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ABSTRACT Transfer learning based models have been employed for intelligent fault diagnosis under

different working conditions. However, an actual and important problem is neglected in existing intelligent

fault diagnosis methods, which is that target domain mechanical fault datasets are always highly imbalanced

with abundant normal condition mechanical samples but a paucity of samples from rare fault conditions.

To solve this actual problem, this paper proposed a novel adaptive cross-domain feature extraction (ACFE)

method which can automatically extract similar features between different feature spaces. ACFE wants

to obtain more information for determining the category of each training target sample, so it avoids the

distribution adaptation and is suitable for the imbalanced problem. Specifically, high dimensional distance

through kernel method is employed for ensuring the strong identify ability first. Then, for automatically

extracting cross-domain feature, we calculate the posterior probability of category of each target domain

training sample based on high dimensional distance, and employ entropy loss to capture the cross-domain

information. Besides, we propose the guide loss to avoid the features of a category overall falling into false

category caused by imbalanced dataset. Based on ACFE, the intelligent fault diagnosis method for dealing

with the imbalanced target dataset is described. To verify the effectiveness, we carry out two specially

designed experiments, and the results shows that, comparing with related method, the proposed method

achieve a superior performance.

INDEX TERMS Transfer learning, imbalanced dataset, information entropy, intelligent fault diagnosis.

I. INTRODUCTION

In modern industries, rotating machinery plays a crucial role

in the fields of aviation, machine tool, automobile and so

on. For the important effect, its operating conditions will

directly influence the performance of the whole mechan-

ical equipment [1], [2]. But unfortunately, it is prone to

failures due to their harsh working environment such as

humidity, high temperature, and variable load, resulting in

a catastrophic failure of the rotating machinery [3], [4].

Meanwhile, rotating machinery in modern industry becomes

The associate editor coordinating the review of this manuscript and

approving it for publication was Youqing Wang .

more sophisticated than ever before [5]. So in order to com-

prehensively check the health condition of the machinery,

a large amount of signals are obtained after the long-time

monitoring, which also brings great difficulties to mechanical

fault diagnosis. Therefore, various intelligent algorithms have

been proposed for fault diagnosis, such as Artificial Neural

Networks (ANN) [6], [7], Autoencoders [8], [9], Restricted

Boltzmann Machine (RBM) [10], Convolutional Neural Net-

works (CNN) [11], [12], Sparse Filtering [13], [14] and

k-Nearest Neighbor [15].

But, there is a problem which plagues the mentioned

methods. As we all know, intelligent method trained by

training dataset can successfully diagnose the testing dataset.
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It should be noticed that training dataset and testing dataset

are under the same working condition. In the field of machine

learning, this can be regarded as that the training dataset and

target dataset follow the same distribution or belong to the

same domain. But, in practice, the working condition may

change, which lead to the model trained by the original train-

ing dataset cannot diagnose the samples under the new work-

ing condition, i.e., the changing working conditions makes

the distribution different and lead to the training dataset and

testing dataset belong to different domains [16]. To solve this

problem, transfer learning based intelligent fault diagnosis

method have been proposed. Lu et al. [17] combined Autoen-

coder with domain adaptation and proposed Deep neural

network for domain Adaptation in Fault Diagnosis (DAFD),

and verified the proposed method using gearbox datasets

under different working conditions. Wen et al. [18] employed

Sparse Auto-Encoder as the basic framework and add the

domain adaptation loss. The ability to diagnose the bearing

dataset under different loads was verified. An et al. [19]

generalized the deep neural network using multiple kernel

method and improved the accuracy of bearing fault diagnosis

under different working conditions. They both get the satis-

fying testing accuracies under their experiment condition.

But an actual and important problem is neglected in the

above method based on transfer learning. The unlabeled data,

which is under a different working condition from the labeled

training data and is used to train the model, is imbalanced in

basically [20]. Mechanical fault datasets, similar to medical

datasets, genomics and financial datasets [21], are also very

limited since the vast majority of samples are normal samples.

When the machine is employed under another working con-

dition, the samples collected in a relatively short time must

be imbalanced. For data driven based intelligent methods,

how to deal with imbalanced datasets, is also an important

problem, and have drawn some attention [22]. For transfer

learning based methods, to solve the problem of imbalanced

data of target domain is a more meaningful task, because

the condition will lead to change of distribution and further

result in the negative transfer, which troubles the existing

methods.

In this paper, we proposed an adaptive cross-domain fea-

ture extraction (ACFE) method. ACFE has strong cluster-

ing ability. The aim of ACFE is to seek certainty of event

that which category does each target sample belong to. So,

it avoids dealing with skewing distribution adaptation caused

by imbalanced dataset and can automatically find and cap-

ture the similar cross-domain feature. Then we apply it in

intelligent fault diagnosis, and study the advantage of ACFE.

The main contributions of our work can be summarized as

follows.

(1) For guaranteeing the more stable and classable fea-

tures and solving the unboundedness of distance in Euclidean

space, we use the high dimensional distance between vectors

based on kernel method for clustering.

(2) For automatically extracting cross-domain feature,

we calculate the posterior probability of category of each

target domain training sample based on high dimensional

distance and employ entropy loss to capture the information.

(3) The guide loss is proposed to avoid the features of a

category overall falling into false category caused by imbal-

anced dataset

This paper is organized as follows. In Section II, several

theory backgrounds are described. The framework of ACFE

and the intelligent fault diagnosis method are detailed in

Section III. In Section IV, the diagnosis case of bearing

dataset under variable load is studied to test the effectiveness

of ACFE. Section V investigates the diagnosis case under dif-

ferent rotational speeds and loads. Finally, main conclusions

are given in Section VI.

II. PRELIMINARIES

A. TRANSFER LEARNING AND MOTIVATION OF ACFE

For clearly describing ACFE, we first introduce transfer

learning [23], [24]. As we all know, traditional intelligent

method trained by training dataset can successfully diagnose

the testing dataset. It should be noticed that training dataset

and testing dataset are under the same working condition.

However, transfer learning based method can deal with the

problem that the working conditions of training dataset and

testing dataset are different. The requirement of transfer

learning based intelligent fault diagnosis method are labeled

source domain (Ds) dataset and unlabeled target domain

(Dt ) dataset (in this paper, domain represents the working

condition).

Traditionally, transfer learning is realized by distribution

adaptation or called domain adaptation. Because of mechan-

ical imbalanced dataset, distribution adaptation is powerless.

As shown in Figure 1, the three histograms above the line

mean the feature distributions of different categories and the

feature distributions of different categories are different. The

Pie charts mean the proportions of different categories. Under

this condition, the category ratio directly determines the fea-

ture space distribution. So the feature space distributions of

different category ratios (the two histograms below the line)

are distinguishing obviously. In general, source domain sam-

ples are abundant. So we usually select the balanced dataset

for training to avoid the gradient skewing. However, the labels

of target domain samples are unknown. The unknown cat-

egory ratio will lead to skewing feature space distribution.

Therefore, transfer learning based on distribution adaptation

cannot deal with imbalanced dataset.

Above all, it is necessary to develop a new method which

can avoid distribution adaptation for intelligent fault diagno-

sis method under different working condition. For transfer

learning, the important precondition is that source domain

and target domain are related, which means that if the

clustering result of source domain samples is very good,

the feature of target domain sample should be close to the

correct source domain feature. Therefore, the model should

have strong clustering ability and can catch the connection

between source domain and target domain, which is the main

motivation of our ACFE.
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FIGURE 1. The different feature space distribution caused by different
category ratio.

B. INFORMATION AMOUNT AND ENTROPY

In the field of information, information is used to dispel

uncertain factors [25]. This means that if the probability of

the described thing is quite high, the information it provided

is less. As a measurement of information, the information

amount is a function that depends on the probability [26].

Information theory provides us that the mathematic essence

of the information amount is the equation as −log(pi),

where pi is the probability of an event [27]. The informa-

tion amount can describe the information when the event

occurs. If we want estimate the indeterminacy of event,

the information entropy is provided, which is the mathematic

expectation of the amount of information and is defined as

follows [28]:

H (p) = −
∑

pi∈p

pi log (pi) (1)

where, p={pi}
np
i=1 is the probability of all the conditions,

and H (p) is the information entropy of event. Higher H (p)

means that the indeterminacy of event is also high. Otherwise,

the event is more certain.

C. HIGHER DIMENSIONAL DISTANCE BETWEEN TWO

VECTORS

In Euclidean space, distance between two vectors is defined

as the form of Frobenius norm,

d (v1, v2) = ‖v1 − v2‖ (2)

In the higher dimensional space, the difference and simi-

larity can be found more easily. For example, Support Vec-

tor Machine (SVM) is based on this theory. In this paper,

for improving the stability of learned feature and learning

efficiency we adopt multiple kernel method to calculate the

higher dimensional distance which is as follows,

dMK (v1, v2) =
∑

ϕ∈9

‖ϕ (v1)− ϕ (v2)‖
2

=
∑

k∈K

[k (v1, v1)+ k (v2, v2)− 2k (v1, v2)]

(3)

where, ϕ(•) is referred to higher dimensional map. 9 is

the set of maps. k(•,•) is a kernel function, which could

compute the inner product in a higher dimensional space,

i.e., k(x,y)=<ϕ(x), ϕ(y)>. K is the set of kernel func-

tions [29]. So dMK can measure the distance between two

vectors under multiple higher dimensional map with the help

of kernel functions.

III. ACFE AND PROPOSED FRAMEWORK

A. ADAPTIVE CROSS-DOMAIN FEATURE EXTRACTION

METHOD

ACFE is constructed by defining the objective function

include clustering loss, entropy loss, guide loss and regular-

ization loss as shown in Figure 2. Firstly, feature extraction

process is abstracted into 8 which represents the neural

network transformation. We can adjust the structure of 8

to actual case. According to the actual condition, we have

labeled source dataset {xsi , y
s
i }
ns
i=1 and unlabeled target dataset

{xti }
ns
i=1, where target dataset is imbalanced in general.

1) CLUSTERING LOSS

The source domain sample xs is mapped to feature space

and is changed to activation vector vs = 8(xs; θ ), where,

θ represents weight of the neural network transformation 8.

With the help of labels, we want to make the activation

vectors under the same health condition close together and

disperse the activation vectors under different health con-

ditions. Therefore, we calculate the distances between two

different activation vectors first. We deal with the vectors in

the higher dimensional space so as to enhance the clustering

ability. Higher dimensional distance can guarantee the more

stable and classable features. Besides, if we directly calculate

the distances using the form ofFrobenius norm, the amplitude

of final clustering loss must be quite large because of the

unboundedness of distance. This will lead to the failure of

training. Therefore, we calculate the distances after mapping

the activation vector to higher dimensional space. The kernel

method is employed. So the higher dimensional distance is

defined as follows:

dij = dMK

(

vsi , v
s
j

)

(4)

where, i, j = 1, 2, . . . , ns and n
s is the number of source

domain samples. We want to reduce dij when the two activa-

tion vectors have the same label and increase dij, otherwise.

So we construct the (ns×ns) similarity matrixAwith the help

of source domain provided labels, where aij = 1 if vsi and

vsj belong to the same category and 0, otherwise. Therefore,

the clustering loss Lc is defined as follows:

Lc
(

θ; xs, ys
)

=
∑

aij∈A

aijdij −
(

1− aij
)

dij (5)

where, ys is the label of xs. Minimizing the clustering loss can

achieve the desired effect that features belonging to the same

category are close together and far to otherwise in the higher

dimensional space.
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FIGURE 2. The illustration of proposed ACFE and intelligent fault diagnosis method.

2) ENTROPY LOSS

After training with clustering loss, the distances between

activation vectors of source domain under different health

conditions are very large. The target domain activation vector

vti = 8(xti ; θ ) should be close to some vs belonging to same

category, because the target domain is related to the sources

domain. Therefore, if the distance between a target domain

activation vector and a source domain activation vector is

small, the probability that the two samples belong to the same

category is large. Besides, ‘‘which category the target sample

xti belonging to’’ can be regarded as an event. So we can

obtain the information entropy of the event. The information

entropy can measure the indeterminacy of the event. How-

ever, we want to make the event more certain, which can be

realized by minimizing the information entropy. This is the

motivation of entropy loss and the key ability of the entropy

loss is to capture the similarities automatically and to further

learn them.

For matching with the clustering loss in the higher dimen-

sional space, we also employ the higher dimensional distance.

The higher dimensional distances deij = dMK (v
t
i , v

s
j ) are

calculated and De ={deij}∈R
nt×ns , where, i = 1, 2, . . . , nt ,

j = 1, 2, . . . , ns and nt is the number of target domain

samples. With the help of source domain labels, we can

calculate the distances between activation vectors vt and the

source category c in the feature space as follows:

dcic =
∑

ysj=c

deij (6)

where, ysj is the label of activation vectors vsj , and c =

1, 2, . . . ,C is the number of category. According to

Dc={dcic}∈R
nt×C , we can obtain the posterior probability

of category of each target domain sample. If the distance

dcic is small, the likelihood that the sample xti belongs to the

category c is large. Therefore, the posterior probability is

pic = soft max (dcic) =
e−dcic

C
∑

c=1

e−dcic

(7)

When the target domain activation vectors is only similar

to one category and dissimilar to all the other categories,

the probability vector pi = [pi1, . . . , piC ] tends to be a

one-hot vector [30]. A one-hot vector can be viewed as a low

information entropy realization of pi. So we employed the

information entropy to capture the similar information. The

entropy loss is given by,

Le
(

θ; xs, ys, xt
)

=

nt
∑

i=1

H
(

pi
)

(8)

Aswe can see from the curve of information entropy in Fig-

ure 2, minimizing the information entropy means that the

probability is trended to 0 and 1. Because of the competitive

relation caused by softmax activation function, there will be

only one condition becoming high probability. Sominimizing

the entropy loss gives us probability vectors pi that tend to be

one-hot vectors, i.e., the target domain vectors are similar to

source domain vectors from any one category only.
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3) GUIDE LOSS

Training with imbalanced dataset will lead to the skewing

of weight, i.e., even though the samples are representative,

the learned feature will be drowning because of the small

amounts. Besides, as is well-known, some features belong-

ing to different categories are sometimes similar. When the

map 8 is employed to deal with target data, the skewing of

features maybe increase the similarity. Then, using transfer

learning method to learn the cross-domain features will result

in negative transfer. These reasons maybe lead to the con-

dition shown in the top-right corner of Figure 2, which is

that samples, belonging to some categories with less target

training samples, are all misclassified as other categories.

So we propose the guide loss to solve the problem. If the

negative transfer exists, the two similar categories must be

regarded as one category, which leads to Ys 6= Yt , where,

Ys and Yt represent the source label space and target label

space respectively. We should guide the training process to

the right transfer. We consider that although the target data

is imbalanced, the label spaces Ys and Yt are same, which

means that there should be some target samples belonging

to every category. Therefore, the final distribution of target

labels must be a dense vector instead of a sparse vector, which

is the motivation of guide loss.

According to detail in section III.A.II, P={pi}
nt

i=1, in fact,

can be regarded as label space Yt (we call it target domain

pseudo label space in this paper). We reduce the dimension

of P to obtain the target domain pseudo label distribution

Pc ∈ R
C by averaging all pi, i.e.,

Pc =

nt
∑

i=1

pi (9)

We first normalize Pc though l2-normalization,

Pcn =
Pc

‖Pc‖
(10)

If Pcn is a sparse vector, this means the negative transfer

is reinforced, i.e., the target samples are identified as several

limited categories. This goes against the facts. We should

makePcn a dense vector. Therefore, the guide loss is proposed

as follows:

Lg
(

θ; xs, ys, xt
)

= − |Pcn| (11)

where, |•| is l1-norm. Minimizing the guide loss gives us a

dense vector Pcn, i.e., all categories have samples.

IV. REGULARIZATION LOSS

Appropriate regularization method is necessary for solve

the problem of overfitting. For ACFE, the simple

l2-regularization loss, Lr (θ ) = ||θ ||2, is employed to

penalize θ .

Combining those four optimization objects, the final opti-

mization object can be written as,

L = Lc + αLe + βLg + γLr (12)

where the hyper-parameters α, β and γ determine how strong

the optimization objects is.

Based on the equation (12) and SGD algorithm, the param-

eters θ are updated as follows,

θ ← θ − ε

(

∂Lc

∂θ
+ α

∂Le

∂θ
+ β

∂Lg

∂θ
+ γ

∂Lr

∂θ

)

(13)

where, ε is the learning rate.

When the training process is completed, the map 8 is able

to automatically extract the cross-domain classable features.

Then, the feature can be used to further process.

A. PROPOSED FRAMEWORK

This section details the intelligent fault diagnosis method

based on the proposedACFE. Themethod includes two stage,

adoptive cross-domain feature extracting and fault diagnosis.

Our method is designed to utilize the labeled samples under

A working condition and imbalanced unlabeled samples

under B working condition to obtain the transferable feature

extraction model, which can also be applied to diagnose fault

samples under B working condition.

1) ADOPTIVE CROSS-DOMAIN FEATURE EXTRACTION

First, the form of map 8 should be designed. We adopt

Fast Fourier Transform (FFT) to time domain signals, and

the spectrum is used as the input x for 8. A three layers

neural network is adopted as 8. Every layer includes weight

matrix Wi and biases vector bi, where i = 1, 2, 3, i.e. θ =

{Wi, b}
3
i=1. Besides, activation functions of every layer are

Rectified Linear Unit (ReLU).

Then, ACFE can be adopted with map of three lay-

ers neural network. According to Ref. [29], the Gaussian

radial basis function (RBF), i.e., kG(x1, x2) = exp(||x1 −

x2||
2/2s2), has been proven usefulness in practice [31],

where s is the standard deviation. Therefore, the proposed

method uses G different RBF and sums them to calculate

the distances for ensuring the features stabilized in different

infinite-dimensional spaces. We use 5 RBF whose mid-value

is m and times between two s, where, m is the mean of

||x1 − x2|| of the training data.

In the beginning of optimization, the clustering capability

of model is quite poor. So we want to train the clustering loss.

When the model has the ability of classification, we should

pay more attention to learn the cross domain feature. There-

fore, α and β should increase with the training epoch. We set

it as follows.

α, β =
2

1+ e−10q
− 1 (14)

where q is linearly changing from 0 to 1 when we train the

model.

2) FAULT DIAGNOSIS BASED ON CROSS-DOMAIN FEATURE

After cross-domain feature extracting, source features and

target features belong to the same feature space. Therefore,

we can train the classifier only with the labeled source
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features {vsi , y
s
i }
ns

i=1. For diagnosing fault, softmax regres-

sion [32] is employed. In this paper, it is called map 8s.

Because the features output from ACFE include much class-

able information, the main effect of softmax is actually to

show the result clearly. So one layer softmax regression is

adopted and the loss is defined as,

Lsoftmax
(

θs; v
s, ys

)

= −
1

ns

ns
∑

i=1

C
∑

c=1

1{ysi = c} log
eθ

T
s,cv

s
i

C
∑

j=1

e
θTs,jv

s
i

+
γs

2
‖θs‖

2 (15)

where, γs is the hyper-parameter and 1{·} denotes the indica-

tor function, θs is the weight matrix of softmax regression.

As mentioned above, ACFE has strong clustering ability.

Therefore, training softmax regression should be quite easy

and cost a little time. But if we also use SGD algorithm to

optimize softmax regression loss, it is hard to select learning

rate, because large learning rate will result in low accuracy

and small learning rate will spend more time. Therefore,

we adopt L-BFGS optimization algorithm for its ability of

determining learning rate adaptively.

After two learning stages, we use target test samples to ver-

ify the proposed method. For each test sample, we transform

it to the label space by the two trained map 8 and 8s. Then

the health conditions of test samples are decided.

V. CASE STUDY I: FAULT DIAGNOSIS OF ROLLING

BEARING

A. DATA DESCRIPTION

The validity of the method was verified by the experimental

data of motor bearings provided by Case Western Reserve

University Lab [33]. The experimental bench includes an

induction motor, a torque sensor and a load motor. Test bear-

ings are installed at the driving end of the induction motor.

The load motor provides 0 hp, 1 hp, 2 hp and 3 hp load

for the induction motor. In order to simulate the common

faults of bearings, electrical discharge machining is used

to process a single fault into the test bearings, including

bearings with fault in inner ring(IF), rolling element (RF)

and outer ring (OF) and with fault diameters of 0.1778 mm

(7 mils), 0.3556 mm (14 mils) and 0.5334 mm (21 mils).

The accelerometer is placed near the drive end of the motor

housing and acquires vibration data at a sampling frequency

of 12 kHz.

Before training the model, the data preprocessing proce-

dure is completed. 1200 data points of time-domain signals

are selected for FFT to get a sample, and the size of shift is

600. For each load, we obtained 20000 samples. For simulat-

ing the scenario of ACFE, four settings are designed.

(1) 1800 source domain labeled and balanced samples with

load A hp consisting of ten health conditions are collected as

the source training dataset.

(2) 1800 target domain unlabeled and imbalanced sam-

ples with load B hp consisting of ten health conditions are

FIGURE 3. The imbalanced form of target training dataset.

collected as the target training dataset. (3) The source test-

ing dataset is consisted of 5000 balanced samples randomly

selected from the rest source domain samples with load A hp.

(4) The target testing dataset is consisted of 5000 balanced

samples randomly selected from the rest target domain sam-

ples with load B hp.

We design two imbalanced forms of target training dataset.

We consider that most samples are with normal condition.

Besides, the collected and saved fault samples are usually

with the medium level faults, because the incipient faults

are difficult to detect, meanwhile, people do not allow the

machine run with the major fault in general. The ratios of

every health condition are shown in Figure 3. We can see that

most samples are with normal condition and the samples with

fault conditions are scarce.

B. SETUP OF PROPOSED MODEL

Each layer size of ACFE is [600, 400, 200, 100]. The learn-

ing rate is 0.001 and training step is set as 200. Every

training batch contains 400 labeled data samples from the

source domain and 400 unlabeled imbalanced data samples

from target domain. The penalty parameters γ and γs are

both 0.01.

In order to verify the effectiveness of the proposed entropy

loss and guide loss, two contrastive forms of the ACFE are

investigated for proving their effectiveness. ACFE without

entropy loss and guide loss (ACFE-EG), ACFE only without

guide loss (ACFE-G) are studied. The results are shown

in Table 1 and Table 2. The results (r1, r2, r3) denote the

average accuracy, mid-value accuracy and standard deviation,

respectively. It should be noticed that we experiment 10 times

for each transfer condition and the highest accuracy and

lowest accuracy are discarded to reduce the effects of the

randomness. Besides, all the training accuracies are 100%

so we do not show in the tables. For ACFE, we randomly

selected an experiment and give out the changes of losses

in Figure 4

In order to compare with the existing successful fault

diagnosis method based on transfer learning, the results of

generalization of deep neural network (GDN) reported in

Ref. [19] are also shown in Table 1 and Table 2. The results

(r1, r2) denote the average accuracy and standard deviation,

respectively. It should be noticed that the target domain train-

ing datasets of GDN are balanced.
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TABLE 1. Full transfer accuracy table training with target dataset A.

TABLE 2. Full transfer accuracy table training with target dataset B.

FIGURE 4. The changes of (a) clustering loss, (b) entropy loss, (c) guide loss and (d) regularization loss with the training epoch.

C. PROPOSED FRAMEWORKTESTING RESULTS AND

DISCUSSION OF PROPOSED METHOD

As we can see in Table 1 and Table 2, if we only

train the model with clustering loss and regularization

loss (ACFE-EG), i.e. we don’t adapt transfer learning, the tar-

get diagnosis accuracies of all transfer experiments are in

the low accuracy. But the results of ACFE-E are worse than

ACFE-EG. Because guide loss match with entropy loss for
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FIGURE 5. Confusion matrixes of (a) ACFE and (b) ACFE-G in the case
of 3-0.

correcting the negative transfer. When we train ACFE-G,

the diagnosis results are increasing. But as we can see from

the results with underline, the low testing accuracy and high

standard deviation mean that samples belonging to one cate-

gory are integrally misclassified as another category. By com-

paring the results of ACFE-G and ACFE, we can draw a

conclusion that it is necessary to employ the guide loss.

Guide loss can effectively reduce the negative transfer. It is

obvious that the accuracy of ACFE is the highest and the stan-

dard deviation is minimum when diagnose the two different

degrees of imbalance datasets. This means that ACFE have

the advantage for handling the imbalance of datasets.

Comparing with the existing successful method GDN,

the performance of ACFE is satisfactory. ACFE trained with

imbalanced target dataset obtains comparative testing accura-

cies as GDN trained with balanced target dataset. The results

show that ACFE can improve the prediction accuracy, espe-

cially in 3-0 and 3-1, in which ACFE improves 8.68% and

6.88%. The standard deviations of ACFE have shown good

results, and they are less than 1% in all cases. This means

that the proposed ACFE method gets enormously successful.

Besides, as we can see in Figure 4, all the losses decline

obviously when the training epoch goes higher, which means

that the proposed losses are trained effectively.

For further verifying the effectiveness of guide loss

and showing more details about the diagnosis information,

the confusion matrixes of ACFE and ACFE-G of dataset A

in the case of 3-0 are presented in Figure 5. The testing

accuracy of ACFE-G is 89.98% and the testing accuracy of

ACFE is 98.32%. As shown in Figure 5(b), ACFE-Gmisclas-

sifies nearly all the target testing samples of IF21 as OF21,

which means that the ACFE-G is caught in negative transfer.

After adding the guide loss, the negative transfer has been

overcome, and there are a few samples misclassified as other

similar faults as shown in Figure 5(a). This further verifies

that guide loss can effectively control the label distribution to

reduce the negative transfer.

FIGURE 6. The t-SNE visualization of features: (a) All features, (b) Source
domain features and (c) Target domain features.

To study these activation vectors extracted by ACFE obvi-

ously, we use t-distributed stochastic neighbor embedding

(t-SNE) [32], [34]. We choose one result of transfer fault

diagnosis experiment 3-0 of dataset A to study and plot

in Figure 6. As we can see from Figure 6(a), features with

the same health condition are grouped closer together even

though they are under different working conditions. Fig-

ure 6(b) and (c) show that the distributions of source domain

features and target domain features are basically consistent,

which means that our ACFE achieves the goal of distribu-

tion adaptation but avoids employing distribution adaptation

method.

As we can see from the above work, there is only two

penalty parameters γ and γs which is uncertain. We inves-

tigate the impact of different parameters under the transfer

condition 3-0 of dataset A. Figure 7 and Figure 8 shows the

results. ACFE has strong robustness for selecting the penalty

parameters γ and γs. All the results have little difference

except γ and γs equal 0. Considering that the standard devi-

ation is lower and the testing accuracies are a little higher

than most others, we choose 1E-3 as the penalty parameters

γ and γs.

In practice, selecting of kernel function is difficult. There-

fore, we investigate the impact of different kernel function

and select several kernel function for studying.

1) SIGMOID KERNEL (SK)

k (x, y) = tanh (a 〈x, y〉 + b) (16)

The multiple kernel parameter a is set as [0.25, 0.5, 1, 2,

4], and b is 0.

542 VOLUME 8, 2020



Z. An et al.: ACFE Method and Its Application on Machinery Intelligent Fault Diagnosis Under Different Working Conditions

FIGURE 7. Boxplot using various γ .

FIGURE 8. Boxplot using various γs.

2) RATIONAL QUADRATIC KERNEL (RQK)

k (x, y) = 1−
‖x− y‖2

‖x− y‖2 + b
(17)

We use this multiple kernel whose max-value is the mean

of ||x−y|| on the training data and decrease to half. For

example, if the mean of ||x−y|| is 1, the final b is set as [0.5,

0.625, 0.75, 0.875, 1].

3) CAUCHY KERNEL (CK)

k (x, y) =
1

‖x−y‖2

s
+ 1

(18)

For Cauchy Kernel, we use the method of selecting param-

eter of RBF.

4) LOG KERNEL (LK)

k (x, y) = − log
(

1+ ‖x− y‖a
)

(19)

The multiple kernel parameter a is set as [0.5, 1, 1.5, 2,

2.5].

Considering the accuracies of transfer condition 0-3 and

3-0 are a litter lower than others, we investigate the impact

FIGURE 9. Boxplot using various kernel function.

of different kernel function under these condition. The results

are shown in Figure 9. The results of RQK are lower than oth-

ers and the accuracies are all below 98.5%. The performances

of CK and LK are better. The accuracies are about 98.5%. For

the two transfer condition (0-3 and 3-0) the results of same

kernel function are different. But RBF obtain the highest

accuracies and lower standard deviation, which means RBF

is more suitable for our ACFE.

D. COMPARING WITH RELATED WORK

To show the effectiveness of ACFE, we compare it with the

methods in related work such as Transfer Component Anal-

ysis (TCA) [35], Joint Distribution Adaptation (JDA) [36],

Balanced Distribution Adaptation (BDA) [37] and GDN [19]

using the same rolling bearing dataset in section IV.A. The

comparisons under transfer condition 3-0 of dataset A are

displayed in Table 3.

For all the related works, each parameter is selected by

random search in a large parameter range, and the suitable

parameters are used for the final models. TCA, JDA and BDA

both employ RBF kernel and one layer softmax regression

for classification which is same as ACFE. For TCA, the best

testing accuracies are only about 20% with 0.5 standard

deviation. JDA obtains 82.04%±5.48% which is quite higher

than TCA. For BDA, the accuracies of 83.67%±4.88% are

obtained. For GDN, we employ the set of Ref. [19] and obtain

the accuracies of 74.43%±3.46%. It should be noticed that,

for the imbalanced target dataset domain adaptation, marginal

distribution adaptation is difficult to achieve good results and

joint distribution adaptation is suitable relatively. Compared

with the methods above, the proposed ACFE is trained by

imbalanced target dataset and obtains a higher and more

stable accuracy.

VI. CASE STUDY II FAULT DIAGNOSIS UNDER DIFFERENT

SPEED AND LOAD

A. DATA DESCRIPTION

A bearing fault dataset under time-varying rotational speed

and loads is used to verify the proposed model. The bearing

test bench is shown in Figure 10, which consists of a diesel

engine, 5 bearing seats, 3 couplings, a breake disc and so

on. The brake disc can provide artificial variable loads.
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TABLE 3. Classification comparison of the rolling bearing dataset.

FIGURE 10. The arrangement of bearing test bench and bearing with fault.

TABLE 4. The description of the datasets.

The rotational speed range of diesel engine is

850rpm∼2600rpm. The datasets are collected at the tested

bearing seats. The health condition includes four types: nor-

mal condition (NC), inner race fault (IF), roller fault (RF),

outer race fault (OF). The sampling frequency used in the

experiment is 12.8 kHz.

In this section, we test our ACFE on the transfer ability

of rotating speed and load. Samples are selected under the

rotating speed S1 (800rpm) and S2 (1000rpm), where, S1 is

under a constant load by brake disc. 1200 data points of time-

domain signals are selected for FFT to get a sample, and the

size of shift is 600. As displayed in Table 4, the imbalance

degree target datasets are collected.

B. TESTING RESULTS

In this section, we directly adopt the set of the rolling bearing

case in section IV to test the robustness of ACFE. For other

related works, each parameter is selected by random search

in a large parameter range, and the suitable parameters are

used for the final models. The methods based on the related

TABLE 5. Target testing dataset accuracy.

FIGURE 11. Confusion matrix of the ACFE prediction results in the case of
(a) S1-S2 and (b) S2-S1.

works are detailed in section IV.D. The results are shown

in Table 5.

As can be seen from the table, the performances of the

five methods under the condition of S2-S1 are a little bet-

ter than the performances under the condition of S1-S2.

When the target training datasets are imbalanced, accura-

cies of methods based on marginal distribution adaptation

( TCA and GDN ) are lower than others. According to

our investigations, when the standard deviation is 0.1 and

γs = 0.00001, TCA obtains 27.54%±7.03% accuracies

in the case of S1-S2 and 32.08%±6.75% accuracies in the

case of S2-S1. For GDN, the 59.86%±4.25% classifica-

tion accuracies of S1-S2 and 61.53%±5.86% classification

accuracies of S2-S1 are achieved. When the standard devi-

ation is 1 and γs = 0.001, JDA obtains 65.07%±4.93%

accuracies of S1-S2 and 72.67%±4.90% accuracies of S2-

S1. BDA achieves 67.94%±5.01% accuracies in the case

of S1-S2 and 73.02%±4.77% accuracies in the case of

S2-S1 when the three parameters are 0.9, 1 and 0.0001,

respectively. Compared with the methods above, the pro-

posed ACFE is more suitable for imbalanced datasets and

obtains higher accuracies, which means that our ACFE is

adapted for fault diagnosis under different speeds and loads

successfully.

The diagnostic accuracy confusion matrixes of the ACFE

method for the transfer fault diagnosis experiments S1-S2 and

S2-S1 are obtained in Figure 11. The accuracy of S1-S2 is

91.28% and the accuracy of S2-S1 is 91.45%. As can be

seen from Figure 11, the roller fault samples and outer race

fault samples are more difficult to classify. For example,
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ACFE misclassifies 23.8% testing samples of outer race fault

samples as roller fault samples in the case of S1-S2. For

S2-S1, ACFE misclassifies 29.7% testing samples of roller

fault as outer race fault samples. The reason may be that the

feature of them is similar, which makes it more difficult to

distinguish them.

VII. CONCLUSION

The problem of imbalanced dataset is actual and important.

In this paper, we proposed an adaptive cross-domain fea-

ture extraction method, which has strong abilities of cluster-

ing and automatically extracting cross-domain feature. This

paper studied the effect of proposed entropy loss and guide

loss based on the calculated posterior probability of category.

The results proved that they are effective and necessary.

However, in the process of study, we find that, in rare circum-

stances, ACFE also has the performance of negative trans-

fer, even though the guide loss is employed. Besides, target

domain training dataset sometimes lacks several categories,

i.e. the label spaces of source domain and target domain are

different. How to diagnose the fault under this condition is a

more difficult task. The authors would investigate these topics

in the future study.
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