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Abstract— Recent advances in automotive technology, such
as, sensing and onboard computation, have resulted in the
development of adaptive cruise control (ACC) algorithms that
improve both comfort and safety. With a view towards devel-
oping advanced controllers for ACC, this paper presents an
experimental platform for validation and demonstration of an
online optimization based controller. Going beyond traditional
PID based controllers for ACC that lack proof of safety, we
construct a control framework that gives formal guarantees
of correctness. In particular, safety constraints—maintaining
a valid following distance from a lead car—are represented
by control barrier functions (CBFs), and control objectives—
achieving a desired speed—are encoded through control Lya-
punov functions (CLFs). These different objectives can be
unified through a quadtraic program (QP), with constraints
dictated by CBFs and CLFs, that balances safety and the
control objectives in an optimal fashion. This methodology is
demonstrated on scale-model cars, for which the CBF-CLF
based controller is implemented online, with the end result
being the experimental validation of an advanced adaptive
cruise controller.

I. INTRODUCTION

According to a 2008 survey conducted by the National

Highway Traffic Safety Administration, 93% (i.e., 9.48 Mil-

lion out of 10.2 Million) of all the car crashes in the U.S. are

caused by mistakes made by the driver. Although, according

to the survey conducted in 2013, these numbers have slightly

decreased, satisfactory technological solutions to prevent

accidents have yet to be developed. As a result, researchers

have more impetus to solve this problem using onboard sens-

ing, computation and control to assist human drivers. Cruise

control, Anti-lock Braking Systems (ABS), traction control,

obstacle avoidance and improved traffic flow are a few

examples [14], [15]. Conventional cruise control [23] (CCC)

has been successfully implemented in almost all production

cars in the United States, yet has not actively taken into

account collision avoidance. Adaptive cruise control (ACC),

which aims to unify CCC with safety related constraints [17],

is being actively studied from various perspectives [19], [11].

Mitsubishi was the first company to start the concept of ACC

in 1995, designing the Preview Distance Control, a method
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Fig. 1: Experimental setup with the electric car on the boom

that matches the velocity of the vehicle to its immediate

leader based on a laser distance measurement system.

To experimentally evaluate advanced automotive con-

trollers like ACC, previous research by the Program of

Advanced Technology for the Highway (PATH) has focused

on creating platoons between vehicles on the highways, e.g.,

multiple controlled cars follow a lead car even for lane

changes [22]. These results were achieved using radar sensor

detection by continuously calculating the headway distance

to maintain the desired velocity. Intelligent cruise control

(ICC) is a variant of ACC explored by [12], [24], [5] which

prioritizes autonomous driving by designing controllers with

braking systems that require minimal manual interaction.

Reference [7] investigates a braking system that allows the

vehicle to perform emergency stops when necessary, then

return to the set point velocity. More progressive control

methods, for example, satisfying Lyapunov Stability crite-

rion, have been shown to create smooth traffic flow in [6].

The main contribution of this paper is the simulation and

experimental validation of a controller that mathematically

accounts for both safety and comfort of the driver. The

safety critical nature of the problem necessitates controllers

that are formally correct, i.e., give guarantees of safety.

To address this, in [2], [17], controllers were presented

that give proofs of safety while simultaneously achieving

speed related control objectives. Of special interest here are

methods that utilize online optimization to maximize the

achievement of performance goals (via CLFs), subject to

safety (CBFs) constraints, and even bounds on actuation.

In particular, safety constraints are formulated as CBFs

and speed regulation related control objectives are encoded

as CLFs; these representations allow for the formulation



of a quadratic program (QP) problem that dynamically

adjusts these potentially contradictory specifications. These

constructions are revisited in the context of a lead vehicle

with variable speed and used to derive a QP based controller

that formally ensures safety. In addition to simply simulating

the resulting controller to validate its correctness, to more

sufficiently validate the feasibility of the framework in real

world application, we introduce an experimental platform uti-

lizing scale-model cars (see Fig. 1) to test the QP based ACC

controllers. In addition to simulating the resulting controller

to validate its correctness, this paper validates the feasibility

of the QP-CBF-CLF approach in a real-time embedded

environment and its ability to handle model uncertainty. In

particular, the QP based controller is implemented on an

autonomous following car while the lead car is manually

controlled . The end result is the experimental validation of

online optimization based controllers for ACC that simulate

realistic driving conditions.

The structure of this paper is as follows: Sect. II introduces

the experimental scale-model car test bed, the corresponding

dynamical system model, and the constraint specifications

involved in the ACC problem. In Sect. III we introduce the

control framework that is implemented experimentally. In

particular, we begin by translating the safety specifications

of the ACC problem to control barrier functions and speed

related objectives to control Lyapunov functions. Sect. IV

discusses the embedded level implementation of the control

algorithm on the experimental platform. Finally, Sect. V

and Sect. VI conclude the validation of the controller via

simulation and experimental results.

II. SYSTEM DYNAMICS AND EXPERIMENTAL SETUP

This section presents a novel experimental platform (see

Fig. 1) for testing advanced control algorithms for Adaptive

Cruise Control (ACC). This platform consists of two scale-

model cars, constrained to a 2D sagittal plane (via a boom) to

allow for the detailed study of speed regulation and collision

avoidance. After discussing the experimental platform, we

introduce the nonlinear model of the autonomous (following)

car that will be used to test the controller. Finally, we propose

the necessary constraints: safety, speed and wheel force that

will be used to construct the ACC problem in Sect. III.

A. Experimental Setup

We begin by discussing the experimental platform that will

be used to evaluate formal constructions. This setup is shown

in Fig. 1 and detailed in Fig. 2.

In order to maintain an appropriate balance between real-

ism and complexity, we chose two electric, remote controlled

cars powered by brushless DC (BLDC) motors as the test

vehicles for the experiments (see Fig. 2). The following

car is a all wheel drive, 1/5th scaled model and the lead

car is a rear wheel drive, 1/8th scaled model. The chassis

was machined out of aluminum and came equipped with

hydraulic shocks. The damping from the shocks was not

taken into account in order to keep the simplicity of the

overall dynamics. The vehicle is powered by a 22.2 V ,

Fig. 2: Experimental Setup. The boom restricts motion to a

circle. As shown in figure: (1) Electric motor, (2) On-board

UDOO (3) Battery for the UDOO board, (4) Hall sensor and

magnets, (5) Boom attachment plate, (6) Magnetic encoder

on the central shaft to measure the relative distance.

5000 mAh Lithium Ion-Polymer(LIPO) battery allowing the

vehicle to achieve speeds of more than 10 m/s . The control

algorithms running online on the autonomous car, are coded

at an embedded level on an electrical development board.

To eliminate lateral motion, both cars are rigidly attached

to a central shaft via a boom; see Fig. 1. A similar two dimen-

sional setup has already been implemented in several robotic

experiments, e.g., in the context of bipedal locomotion [16].

Note that the two cars are attached to their respective booms

with a universal ball joint mounted near the front axle

in order to ensure self-correction of lateral disturbances.

Additionally, the location of the ball joint serves as a steering

mechanism, further supporting the assumption of 2D motion

of the cars.

B. Nonlinear Dynamics

This ACC - equiped is modeled as a point mass system

subject to various forces as illustrated in the free body

diagram shown in Fig. 3. Thus, resulting in the equations

of motion of the form:

m
dv

dt
= Fw − Fr, (1)

where m and v are the mass and the velocity of the car, Fw

is the force generated by the contact point of the wheels with

the road, and

Fr = f0 − f1v − f2v
2, (2)

is the total resistive force acting on the vehicle, in which

f0, f1 and f2 are various coefficients of friction forces that

can be calculated empirically. All parameters used in this

paper are listed in TABLE I.

Furthermore, the distance D between the following car

and the lead car is specified by the equation:

d

dt
D = vl(t)− v, (3)



Fig. 3: Dynamics on a free body diagram of a vehicle

where vl(t) and v are the velocities of the lead and controlled

car, respectively. Note that the velocity of the lead car, vl(t),
is assumed to be a time varying function (this is in contrast

to previous work by the authors [2] where it was assumed

to be constant). Without some assumptions on the lead car,

there can be no correctness. vl(t) will be governed by the

user manually controlling the lead car and sensed through

the boom encoder.

By defining x = (x1, x2) with x1 the position of the

vehicle, x2 the velocity and z = D to be the distance between

the two cars, the governing equations can be converted to a

nonlinear ODE:

ẋ =

[
x2
−Fr

m

]

︸ ︷︷ ︸

f(x,z)

+

[
0
1
m

]

︸︷︷︸

g(x,z)

u, (4)

ż = vl − x2
︸ ︷︷ ︸

q(x,z,t)

, (5)

where u = Fw is the control input. We now introduce the

constraints on the dynamics of this system as dictated by the

ACC problem.

C. Control Objectives

With the goal of validating the requirements of ACC,

including: collision avoidance, adaptive velocity control,

and driver comfort, this section will present three classes

of constraints. These constraints will form the basis for

the development of an advanced online-optimization based

controller for the ACC problem.

Parameter value Unit

g 9.81 kg/s2

m 9.07 kg
f0 0.1 N
f1 5 N · s/m
f2 0.25 N · s2/m
v0 3 kg/s
ε 10 −
γ 10

−4 −
ca 0.8 −
cd 1.2 −
psc 10

5 −
pcc 10

10 −

TABLE I: Parameters Used in Simulation and Experiments

Hard Constraint: The constraint with the highest priority

is to prevent the following vehicle from colliding with the

lead car—this constraint should never be violated under any

circumstance. For the purposes of this paper, we consider the

simple rule stated in [25]: the minimum distance between two

cars, must be “half the speedometer”, which is represented

mathematically as:

D ≥
v

2
, (HC1)

where D is in meters and v is in kilometers per hour

Soft Constraint: As the standard objective of cruise control,

the controller should be able to track a specified desired

speed, vd, when adequate headway is assured. In other

words:

Drive v − vd → 0. (SC1)

Comfort Constraint: While satisfying hard and soft con-

straints, it is optimal to reduce the peak forces generated by

the car in emergency situations. For example, the comfort

constraints would prevent sudden jerks so that the driver

can experience a comfortable ride. This can be achieved

by constraining the acceleration and the deceleration of the

vehicle through an inequality constraint:

− cdg ≤
Fw

m
≤ cag, (CC1)

where cd and ca are the factors of g for deceleration and

acceleration, respectively. Similar bounds are assumed for

the lead vehicle’s acceleration.

III. CONTROL FRAMEWORK

The goal of this section is to develop a nonlinear online

optimization based controller that formally guarantees the

precise specifications of the ACC problem. In particular,

to ensure satisfaction of the hard constraint, we utilize the

framework of control barrier functions [18], [26], [13] and,

specifically, the formulation presented in [2]. Soft constraints

are viewed as control objectives, and represented by control

Lyapunov functions [8], [3]. Finally, the hard constraints,

soft constraints and the comfort constraints are unified into

a single control framework through the use of a quadratic

program (QP) [4], [9].

A. Hard Constraints as Control Barrier Functions

To construct a controller that provably enforces the Hard

Constraint (HC1), it is natural to utilize control barrier

functions (CBFs) to ensure that this constraint is satisfied

for all time. Motivated by previous work [2] for the case

where the lead car is moving at a constant velocity, this

paper will develop a control barrier function for a varying

lead car velocity: vl(t). In particular, by converting units to

m and s, the hard constraint (HC1) can be restated as:

h(x, z) = z − 1.8x2 ≥ 0, (6)

which yields the admissible set C given by:

C = {(x, z) ∈ R
3 : h(x, z) ≥ 0}, (7)

∂C = {(x, z) ∈ R
3 : h(x, z) = 0}, (8)

Int(C) = {(x, z) ∈ R
3 : h(x, z) > 0}. (9)



Then the CBF candidate B can be chosen as:

B
(
h(x, z)

)
= B(x, z) =

1

z − 1.8x2
, (10)

with associated derivative:

Ḃ(x, z, t, u) =

−
1.8Fr +m(vl(t)− x2)

m(z − 1.8x2)2
︸ ︷︷ ︸

LfB

+
1.8

m(z − 1.8x2)2
︸ ︷︷ ︸

LgB

u.

Based on Definition 2 from [2] and the fact that for (x, z) ∈
Int(C), it follows that 1.8x2−z < 0, B(x, z) is a valid CBF

if it satisfies

Ḃ(x, z, t, u) ≤
γ

B(x, z)
, (11)

where γ is a positive constant. This leads to

inf
u∈U

[

LfB(x, z) + LgB(x, z)u−
γ

B(x, z)

]

≤ 0.

(HC1-CBF)

Therefore, by Theorem 1 of [2] any admissible control input

u ∈ U satisfying (HC1-CBF) will guarantee that B(x, z) is a

valid control barrier function, i.e., any (x0, z0) ∈ C will stay

in C for all time for any control law satisfying (HC1-CBF).

B. Control Lyapunov Functions for Soft Constraints

In this section, we revisit the mathematical methodology

used in [2] to build the soft constraint based on Control

Lyapunov Functions (CLFs) [8]. To track a desired velocity,

the control law should drive

y(x, z) = x2 − vd → 0. (SC1)

For this relative 1 degree output, we choose the Lyapunov

function candidate as:

V (y) = y2, (12)

which yields

V̇ (y) = −
2y

m
Fr

︸ ︷︷ ︸

LfV

+
2y

m
︸︷︷︸

LgV

u. (13)

According to Definition 3 in [3], since V (y) satisfies

c1‖y‖
2 ≤ V (y) ≤ c2‖y‖

2, V (y) is a valid exponentially

stabilizing control Lyapunov function (ES-CLF) if

inf
u∈U

[LfV (y) + LgV (y)u+ εV (y)] ≤ 0, (14)

is also satisfied. In other words, with a proper choice of

control input u, the output y(x, z) will be exponentially

driven to zero, which enforces velocity tracking. However,

this function needs to be converted into constraints that are

functions of (x, z). To achieve this, by defining

ψ0(x, z) = −
2(x2 − vd)

m
Fr + ε(x2 − vd)

2,

ψ1(x, z) =
2(x2 − vd)

m
, (15)

we can then construct the CLF constraint:

ψ0(x, z) + ψ1(x, z)u ≤ δsc, (SC1-CLF)

where δsc is a relaxation factor. Note that, it is this relaxation

factor that makes the constraint a soft constraint.

C. QP based Controller

Following [2], we will develop an online quadratic pro-

gram (QP) based controller that will provably satisfy the hard

constraints, while achieving the soft and comfort constraints

whenever possible. To construct a cost function for the

QP, we utilized notions from feedback linearization [21] to

develop a cost that will favor convergence to the control

objective (achieving a desired speed). In particular, a specific

example of a control input that satisfies (13) is given by:

u =
1

Lgy
(−Lfy + µ) = Fr +mµ, (16)

where µ is the control input for the linearized output dy-

namics (see [21]). To minimize the control effort µ, the cost

function of QP is chosen as:

µTµ =
1

m2
(uTu− 2uTFr + F 2

r ). (17)

By combing the above constraints the ACC CBF-CLF

based QP control law is given by:

u∗(x, z) = argmin

u=









u
δsc
δcc









∈R3

1

2
uTHaccu + FT

accu (ACC QP)

s.t. Aclfu ≤ Bclf , (CLF)

Acbfu ≤ Bcbf , (BCF)

Accu ≤ Bcc. (CC)

In which,

Hacc = 2





1
m2 0 0
0 psc 0
0 0 pcc



 , Facc = −2





Fr

m2

0
0



 , (18)

and Aclf , Bclf and Abcf , Bbcf are the inequality constraints

obtained from (HC1-CBF), (SC1-CLF):

Aclf =
[
ψ1(x, z) −1 0

]
,

Bclf = −ψ0(x, z),

Acbf =
[
LgB(x, z) 0 0

]
,

Bcbf = −LfB(x, z) +
γ

B(x, z)
.

Note that since the comfort constraint is also a conditional

constraint and it directly acts on the control input, Acc, Bcc

can be obtained by modifying (CC1) by adding the relaxation

factor δcc:

u ≤ camg + δcc,

−u ≤ cdmg + δcc. (CC)

This results in:

Acc =

[
1 0 −1
−1 0 −1

]

, Bcc =

[
camg
cdmg

]

,

where pcc is the user-defined penalty for the relaxation.

Because we want to give higher priority to comfortable

driving experience over velocity regulation, it is necessary



to set psc ≪ pcc, where psc and pcc are the penalties on the

soft constraints and comfort constraint, respectively.

Note that while the output of the control law is a direct

input to the dynamic system for the simulation, for the

experimental setup the actual input to the system is the

PWM command sent to the motor. To best mirror the control

framework on physical experiments, we integrate the output

of the QP (ACC QP) one step forward by using the dynamics

of the system to find the internal velocity via:

vqp = vprevious +
(u− Fr)tloop

m
, (19)

where tloop is the loop rate on the hardware. The end result is

a control input for the nonlinear dynamics that will guarantee

the safety via hard constraint and adaptively use minimum

effort to adjust the velocity of the vehicle for both good

comfort and tracking performances.

IV. EXPERIMENTAL REALIZATION

In order to validate the proposed CBF-CLF QP controller

on the test bed discussed in Sect. II, hardware-software in-

terface along with a high level controller that mathematically

calculates the solution to the ACC QP online, are required. In

other words, three major requirements for the experimental

realization are: sensing, actuation and the embedded level

computing.

Sensing. To address the ACC problem specifications, as

discussed in Sect. III, the speed of the cars and the distance

between them are to be fed into the controller via various

sensors. Velocity measurements of the following car in

experiment are achieved through the use of a Hall effect

sensor, mounted on the wheel hub of the front wheel (see

Fig. 2) with two small magnets placed 180 degrees apart on

the inside of the same wheel. Common measurements of the

headway distance in production vehicles is through radar or

lidar [25]. However, taking advantage of the special boom

setup, the relative distance between two cars can be measured

by the magnetic incremental encoder mounted on the central

shaft.

Actuation. The system considered has a single control

output: velocity. The electric car used as the following car

(Fig. 2) has a three phase BLDC motor that is governed by

pulse width modulation (PWM) signals sent to the Electronic

Speed Control (ESC) unit which converts it into a three phase

voltage. The electric car does not have a separate actuator to

apply a braking force to the wheel, therefore the velocity of

the car is regulated through positive wheel force and resistive

forces only.

Embedded Computing. Realization of the proposed con-

troller has been divided into two stages: a high-level con-

troller which is running ROS (Robotic Operating System) on

Ubuntu, and a low-level controller realized by an Arduino

DUE board and the ESC on the car. Both high- and low-

level controllers are running on the UDOO board with an

embedded Arduino board, which is powered by a quad core

processor and, therefore, has the ability to achieve the online

Algorithm 1 UDOO Module, High Level Controller

Input: Current velocity of controlled car;
Input: Relative distance between the two cars;
Input: Current velocity of the lead car;
1: Enable ROS Master;
2: Run ROSSERIAL to communicate with low-level;
3: Connect to remote laptop through SSH;
4: Enable Electronic Speed Control (ESC) for the car;
5: repeat

6: Wait till all communication is established
7: until ( ESC == Enable )
8: Set up parameters for the model;
9: while ( ROSSERIAL == Running ) do

10: Define loop rate for high level controller;
11: Read ROS messages, Current Velocity and Relative Distance;
12: Calculate actual time for the loop (tloop) using loop rate;
13: if Error in Calculation then

14: Report Errors and Stop QP calculation;
15: else

16: if Data recieved from any sensor then

17: Initialize the internal velocity for the QP;
18: Convert relative distance value into relative velocity (m/s);
19: Calculate lead car velocity by finite differencing;
20: Set up parameters for QP;
21: Calculate torque (Fw) via CLF-BCF QP.
22: if Barrier function < 0 then

23: Take vqp = 0 to simulate braking on the car;
24: else

25: Calculate vqp via one-step forward integration;
26: end if

27: Send velocity data to low-level controller
28: end if

29: Log data onto board via remote laptop over SSH;
30: end if

31: end while

32: Disable ROS Master;

control requirements. In particular, the sampling rate for the

ROS master is set to be 200 Hz.

High-Level Controller: The UDOO board runs Ubuntu

12.10 LTS and ROS Groovy on the processor. It is

mounted inside the car and solves the optimization problem

(ACC QP), online. The controller has been coded as a ROS

Node in C++ to improve the efficiency of execution as well

as record data being generated during the tests. The resistive

force as mentioned in (2) uses average coefficients derived

by testing on production cars, so when implementing on

scaled model cars, we scale the equation by the same factor

as the scale of the car. In real world scenarios, as seen in

CCC, the aerodynamic drag might cause high resistive forces

on the car. Which can be compensated by modifying the

force equation coefficients (2) according to the respective

car model. Algorithm 1 presents the pseudo-code of the

embedded implementation at the high level.

Low-Level Controller: Acting at the low-level, this

controller has less computation so it runs at a faster fre-

quency of 57600 BaudRate. The algorithm runs on the

Arduino DUE board as a ROS Node communicating with the

ROS Master. This allows us to connect motors and sensors

creating an interface between the hardware and software.

It is responsible for all the communication to and from

the actuators and sensors. To summarize the functions of

this controller, we present the pseudo-code running on the

Arduino in Algorithm 2.



Algorithm 2 Arduino Module- Low level

1: Compile Arduino code using IDE;
2: Communicate with ROSSERIAL node on ROS Master;
3: Enable Electronic Speed Control (ESC) for the car;
4: repeat

5: Set parameters for low-level controller;
6: until All communication is established
7: while ( ROSSERIAL == Running ) do

8: Initialize all GPIO pins;
9: Define pins for Motor, Hall Sensor and Magnetic Encoder;

10: if ESC == Enabled then

11: Send initialization sequence for ESC;
12: end if

13: Calibrate the relative distance;
14: Wait for messages from high level controller;
15: if PWM Signal == Active then

16: Send respective pulse value to motor;
17: Read data from hall sensor for wheel velocity;
18: Read data from magnetic encoder on central shaft;
19: Convert hall data into velocity in (m/s);
20: Convert encoder data into relative distance in (m);
21: Publish calculated data on ROS Master;
22: Subscribe for current v and vqp data on the Master;
23: Calculate error between v and vqp;
24: if error > 0 then

25: Proportional gain as Kpa;
26: else

27: Proportional gain as Kpd;
28: end if

29: Calculate new PWM signal using P-controller;
30: Send the PWM signal to the motor;
31: Log data onto board via remote laptop over SSH;
32: end if

33: end while

34: Disable Electronic Speed Control;
35: Kill the Arduino code;

V. RESULTS

In this section, the simulated performance and the exper-

imental performance of the CBF-CLF QP controller are an-

alyzed side by side. Importantly, we establish the successful

experimental implementation of the controller (ACC QP) as

exhibited in [1].

A. Simulation Results

As discussed in Sect. III, previous results [2] considered

the case when the lead care velocity was constant. On the

contrary, this paper constructed a control scheme that allows

for a lead care with time-varying velocity. To validate this

presented framework, the CBF-CLF QP controller was first

tested in an idealized environment: simulation. The lead

car velocity was chosen to be sinusoidal waveform, given

by vl(t) = 3 + 5 sin(0.1πt). As shown in Fig. 4, the

control objectives were accomplished (i.e., safety is always

maintained while the desired speed is achieved whenever

possible). In particular, when the system starts at initial

conditions (x0, z0) ∈ C, close to the boundary ∂C, the hard

constraint (Fig. 4b) forces the CBF constraint to modulate the

speed of the following car. Therefore, with a high value of B
and Ḃ, the following car moves much slower than the lead

car to maintain the safety imposed barrier. When the hard

constraint increases (i.e. the relative distance is within a safe

range) the soft constraint will influence the QP controller and

yield a desired cruise velocity regulation. The acceleration
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Fig. 4: Simulation results with sinusoidal lead car velocity

profile.

bounds restrain the speed modulation of the following car

to a smooth profile. Hence the simulation results verify the

validity of the proposed controller.

B. Experimental Results

Now, we describe the results of experimental implementa-

tion of the CBF-CLF QP controller (ACC QP), and present

the corresponding experimental results, and compare them

to simulation results that utilize the experimentally recorded

lead car velocity profile. In particular, the velocity data for

the manually controlled lead car is collected from the boom

encoder and utilized in simulation (through the fitting of

a high order polynomial to the data). This serves as the

connection point between the simulation and experimental

results as shown in Fig. 6. The consequent simulation results

can be seen alongside the experimental data in Fig. 5 and

Fig. 6 to provide concrete comparisons.
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Fig. 5: Experimental results (left column) and simulation

results (right column) for all of the relevant variables.

In Fig. 5, all of the relevant mathematical quantities are

shown to allow for direct comparison between experimental

plots on the left and simulation plots on the right. Overall,

good agreement is shown between the two cases, subject

to some notable differences. In the case of force input we

can see some discrepancies, which presumably accounts for

the lack of system model specifications—yet the force input

magnitudes are similar in both cases. Some calibration errors

and delays in sensing that propagate through the system,

introduce a slight bias in the behavior of the hard constraint

and the barrier function, B. Even with these practical issues,

the hard constraint is predominantly positive, indicating the

proper enforcement of the safety constraints. Finally, good

accordance is seen between the behavior of the control

Lyapunov function, V , and its derivative, V̇ , indicating the

ability to regulate speed when the control barrier function is

inactive.

As seen in Fig. 6, the velocity of the following car is

consistent between the simulation and experiment. Fig. 6a

shows all the experimental velocities recorded during the

tests. vexpqp is the velocity calculated from (ACC QP) using

the one step forward integration method (19), vexpfollow is the

actual velocity of the car, vexplead is the velocity of the lead

car and vd is the set desired velocity of the following car.

Fig. 6a illustrates the effectiveness of the CLF based control

constraint, which allows tracking of a set point velocity.

Similar outcomes can be seen when considering the sim-

ulation results obtained by using the experimental lead car

data as shown in Fig. 6b. The simulated velocity, vsimfollow, is

compared with the experimentally observed values, vexpfollow.

As expected, the simulation results achieve better velocity

tracking, yet these results still accurately represents the

behavior seen in experiments. Finally, comparing Fig. 6c

with Fig. 6a, we see that the velocity of the following car is

directly modulated by the relative distance and the lead car

velocity. This allows us to conclude that the proposed con-

trol method, encoded by (ACC QP), has been successfully

realized experimentally on scale-model cars.

VI. CONCLUSION

The main contribution of this paper is an experimental

platform that is used to evaluate advanced controllers for

ACC. The presented controller (ACC QP) was able to handle

multiple objectives—safety, speed regulation and comfort—

in a unified fashion. This online optimization based controller

was realized experimentally, where it was shown to satisfy

the safety specifications imposed by the control barrier func-

tion while achieving adaptive speed regulation as encoded by

the control Lyapunov function. To avoid errors arising from

hardware or communication time delays, the experimental

test speed was appropriately scaled to the vehicle. The

experimental results were then confirmed by comparing the

data against the results of a simulation using the same lead

car velocity. The comparison illustrated that the behavior of

the experimental controller for the ACC problem corresponds

with theory. The results of the control implementation, with

failure modes indicating the safety critical nature of ACC,

are available online as a video [1].
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