this bandwidth decreases, the windows increase in size. For t
close to 0 and 1 the amplitude of �0�t�ω� has a rapid decay to zero, which
selects short time windows.

From the estimated diagonal covariance operator D̃α̃ we compute an esti-
mated time-varying spectrum �̃0�t�ω� with (60). The top image of Figure 9 is
the estimated spectrum �̃0�t�ω� obtained with the original local cosine win-
dows having the same rising and decaying profiles, as illustrated at the top
of Figure 7. The bottom image of Figure 9 is the estimated spectrum �̃0�t�ω�
computed after modifying the local cosine windows, as indicated at the bottom
of Figure 7. Both spectra have the same qualitative behavior as the original
time-varying spectrum �0�t�ω� given in Figure 8. The errors are mostly con-
centrated in the time regions where the rising and decreasing profiles of the
windows are located. The modified windows that are smoother reduce this
error.

In most applications we must estimate the covariance from very few real-
izations. In speech processing, we only have one realization. The top of Figure
10 shows the time-frequency tiling of the best basis computed with onlyN = 1
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Fig. 9. The top image is the estimated time-varying power spectrum �̃�t�ω� in the best local
cosine babis. The bottom image displays �̃�t�ω� computed in the same best basis, with modified
maximally smooth windows.

realization of the process X�t�. The gray levels of the rectangles indicate the
value of the estimated diagonal covariance coefficients d̃jp�k. In this case, (62)
proves that the expected estimation error is

E��d̃jp�k − djp�k�2� = 2�djp�k�2�
This explains the considerable variation of d̃jp�k in time-frequency regions
where Figure 8 shows that djp�k is approximately constant. The next section
explains how to reduce this variations with a time-frequency smoothing. The
considerable variance on the covariance coefficient estimators also induces a
large variance on the estimator �α̃ of the best local cosine basis. We see that
the selected window sizes is not optimal compared to Figure 8.
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Fig. 10. At the top is the time-frequency tiling of the best basis computed with N = 1 realiza-
tion. The darkness of each rectangle is proportional to the estimated variance d̃jp�k. The bottom
displays the values of the smoothed coefficients d̃jp�k computed with a time-frequency averaging
of d̃jp�k.
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Table 1
Estimation errors of the covariance operator for different numbers of realizations N ∗

E������T � D̃
�̃���2

s ��� E������D�̃ � D̃
�̃���2

s ��� E������T � D�̃���2
s ��� E������T � D̂

�̃���2
s ��� E������T � T̃���2

s ���
N � ���T����2

s � ���T����2
s � ���T����2

s � ���T����2
s � ���T����2

s

1 50 49 0.14 0.6 139
5 4.9 4.8 0.08 0.40 33

10 1.9 1.8 0.08 0.4 18
20 0.81 0.75 0.09 0.37 10
40 0.36 0.32 0.09 0.41 6.2
80 0.15 0.12 0.09 0.35 3.7

160 0.11 0.06 0.08 0.38 2.3
320 0.08 0.03 0.07 0.35 1.5
640 0.07 0.02 0.06 0.31 0.94

∗The first column gives the total error in the estimated best local cosine basis. The second column
is the error induced by the diagonal coefficient estimation in the best basis. The third column
is the error when approximating T by its diagonal restriction in the estimated best basis. The
fourth column is the total error in the estimated best basis with a time-frequency smoothing of
the diagonal coefficients. This error is dramatically reduced. The last column gives the error when
estimating T with a full matrix in a discrete Dirac basis.

Table 1 gives the expected estimation errors of the covariance operator for
different numbers of realizations. Observe that

E��T− D̃α̃�2
s� ≈ E��T−Dα̃�2

s� +E��Dα̃ − D̃α̃�2
s��(63)

This indicates that the error T −Dα̃ when approximating T by its diagonal
restriction in the estimated best basis �α̃ is uncorrelated with the error Dα̃−
D̃α̃ produces by the estimation of the diagonal coefficients in the estimated
best basis. As expected,E��Dα̃−D̃α̃�2

s� is inversely proportional to the number
of realizations N. The best basis diagonal approximation E��T −Dα̃�2

s� also
decreases with N, which means that we do get more reliable estimates of the
true best basis when the number of realizations increases. This value tends to
�T−Dα�2

s , which is the error in the true best basis �α. However, beyond these
numerical results, we have no theoretical control on the convergence of the
error in the estimated best basis compared to the error in the true best basis,
when the number of realizations increases. For a number of realizations N ≤
20, E��T−Dα̃�2

s� is negligible compared to E��Dα̃ − D̃α̃�2
s�. This means that

the error introduced by approximating the Karhunen–Loeve basis with the
best local cosine basis is negligible compared to the error due to the estimation
of the diagonal coefficients.

We mentioned that a naive estimation T̃ ofTmay be obtained by estimating
all the matrix coefficients in a basis arbitrarily chosen, say a discrete Dirac
basis. This is equivalent to computing the covariance function R�t� s� directly
with the sample mean

R̃�t� s� = 1
N

N∑
k=1

Xk�t�Xk�s��(64)
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The resulting error E��T− T̃�2� is proportional to 1/N multiplied by the full
covariance matrix size M2, which is huge. The first column of Table 1 gives
E��T− D̃α̃�2

s� for N realizations. As expected, this error is much larger than
the error E��T−Dα̃�2

s� obtained in an estimated local cosine basis. The next
section explains how to further reduce this error with an appropriate time-
frequency smoothing of the estimated covariance coefficients.

4.4. Time-frequency smoothing. The variance error E��Dα̃ − D̃α̃�2� is the
main source of error and can often be reduced with a local averaging of the
estimated diagonal coefficients of D̃α̃. This relies on an a priori assumption of
smoothness of the diagonal coefficients of Dα̃, which is not always true for all
locally stationary processes. We defined locally stationary processes as those
whose covariance operators have a fast off-diagonal decay in an appropriate
local cosine basis. However, we do not impose a priori any smoothness con-
dition on the matrix coefficients along the diagonal. The same issue appears
when estimating the spectrum of stationary processes. These processes are
diagonalized in the Fourier basis. To reduce the variance of the spectrum esti-
mation, most spectral estimation algorithms perform some type of averaging
of the Fourier coefficients along the frequency axis. This averaging is justified
only if the spectrum if smooth, which is not always the case.

The frequency axis gives a natural topology for the spectrum of stationary
processes. For locally stationary processes, the natural topology is provided by
the time-frequency plane. Local cosine functions are neighbors either in time
or in frequency. Time-frequency smoothing kernels for the estimated “time-
varying” spectrum �̃0�t�ω� of nonstationary processes have been studied by
several researchers [17, 18, 19]. In our numerical experiments, we perform a
direct averaging of the estimated local cosine coefficients d̃jp�k. This short study
illustrates the result of such an averaging, without any theoretical analysis.

The coefficient d̃jp�k is an estimate of djp�k = E��
X�φjp�k��2�. It is averaged
with other coefficients d̃j

′

p′� k′ in the same local cosine basis, depending upon the
distance in time and frequency of the two local cosine vectors φjp�k and φj

′

p′� k′

d̂
j
p�k =

∑
j′� p′� k′

w
j
p�kj′� p′� k′� d̃j′p′� k′ �(65)

The weights wjp�kj′� p′� k′� decrease when the distance between the time sup-
ports of φjp�k and φj

′

p′� k′ increases, or when the distance between the support
of their Fourier transform increases.

If M is the total number of samples of the signal, φjp�k covers an interval
of size lp = M2−j. The distance between the centers of the time support of
φ
j
p�k and φj

′

p′� k′ is thus

?t =M2−j(p+ 1
2

)−M2−j′(p′ + 1
2

)
�

The distance between the domains where their Fourier transform energy is
mostly located is

?ω = �ξp�k − ξp′� k′ � = π
(
k+ 1

2

M2−j − k
′ + 1

2

M2−j′

)
�
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The averaging weights are computed with a Gaussian kernel g�t� that is
dilated in time and frequency proportionally to the time and frequency spread
of φjp�k. The time and frequency scale factors are thus M2−j and 2π/M2−j

w
j
p�kj′� p′� k′� = λjp�k g

(
?t
M2−j

)
g

(
M2−j

2π
?ω

)
�

The factor λjp�k normalizes the sum of the weights∑
j′� p′� k′

w
j
p�kj′� p′� k′� = 1�

The variance of the Gaussian kernel g�t� is a parameter that modifies the
time-frequency spread of this averaging. The smaller the number of realiza-
tionsN, the larger the variance of the estimators d̃jp�k and the more averaging
is needed. This also depends upon the expected time-frequency smoothness of
the true coefficients djp�k. The bottom of Figure 10 displays the amplitude of
the smoothed coefficients d̂jp�k computed from the estimated coefficients d̃jp�k
for N = 1 realizations, shown at the top of Figure 10.

We denote by D̂α̃ the diagonal operator in the basis �α̃ whose diagonal
coefficients are the smoothed estimates d̂jp�k defined by (65). The next to last
column of Table 1 displays the expected errorE��T−D̂α̃�2

s�. It is much smaller
than E��T− D̃α̃�2

s�, which shows that this smoothing decreases considerably
the expected error when the number of realizations is small.

A precise statistical analysis of the covariance estimator obtained with this
best basis algorithm is not included in our paper. However, Donoho and von
Sachs [7] have proved that for a particular class of locally stationary pro-
cesses, one can get a consistent estimate of the covariance operator with a
modified version of this algorithm. In each local cosine basis the empirical
estimates d̃jp�k of the diagonal covariance coefficients are regularized with a
wavelet thresholding algorithm. Donoho and von Sachs [7] have proved that
with a single realization P = 1 of the process, the best basis calculated from
these regularized coefficients yields a consistent covariance estimator when
the sample size N increases to +∞.

APPENDIX A

Proof of Theorem 2.2. We estimate the norm of the error U = T −
BK when approximating T with a band operator BK. Let us denote la =
max �lp� lq� and lb = min �lp� lq�. In a local cosine basis, the matrix coefficients
of U are zero inside the band of BK:

up�k�q�j = 
Uφp�k�φq�j�

=




Tφp�k�φq�j�� if �p− q� > K

or ��k+ 1
2�lal−1

p − �j+ 1
2�lal−1

q � > K�
0� otherwise.

(66)
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Since T is the covariance operator of a locally stationary process, the off-
diagonal coefficients have a fast decay in a local cosine basis and for any
n ≥ 2 there exists Qn such that

�
Tφp�k�φq�j�� ≤
Qn

�1 + �p− q�n��1 + �la�ξp�k − ξq�j��n�
�

Replacing ξp�k and ξq�j by their expression (26) proves that for any n ≥ 2
there exist constants Dn such that

�
Tφp�k�φq�j�� ≤
Dn

�1 + �p− q�n��1 + ��k+ 1
2�lal−1

p − �j+ 1
2�lal−1

q �n�(67)

for all �p�q� k� j� ∈ Z
2 × N

2. We use the following Schur lemma to derive an
upper bound of �U�s from the amplitude of its coefficients.

Lemma A.1 (Schur). Let O be an operator whose matrix elements in an
orthonormal basis �φn�n∈N are on�m = 
Oφn�φm�. If there are two sequences
of positive numbers �wm� and �ŵm� and a constant B such that

+∞∑
m=0

�on�mwm� ≤ Bŵn

and

+∞∑
n=0

�on�mŵn� ≤ Bwm

then

�O�s ≤ B�

To apply the Schur lemma to U = T−BK, for any n ≥ 2 we define the two
weight sequences

ŵq� j = wq�j =
1

1 + max�K� �q��n
1

1 + max�K�j+ 1
2�n
�

If we can prove that for any n ≥ 2, there exists a constant Cn such that

∑
p�k

�up�k�q�jwp�k� ≤
Cn

1 +Kn−1
ŵq� j(68)

and ∑
q� j

�up�k�q�jŵq� j� ≤
Cn

1 +Kn−1
wp�k�(69)

Then the Schur lemma proves that

�U�s = �T−BK�s ≤
Cn

1 +Kn−1
�
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Since this is valid for all n ≥ 2, we derive the theorem result (30). By setting
U = T we prove (29) with essentially the same derivations.

The proof of (68) and (69) is identical since U is a symmetric operator.
We concentrate on the proof of (68), which uses upper bounds given by the
following lemma.

Lemma A.2. For any n ≥ 2, there exist constants Hn and Gn such that for
any K ≥ 0 and q ∈ Z,

+∞∑
p=−∞

1
1 + �p− q�n

1
1 + max��p��K�n ≤ Hn

1 + max��q��K�n(70)

and

+∞∑
p=−∞

�p−q�>K

1
1 + �p− q�n

1
1 + max��p��K�n ≤ Gn

1 +Kn−1

1
1 + max��q��K�n �(71)

The proof of this lemma is left to the reader. One must distinguish the cases
K ≤ �q� andK > �q�. The sums over pmust also be divided in two pieces where
1/�1 + �p− q�n� and 1/�1 + max��p��K�n� are, respectively, smaller.

To prove (68), we evaluate the sum
∑
p�k �up�k�q�jwp�k� by replacing the

up�k�q�j by its expression (66). The coefficients up�k�q�j are nonzero if �p−q� > K
or ��k+ 1

2�lal−1
p −�j+ 1

2�lal−1
q � > K. The sum over p and k is divided into two

sums I and II corresponding to �p− q� ≤K and �p− q� > K:∑
p�k

�up�k�q�jwp�k� = I+ II�(72)

For nonzero values up�k�q�j = �
Tφp�k�φq�j��, we use an upper bound that is
slightly different from (67). For any n ≥ 2, there exists En > 0 such that
∀�p�q� k� j� ∈ Z

2 × N
2,

�
Tφp�k�φq�j�� ≤
En

�1 + �p− q�n+2nµ��1 + ��k+ 1
2�lal−1

p − �j+ 1
2�lal−1

q �n� �(73)

where µ < 1 is the constant that appears in Definition 1. We thus derive that

I ≤
+∞∑
p=−∞

�p−q�≤K

(
En

1 + �p− q�n+2nµ

1
1 + max��p��K�n

×
+∞∑
k=0

��k+ 1
2 �lal−1

p −�j+ 1
2 �lal−1

q �>K

1

1 + ��k+ 1
2�lal−1

p − �j+ 1
2�lal−1

q �n

× 1

1 + max�k+ 1
2 �K�n

)
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and

II ≤
+∞∑
p=−∞

�p−q�>K

(
En

1 + �p− q�n+2nµ

1
1 + max��p��K�n

×
+∞∑
k=0

1

1 + ��k+ 1
2�lal−1

p − �j+ 1
2�lal−1

q �n
1

1 + max�k+ 1
2 �K�n

)
�

To compute an upper bound for I, observe that

+∞∑
k=0

��k+ 1
2 �lal−1

p −�j+ 1
2 �lal−1

q �>K

1

1 + ��k+ 1
2�lal−1

p − �j+ 1
2�lal−1

q �n
1

1 + max�k+ 1
2 �K�n

≤
+∞∑
k=0

��k+ 1
2 �−�j+ 1

2 �lpl−1
q �>Klpla−1

1

1 + ��k+ 1
2� − �j+ 1

2�lpl−1
q �n

× 1

1 + max�k+ 1
2 �Klpla

−1�n

Applying (71) gives

+∞∑
k=0

��k+ 1
2 �lal−1

p −�j+ 1
2 �lal−1

q �>K

1

1 + ��k+ 1
2�lal−1

p − �j+ 1
2�lal−1

q �n
1

1 + max�k+ 1
2 �K�n

≤ Gn

1 + �Klpla−1�n−1

1

1 + max��j+ 1
2�lpl−1

q �Klpla
−1�n �

We thus derive that

I ≤
+∞∑
p=−∞

�p−q�≤K

En
1 + �p− q�n+2nµ

1
1 + max��p��K�n

Gn

1 + �Klpla−1�n−1

× 1

1 + max��j+ 1
2�lpl−1

q �Klpla
−1�n �

In Definition 1, condition (27) guarantees the existence of A > 0 such that
�p−q�2nµ ≥ la2nlb

−2nA−2n. Since lpla
−1 ≤ 1 and lbla

−1lpl
−1
q ≤ 1, we derive the

existence of Rn such that

I ≤
+∞∑
p=−∞

�p−q�≤K

Rn
1 + �p− q�n

1
1 + max��p��K�n

1
1 +Kn−1

1

1 + max�j+ 1
2 �K�n �
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We now use (70) to evaluate the sum over p and prove that there exists D1
n

such that

I ≤ D1
n

1 + max�K� �q��n
1

1 +Kn−1

1

1 + max�K�j+ 1
2�n

= D1
n

1 +Kn−1
ŵq� j�

With a similar approach, the reader can also verify that there exists D2
n such

that

II ≤ D2
n

1 +Kn−1

1
1 + max�K� �q��n

1

1 + max�K�j+ 1
2�n

= D2
n

1 +Kn−1
ŵq� j�

Inserting these two upper bounds in (72) completes the proof of (68). ✷

APPENDIX B

Proof of Theorem 2.3. Theorem 2.3 is proved by constructing a local
cosine basis in which the covariance operator T has matrix coefficients that
satisfy the off-diagonal decay condition (28) of Definition 1. The first part of
the proof specifies this local cosine basis and proves that the window lengths
satisfy the slow variation condition (27) of Definition 1. The second part proves
(28).

Each window of a local cosine basis covers an interval ap� ap+1�. The size
lp of any such interval is set to l�ap� or l�ap+1�, which is the scale of variation
of the symbol �1�t�ω� of T in this interval. We choose a0 = 0 and, if p > 0,

ap+1 = ap + l�ap��

whereas if p < 0,

ap = ap+1 − l�ap+1��

The rising and decaying intervals are stretched to their maximum,

ηp = min�lp� lp−1�
2

�(74)

The rising and decaying profiles are specified by dilating a C∞ function β�t�
such that

β�t� =
{

0� if t < −1�
1� if t > 1�

with

β2�t� + β2�−t� = 1�
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The window gp�t� is defined by

gp�t� =




β

(
t− ap
ηp

)
� if t < ap + ηp�

1� if ap + ηp ≤ t < ap+1 − ηp+1�

β

(
ap+1 − t
ηp+1

)
� if t > ap+1 − ηp+1�

(75)

The following lemma proves that the length lp satisfies the slow variation
condition (27) in Definition 1.

Lemma B.1. There exists A > 0 such that for any p �= q,
max�lp� lq�
min�lp� lq�

≤ A�p− q�µ�(76)

where µ is related to the constant α < 1
2 in hypothesis (35) of the theorem by

µ = α

1 − α < 1�(77)

Proof. To prove (76), we verify that there exists C > 0 such that for any
k ∈ N,

max�lp� lp+k�
min�lp� lp+k�

≤ C�k+ 1�µ�(78)

which implies (76) for A = C2µ. We suppose without loss of generality that
lp+k ≥ lp. Property (78) is proved by induction on k.

For k = 0, (78) is clearly valid for C ≥ 1. Suppose that (78) is true for all
n < k, with k > 0. We want to prove that

lk+p ≤ Clp�k+ 1�µ�(79)

We only consider the case where p ≥ 0, the other one being identical. The
window length is then specified by lk+p = l�ak+p� and hence

lk+p = l
(
ap +

k−1∑
j=0

lp+j

)
�

Hypothesis (35) of the theorem implies that

lk+p ≤ l�ap� +
( k−1∑
j=0

lp+j

)α
�
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Applying the induction hypothesis for j < k gives

lk+p ≤ lp +
(
Clp

k−1∑
j=0

�j+ 1�µ
)α

≤ lp +Cαlαp
�k+ 1��µ+1�α

�µ+ 1�α �

The hypothesis (36) also supposes that

inf
t∈R

l�t� = η > 0�

so lp = l�ap� ≥ η. We thus obtain

lk+p ≤ lp
(

1 + ηα−1Cα

�µ+ 1�α�k+ 1��µ+1�α
)
�

The constant µ in (77) satisfies �µ + 1�α = µ. We choose the constant C big
enough so that

1 + ηα−1Cα

�µ+ 1�α ≤ C�

which verifies the induction hypothesis (79). This completes the proof of (78).
In this second part of the proof of Theorem 2.3, we verify that the ma-

trix coefficients of the operator T satisfy the off-diagonal decay imposed by
Definition 1 for locally stationary processes

�
Tφp�k�φq�j�� ≤
Qn

�1 + �p− q�n��1 + �max�lp� lq��ξp�k − ξq�j��n�
�(80)

Instead of working with cosine modulated windows, we introduce

ψp�k�t� =
1√
lp

gp�t� exp�−iξp�kt��(81)

The local cosine basis vectors can be written

φp�k�t� =
exp�iθp�k�√

2
ψp�k�t� +

exp�−iθp�k�√
2

ψp�−k�t��(82)

with θp�k = ξp�kap. If we can prove that for any n ≥ 2 there exists Q1
n such

that for all �p�k� q� j� ∈ Z
4,

�
Tψp�k�ψq�j�� ≤
Q1
n

�1 + �p− q�n��1 + �max�lp� lq��ξp�k − ξq�j��n�
�(83)

we then easily derive (80) by inserting (82) in (83). We now concentrate on
proving (83).
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Let us recall that

Tf�t� = 1
2π

∫ +∞

−∞
�1�t�ω�f̂�ω�eiωt dω�

Hence,

�
Tψp�k�ψq�j�� =
1

2π

∣∣∣∣
∫ ∫ +∞

−∞
ψ̂p�k�ω��1�t�ω�eiωtψ∗

q� j�t�dtdω
∣∣∣∣�(84)

Let hp�t� = gp�t+ap� be the window whose support is translated back in the
neighborhood of t = 0. Inserting (81) in (84) gives

�
Tψp�k�ψq�j�� =
1

2π
√
lplq

∣∣∣∣
∫ ∫ +∞

−∞
ĥp�ω+ ξp�k� exp�−iωap��1�t�ω�

× exp�iωt� exp�iξq� jt�hq�t− aq�dtdω
∣∣∣∣�

(85)

The change of variables ω′ = ω+ ξp�k and t′ = t− aq yields

�
Tψp�k�ψq�j�� =
1

2π
√
lplq

∣∣∣∣
∫ ∫ +∞

−∞
ĥp�ω′�hq�t′��1�t′ + aq�ω′ − ξp�k�

× exp�iω′t′� exp�iω′�aq − ap��

× exp�−it′�ξp�k − ξq�j��dtdω
∣∣∣∣�

(86)

Let us define

:p�q�k�j�t�ω� = ĥp�ω�hq�t�eitω�1�t+ aq�ω− ξp�k��
The upper bound (83) is obtained with an integration by parts in (86) which
separates :p�q�k�j�t�ω� and the remaining complex exponentials:

�
Tψp�k�ψq�j�� =
1

2π
√
lplq

∣∣∣∣
∫ ∫ +∞

−∞
∂nt ∂

m
ω :p�q�k�j�t�ω�

× exp�iω�aq − ap��
�ap − aq�m

exp�it′�ξp�k − ξq�j��
�ξp�k − ξq�j�n

dtdω

∣∣∣∣
≤ 1

2π
√
lplq

1
�ap − aq�m�ξp�k − ξq�j�n

×
∫ ∫ +∞

−∞
�∂nt ∂mω :p�q�k�j�t�ω��dtdω�

(87)

Let us denote

la = max�lp� lq� and lb = min�lp� lq��
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We prove later in Lemma B.2 that there existsAn�m such that for all p�q� k� j,∫ ∫ +∞

−∞

∣∣∂nt ∂mω :p�q�k�j�t�ω�∣∣dtdω ≤ An�mlamlb−�n−1��(88)

Since lb ≤ lp� lq ≤ la, inserting (88) in (87) shows that

�
Tψp�k�ψq�j�� ≤
An�m

2π

√
la
lb

1
��ap − aq�/la�m

1
�lb�ξp�k − ξq�j��n

(89)

and hence

�
Tψp�k�ψq�j�� ≤
An�m

2π
la
n+1/2

lb
n+1/2

1
��ap − aq�/la�m

1
�la�ξp�k − ξq�j��n

�(90)

To finish the upper bound computation, we show that there exists C > 0
such that

�ap − aq�
la

≥ C�q− p�1−µ�(91)

If p < q, then

�aq − ap�
la

=
q−p−1∑
k=0

lp+k
la
�

Whether la = lp or la = lq, we derive from (76) that

�aq − ap�
la

≥ 1 +
q−p−1∑
k=1

A−1k−µ ≥ 1 + �q− p�1−µ
A�1 − µ� �

which proves (91).
Inserting (91) in (90) gives

�
Tψp�k�ψq�j�� ≤
An�m
2πCm

la
n+1/2

lb
n+1/2

1
�p− q�m�1−µ�

1∣∣la�ξp�k − ξq�j�∣∣n �
Property (76) shows that

la
lb

≤ A�p− q�µ�

and hence

�
Tψp�k�ψq�j�� ≤
An�mA

n+1/2

2πCm
1

�p− q�m�1−µ�−�n+1/2�µ
1

�la�ξp�k − ξq�j��n
�

If m is large enough so that

m�1 − µ� − (
n+ 1

2

)
µ ≥ n

then

�
Tψp�k�ψq�j�� ≤
An�mA

n+1/2

2πCm
1

�p− q�n
1

�la�ξp�k − ξq�j��n
�
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By integrating (86) directly, one can also prove that there exists B > 0 such
that

�
Tψp�k�ψp�k�� ≤ B�
We thus derive that for any n ≥ 0 there exists Q1

n such that

�
Tψp�k�ψq�j�� ≤
Q1
n

1 + �p− q�n
1

1 + �la�ξp�k − ξq�j��n
�

The next lemma completes the theorem proof by verifying (88).

Lemma B.2. There exists An�m such that for all p�q� k� j,∫ ∫ +∞

−∞

∣∣∂nt ∂mω :p�q�k�j�t�ω�∣∣dtdω ≤ An�mlamlb−�n−1��(92)

Proof. By definition,

:p�q�k�j�t�ω� = ĥp�ω�hq�t�eitω�1�t+ aq�ω− ξp�k��
We expand ∂nt ∂mω :p�q�k�j�t�ω� into a sum of partial derivatives of ĥp�ω�hq�t�eitω
and of �1�t+aq�ω+ξp�k�, and we prove that for any integers c ≥ 0 and d ≥ 0
there exists Dc�d such that∫ ∫ +∞

−∞

∣∣∂ct∂dω�1�t+ aq�ω+ ξp�k�
∣∣∣∣∂m−c
t ∂n−dω ĥp�ω�hq�t�eitω�

∣∣dtdω
≤ Dc�dlamlb−�n−1��

(93)

Property (34) guarantees that for any integers c ≥ 0 and d ≥ 0,∣∣∂ct∂dω�1�t+ aq�ω+ ξp�k�
∣∣ ≤ Bc�d l�t+ aq�d−c�

Since ηq = �min�lq� lq−1��/2, the support of hq�t� is included in −lq/2�3lq/2�.
Hypothesis (35) of the theorem proves that over this support,

�l�t+ aq� − l�aq�� ≤ A�t�α ≤ A3α

2α
lαq�

with α < 1
2 . Since lq = l�aq� ≥ inf t∈R l�t� = η,

l�t+ aq� ≤ lq
(

1 +Alα−1
q

3α

2α

)
≤ lq

(
1 +Aηα−1 3α

2α

)
�

so there exists Cc�d such that∣∣∂ct∂dω�1�t+ aq�ω+ ξp�k�
∣∣ ≤ Cc�d ld−cq �(94)

This proves that∫ ∫ +∞

−∞

∣∣∂ct∂dω�1�t+ aq�ω+ ξp�k�
∣∣ ∣∣∂n−ct ∂m−d

ω ĥp�ω�hq�t�eitω�
∣∣dtdω

≤ Cc�d ld−cq

∫ ∫ +∞

−∞

∣∣∂n−ct ∂m−d
ω ĥp�ω�hq�t�eitω�

∣∣dtdω�
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To derive (93), we verify that for any j and l there exists Dj�l such that∫ ∫ +∞

−∞

∣∣∂jt ∂lωĥp�ω�hq�t�eitω�∣∣dtdω ≤ Dj�l lallb−�j−1��

By expanding the partial derivatives ∂jt ∂lωĥp�ω�hq�t�eitω�, we derive this last
property from the next lemma. The details of this verification are left to the
reader.

Lemma B.3. For all k ≥ 0 and m ≥ 0, there exist a constant Em�k such that∫ +∞

−∞
�t�k�∂mt hp�t��dt ≤ Em�k lk−m+1

p(95)

and a constant Fm�k such that∫ +∞

−∞
�ω�k∣∣∂mω ĥp�ω�∣∣dω ≤ Fm�k lm−k

p �(96)

Proof. Let us denote hsp�t� = hp�lpt�. Since the support of hp�t� is in-
cluded in −lp/2�3lp/2�, the support of hsp�t� is included in − 1

2 �
3
2 �. With the

change of variable t′ = t/lp we obtain

∫ +∞

−∞

∣∣∣∣ tlp
∣∣∣∣
k∣∣∂mt hp�t�∣∣dtlp =

∫ 3/2

−1/2
�t′�k∣∣∂mt hp�lpt′�∣∣dt′

= l−mp
∫ 3/2

−1/2
�t�k∣∣∂mt hsp�t�∣∣dt�

(97)

Since hsp�t� = g�lp�t + ap��, we derive from the expression (75) that for any
m ≥ 0, ∣∣∂mt hsp�t�∣∣ ≤ lmpmin�ηp�ηp+1�−m sup

t∈−1�1�

∣∣∂mt β�t�∣∣�(98)

We proved in (76) that

lp

min�lp� lp−1�
≤ A and

lp

min�lp� lp+1�
≤ A�

so

min�ηp�ηp+1� =
min�lp−1� lp� lp+1�

2
≥ lp

2A
�

We thus derive from (98) that there exists a constant Bm independent from
lp such that ∣∣∂mt hsp�t�∣∣ ≤ Bm�(99)

Coming back to (97), we obtain∫ +∞

−∞

∣∣∣∣ tlp
∣∣∣∣
k∣∣∂mt hp�t�∣∣dtlp ≤ l−mp Bm

∫ 3/2

−1/2
�t�k dt = l−mp Em�k�(100)

which proves (95).
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To prove the second equation (96), observe that the Fourier transform of
�it�k∂mt hsp�t� is �−iω�m∂kωĥsp�ω�. Since the modulus of the Fourier transform
is bounded by the L1�R� norm of the function, we see from (99) that

�ω�m∣∣∂kωĥsp�ω�∣∣ ≤ ∫ +∞

−∞
�t�k∣∣∂mt hsp�t�∣∣dt = ∫ 3/2

−1/2
�t�k∣∣∂mt hsp�t�∣∣dt ≤ Em�k�

The same property applied to m′ =m+ 2 proves that

�ω�m∣∣∂kωĥsp�ω�∣∣ ≤ min
(
Em+2� k

ω2
�Em�k

)
�

We derive the existence of Fm�k such that∫ +∞

−∞
�ω�m∣∣∂kωĥsp�ω�∣∣dω ≤ Fm�k�(101)

Since hsp�t� = hp�lpt�

�ĥsp�ω�� =
1
lp

∣∣∣∣ĥp
(
ω

lp

)∣∣∣∣�
We finally prove (96) with the change of variable ω′ = ω/lp in (101). ✷

APPENDIX C

Proof of Theorem 2.4. To prove that the process X�t� is locally station-
ary, we must construct a local cosine basis in which the decomposition coeffi-
cients of T = LLt satisfy the off-diagonal decay condition (28) of Definition 1.

The proof of Theorem 2.3 does not use explicitly the fact that the covari-
ance operator is symmetric. Since the symbol A�t�ω� of L satisfies the same
hypothesis as the symbol �1�t�ω� of T, Appendix B gives a procedure to con-
struct a local cosine basis �φp�k� whose windows lengths satisfy condition (27)
of Definition 1, and such that for any n ≥ 2 there exist Qn with

�bp�k�q�j� = �
Lφp�k�φq�j��

≤ Qn
1 + �p− q�n

1
1 + �max�lp� lq��ξp�k − ξq�j��n

�
(102)

The matrix coefficients of T = LLT are


Tφp�k�φq�j� = ap�k�q�j =
+∞∑
r=−∞

+∞∑
v=0

bp�k�r�vbq�j�r�v�(103)

Let us prove that these coefficients satisfy a decay property similar to (102).
Since ξp�k = π�k+ 1

2�l−1
p , inserting (102) in (103) gives

�ap�k�q�j� ≤ �Qn�2
+∞∑
r=−∞

1
1 + �p− r�n

1
1 + �q− r�n × I(104)
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with

I =
+∞∑
v=0

1

1 + �max�lp� lr���k+ 1
2�l−1
p − �v+ 1

2�l−1
r ��n

× 1

1 + �max�lq� lr���j+ 1
2�l−1
q − �v+ 1

2�l−1
r ��n

≤
+∞∑
v=0

1

1 + ��k+ 1
2�lrl−1

p − �v+ 1
2��n

1

1 + ��j+ 1
2�lrl−1

q − �v+ 1
2��n
�

With the change of variable v′ = v+ 1
2 − �j+ 1

2�lrl−1
q by setting K = 0 in (70)

we derive that

I ≤ Hn

1 + ��k+ 1
2�lrl−1

p − �j+ 1
2�lrl−1

q �n �(105)

We also proved in Lemma B.1 that the properties of l�t� imply the existence
of 0 < µ < 1 such that

max�lp� lq�
min�lp� lq�

≤ A�p− q�µ�

Hence

1
�p− r�µn

1
�q− r�µn ≤ A2n

�max�lp� lr�/min�lp� lr�max�lq� lr�/min�lq� lr��n
�

We can thus derive the existence of Dn such that

�ap�k�q�j� ≤ Dn
+∞∑
r=−∞

1
1 + �p− r��1−µ�n

1
1 + �q− r��1−µ�n

× 1

1 + �lq�p�r��k+ 1
2�l−1
p − �j+ 1

2�l−1
q ��n

with

lq�p� r =
max�lp� lr�
min�lp� lr�

max�lq� lr�
min�lq� lr�

lr ≥ max�lp� lq��

Since

+∞∑
r=−∞

1
1 + �p− r�m

1
1 + �q− r�m ≤ Hm

1 + �q− p�m �

for m = �1 − µ�n we derive the existence of Cn such that

�ap�k�q�j� ≤ Cn
1

1 + �q− p��1−µ�n
1

1 + �max�lp� lq���k+ 1
2�l−1
p − �j+ 1

2�l−1
q ��n �
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Since this is valid for any n ≥ 2, it implies that for any n ≥ 2 there exists Bn
such that

�ap�k�q�j� ≤
Bn

1 + �p− q�n
1

1 + �max�lp� lq��ξp�k − ξq�j��n
�

This proves that the operator T satisfies all the conditions of the local station-
arity Definition 1. ✷
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Sci. Paris Sér. I 259–261.
[5] Coifman, R. and Wickerhauser, V. (1992). Entropy-based algorithms for best basis selec-

tion. IEEE Trans. Inform. Theory 38 713–718.
[6] Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Ann. Statist.

25 1–37.
[7] Donoho, D., Mallat, S. and von Sachs, R. (1996). Estimating covariances of locally sta-

tionary processes: consistency of best basis methods. In Proceedings of IEEE Time
Frequence and Time-Scale Symposium, Paris, July 1996. IEEE, New York.

[8] Malvar, H. S. (1989). The LOT: transform coding without block effects. IEEE Trans. Acoust.
Speech Signal Process. 37 553–559.

[9] Martin, W. and Flandrin, P. (1985). Wigner-Ville spectral analysis of non-stationary pro-
cesses. IEEE Trans. Acoust. Speech Signal Process. 33 1461–1470.

[10] Meyer, Y. (1993). Wavelets and operators. Proceedings of Symposia in Applied Mathematics
47 35–57.

[11] Meyer, Y. (1993). Wavelets—algorithms and applications. SIAM.
[12] Neumann, M. and von Sachs, R. (1997). Wavelet thresholding in anisotropic function classes

and application to adaptive estimation of evolutionary spectra. Ann. Statist. 25 38–76.
[13] Papanicolaou, G. and Weinryb, S. (1994). A functional limit theorem for waves reflected

by a random medium. Appl. Math. Optim. 30 307–334.
[14] Priestley, M. B. (1965). Design relations for non-stationary processes. J. Roy. Statist. Soc.

Ser. B 28 228–240.
[15] Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes. J. Roy. Statist.

Soc. Ser. B 27 204–237.
[16] Priestley, M. B. (1995). Wavelets and time-dependent spectral analysis. Technical Report

311, Dept. Statistics, Stanford Univ.
[17] Riedel, K. S. (1993). Optimal data-based kernel estimation of evolutionary spectra. IEEE

Trans. Signal Proc. 41 2439–2447.
[18] Sayeed, A. M. and Jones, D. L. (1995). Optimal kernels for nonstationary spectral estima-

tion. IEEE Transactions on Signal Processing 43 478–491.
[19] von Sachs, R. and Schneider, K. (1993). Wavelet smoothing of evolutionary spectra by

nonlinear thresholding. Journal of Appl. and Comput. Harmonic Analysis 268–282.

S. Mallat
Ecole Polytechnique
Departement de Mathématiques
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