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Abstract

We present an adaptive cruise control (ACC) strategy where the acceleration char-
acteristics, i.e., the driving style automatically adapts to different traffic situations.
The three components of the concept are the ACC itself, implemented in form of a
car-following model, an algorithm for the automatic real-time detection of the traffic
situation based on local information, and a strategy matrix to adapt the driving
characteristics, i.e., the parameters of the ACC controller to the traffic conditions.
Optionally, inter-vehicle and infrastructure-to-car communication can be used to
improve the accuracy for determining the traffic states. Within a microscopic sim-
ulation framework, we have simulated the complete concept on a road section with
an on-ramp bottleneck, using empirical loop-detector data for an afternoon rush-
hour as input for the upstream boundary. We found that the ACC vehicles improve
the traffic stability and the dynamic road capacity. While the traffic congestion in
the reference scenario was completely eliminated when simulating a proportion of
25% ACC vehicles, travel times were significantly reduced already for much lower
penetration rates. The efficiency of the proposed driving strategy already for low
market penetrations is a promising result for a successful application in future driver
assistance systems.

Key words: Adaptive cruise control (ACC); Driver assistance system; Driving
strategy; Traffic state detection; Microscopic traffic simulation; Car-following
models

∗ Corresponding author. Tel.: +49 351 463 36838; fax: +49 351 463 36809
Email address: kesting@vwi.tu-dresden.de (Arne Kesting).
URL: http://www.traffic-simulation.de (Martin Treiber).

Preprint submitted to Elsevier Science July 16, 2007



1 Introduction

Traffic congestion is a severe problem on freeways in many countries. In most
countries, building new transport infrastructure is no longer an appropriate
option. In order to decrease congestion, considerable research in the area of
intelligent transport systems (ITS) is therefore performed to reach a more
efficient road usage and a more ‘intelligent’ way of increasing the capacity
of the road network. Examples of advanced traffic control systems are, e.g.,
ramp metering, adaptive speed limits, or dynamic and individual route guid-
ance. These examples are based on a centralized traffic management, which
controls the operation and the system’s response to a given traffic situation.
On the other hand, automated highway systems (AHS) have been proposed
as a decentralized approach based on automated vehicles (Varaiya, 1993). The
concept of fully automated vehicle control allows for very small time gaps and
platoon driving, which is a key to greater capacity. However, such systems
need special infrastructure and dedicated lanes, which can only be justified if
the percentage of automated vehicles is sufficiently high, which seems to make
this scenario unlikely for the foreseeable future (Rao and Varaiya, 1993).

Nevertheless, partly automated driving is already commercially available for
basic driving tasks such as accelerating and braking by means of adaptive
cruise control (ACC). In fact, ACC systems are the first driver assistance sys-
tems with the potential to influence traffic flow characteristics. But present
implementations of ACC systems are exclusively designed to increase the driv-
ing comfort, while the influence on the surrounding traffic is not yet considered
or optimized. This is justified as long as the number of ACC-equipped vehi-
cles is negligible, but the expected growing market penetration of these devices
makes the question of their impact on traffic flow more pressing. Therefore,
it is important to understand effects of ACC systems on the capacity and
stability of traffic flow at an early stage so that their design can be adjusted
before adverse traffic effects are widely manifested.

In the literature, the effects of upcoming driver assistance systems such as
ACC systems on the traffic dynamics has been usually addressed by means
of traffic simulation, because large-scale field experiments are hardly possible.
Particularly, the microscopic modeling approach allows for a natural repre-
sentation of heterogeneous traffic consisting of ACC vehicles and manually
driven vehicles (Kesting et al., 2007b; Davis, 2004; VanderWerf et al., 2002;
Treiber and Helbing, 2001; Marsden et al., 2001; Minderhoud, 1999). For a
further overview, we refer to (VanderWerf et al., 2001). However, there is not
even clarity up to now about the sign of these effects. Some investigations
predict a positive effect (Treiber and Helbing, 2001; Davis, 2004), while others
are more pessimistic (Kerner, 2004; Marsden et al., 2001). For realistic esti-
mates of the impact of ACC on the capacity and traffic stability, the models
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have to capture the driving dynamics of ACC and manually driven vehicles
and the relevant interactions between them. Therefore, the findings depend
on the model fidelity, the modeling assumptions and, mainly, on the setting
for the time gap parameter, because the maximum capacity is approximately
determined by the inverse of the average time gap T of the drivers (Varaiya,
1993).

In this paper, we propose an ACC-based traffic assistance system aiming at
improving the traffic flow and road capacity and thus at decreasing traffic
congestion while retaining the driving comfort. To this end, we introduce a
driving strategy layer, which controls the settings of the driving parameters
of the ACC system. While the conventional ACC operational control layer

calculates the response to the input sensor data by means of accelerations
and decelerations on a short time scale of seconds, the automated adaptation
of the ACC driving parameters happens on a longer time scale of typically
minutes. In order to resolve possible conflicts between the objectives of comfort
and road capacity, we propose an intelligent driving strategy that adapts the

ACC driving characteristics. For this, we consider a finite set of five ‘traffic
situations’ that are associated with a specific set of ACC driving parameters.
These traffic states have to be detected autonomously by each ACC-equipped
vehicle. We have implemented the proposed components within a microscopic
multi-lane traffic simulator in order to study the impact of the individual
adaptation of each ACC-equipped vehicle on the resulting collective traffic
dynamics. Thus, the simulations serve as ‘proof of concept’. Moreover, they
allow for a systematic investigation of the impact of a given proportion of
ACC vehicles.

The paper is structured as follows: We start with a discussion of the character-
istics of manual and ACC-based driving and their representation in terms of
microscopic traffic models. In Sec. 3, our concept of a traffic assistance system

will be presented. The proposed traffic states and the traffic-state adaptive
driving strategy will be introduced. In Sec. 4, the impact of the proposed
ACC extension on the traffic dynamics will be investigated by means of traffic
simulations of a three-lane freeway with an on-ramp bottleneck and a mixed
traffic flow consisting of cars and trucks. Particularly, we focus on the collec-
tive dynamics and the travel times of various proportions of ACC-equipped
vehicles. Finally, we conclude with a discussion and an outlook in Sec. 5.

2 Modeling ACC-based and human driving behavior

The recent development and availability of adaptive cruise control systems
(ACC) extends earlier cruise control systems, which were designed to reach
and maintain a certain speed preset by the driver. The ACC system extends
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this functionality to situations with significant traffic where driving at con-
stant speed is not possible. The driver can not only adjust the desired velocity
but also set a certain safe time gap determining the gap to the leader when
following slower vehicles (typically in the range between 0.9 s and 2.5 s). The
task of the ACC system is to determine the appropriate acceleration or decel-
eration as a function of the traffic situation and the driver settings. In order
to do so, the system is able to detect and to track the vehicle ahead, measur-
ing the actual distance and speed difference to the vehicle ahead by means of
radar or infrared sensors.

Present ACC systems offer a gain in comfort in most driving situations on
freeways. Nevertheless, it should be emphasized that current ACC systems
only operate above a certain velocity threshold and are limited in their accel-
eration range and, particularly, in their braking authority. The next generation
of ACC is designed to operate in all speed ranges and in most traffic situations
on freeways including stop-and-go traffic. Additionally, future ACC systems
will have the potential to prevent actively a rear-end collision and, thus, to
achieve also a gain in safety. However, ACC systems only control longitudinal
driving. In contrast, merging, lane changing or gap-creation for other vehi-
cles still need the intervention of the driver. So, as the driver still stays fully
responsible, he or she can always override the system.

It is very useful that the input quantities of an ACC system, i.e., the vehi-
cle’s own speed, the distance to the car ahead and the velocity difference,
are exactly those of many time-continuous car-following models. As the ACC
response time, which is of the order of 0.1 s – 0.2 s, is generally negligible
compared to the human reaction time of about 1 s (Green, 2000), suitable
ACC systems specify the instantaneous acceleration v̇(t) of each vehicle as a
continuous function of the velocity v(t), the net distance (gap) s(t), and the
approaching rate ∆v(t) to the leading vehicle. To be an adequate candidate
for simulating ACC systems, car-following models must meet some criteria:
First of all, the car-following dynamics must be collision-free, at least, if this is
physically possible. The dynamics should correspond to a natural and smooth
manner of driving. Adaptations to new traffic situations (for example, when
the predecessor brakes, or another vehicle cuts in) must be performed without
any oscillations. Furthermore, the model should have only a few parameters.
Each parameter should have an intuitive meaning and plausible values after
calibration. Ideally, the parameter list should include the desired velocity v0
and the desired time gap T , which are preset by the driver. By varying the
remaining parameters, it should be possible to model different driving styles
(such as experienced vs. inexperienced, or aggressive vs. relaxed) as well as
vehicle-based limitations such as finite acceleration capabilities. Last but not
least, calibration should be easy and lead to good results.

These criteria are, e.g., met by the Intelligent Driver Model (IDM) (Treiber
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et al., 2000). In the following simulations, we therefore represent ACC vehicles
by this model. The IDM acceleration v̇(t) is given by

v̇(s, v,∆v) = a



1−
(
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)4

−

(

s∗(v,∆v)

s

)2


 . (1)

This expression combines the acceleration v̇free(v) = a[1 − (v/v0)
4] towards

a desired velocity v0 on a free road with the parameter a for the maximum

acceleration with a braking term v̇brake(s, v,∆v) = −a(s∗/s)2 which is domi-
nant if the current gap s(t) to the preceding vehicle becomes smaller than the
‘effective desired minimum gap’

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

. (2)

The minimum distance s0 in congested traffic is significant for low velocities
only. The dominating term of Eq. (2) in stationary traffic is vT , which corre-
sponds to following the leading vehicle with a constant safe time gap T . The
last term is only active in non-stationary traffic and implements an collision-
free, ‘intelligent’ driving behavior including a braking strategy that, in nearly
all situations, limits braking decelerations to the comfortable deceleration b.
However, the IDM brakes stronger than b if this is required by the traffic situ-
ation. Note that all IDM parameters v0, T , s0, a and b are defined by positive
values (see Table 2).

While the simple car-following approach is perfectly suited to model the dy-
namics of ACC-controlled vehicles, the human driving style differs from that
in essential points such as the following:

(1) The finite reaction time of humans results in a delayed response to the
traffic situation.

(2) Imperfect estimation capabilities result in perception errors and limited

attention spans.
(3) Human drivers scan the traffic situation several vehicles ahead while the

ACC sensors are restricted to the immediate predecessor.
(4) Furthermore, human drivers anticipate the future traffic situations by

making use of further clues (such as brake lights) and by forming plausible
hypotheses such as assuming constant accelerations of all neighboring
vehicles in the next few seconds.

Despite these differences, the simple car-following approach is also able to
capture many aspects of the traffic dynamics of human drivers, particularly
with respect to the collective macroscopic dynamics (Treiber et al., 2000), but
also on a microscopic level (Brockfeld et al., 2003). The question is why? For
realistic human reaction times of the order of the time gaps, the destabilizing
influences of point (1) and (2) above would lead to traffic instabilities and acci-
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dents. However, points (3) and (4), i.e., the spatial and temporal anticipation,
compensate for that. This has been shown using the recently proposed hu-

man driver model (HDM) (Treiber et al., 2006a), which extends car-following
models like the IDM to the points mentioned above. It turns out that the
destabilizing effects of reaction times and estimation errors are compensated
for by spatial and temporal anticipation. As result, for reasonable car-following
models, one obtains essentially the same longitudinal traffic dynamics, when
including all four effects, compared to simulations neglecting them all.

Therefore, we may conclude that, although the mode of operation is funda-
mentally different, ACC-equipped vehicles and manually controlled vehicles
exhibit a similar effective driving behavior with respect to collective proper-
ties such as the stability of traffic flow, traffic performance (measured in terms
of capacity), or the emergence and propagation of congestion. Clearly, when
implementing a concrete traffic assistance system according to the concept
proposed in this contribution, one explicitly has to take into account the op-
erational differences between drivers and ACC vehicles, and also the fact that
non-negligible delays occur in the latter as well. As this contribution inves-
tigates the influence of ACC on macroscopic properties of traffic flow and is
intended as ‘proof of concept’, it is justified to simulate the human drivers
with simple car-following models such as the IDM as well instead of using
more complex models such as the HDM. The advantage of using simple mod-
els for both human-driven and automated vehicles lies in the reduced number
of parameters that need to be calibrated.

3 ACC-based traffic assistance system with an adaptive driving

strategy

In this section, we generalize the ACC concept to a traffic assistance system, in
which vehicles automatically adapt the ACC parameters to improve the traffic
flow and road capacity and, thus, to decrease traffic congestion while retaining
driving comfort. In order to resolve possible conflicts between the objectives
of comfort and road capacity, we propose a driving strategy that adapts the

ACC driving characteristics to the local traffic situation. For this, we consider
a finite set of five traffic situations: (i) Moving in free traffic, (ii) approaching
an upstream congestion front, (iii) moving in congested traffic, (iv) leaving
the downstream congestion front, and (v) passing infrastructural bottleneck
sections (such as road works or intersections). These traffic situations have to
be detected autonomously by each ACC-equipped vehicle. Since autonomous
detection alone is only possible with delays, we also consider to supplement the
local information by roadside-to-car and inter-vehicle communication between
the equipped vehicles (Schönhof et al., 2006; Yang and Recker, 2005; Schönhof
et al., 2007).
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The proposed traffic assistance system consists of several system components
as displayed in Fig. 1: The main operational layer is still the ACC system
calculating the acceleration v̇(t). The new feature of the proposed system
is the strategic layer, which implements the changes in the driving style in
response to the local traffic situation by changing some parameters of the
ACC system. To this end, a detection algorithm determines which of the five
traffic situations mentioned above applies best to the actual traffic situation.
In contrast to conventional ACC systems, the driving behavior of our traffic
assistance system, i.e., the acceleration, is determined in a two-step process:

(1) The operational level consists in responding to changes of the ACC input

quantities s, v, and ∆v. The time scale is of the order of seconds and the
spatial range is limited to the immediate predecessor.

(2) On the strategic level, the traffic situation is determined locally and the
driving style is adapted accordingly by changing some ACC parameters.
The parameter settings related to the detected traffic state changes typi-
cally on time scales of minutes and in a range of typically a few hundred
meters. This is analog to manual changes of the desired velocity or the
time gap in conventional ACC systems by the driver, which, of course, is
possible in the proposed system as well.

In the following subsections, we discuss the system components of the proposed
traffic-adaptive ACC system in more detail. First, we introduce a general
concept for a driving strategy that is capable of improving the traffic flow
efficiency, while retaining the comfort and safety for the driver. In Sec. 3.2, we
implement such a strategy in terms of a ‘driving strategy matrix’. In Sec. 3.3,
we describe the detection model for determining the traffic situation based
on the evaluation of the locally available data such as the vehicle’s velocity
time series, its position etc. Finally, in Sec. 3.4, we discuss the extended use of
non-local information sources such as inter-vehicle and infrastructure-to-car
communication for an improved detection of the local traffic state.

3.1 General considerations for a comfortable and efficient driving strategy

The design of an ACC-based traffic assistance system is subject to several,
partly contradictory, objectives. On the one hand, the resulting driving be-
havior has to be safe and comfortable to the driver. This implies comparatively
large gaps and low accelerations. On the other hand, the performance of traffic
flow is enhanced by lower time gaps T and larger accelerations, which can be
seen when considering the main aspects of traffic performance: The static road
capacity C defined as maximum number of vehicles per unit time and lane is
strictly limited from above by the inverse of the time gap, i.e., C < 1/T .
Moreover, simulations show that higher accelerations increase both the traffic
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Driving strategy matrix:

Traffic situation λT λa λb

Free traffic 1 1 1

Upstream front 1 1 0.7

Congested traffic 1 1 1

Bottleneck 0.5 1.5 1

Downstream front 0.5 1 2

ACC operating mode:

{T (t), a(t), b(t)}

Automated modification of ACC pa-

rameter depending on the detected

traffic situation, e.g., T (t) = λ
(state)
T

T

for the desired time gap.

Fig. 1. Overview of the components of the proposed traffic assistance system. The
operational level controlling the dynamics on short time scales corresponds to con-
ventional ACC systems. The strategic layer containing the novel elements of our
concept controls the dynamics on time scales of the order of minutes. It is coupled
to the operational level via changes of the ACC model parameters T (time gap), a
(desired acceleration), and b (comfortable deceleration). Additionally, the driver is
able to customize the driving characteristics by setting the desired velocity v0 and
the time gap T as in conventional ACC systems. Therefore, changes of T by the
strategic level are specified relative to the driver settings.

stability and the dynamic bottleneck capacity, i.e., the outflow from congested
traffic at the bottleneck, which, typically, is lower than the free-flow capacity
(Kerner and Rehborn, 1996; Cassidy and Bertini, 1999; Daganzo et al., 1999b;
Kesting et al., 2007b). Our approach to solve this conflict of goals is based on
the following observations:

• Most traffic breakdowns are initiated at some sort of road inhomogeneities
or infrastructure-based bottlenecks such as on-ramps, off-ramps, or sections
of road works (Schönhof and Helbing, 2007; Bertini et al., 2004).

• An effective measure to avoid or delay traffic breakdowns is to homogenize
the traffic flow.

• Once a traffic breakdown has occurred, the further dynamics of the resulting
congestion is uniquely determined by the traffic demand (which is outside
the scope of this investigation), and by the traffic flow in the immediate
neighborhood of the downstream congestion front (Daganzo et al., 1999a).
In many cases, the downstream front is fixed and located near a bottleneck,
as found in empirical investigations (Schönhof and Helbing, 2007).
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• Traffic safety is increased by reducing the spatial velocity gradient at the
upstream front of traffic congestion, i.e., by reducing the risk of rear-end
collisions.

In the context of the ACC-based traffic assistance system, we make use of
these observations by only temporarily changing the comfortable settings of

the ACC system in specific traffic situations. The situations in which this is
necessary have to be determined autonomously by the equipped vehicle and it
has to take specific actions to improve the traffic performance. To this end, we
propose the following discrete set of five traffic states and the corresponding
actions:

(1) Free traffic. This is the default situation. The ACC settings are de-
termined solely by the maximum individual driving comfort. Since each
driver can set his or her own parameters for the time gap and the desired
velocity, this may lead to different settings of the ACC systems.

(2) Upstream jam front. Here, the objective is to increase safety by re-
ducing velocity gradients. Compared to the default situation, this implies
earlier braking when approaching slow vehicles. Note that the operational
layer always assures a safe approaching process independantly from the
detected traffic state.

(3) Congested traffic. Since drivers cannot influence the development of
traffic congestion in the bulk of a traffic jam, the ACC settings are re-
verted to their default values.

(4) Downstream jam front. To increase the dynamic bottleneck capacity,
accelerations are increased and time gaps are temporarily decreased.

(5) Bottleneck sections. Here, the objective is to locally increase the capac-
ity, i.e., to dynamically ‘fill’ the capacity gap. This requires a temporary
reduction of the time gap.

Note that the drivers typically experience the sequence of these 5 traffic states
when travelling through congested traffic. We emphasize that the total fraction
of time periods during which the ACC settings deviate from the default state
is usually only a few percent. Moreover, we show in Sec. 4 that even a small
percentage of equipped vehicles driving according to the above ACC strategy
substantially decreases the size and duration of congestion and thus the travel
time. This means, despite a temporary deviation from the most comfortable
ACC settings, the drivers of such systems will profit considerably overall.

3.2 Implementation of the ACC traffic assistance: Driving strategy matrix

In this section, we implement the above concept for an ACC system based on
the Intelligent Driver Model (IDM) (Treiber et al., 2000) as discussed in Sec. 2.
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Three of five IDM parameters listed in Table 2 below directly correspond to
the different aspects of the adaptation strategy: The acceleration parameter a
gives an upper limit for the acceleration v̇(t) of the ACC-controlled vehicle.
Consequently, this parameter is increased when leaving congestion, i.e., when
the state ‘downstream front’ has been detected. The comfortable deceleration

b characterizes the deceleration when approaching slower or standing vehicles.
Obviously, in order to be able to brake with lower decelerations, one has to
initiate the braking maneuver earlier. Since this smoothes upstream fronts of
congestion, the parameter b is decreased when the state ‘upstream front’ has
been detected. Notice that, irrespective of the value of b, the ACC vehicle
brakes stronger than b if this is necessary to avoid collisions. Finally, the time

gap parameter T is decreased if one of the states ‘bottleneck’ or ‘downstream
front’ is detected.

In order to be acceptable for the drivers, the system parameters need to be
changed in a way that preserves the individual settings and preferences of
the different drivers and also the driving characteristics of different vehicle
categories such as cars and trucks. Particularly, the preferred time gap T can
be changed both by the driver, and by the event-oriented automatic adapta-
tion (cf. Fig. 1). This can be fulfilled by formulating the changes in terms of
multiplication factors λa, λb, and λT defined by the relation

a(s) = λ(s)
a a, b(s) = λ

(s)
b b, T (s) = λ

(s)
T T, (3)

where the superscript (s) denotes one of the five traffic states, to which the
respective value applies. Furthermore, a, b, and T denote the default values of
the IDM parameters as given in Table 2 below. In summary, this implemen-
tation can be formulated in terms of a strategy matrix as depicted in Table 1.
Of course, all changes are subject to restrictions by legislation (e.g., the lower
limit for T ), or by the vehicle type such as an upper limit for a, particularly
for trucks.

3.3 Detection algorithm for a vehicle-based identification of traffic states

Let us now present a detection model for an automated, vehicle-based iden-
tification of the local traffic situation as required for the proposed driving
strategy matrix. Our detection model is based on locally available time series
data. The Controller Area Network (CAN) of the vehicle itself provides the ve-
hicle’s own speed, whereas the velocity of the leader is measured by the radar
sensor of the ACC system. Both velocities can be used in a weighted average,
but for the sake of simplicity we only focus on the vehicle’s own velocity. Due
to short term fluctuations, the time series data require a smoothing in time
in order to reduce the level of variations. In our traffic simulator (cf. Sec. 4
below), we have used an exponential moving average (EMA) for a measured
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Table 1
The driving strategy matrix summarizes the implementation of the ACC driving
strategy. Each of the traffic situations corresponds to a different set of ACC con-
trol parameters. We represent the ACC driving characteristics by the time gap T ,
the maximum acceleration a, and the comfortable deceleration b, which are model
parameters of the Intelligent Driver Model (IDM). λT , λa, and λb are the multi-
plication factors in relation (3). For example, λT = 0.5 denotes a reduction of the
default time gap T by 50% in bottleneck situations.

Traffic situation λT λa λb Driving behavior

Free traffic 1 1 1 Default/Comfort

Upstream front 1 1 0.7 Increased safety

Congested traffic 1 1 1 Default/Comfort

Bottleneck 0.5 1.5 1 Breakdown prevention

Downstream front 0.5 2 1 High dynamic capacity

quantity x(t),

xEMA(t) =
1

τ

t
∫

−∞

dt′e−(t−t′)/τ x(t′), (4)

with a relaxation time of τ = 5 s. As the initial conditions only affect the first
few 100m in the simulations, they are irrelevant for sufficiently large vehicle
positions. The EMA allows for an efficient real-time update by solving the
corresponding ordinary differential equation

d

dt
xEMA =

x(t)− xEMA(t)

τ
. (5)

For an identification of the proposed five traffic states we define the following
criteria: The free traffic state is characterized by a high average velocity, i.e.,

vEMA(t) > vfree, (6)

where vfree = 60 km/h is a typical threshold value. In contrast, the congested

traffic state is characterized by a low average velocity, namely

vEMA(t) < vcong, (7)

with a threshold of vcong = 40 km/h. The detection of an upstream or down-
stream jam front relies on a change in speed compared to the exponentially
averaged past of the speed. Approaching an upstream jam front is therefore
characterized by

v(t)− vEMA(t) < −∆vup, (8)
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whereas a downstream front is identified by an acceleration period, i.e.,

v(t)− vEMA(t) > ∆vdown. (9)

Both thresholds are of the order of ∆vup = ∆vdown = 10 km/h.

The most important adaptation of the driving style is related to the bottleneck
state. The identification of this state requires information about the infrastruc-
ture, because bottlenecks are typically associated with spatial modifications
in the freeway design such as on-ramps, off-ramps, lane closures, gradients or
construction sites. We assume that this information is provided by a digital
map database containing the position of a bottleneck (xbegin, xend) in combi-
nation with a positioning device (GPS receiver), which provides the actual
vehicle position x(t) (Drane and Rizos, 1998). This information allows for an
identification of the bottleneck state by the spatial criteria

x(t) > xbegin AND x(t) < xend. (10)

The proposed criteria offer the possibility that no criterion is fulfilled or, vice
versa, multiple criteria are met simultaneously. To this end, we need a heuris-

tics for the discrete choice problem. From our visualized traffic simulations (cf.
Fig. 2), we found that the following priority order is the most adequate one:
downstream front → bottleneck → traffic jam → upstream front → free traffic

→ no change. Thus, a detected ‘downstream front’ has a higher priority than
a ‘bottleneck’ state etc. Note that this decision order also reflects the relevance
of the driving strategy associated with these traffic states for an efficient traffic
flow. A more sophisticated heuristics would consist in a dynamic adaptation
of the thresholds used in the criteria of Eqs. (6) – (9).

3.4 Inclusion of inter-vehicle and infrastructure-to-car communication

So far, the detection model is exclusively based on local information that is
provided autonomously by the vehicle’s own velocity time series, the ACC
sensor data, and a GPS positioning device. Let us shortly discuss the prin-
cipal limitations of this approach. An autonomous detection in real-time has
to struggle with a time delay due to the exponential moving average, that
is of the order of τ . This fact limits the response time of the traffic state
identification algorithm. Particularly, the adaptation towards a smooth de-
celeration behavior when approaching a dynamically propagating upstream
front requires the knowledge of the jam front position at an early stage in
order to be able to switch to the new driving strategy in time. For a more
advanced vehicle-based traffic state estimation, non-local information can be
additionally incorporated in order to improve the detection speed and qual-
ity. For example, a short-range inter-vehicle communication (IVC) (Yang and
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Recker, 2005; Schönhof et al., 2006; Schönhof et al., 2007) is a reasonable ex-
tension providing up-to-date information about dynamic up- and downstream
fronts of congested traffic, which cannot be estimated without delay by local
measurements only. Furthermore, in case of a temporary bottleneck such as a
construction site or accident that is not listed in the digital map database,
the information about the location could be provided by communication with
a stationary sender upstream of the bottleneck (infrastructure-to-car commu-
nication). Notice that we do not use IVC for a direct control of ACC. We
merely incorporate additional, non-local information sources for an improved
traffic-state estimation.

4 Multi-lane freeway simulation with an on-ramp bottleneck

Let us now evaluate the impact of the proposed ACC-based traffic assistance
system by means of traffic simulations. The microscopic modeling approach al-
lows for a detailed specification of the parameters and proportions of cars and
trucks, as well as the proportions of ACC and manually controlled vehicles.
As introduced in Sec. 2, we use the Intelligent Driver Model (IDM) with the
parameter sets for cars and trucks given in Table 2 consistent with real traffic
data (Treiber et al., 2000). The vehicle length has been set to 4m for cars and
12m for trucks. Furthermore, lane-changing is a required ingredient for realis-
tic simulations of freeway traffic and merging zones such as the considered on-
ramp. We have modeled lane-changing decisions by the MOBIL (‘Minimizing
Overall Braking Induced by Lane Changes’) algorithm proposed by Kesting
et al. (2007a). The basic idea of MOBIL is to measure both the attractiveness
of a given lane, i.e., its utility, and the risk associated with lane changes in
terms of accelerations as calculated with the underlying car-following model,
i.e., with the IDM. While a safety criterion prevents critical lane changes and
collisions, an incentive criterion evaluates the prospective (dis-)advantage in
the new lane. Notice that the ACC system only controls longitudinal driving.
For this reason, we use the same lane-changing parameters for ACC vehicles.

In the simulation runs, a given proportion of vehicles is equipped with ACC
systems (cf. Fig. 2). Each ACC vehicle determines the local traffic situation
autonomously by evaluating the locally available data. Depending on the de-
tected traffic state, the individual ACC parameters T , a, and b are immediately
changed by the multipliers of the driving strategy matrix listed in Table 1.
The automatic adaptation of the driving style induces a reaction to the traf-
fic dynamics of the overall system. In the following subsections, we evaluate
the impact of the proportion of ACC vehicles, the driving strategies, and the
boundary conditions on the capacity and stability of traffic flow by means of
numerical simulations. For a direct evaluation of the effects of the proposed
adaptive driving strategy of ACC vehicles, we use the same default param-
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Table 2
Model parameters of the Intelligent Driver Model (IDM) for cars and trucks as
used in the simulations. The parameters of the ‘driving strategy matrix’ are sum-
marized in Table 1. The website http://www.traffic-simulation.de provides
an interactive simulation and documentation of the IDM in combination with the
lane-changing model MOBIL.

Model Parameter Car Truck

Desired velocity v0 120 km/h 85 km/h

Safe time gap T 1.5 s 2.0 s

Maximum acceleration a 1.4 m/s2 0.7 m/s2

Desired deceleration b 2.0 m/s2 2.0 m/s2

Jam distance s0 2 m 2 m

eters for human drivers and ACC-equipped vehicles assuming that the ACC
parameters in the default state are adjusted to the natural driving style.

4.1 Spatiotemporal dynamics for various ACC proportions

We have investigated a traffic scenario with open boundary conditions and an
on-ramp as typical representative for a stationary bottleneck. The simulated
three-lane freeway section is 13 km long. The center of the on-ramp merging
zone of length Lrmp = 250m is located at x = 10 km. As upstream boundary
condition, we have used empirical detector data from the German freeway A8
from Munich to Salzburg. Figure 3 shows the 1-min data of the lane-averaged
traffic flow and the proportion of trucks during the evening rush-hour between
15:30h and 20:00h. Although we also used the average velocities provided
by the detectors, they turned out to be irrelevant for the traffic dynamics
because the vehicles relax their velocities in the first few 100m according to
the local traffic situation. Notice that, in the real-world data, traffic further
downstream of the detector was congested between 17:00h and 19:30h due
to an on-ramp and an uphill gradient, cf. Fig. 14 in Treiber et al. (2000).
Moreover, we have assumed a constant ramp flow of 750 vehicles/h with 10%
trucks. The parameters in Table 2 are calibrated in order to reproduce the
empirical traffic breakdown further downstream at a bottleneck. For details,
we refer to Treiber et al. (2000).

For an investigation of the impact of the proposed traffic assistance system on
the traffic dynamics, we have carried out several simulations with varying pro-
portion of vehicles equipped with ACC systems. The resulting spatiotemporal
dynamics for ACC penetrations of 0%, 5%, 15% and 25% are shown in Fig. 4.
For the purpose of better illustration, we have plotted the lane-averaged mean
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Fig. 2. Screenshot of our traffic simulator, showing the on-ramp scenario studied
in Sec. 4.1. In our visualization, the current traffic state of each ACC vehicle is
displayed by a changing vehicle color allowing for a direct, visual assessment of the
detected states. In contrast, non-ACC vehicles are displayed in grey color. The pa-
rameters of the strategy matrix can be changed interactively by the researcher in
order to test new strategy matrices directly. For matters of illustration, two simula-
tion runs are displayed. In the upper simulation, 100% of the vehicles are equipped
with the ACC-based traffic assistance system. The different vehicle colors indicate
the locally detected traffic states. The reference case without ACC equipment (grey
vehicle color) displayed in the lower simulation window shows congested traffic at
the bottleneck. In both simulations, the same time-dependent upstream boundary
conditions have been used (cf. Fig. 3).
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Fig. 4. Spatiotemporal traffic dynamics around an on-ramp located at x = 10km
for different proportions of ACC vehicles, represented by the lane-averaged velocity
of a three-lane freeway upside down. The inflow at the upstream boundary is taken
from empirical 1-min detector data shown in Fig. 3 during the evening rush-hour.
The simulations show the positive impact of the traffic assistance system for AC-
C-equipped vehicles introduced in Sec. 3.

velocity upside down. Thus, a decrease in the speed due to an increase of the
inflow as well as congested traffic are clearly displayed.

The simulation scenario without ACC vehicles shows a traffic breakdown at
t ≈ 17:00 h at the on-ramp due to the increasing incoming traffic at the up-
stream boundary during the rush-hour. The other three diagrams of Fig. 4
show simulation results for an increasing proportion of ACC-equipped vehi-
cles, which reduces traffic congestion significantly. Already a proportion of 5%
ACC vehicles improves the traffic flow. This demonstrates the efficiency of
the proposed automated driving strategy and its positive effect on capacity
already for small penetration levels. An equipment level of 25% ACC vehicles
avoids the traffic breakdown in this scenario completely.

4.2 Influence on capacity

Let us study the traffic dynamics in more detail by investigating flow-density
data. To facilitate a direct comparison with the data collected from double-
loop detectors, we have applied the same data aggregation technique by intro-
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ducing ‘virtual detectors’ mimicking real-world cross-section measurements.
We have recorded the traffic flow Q and the mean velocity V within 1-min
sampling intervals. Furthermore, we have determined the density ρ via the hy-
drodynamic relation Q = ρV . All quantities are averaged over the three lanes
of the simulated road section. Figure 5 shows the resulting flow-density rela-
tions of the simulations for several cross-sections located up- and downstream
of the on-ramp bottleneck. For direct comparison, we have displayed the data
of the simulations of Fig. 4 with an ACC proportion of 25% and without ACC
vehicles in the same plots.

Upstream of the bottleneck (diagrams (a) and (b) of Fig. 5), the flow-density
data show the branch of free traffic flow Q ≈ v0ρ, for ρ < 30 veh./km/lane, and
the widely scattered area of congested traffic for ρ > 30 veh./km/lane. After
the traffic breakdown, the flow is reduced by approximately 10–20% compared
to the maximum value of Q in the branch belonging of the free traffic. The
data of the detectors located downstream of the on-ramp demonstrate that
the maximum flow in free traffic has been increased in the simulation scenario
with 25% ACC vehicles. In some sense, the local reduction of the time gap
by a small proportion of ACC vehicles is able to ‘fill’ the capacity gap at
the bottleneck, at least partially. Therefore, the performance loss due to the
capacity drop (Kerner and Rehborn, 1996; Cassidy and Bertini, 1999; Daganzo
et al., 1999b; Kesting et al., 2007b) in congested traffic is avoided (or delayed
for smaller ACC proportions). The approach of jam-avoiding driving by ACC
vehicles, which dynamically increases the local capacity near the on-ramp, can
be transfered to other kinds of bottlenecks as well (Kesting et al., 2006).

4.3 Evaluation of the instantaneous and cumulated travel time

Let us now consider the travel time as the most important variable of an
user-oriented measure of the quality of service (Hall et al., 2000). While the
instantaneous travel time as a function of the simulation time reflects mainly
the perspective of the drivers, the cumulated travel time is a performance
measure of the overall system that can be associated with the economic costs
of traffic jams. We define the instantaneous travel time of a road segment
[xstart, xend] by

τinst(t) =

xend
∫

xstart

dx

V (x, t)
. (11)

In a microscopic simulation, the average velocity V (x, t) can be approximated
from the velocities vi and the integral by the sum over the gaps ∆xi = xi−1−xi

of all vehicles i according to

τinst(t) =
∑

i

∆xi(t)

vi(t)
. (12)
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Moreover, the cumulated travel time is simply the vehicle number on the
simulated section integrated over time.

Figure 6 shows the instantaneous and cumulated travel times for the simula-
tion runs in Fig. 4. Obviously, the breakdown of the traffic flow has a strong
effect on the travel time. For example, the cumulated travel time without
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ACC vehicles amounts to about 4000 h, whereas the scenario with a fraction
of 25% ACC vehicles results only in approximately 2500 h. Therefore, the traf-
fic breakdown leads to an increase of the overall travel time by 60% compared
to free flow conditions. In comparison, the travel time of individual drivers at
the peak of congestion (t ≈ 18:45 h) is even tripled compared to the situation
without congestion. The time series of the instantaneous travel times indicate
that an increased ACC proportion delays the traffic breakdown. Already for
5% ACC vehicles, the traffic breakdown is shifted by 20min compared to the
traffic breakdown at t ≈17:00 h in the scenario without ACC vehicles.

The results in Fig. 6 demonstrate that both the instantaneous and the cumu-
lated travel time are sensitive measures for the impact of traffic congestion
and, thus, the quality of service. In contrast to other macroscopic quantities
such as traffic flow or average velocity, the travel time sums up over all vehicles
in the simulation and weights their influence directly in terms of the travel
time. As shown in our simulations, already a slightly increased capacity due
to the adaptive driving strategy of a small fraction of traffic-assisted vehicles
can have a significant positive impact on system performance.

4.4 Dependence on the penetration rate of ACC vehicles

Finally, we have systematically studied the robustness of the presented sim-
ulation results and their dependence on the percentage of ACC vehicles. For
sensitive performance measures such as travel times, the time of the traffic
breakdown is important, which, in the simulation of a multi-lane freeway with
an on-ramp bottleneck and several vehicle types, is a stochastic variable. Con-
sequently, the travel time is a stochastic variable as well. We have performed
51 simulation runs varying the ACC proportion between 0% and 50% for each
of the four simulation scenarios depicted in Fig. 7. The resulting cumulated
travel times for each simulation run are shown as triangles in the diagrams
of Fig. 7. Additionally, we have calculated the average travel time and its
variation by a Gaussian-weighted linear regression with a smoothing width of
σ = 0.05 with respect to the proportion of ACC vehicles. The diagrams refer-
ring to different simulation settings show a similar behavior: The cumulated
travel times decrease monotonously when increasing the fraction of ACC ve-
hicles until the travel time for free traffic is reached for an ACC percentage of
about 25%. Remarkably, the cumulated travel time already decreases signifi-
cantly for low equipment levels of only a few percent of vehicles. This opens
good perspectives for an introduction of this traffic assistance system into the
market.

The simulation results shown in Fig. 7(a) refer to the simulation scenario
already discussed before (cf. Figs. 4 and 6). In the simulations shown in the
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diagram 7(c), we have varied the reduction factor of the time gap, which is the
most important parameter for the bottleneck strength from λbottleneck

T = 0.5
to λbottleneck

T = 0.7. The diagram shows a similar monotonous relationship
between the proportion of ACC and the travel time. As expected, the decrease
of the cumulated travel time is shifted towards higher ACC equipment rates
compared to the simulations with λbottleneck

T = 0.5, given the same empirical
boundary conditions.

We also investigated the effects of distributed driving parameters for ACC
and not equipped vehicles in order to represent individual differences in the
driving behavior. In Fig. 7(b) and 7(d), we show simulations with uniformly
distributed time gaps T and desired velocities v0 of driver-vehicle units. The
averages of the parameter values have been left unchanged and the width of
the distributions have been set to 25% of T and v0, respectively, i.e., the in-
dividual values vary between 75% and 125% of the average parameter value.
Again, we have obtained a similar reduction of traffic congestion with an in-
creasing ACC proportion, which demonstrates the robustness of the proposed
adaptive driving strategy. The higher total travel times compared to simu-
lations without statistically distributed parameters can be explained by the
fraction of vehicles driving with a lower desired velocity v0 or a larger time
gap T . Note that, for dense traffic conditions, these vehicles also determine the
overall driving behavior of driver-vehicle units with higher desired velocities.

5 Discussion and outlook

Adaptive cruise control (ACC) systems are already available on the market.
They will spread in the future, and the next generation of ACC systems is ex-
pected to extend their range of applicability to low speeds and ‘follow to stop’
capability. This offers a realistic perspective for a decentralized traffic opti-
mization strategy based on ACC-equipped vehicles. Up to now, ACC systems
were mainly optimized for the user’s driving comfort and safety. In order to
ensure that ACC systems are implemented in ways that improve, rather than
degrade traffic conditions, we have proposed an ACC-based traffic assistance

system with an active jam-avoidance strategy. The main innovation of our con-
cept is that ACC vehicles implement variable driving strategies and choose a
specific driving strategy according to the actual traffic situation. Based on
local information, each vehicle detects autonomously the traffic state and au-
tomatically adapts the parameters, i.e., the driving style, of the ACC system.
The detection algorithm can be improved by non-local information provided
by infrastructure-to-car and inter-vehicle communication, which offers an in-
teresting application field for wireless communication technologies (Schönhof
et al., 2006).
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Fig. 7. Cumulated travel time as a function of the proportion of ACC vehicles for dif-
ferent simulation settings (cf. main text). Each data point represents a single simula-
tion run. The average value and its variation are calculated by a Gaussian-weighted
linear regression method. All simulated systems show a similar monotonous re-
duction until the value corresponding to free traffic is reached. The reduction is
significant already for low equipment rates.

We have presented a concrete model specification of the traffic assistance sys-
tem and implemented the components within a microscopic simulation frame-
work. The simulations served as ‘proof of concept’ of our driving strategy

matrix, which is based on a finite set of 5 traffic states in order to resolve
conflicting objectives between driving comfort and road capacity. The simula-
tions of a freeway section with an on-ramp showed that reducing the time gap
locally in the ‘bottleneck state’ and at the ‘downstream front’ of congested
traffic is sufficient to reach efficient traffic flow, while most of the time our
proposed ACC system is driving with natural parameter settings. As a bot-
tleneck is defined by a capacity reduction, the reduction of the time gap at a

bottleneck manages to fill the capacity gap. This approach is also applicable to
other kinds of bottlenecks such as an uphill gradient (Kesting et al., 2006).

Furthermore, our simulations of the afternoon rush-hour peak of a German
autobahn rush-hour showed that already a small percentage of ‘intelligent’
ACC vehicles, i.e., a relatively modest change in the maximum free flow can
significantly improve the traffic performance. This can delay the breakdown of
traffic flow and increase the dynamic capacity, which leads to reduced queue
lengths in congested traffic. The simulations demonstrate that already an ACC
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equipment level of 5% improves the traffic flow quality and reduces the travel
times for the drivers in a relevant way. A systematic increase of the ACC
penetration level for different simulation settings and statistically distributed
model parameters achieves a monotonous decrease of the cumulated travel
time. The presented results are largely independent of details of the model,
the upstream boundary conditions, or the type of road inhomogeneity. Note
that this is crucial for a successful introduction of the traffic assistant system
into the market.

The simulations were based on the assumption that only a small fraction
of ACC vehicles adapts their parameters according to the proposed jam-

avoiding driving strategy, while the manually controlled vehicles applied a
time-independent, constant driving style. The presented findings demonstrate
the impact of the individual driver behavior on the overall traffic dynam-
ics. This is also relevant for manual driving because human drivers generally
respond to the local traffic conditions as well (Treiber et al., 2006b). For exam-
ple, subconscious adaptation processes decrease the local capacity which has
been interpreted as ‘frustration effect’ (Treiber and Helbing, 2003). A higher
impact on the efficiency of the traffic flow would even be reached if human
drivers act according to the proposed jam-avoiding driving strategy as well.
Consequently, it would be desirable to teach driver behaviors that are benefi-
cial to the overall system (such as attentive driving at bottlenecks and prompt
acceleration when leaving a jam) in driving lessons, next to established topics
such as trainings in economic and safe driving.

The presented work was developed in cooperation with a car manufacturer. A
concrete vehicle implementation of a similar ACC-based system has recently
been presented within the German research project INVENT (German Federal
Ministry of Education and Research (BMBF), 2005). Note that, for a concrete
implementation of the proposed traffic assistance system, one has to take into
account present imperfections of ACC systems as well such as response time
delays (Kranke et al., 2006). Our current work focusses on the implementation
of different driving strategies and smooth transitions between them in real test
vehicles. The experiences from the empirical test track data will be used to
further improve the model components.
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