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Abstract: In this paper we show the applicability of the Dual
Heuristic Programming (DHP) method of Approximate
Dynamic Programming to parameter tuning of a fuzzy control
system. DHP and related techniques have been developed in the
neurocontrol context but can be equally productive when used
with fuzzy controllers or neuro-fuzzy hybrids. We demonstrate
this technique on a highly nonlinear 2nd order plant proposed by
Sanner and Slotine. Throughout our example application, we
take advantage of the TS model framework to initialize our
tunable parameters with reasonable problem specific values, a
practice difficult to perform when applying DHP to
neurocontrol.

I. INTRODUCTION

This paper demonstrates the use of adaptive critic based
approximate dynamic programming for tuning a fuzzy
controller. A variety of Adaptive Critic Design techniques for
training neuro-controllers have appeared in the literature
recently, falling into model-based methods such as Dual
Heuristic Programming (DHP), and non-model-based
methods such as Action Dependent Heuristic Dynamic
Programming (ADHDP) or Q-learning [1][5][6][10]
[11][12][15][16][19][20].

Previous applications of Adaptive Critic based
reinforcement learning to the tuning of fuzzy controllers have
relied on non-model based temporal differencing schemes
[3][4][7][8]. Equivalent neural network based techniques
have been shown to be generally less effective than model
based techniques such as DHP [10][11][14].

Model based methods utilize the Jacobian of the coupled
plant-controller system to train both the controller and critic
networks. These derivatives can be found explicitly from an
analytic model, or implicitly, for example by
backpropagation through a neural network plant model. In
[17] we showed that such derivative information could be
explicitly estimated in the form of a Takagi-Sugeno (TS)
fuzzy model of the plant [18]. Based on our experiences
detailed in [17] we now suggest that the overall approximate
dynamic programming technique can easily be adapted to the
tuning of fuzzy controllers.

As has been observed in previous work with these
techniques [5], there are significant advantages to starting the
controller training (tuning) process with a set of
computational structures (neural networks, fuzzy rule sets,
etc.) that are well matched to the task at hand. Structures that
are too small will be unable to satisfactorily learn the desired
task, while overly large structures tend to require longer
training times and tend to exhibit poor generalization.
Problem specific knowledge is required to match
computational structures to specific tasks. Doing this
"prestructuring" with the neural network architectures

commonly used in this arena (feedforward or recurrent
networks with sigmoidal activation functions) is a rather
opaque task. Using these very general reinforcement learning
techniques with controllers set in the fuzzy systems context
offers a way around this difficulty in many application
contexts.

The first section provides a brief overview of adaptive
critic based approximate dynamic programming and then
delves into the details of the specific technique we
demonstrate, Dual Heuristic Programming (DHP). In the
second section we introduce a nonlinear plant proposed by
Sanner and Slotine [14] to illustrate this method. In the
following section we describe controller and critic
architectures. We propose using a fuzzy TS model as our
adaptive critic function approximator to show that DHP can
be implemented without resort to neural networks. It should
be obvious to all that in practical applications, it may be
desirable to mix neural network critics with fuzzy controllers.
The next section introduces a TS model of the plant for use in
the tuning process. We describe the specifics of its estimation
and its use in DHP. The last section before the conclusion
gives the details of the on-line tuning process and our results
on the benchmark problem.

II. APPROXIMATE DYNAMIC PROGRAMMING

Dynamic Programming is a general approach for sequential
optimization applicable under very broad conditions.
Fundamental to this approach is Bellman's Principle of
Optimality [2]: that an optimal trajectory has the property that
no matter how an intermediate point is reached, the rest of the
trajectory must coincide with an optimal trajectory as
calculated with the intermediate point as the starting point.
This principle is applied by formulating a "primary" utility
function U(t) that embodies a control objective for a
particular context in one or more measurable variables. A
secondary utility function is then formed
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which embodies the desired control objective through time.
This is Bellman's equation, and the point of Dynamic
Programming is to select the sequence of actions (controls)
that maximize or minimize J(t). Unfortunately, this
optimization is not computationally tractable for most real
world problems, thus we are forced to consider potentially
tractable approximation methods. A useful identity based on
the above equation is the Bellman Recursion
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A promising collection of such approximation techniques
based on estimating the function J(t) using this identity with
neural networks as function approximators was proposed by
Werbos [19][20]. These networks are often called Adaptive
Critics, though this term can be applied more generally to any
network that provides learning reinforcement to another
entity [21]. As a practical matter, any computational structure
capable of acting as a universal function approximator can be
used in this role (i.e. neural networks, fuzzy rule structures,
etc.). The gradient of the estimated J(t) can then be used to
train or tune a controller. Since the gradient is the important
aspect for controller training, some techniques use critics that
estimate the derivatives of J(t) instead of the function value
itself.

The standard classification of these adaptive critic methods
is based on the critic's inputs and outputs. In Heuristic
Dynamic Programming (HDP) the critic’s outputs are
estimates of the value of J(t). In Dual Heuristic Programming
(DHP) the critic’s outputs are estimates of the derivatives of
J(t). In the action dependent versions of HDP and DHP, the
critic’s inputs are augmented with the controller’s output
(action), hence ADHDP and ADDHP.

These approaches to approximate dynamic programming
utilize at least two distinct training loops, a controller training
loop and a critic training loop [5][6][16]. In the neurocontrol
context, the controller training loop adapts a neural network
to be an approximately optimal controller. Specifically, the
controller is trained to optimize the secondary utility function
J(t) for the problem context. Since the controller outputs
control actions u(t), a gradient based learning algorithm
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training. The critic is trained based on the consistency of its
estimates through time judged using the Bellman Recursion.
The exact implicit relationship is a function of the type of
critic used and the structure of the primary utility function.

Our focus in this paper is on the DHP method, where the
critic estimates the derivatives of J(t) with respect to the
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so the identity used for this critic's training is (in tensor
notation)
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To evaluate the right hand side of this equation we need a
model of the system dynamics that includes all the terms
from the Jacobian matrix of the coupled plant-controller

system, e.g. 
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Controller training then utilizes the chain rule and the
system model to translate critic outputs into estimates of
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The entire process can be characterized as a simultaneous
optimization problem; gradient based optimization of the
critic function approximator together with gradient based
optimization of controller parameters based on the J(t)
estimates obtained from the critic. Different strategies have
been utilized to get both these optimizations to converge. A
number of authors propose alternating between optimization
steps for the critic approximator and optimization of the
controller [10][11][12][15]. In past work we have noted that
taking simultaneous steps in both optimization processes does
not appear to introduce significant instabilities into the dual
convergence problem [5][6]. Since the simultaneous stepping
approach is about twice as fast as the alternating approach we
recommend its use.

As these techniques rely on gradient based optimization of
J(t), they inherently suffer from the problem of
(unsatisfactory) local optima. Global optimization of J(t) in
general is subject to the "No Free Lunch Theorem". What
approximate dynamic programming techniques offer is a
tractable method for local hill climbing on the J(t) landscape
of controller parameter space. Initialized at a random point in
parameter space, these methods may be trapped by a local
optimum at an unsatisfactory control law. We can attempt to
avoid this case by applying whatever problem specific
knowledge is available a priori to the choice of initial
controller parameters, in the hope of being near a
satisfactorily high hill (or deep valley).

III. A NONLINEAR PLANT

To illustrate this technique we use a nonlinear, time-
invariant 2nd order system proposed by Sanner and Slotine
[14], given as
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Sanner and Slotine used this plant to illustrate a direct
adaptive tracking control architecture based on a large
identification network of Gaussian radial basis functions
(RBFs). They demonstrated very precise tracking of a
bandwidth limited small amplitude signal using several
thousand elements in their network. More recently, Liu et al.
[9] demonstrated an adaptive control scheme based on an
RBF network using a variable grid method. They showed that
their method could meet a somewhat less stringent error
bound for tracking a sinusoidal target using several orders of
magnitude fewer elements (~ 70). For the purpose of
demonstrating DHP we adopt their basic problem statement
and initialize the system at 0)0(,0)0( == yy &  with a desired
trajectory given as

).sin()(ˆ tty =
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The system is sampled at 20 Hz and the numerical simulation
is performed with a fixed step size 4th order Runge-Kutta
algorithm.

IV. CONTROLLER AND CRITIC STRUCTURES

To keep this demonstration of using DHP to tune fuzzy
controllers relatively simple, we propose a naïve Takagi-
Sugeno (TS) controller for the above plant. A more
sophisticated implementation would doubtlessly yield finer
control, but our simple controller is adequate for our
demonstration. The DHP method turns out to be quite capable
of fine tuning our naïve structure to increase control quality.
The controller consists of 16 rules of the form
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where the time indices indicate the sampling interval, with
Gaussian membership functions
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These rules are uniformly spaced over the region ([-1.2,
1.2], [-1.2, 1.2]) so as to completely cover the anticipated
operating and training range of the controller. Note that this is
not a particularly advantageous distribution of computational
resources, e.g. see [9]. While we could apply the DHP
method to tuning all controller parameters, for clarity we
limit the tuning process to the rule consequent parameters
αi, βi, ωi. Thus we have a fixed grid of rules imposed upon
the plant's state space.

We construct a TS model based on this grid, to
approximate the DHP critic function. The DHP critic
mapping in this case takes )(ty , )(ty& , and ( ))(ˆ)( tyty −  as

inputs and produces 
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therefore composed of 16 rules with consequents
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and membership functions identical to those used for the
controller. Once again we choose to only tune the consequent
parameters of these rules.

For our primary utility function we use

,))(ˆ)(()( 2tytytU −=

which we seek to minimize over time. The choice of an
appropriate discount factor for forming J(t) is much less
critical in DHP, where J(t) is not explicitly estimated, as it is
in HDP where explicit estimates of J(t) are made. For this
example, we choose a discount factor of 0.9. The final
requirement for implementing DHP is to have a differentiable
model of the plant from which to obtain partial derivatives. In
the present example we have an analytic expression for the
plant and hence could evaluate the derivatives explicitly.
More realistically, we have to estimate a plant model.

V. CONSTRUCTING A MODEL

It is relatively straight forward to construct an appropriate
model for this DHP training context. We use a TS model
containing 16 rules with consequents of the form

),()()()( ,1,1,1 tutytytty iii ξηζ ++=∆+ &
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and membership functions identical to those of the 16
controller and critic rules. Training is based on minimizing
squared one-step prediction error using a backpropagation of
error approach. The model was trained for five passes
through a set of 10,000 randomly sampled input/output pairs.
We can use our a priori expectations of the consequent
coefficient's values to assign preliminary values before
training begins. Since the plant is a 2nd order system, we can
assert that

,,1 ,1,1 tii ∆≈≈ ηζ  and 1,2 ≈iη .
The rest of the coefficients are initialized to zero.

After training, we take advantage of this model structure by
noting that the coefficients in the output model of each rule
correspond to local approximations of the partial derivatives
we need to obtain during DHP tuning. For example, we can
obtain
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Our previous work with such models showed that as long
as the approximate derivative values obtained in the above
manner had the correct sign (positive or negative) most of the
time, the model was adequate for use in DHP [16] [17].

VI. THE TUNING SEQUENCE AND RESULTS

Prior to tuning, all the controller consequent parameters were
prestructured using the local models embodied in the above
model. For each local model we write the approximate local
control law
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which provides us with the initial values for the controller
consequent parameters
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All critic consequent parameters were initially set to zero.
The plant simulation was then initialized and run for 50
seconds with the controller providing u(t), and both controller
and critic updates taking place each sampling period.
Training commenced in this fashion with the plant
reinitialized every 50 seconds. The specific simulation/update
sequence used was:

1) calculate control (t);
2) simulate one sampling interval (t);
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3) evaluate critic (at new state = t+1);
4) calculate target critic value (for old state = t);
5) calculate controller error signal (t);
6) update controller (t);
7) evaluate critic (at old state = t);
8) update critic using difference between actual and target (t);

The controller update equations are of the form
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where lc is the learning coefficient, and
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The critic update equations are of the form
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The average RMS error of the controller during the tuning
process is shown in Figure 1. Average tracking error declined
by 60%, from 0.00208 to 0.00084.  Maximum pre-tuning

overshoot was 0.00548 compared to 0.00228 after tuning (a
58% decline), while maximum undershoot decreased from
0.00661 to 0.00253 (a 62% decline). A comparison of the pre
and post tuning tracking error over one period of the target
trajectory is shown in Figure 2. While the initial controller
performance could be deemed satisfactory in some contexts,
DHP tuning improves controller performance by 60%.

Controller Performance
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Fig. 1. Controller Performance Curve

VII. CONCLUSION

We have demonstrated that the DHP methodology (a
model-based adaptive critic method) can successfully tune a
fuzzy Controller using a fuzzy plant model. While this
approximate dynamic programming technique has previously
been used for training neurocontrollers, embedding DHP in a
fuzzy framework more easily allows a priori knowledge to be
used. In particular, use of first order TS models offers a direct
approach to representing the characteristics of the plant
relevant to the needs of model based approximate dynamic
programming. The TS models used also permit a simple
approach to prestructuring the controller.

Controller Error
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Fig. 2. Controller Tracking Error
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Our belief is that DHP and related techniques are ideally
suited for neuro-fuzzy hybrid implementations. Fuzzy
controllers and models more easily allow the incorporation of
a priori knowledge, while neural networks may be more
natural as function approximators in the critic role. While the
above demonstration was limited to tuning consequent
parameters, DHP can also be used for training membership
parameters if the structure of the fuzzy rule base is suitable.
Thus DHP and related techniques should be helpful for state
space segmentation and partitioning. Another feature of
adaptive critic based approximate dynamic programming
techniques is the potential to use the critic function as a
guarantor of system stability, e.g. [10][13].

It is also important to notice the applicability of these
techniques to adaptive control problems. Our current example
illustrated DHP for tuning a controller for a time invariant
plant. For non-stationary plants, the controller, critic and
model can all be continuously update on-line to track changes
in the plant's dynamics [5].
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