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Abstract

The constant increase in wireless handheld devices and the prospect of billions of connected machines has

compelled the research community to investigate different technologies which are able to deliver high data rates,

lower latency and better reliability and quality of experience to mobile users. One of the problems, usually overlooked

by the research community, is that more connected devices require proportionally more signalling overhead.

Particularly, acquiring users’ channel state information is necessary in order for the base station to assign frequency

resources. Estimating this channel information with full resolution in frequency and in time is generally impossible,

and thus, methods have to be implemented in order to reduce the overhead. In this paper, we propose a channel

quality estimation method based on the concept of Gaussian process regression to predict users’ channel states for

varying user mobility profiles. Furthermore, we present a dual-control technique to determine which is the most

appropriate prediction time for each user in order to keep the packet loss rate below a pre-defined threshold. The

proposed method makes use of active learning and the exploration-exploitation paradigm, which allow the controller

to choose autonomously the next sampling point in time so that the exploration of the control space is limited while

still reaching an optimal performance. Extensive simulation results, carried out in an LTE-A simulator, show that the

proposed channel prediction method is able to provide consistent gain, in terms of packet loss rate, for users with low

and average mobility, while its efficacy is reduced for high-velocity users. The proposed dual-control technique is then

applied, and its impact on the users’ packet loss is analysed in a multicell network with proportional fair and maximum

throughput scheduling mechanisms. Remarkably, it is shown that the presented approach allows for a reduction of

the overall channel quality signalling by over 90 % while keeping the packet loss below 5 % with maximum

throughput schedulers, as well as signalling reduction of 60 % with proportional fair scheduling.
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1 Introduction
Future cellular networks are envisioned to provide

extremely high quality of service to an ever increasing

number of interconnected users [1]. Many technologies

are currently being explored in order to evolve from

current 4G networks to future 5G communication. One

aspect that has yet to be fully addressed is the signalling

overhead imposed on a network with billions of con-

nected devices [2–4]. The control information overhead
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is, in fact, still a very relevant problem for 4G cellu-

lar networks, such as long term evolution (LTE). Future

5G networks will, most likely, make use of the same

radio access technology utilised by LTE: orthogonal fre-

quency division multiple access (OFDMA). In this work,

we present techniques to predict and minimise a user’s

packet loss by means of limiting the control information

in the time domain for a downlink OFDMA network.

The simulations are carried out in an LTE environment

as this is the most advanced cellular network available

today but the methods presented and the results achieved

can be easily generalised for future 5G scenarios. In LTE,

OFDMA divides the bandwidth into orthogonal blocks,

called physical resource blocks (PRBs), and a frequency
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domain scheduler assigns such PRBs to the served users

based on their channel conditions [5]. In order to pro-

vide each user with the highest quality of service, the base

stations employ adaptive modulation and coding (AMC)

techniques which adjust different modulation and cod-

ing schemes (MCS) used for transmission according to

the channel state information (CSI) signals fed back from

the users. Therefore, relevant and timely CSI signalling is

extremely important to allocate the wireless resources to

the users and maximise the overall network capacity. Full

CSI feedback (FB), although optimal in maximising the

downlink capacity, cannot be used in LTE as the standard

quantises both the amount of channel state information

the users feed back in the frequency domain as well as how

often this information can be reported in time [6].

In [7], we have shown that it is possible to limit chan-

nel state information, in frequency, without loss in per-

formance if the freed uplink bandwidth is allocated for

payload communication. We have also shown that the

number of served users under different fairness strategies,

imposed by the frequency resource allocation mecha-

nisms, influence the impact of FB allocation strategies and

that it is possible to determine the optimal FB allocation.

The impact of FB information is then a function of the

number of users served by the base station, their channel

quality and the scheduling algorithm used to assign the

PRBs. In this work, we show that it is possible to compen-

sate for the capacity loss due to reducing the CSI signalling

in time, even with already quantised frequency resolution,

via the usage of per-user channel quality prediction and

per-user dynamic assignment of prediction time windows.

Considerable work has been devoted by the research

community to either channel quality prediction or feed-

back overhead reduction. In [8], the authors implement

and compare various signal-to-interference-and-noise

ratio (SINR) prediction algorithms and conclude that high

gains can be expected when using covariance-based pre-

dictors for low mobility users. In [9], the authors present

a prediction method used to compensate for CSI delay.

The estimation is performed at the mobile user side and

the predictor takes into account the Doppler shift of each

user for more accurate estimation. Both works make use

of the users’ Doppler shift to determine the time duration

of the channel quality estimation; this procedure, although

well established, might lead to erroneous predictions, a

negative correlation is generally present between predic-

tion quality and Doppler shift. On the other hand, a high

mobility user might witness a better, less variable chan-

nel than a low mobility user. Furthermore, users have to

predict the SINR themselves, depleting their battery life.

In [10], the authors propose a dynamic Channel Qual-

ity Index (CQI) allocation method, which is a quantised

value indicative of the SINR experienced by the users and

predicted at the base station. The CQI allocation time of

each user is adapted based on the instantaneous packet

loss of each user. In [11], the same authors expand their

results by including CQI prediction at the base station.

They use a linear predictor and compensate for errors by

reducing or increasing the prediction windows based on

the users’ packet loss. In [12], the authors present a non-

predictive signalling reduction scheme where only users

with low SINR are allowed to feed back expensive instan-

taneous CQI information while high SINR users only

transmit wideband information. Even though the method

decreases the signalling information, it is carried out for

a limited and fixed time window (2 ms) and a single cell

scenario, ignoring the underlying network dynamics due

to interference, traffic load, etc.

The main objectives of this work are twofold. Firstly, we

propose an online and adaptive CQI prediction scheme

to estimate users’ channel quality variations at the base

station side, while compensating for some of the quantiza-

tion noise introduced by sampling the SINR at certain CQI

values. The proposed CSI estimation approach is based

on Gaussian process regression which has been shown to

be efficient in the presence of noisy measurements [13].

Gaussian processes (GPs) are also used to estimate the

distribution of variables rather than their values, making

them attractive for solid predictions over noisy datasets.

Furthermore, GPs provide a principled framework in

which their parameters can be estimated with maximum

likelihood techniques removing constraints related to the

fine-tuning of such predictors [14].

Secondly, we leverage the GP-based prediction mech-

anism for the CQI assignment problem, in which a base

station controller is able to monitor the behaviour of each

served user and assign a personalised prediction time

window based on that user’s performance and require-

ments. For this procedure, a dual-control system based

on active learning, as introduced in [15], is used. The

dual controller is able to monitor and predict the base

station’s performance and assign a time window to each

user based on specific requirements. The active learning

component is used to limit the amount of necessary data

sampling before an optimal policy is reached. In order to

demonstrate the effectiveness of the proposed methods,

we consider a multi-user, multi-cell LTE network. The

quality of the GPR for CQI prediction is presented for dif-

ferent user speeds, and afterwards, simulation results for

the dual-control system are shown for both proportional

fair and maximum throughput scheduling.

This paper is structured as follows: Section 2.1 intro-

duces the considered system model, the standard-

compliant CSI allocation strategies and the resource

allocation mechanisms used throughout this work. In

Section 3, the predictionmodel used to estimate the users’

channel quality is presented. In Section 4, the online

dual-control mechanism is proposed to determine
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dynamically the optimal prediction window for a given

user. In Section 5, the performance of the proposed solu-

tions is presented. Finally, in Section 6, the concluding

remarks are drawn.

2 Systemmodel
2.1 Network model

The network is composed of B base stations (eNBs), each

serving an equal amount NU of mobile users (MUs). LTE

makes use of time-frequency resource allocation, in which

the frequency bandwidth is split into orthogonal units

called physical resource blocks, each of which is allocated

separately. For each PRB k an MU measures its received

SINR, defined as:

γk = Pi,kGi,k
∑

j �=i Pj,kGj,k + nk
(1)

where Pi and Gi are the transmit power and transmission

gains of the serving base station i while Pj and Gj are the

transmit power and transmission gains of the interfering

base stations j and nk is the additive Gaussian noise.

Even though the PRB is the smallest unit, the base sta-

tion can allocate to each user; in order to limit the amount

of signalling information, each MU is unable to feed back

detailed information on each PRB, and thus the PRBs are

generally grouped in subbands and only one value for such

band is measured. This value is referred to as the effective

SINR and is computed with the Effective Exponential SNR

Mapping (EESM) formulation [16]:

γeff = −λ log

(

1

N

S
∑

s

exp− γs
λ

)

(2)

where S represents the size of the subband and λ is a

parameter empirically calibrated by the base station. The

effective SINR is then quantised into a channel quality

indicator (CQI) value, indicative of the highest modula-

tion and code rate the base station may use while keeping

a packet error rate (PER) below a target of 10 % as shown

in Table 1 [17]. Each user then feeds back these CQI values

to the base station.

Once the eNB has collected the CQIs for the entire

bandwidth, it schedules resources for each user according

to its resource allocation function.

2.2 LTE feedback schemes

2.2.1 “Frequency domain feedback”

In a practical scenario, the CQI reporting is not per-

formed for each PRB but it is quantised in frequency to

reduce the control signalling overhead. The three report-

ing techniques used in the LTE standard are presented in

[6].

• Wideband : each user transmits a single 4-bit CQI

value for all the PRBs in the bandwidth.

Table 1 SINR and CQI mapping to modulation and coding rate

SINR CQI Modulation Code rate Efficiency

(× 1024) (information bits per symbol)

−6.9360 1 QPSK 78 0.1523

−5.1470 2 QPSK 120 0.2344

−3.1800 3 QPSK 193 0.3770

−1.2530 4 QPSK 308 0.6016

0.7610 5 QPSK 449 0.8770

2.6990 6 QPSK 602 1.1758

4.6940 7 16QAM 378 1.4766

6.5250 8 16QAM 490 1.9141

8.5730 9 16QAM 616 2.4063

10.3660 10 64QAM 466 2.7305

12.2890 11 64QAM 567 3.3223

14.1730 12 64QAM 666 3.9023

15.8880 13 64QAM 772 4.5234

17.8140 14 64QAM 873 5.1152

19.8290 15 64QAM 948 5.5547

• Higher Layer configured or subband level : the
bandwidth is divided into q subbands of S consecutive

PRBs and each user feeds back to the base station a 4-

bit wideband CQI and a 2-bit differential CQI for each

subband. The value of k is bandwidth dependent and

is given in Table 2, where NDL
PRB is the total number of

downlink PRBs in the bandwidth (table 7.2.1-2 in [6]).
• User-selected, or Best-M : each user selectsM

preferred subbands of equal size S and transmits to

the base station one 4-bit wideband CQI and a single

2-bit CQI value that reflects the channel quality over

the selectedM subbands. Additionally, the user

reports the position of the selected subbands using

PFB bits, where PFB, as given in [6], is:

PFB =
⌈

log2

(

NDL
PRB

M

)⌉

, (3)

Table 2 Subband size (S) vs. system bandwidth for subband

level feedback

System bandwidth Subband size

NDL
PRB (S)

6–7 NA

8–10 4

11–26 4

27–63 6

64–110 8
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where
(NDL

PRB
M

)

is the binomial coefficient. The value of

M and the amount of PRBs in each subband are given

in Table 3 (table 7.2.1-5 in [6]):

Amongst the three standard compliant feedback

schemes, only the subband level technique allows the base

station to investigate the channel quality of the complete

bandwidth with equal amount of detail between sub-

bands. For this reason, it has been chosen, in this work,

as the preferred FB method and the GPR process is aided

by the constant resolution over the bandwidth. Further-

more, excluding the wideband FB, which does not allow

frequency selective scheduling, it is the least expensive in

terms of uplink bandwidth, Table 4 includes the mathe-

matical definitions of the bit cost of the different feedback

allocation methods presented in Section 2 when the stan-

dard code rate of 1
2 is used. Figure 1 shows the amount

of feedback required for the different schemes as a func-

tion of the number of users with a 20 MHz (100 PRBs) UL

bandwidth using QPSK modulation (the horizontal line

represents the total uplink bandwidth).

2.2.2 “Time domain feedback”

The CSI is limited in the time domain. The periodicity

of CQI reporting is determined by the base station, and

the CQI signalling is divided into periodic and aperiodic

reporting [18]. In case of aperiodic CQI signalling, the

eNB specifically instructs each user on which frequency

granularity to use and when the reporting has to occur.

With aperiodic reporting, the eNB can make use of any

of the CQI standard compliant feedback methods dis-

cussed above. Periodic CQI reporting, on the other hand,

is more limited and only wideband and user-selected feed-

back methods can be used. In this case, the CQI messages

are transmitted to the base station with constant period-

icity, e.g. in case of periodic wideband feedback in an FDD

system, each user can report its CQI values every 2, 5, 10,

16, 20, 32, 40, 64, 80 and 160 ms. For the remainder of this

work, we assume that an aperiodic feedback is used, as this

allows the eNB controller to adapt the CQI transmission

time more freely than with periodic reporting.

Table 3 Subband size (S) and number of subbands (M) vs.

system bandwidth for user-selected feedback

System bandwidth Subband size M

NDL
PRB (S)

6–7 NA NA

8–10 2 1

11–26 2 3

27–63 3 5

64–110 4 6

Table 4 Bit cost of the frequency selective standard complaint

FB methods

Feedback scheme Bit cost

Wideband 2 · (4 · NU)

Subband level 2 · (4 + 2 · q) · NU

User-selected 2 · (4 + 2 + ⌈log2
(NDLPRB

M

)

⌉) · NU

2.3 Resource allocation mechanisms

While the CQI information defines the achievable rate

on each PRB, the overall cell transmission rate is a func-

tion of the resource allocation mechanism implemented

at the base station. Two scheduling methods are used in

this work to define the impact of CQI prediction and

assignment on the cell throughput:

• Best CQI (BCQI), or max-rate, is a greedy scheduler

designed to maximise the cell throughput. For each

PRB, only the user with the highest channel quality

indicator is scheduled.
• Proportional Fair (PF): this scheduler is designed to

aim for high throughput while maintaining fairness

amongst users. PF schedules users when they are at

their peak rates relative to their own average rates, at

a given time instant t, PF schedules user

xi = argmax
ri,k(t)
Ri(t)

, where ri,k(t) is the instantaneous

data rate of user xi on PRB k at time t and Ri(t) is the

average throughput, computed with moving time

window T , such that Ri(t) = 1
T

∑t
j=t−T ri(j).

3 CQI prediction
We now turn our attention to the description of the CQI

estimationmethods. The estimation process is carried out

Fig. 1 Portion of uplink PRBs used for CSI feedback. This figure shows

how much of the uplink bandwidth is allocated to channel quality

signalling if full feedback or standard compliant feedback schemes

are used
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to compensate for the reduction in CQI reporting in time.

Given the relationship between CQI and SINR described

in Section 2.1, predicting the CQI is equivalent to predict-

ing a noisy function of the relative effective SINR. Due

to the Gaussian nature of the SINR distribution and the

inherent flexibility of Gaussian Processes for regression,

these have been selected in this work.

3.1 Gaussian process regression

The objective of GPR is to estimate a function f in an

online manner with low complexity. A Gaussian process

(GP) is defined as a probability distribution over some

variables, where any finite subset of these variables forms

a joint Gaussian distribution [19]. Thismeans that, instead

of making assumptions on the elements of a dataset, a GP

infers their distribution. Let us consider a dataset D =
{

xi, , yi
}

with i = 1, 2, . . . n, where each xi and yi repre-

sent the input and output points. We define the relation

between such vectors as y = f (x) + n, where n is a zero-

mean Gaussian noise with variance σ 2. A GP is defined as

a collection of random variables, such that any finite set

has a joint Gaussian distribution. Since a Gaussian distri-

bution is completely defined by its mean and covariance

matrix, a GP is completely defined by its mean function

m(x) and covariance function k(x, x̃), expressed as:

f (x) ∼ GP(m(x), k(x, x̃)), (4)

where

m(x) = E[ f (x)]

k(x, x̃) = E[ (f (x) − m(x))(f (x̃) − m(x̃))] .
(5)

The output can be defined by a GP, such that:

y ∼ GP(m(x), k(x, x̃) + σ 2I) , (6)

By aggregating the inputs into a vector X and the out-

puts into a vector Y , the GP estimates the value of ŷ at a

future point x∗, assuming a multi-variate distribution:
[

Y

ŷ

]

∼ N

([

m

m∗

]

,

[

K(X,X) + σ 2I K(X, x∗)
K(X, x∗) k(x∗, x∗)

])

(7)

where K(X,X) is the matrix representation of the covari-

ance functions of the input samples and K(X, x∗) is the

covariancematrix of the overall input dataset and k(x∗, x∗)
is the autocorrelation of the future data point. The poste-

rior probability ŷ|Y is given by [13]:

ŷ|Y ∼N
(

K(X, x∗)
[

K(X,X) + σ 2
n I

]−1
Y , k(x∗, x∗)

−K(X, x∗)
[

K(X,X) + σ 2
n I

]−1
K(X, x∗)

T
)

,

(8)

The best estimate for ŷ is given by the mean of

such distribution m(Ŷ ) = K(X, x∗)
[

K(X,X) + σ 2
n I

]−1
Y

and the variance Var(Ŷ ) = k(x∗, x∗) − K(X, x∗)

[

K(X,X) + σ 2
n I

]−1
K(X, x∗)T represents the uncertainty

of the current estimate. The GP is then fully defined by its

covariance and mean functions and their parameters.

3.2 Covariance function selection

In order to obtain a good estimate of the future measure

and its underlying distribution, a covariance function that

best fits the nature of the system has to be selected. As

the mean can easily be set to zero if some pre-processing

is carried out, it is usually ignored [13]. Although the

covariance function K is limited to positive semi-definite

functions, many choices are present in literature able to fit

to dynamic, time-varying systems [19]. The most impor-

tant feature when choosing a covariance function is its

smoothness, i.e. how much the value of the function sam-

pled at a point x∗ correlates with the same function at

points close to x∗. A function that presents high smooth-

ness might not be representative of a fast-varying system.

It could be possible, in theory, to observe a large reali-

sation of an input dataset and generate a specific covari-

ance function which models the witnessed behaviour very

closely. This is normally not performed as a few families of

covariance functions are present in literature which adapt

quite well to a large selection of problems in which the

data can be modelled as a multivariate Gaussian distribu-

tion [13]. For this reason, in the current task of modelling,

the channel quality for users with varying mobility a

Matérn class covariance function has been selected [20]:

k(x, x∗) = h2
21−v

Ŵ(v)

(√
2v

∣

∣

∣

∣

x − x∗
w

∣

∣

∣

∣

)

Kv

(√
2v

∣

∣

∣

∣

x − x∗
w

∣

∣

∣

∣

)

,

(9)

where Kv is the modified Bessel function. The Matérn

covariance functions, such as the one selected in this

work, include both the exponential autocorrelation (if the

smoothness is equal to 1
2 ) and the Gaussian autocorre-

lation (with infinite smoothness). These conditions make

the Matérn class of covariance functions very flexible as

they are able to strike a balance between the two extremes

[21]. The variables h, v and w are defined as hyperparame-

ters of the covariance function. They determine the shape

of the covariance function and have to be fine-tuned in

order for the GP to converge to an appropriate solution. By

increasing the smoothness hyperparameter v, the function

becomes smoother in time and fast variations of data-

points are ignored. By increasing the width hyperparam-

eter w, the covariance function considers a wider set of

datapoints, and by increasing the height hyperparameter

h, larger variations in datapoints values are allowed. Once

the covariance function is selected, the following step

is to determine the values of the hyperparameters. This

is performed by maximising the marginal likelihood of

the Gaussian process. Since GPR is a form of Bayesian

regression, the marginal likelihood is equal to the integral
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Fig. 2 Dual control with active learning framework. Block diagram of the proposed dual control with an active learning method

over the product of the prior and the likelihood function.

Since both are Gaussian, the marginal likelihood is also

Gaussian and is expressed in analytical form:

p
(

Y |X, θ , σ 2
)

=
∫

p(Y |f ,X, θ , σ 2)p(f |X, θ)df

=
∫

N (f , σ 2, I)N (0,K)df

= 1

(2π)
n
2 |K + σ 2I| 12

exp

(

−1

2
yT

(

K + σ 2I
)−1

y

)

(10)

Where θ is the set of hyperparameters. Generally speak-

ing, for simplicity, the log marginal likelihood is max-

imised [13]:

log p (Y |X, θ) = − 1

2
YT (K + σ 2

n I)
−1Y

− 1

2
log |K + σ 2

n I| − n

2
log 2π . (11)

By using any multivariate optimization algorithm, the set

of hyperparameters θ can be estimated analytically. After

the optimization process has reached the analytical solu-

tion, the numerical values of the hyperparameters are

simply obtained by using the measured input and out-

put signals. This is a great advantage over other types of

regression as it allows the system to evolve without pre-

specifying the parameters and thus limiting the range of

estimations [22].

3.3 GPR for CQI prediction

In this work, the eNB makes use of GPR to predict the

CQIs values for every subband seen by each user. In order

to make realistic predictions, the output vector Y is used

to train the GP. For each user, the base station receives

the CQI information for the complete bandwidth, using

the subband-level FB quantization scheme discussed in

Section 2.2 every tsamp = 2ms. The value of the sampling

window tsamp is chosen as the minimum allowed by LTE

standard to acquire a high number of samples in a short

time [23]. After the observation time elapses, say at instant

t0, the eNB uses GPR to predict the future CQI values in

each subband as shown in Algorithm 1.

Table 5 System parameters

Parameters Values

Number of macrocells 19

Sectors per macrocell 3

Inter-cell distance 500 m

Macro antenna gain 15 dB

Macro transmit power 46 dBm

Macro users per sector 2 to 100

Frequency 2.1 GHz

System bandwidth 20 MHz

Number of PRBs 100

Access technology OFDMA FDD

Number of antennae 1(Tx and Rx)

Channel model Winner Channel Model II [25]

Block fading mean 0 dB

Block fading deviation 10 dB

Fast fading 10 dB

Thermal noise density −174 dBm/Hz

Users speed 5 to 60 km/h
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Algorithm 1: CQI estimation with GPR

1: for each user u do

2: for each subband s ∈ q do

3: Initialization: Input vector cqisamp, Output

vector cqipred , Covariance function K, Noise

level σ , Prediction window tw
4: while t < t0 do

5: Build historical dataset

cqihist(t) = cqisamp(t).

6: end while

7: while t ≥ t0 do

8: if t �= tw then

9: (1) The GP is trained with the vector cqihist .

10: (2) The hyperparameters are found by

maximising the log-likelihood (11)

11: (3) The predicted CQIs vector cqipred of

length tw is generated.

12: (4) The base station uses cqipred to allocate

the users for the next tw intervals

13: else

14: Update the input dataset with the new

sampled value cqihist(t) = cqisamp(t)

15: end if

16: end while

17: end for

18: end for

4 Dynamic time window optimisation
In this section, we introduce a control mechanism to

determine the appropriate duration of the CQI predic-

tion window so that the eNB can maintain each user’s

performance within a specified loss margin. Firstly, the

dual-control system based on active learning is introduced

and, secondly, its implementation in an LTE base station

for time windows optimisation is presented.

4.1 Dual control with active learning

A dual-control agent is tasked with controlling a sys-

tem based on the current knowledge of its behaviour

and to perturb it in order to minimise the uncertainty

and make better predictions. By their nature, these objec-

tives are conflicting. In this work, we follow the adaptive

dual-control method proposed in [15], which provides a

solution to the control problem while also limiting the

amount of overhead.

Let us define a dynamic, non-linear, partially observable

d-dimensional system described by:

yj(t + 1) = hj (y(t), c(t)) + n(t) with j = 1 · · · d,
(12)

where yj(t + 1) is the value of the output system at time

t + 1, which is function of the system behaviour h(·)
given the past observation y(t) and the control function

c(t). n(t) is a zero-mean Gaussian noise. In this con-

text, h(·) corresponds to the function to be estimated (f ),

according to the formalism of the previous section. Given

a d-dimensional reference signal r(t), the dual-control

problem consists in finding the best control strategy μ(t)

such that

μ(t) = argmin
c(t)

∥

∥y(t) − r(t)
∥

∥ , ∀t (13)

Fig. 3 Goodput loss of CQI FB frequency schemes over sampling times. This figure shows the goodput of a user whether the full feedback or the

standard compliant frequency selective feedback methods are used and the CQI sampling time is increased
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Furthermore, it is possible to limit the amount of data

collected by the controller by maximising the informa-

tion collected. If ĥ is an estimate of the system dynamics

h based on previous observations, the dual control with

active learning problem consists in finding the optimal

strategy μ(t) solving the following optimisation problem:

max
u(t)

I(ĥ, c(t)) ≈ argmin
c(t)

Var(ĥ, c(t)) (14)

where I represents the Shannon information of the

dynamic system and Var is the variance [15]. The objec-

tives of the active dual controller consist in partially iden-

tifying the dynamics of the system so that it can be kept

as close as possible to the reference signal while sampling

only in the points that minimise uncertainty for future

predictions. Figure 2 presents a block description of the

dual-control framework.

The dual control with active learning can be formally

described as (Proposition 4 in [15]): Let the input-output

relationship of a discrete-time dynamic system be defined

as in Equation 12.

Let ĥ be the predicted estimate of the system’s

behaviour, in this case, the packet loss due to reducing the

time sampling of CQI values. The predicted future value

ŷ(t + 1) can be inferred as:

ŷ(t + 1) = ĥ (y(t), c(t)) + n(t). (15)

The optimal strategy μ is then defined as

μ(t) = argmin
c(t)

wa

∥

∥ŷ(t + 1) − r(t)
∥

∥−weVar(ŷ(t+1), c(t))

(16)

where wa and we represent the action and exploration

weights to steer the controller towards either steepest

descent to the closest optimal solution (we = 0) or

Fig. 4 Packet loss for user moving at 5 km/h over time sampling

intervals. This figure shows the packet loss experienced by a user

moving at 5 km/h when GPR prediction or CQI averaging are used

Fig. 5 Packet loss for user moving at 10 km/h over time sampling

intervals. This figure shows the packet loss experienced by a user

moving at 10 km/h when GPR prediction or CQI averaging are used

to a complete exploratory behaviour (wa = 0). Gener-

ally, the weights can be adjusted so that the controller

behaves more exploratory at the beginning of the learn-

ing procedure and thenmoves to amore active controlling

role.

4.2 Dual control for signalling reduction

In the dual-control framework for dynamic time window

optimisation, we make use of the same GPR used for

CQI prediction. In this case, the GPR is used to predict

the packet losses each user incurs when different time

windows are chosen. At time t0, the eNB receives the

CQI FB from each user u, then it chooses a time pre-

diction window twu(t0) and uses GPR to predict the CQI

behaviour for the duration of such window. At the same

Fig. 6 Packet loss for user moving at 60 km/h over time sampling

intervals. This figure shows the packet loss experienced by a user

moving at 60 km/h when GPR prediction or CQI averaging are used
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Fig. 7 Estimated and real CQI values. The figure shows the actual

measured and the predicted CQI values for a user moving at 10 km/h

time, it uses GPR to predict the packet loss L̂u(t0 +
1, twu(t0)) the user will experience given the current time

window. The objective of the controller is then to solve,

for every user u:

twu(t + 1) = argminwa,u

∥

∥

∥
L̂u(t + 1) − ru,th

∥

∥

∥

− we,uVar(L̂u(t + 1), twu(t)),
(17)

where ru,th is the reference packet loss for user u. At time

t0 + twu(t0), the eNB measures the actual packet loss suf-

fered by the user. The controller then corrects the CQI

prediction window accordingly to provide better predic-

tions and the process is repeated. Algorithm 2 provides a

concise view of the solution above.

Algorithm 2: Dual control with active learning for

dynamic CQI FB assignment

1: for each user u do

2: Initialization: GP hyperparameters, objective

weights [wa,we], reference signal ru,th
3: while t > t0 do

4: (1) Receive CQI FB from user and estimate the

CQI behaviour using GPR.

5: (2) Estimate the system dynamics L̂ using GPR.

6: (3) Determine the best time window tw(t + 1) by

solving (17) and crop CQI prediction at selected

time window tw(t + 1).

7: (4) Schedule the user for the duration of the

time window tw(t + 1).

8: (4) Compute the variance Var(L, tw).

9: (5) Update the dataset with the newly observed

point L(t).

10: end while

11: end for
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Fig. 8 RMSE for various observation windows and user mobility. This

figure shows the computed RMSE when the training window for the

GPR is varied for users moving at 5, 10 and 60 km/h. a User speed 5

km/h, b user speed 10 km/h and c user speed 60 km/h
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Fig. 9 RMSE of different covariance functions. Comparison of the error committed when different covariance functions are used for the GPR

5 Results
In this section, we will first define the simulation envi-

ronment and then provide the results for the proposed

models.

5.1 Simulation parameters

The system has been simulated using the open source

VIENNA system level simulator [24]. An urban multi-cell

environment has been considered to include the effects of

multipath propagation and interference; 19 LTE macro-

cells are simulated with 30 users per cell, in which only the

users in the most central cell are studied to reduce border

effects. In order to model the effects of user mobility in a

city-like environment, the users have an average speed of

5, 10 or 60 km/h. The propagation model is determinis-

tic and based on the Winner Channel Model II [25]. The

simulation parameters are included in Table 5.

5.2 Simulation results

Firstly, we present the impact that the various frequency

sampling schemes of Section 2.2 have on the packet loss

Table 6 Percentage FB necessary with dual control

PL threshold FB amount needed [%]

[%] Proportional fair Best CQI

5 40 6.2

10 23 4

20 9.7 3.3

30 6.3 3.3

experienced by users. The CQI FB messages are sampled

at specific moments in time, and the previously sampled

value is used until the next sampling moment. Figure 3

shows the normalised goodput of a user moving at 10

km/h when the full feedback, subband-level, best-M and

wideband schemes are employed.

It is visible that there is a loss in goodput when either

the CSI frequency sampling methods are used or the CSI

sampling time interval is increased. On the other hand,

the effects of increasing the duration between sampling

instants are less pronounced when the CQI information

is quantised in frequency. This is particularly visible for

the wideband FB scheme, where the initial goodput is just

above one third of the full feedback but the loss in time

is almost null. For large time sampling intervals, the three

standard compliant FB schemes behave better than the

full feedback. For the remainder of this work, the subband

level method is employed, as it presents, for almost all the

sampling delays considered, the highest gain amongst the

standard compliant schemes.

The effects of GPR CQI prediction for fixed CQI time

sampling are presented in Figs. 4, 5 and 6 for users with

speeds of 5, 10 and 60 km/h. The figures show the aver-

age packet loss seen by a user when either prediction or

fixed time sampling is used. By fixed sampling, we intend

that the base station only uses the last received CQI value

until a new one is sampled. For the first two plots, the

GPR CQI prediction shows considerable gains over the

alternative.

When users operate in high mobility, such as in Fig. 6,

the prediction remains valid only for a very small time



Chiumento et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:168 Page 11 of 14

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Predicted PL for single user 

time window duration [ms]

P
a
c
k
e
t 
L
o
s
s

Predicted behaviour

Average sampled value

Measured values

Fig. 10 Predicted packet loss and measurements for different prediction time windows. This figure shows the predicted and measured packet loss

for various time windows. The figure also shows the final action taken by the controller in order to keep the packet loss below a 10 % threshold

duration. This is due to the fact that the fast varying chan-

nel does not allow for reliable estimation for extended

time intervals. Nonetheless, it is possible to exploit the

GPR estimation’s gain over the sampling if short time

windows are used.

Figure 7 shows an example of the estimated and real

CQI values for a user moving at 10 km/h with a predic-

tion window of 10 ms. There is good accordance between

the predicted CQIs and the real values. The GPR is able to

model the changes in the user’s channel.

Figure 8 shows the root mean square error (RMSE) of

the GPR predictions for different training datasets. In case

of users moving at 5 and 10 km/h, we can see that conver-

gence is reached and a large observation window allows

the GPR tomake an accurate estimation.When users have

high mobility, on the other hand, a large training can lead

to more errors as the time correlation of the CQI values

decreases as seen in Fig. 8c.

The impact of different covariance functions on the CQI

estimation process with GPR is presented in Fig. 9. The

Matérn function with smoothness v = 3
2 behaves best. A

detailed analysis of the various functions in the figure can

be found in [13].

By using the dual-control scheme, it is possible to set

a maximum limit to the user’s packet loss due to lim-

ited time feedback. If a user is selected to be scheduled

by the eNB, then a predicted packet loss can be inferred

with the proposed model and a decision is made based

on Equation 17. In order to analyse a dynamic scenario,

users with diverse requirements are simulated together; a

total of 60 users are served within the cell, of which 30

have low mobility (5 km/h), 20 have average mobility (10

km/h) and 10 are high speed users (60 km/h). Table 6
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Fig. 11 Prediction error and variance. a The computed RMSE for each

iteration of the dual controller. b The variance measured by the

controller at each iteration for the same user of Fig. 10
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Fig. 12 Predicted packet loss and measurements for different prediction time windows. This figure presents the predicted and measured packet

loss for various time windows for a user with bad channel conditions. The figure shows the final action taken by the controller in order to keep the

packet loss below a 5 % threshold

shows the percentage of FB required by the system for

various packet loss threshold values for both the propor-

tional fair and best CQI schedulers after the model has

converged to the optimal decision compared to the state

of the art where no prediction is used and the CSI is sam-

pled every 2 ms. There are considerable gains for both

schedulers but, as the PF maximises fairness, every user

will be scheduled in the upcoming time slots and thus the

time windows have to be inferred so that the predicted

packet loss is minimised. On the other hand, since the

dual-control model has as input the packet loss of each

user, if such user is not scheduled, then the loss is null and

a higher time window can be selected. For this reason the

best CQI scheduler allows for much higher gains with an

almost 94 % reduction in FB signalling when the allowed

packet loss is contained to only 5 %.

Figure 10 presents the behaviour of the proposed dual-

control method in Algorithm 2 for a single user. The

packet loss at the sampling instants is indicated with the

X markers while the square markers indicate the average

sampled packet loss. The proposed solution then grad-

ually builds a predicted packet loss behaviour, indicated

in Fig. 10 by the continuous curve. At each iteration, the

model selects the next time window according to (17) with

weights wa = 1 and we = 10 and predicts the packet

loss behaviour for the duration of the selected window.

After the time window has passed, the eNB samples the

packet loss again, corrects its prediction and determines

the next prediction time window until it converges to the

desired packet loss threshold. In this specific realisation,

the packet loss threshold is imposed at 10 % and the opti-

mal inferred time window is 5 ms. It is important to notice

that, because of the time varying nature of the channel,
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Fig. 13 Prediction error and variance. a The computed RMSE for each

iteration of the dual controller. b The variance measured by the

controller at each iteration for the same user of Fig. 12
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Fig. 14 Predicted packet loss and measurements for different prediction time windows. This figure shows the predicted and measured packet loss

as function of time prediction windows for a user with very good channel conditions. The final time window chosen by the controller to keep the

packet loss below the 30 % threshold is shown in the figure

the measured loss can oscillate even if the time windows’

sampling is kept constant. TheGPR takes this into account

as measurement noise and is still able to approximate the

system dynamics.

Figure 11a, b shows the prediction error calculated at

each iteration and the variance of the prediction model;

in both cases, the proposed approach reaches the desired

behaviour after only five iterations.

In Fig. 12, the packet loss threshold is 5 %. In this case,

the base station has to choose a very small prediction win-

dow of 2 ms for a high mobility user with high packet

loss.

Figure 13a, b shows the prediction error computed at

each iteration and the variance of the prediction model.

As in the previous case, convergence is attained after five

iterations.

The proposed model’s behaviour in case of a low mobil-

ity user with good channel is presented in Fig. 14 where

the packet loss threshold is imposed at 30 %. In this case,

the base station can choose a large prediction window of

27 ms.

Figure 15a, b shows the prediction error committed at

each iteration and the variance of the prediction model. In

this case, convergence is attained after three iterations.

6 Conclusions
In this work, we have shown that the feedback overhead

cannot be overlooked as the number of connected devices

keeps increasing. Some solutions are implemented in the

frequency domain to limit the impact of this signalling

information on the uplink bandwidth but additional

restrictions in the time domain are also necessary. We

presented a GPR technique to predict the users’ channel
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Fig. 15 Prediction error and variance. a The computed RMSE for each

iteration of the dual controller. b The variance measured by the

controller at each iteration for the same user of Fig. 14



Chiumento et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:168 Page 14 of 14

quality for various speeds limiting the loss incurred by

increasing the time sampling period. The proposed CQI

prediction method is able to estimate a user’s channel

with good accuracy. Furthermore, we have presented a

dual-control method based on active learning, able to

determine the optimal prediction window given a packet

loss threshold. The same method is also able to probe the

system in such a way that an optimal solution is reached

while also limiting the system’s exploration by maximis-

ing the impact of the information collected. The proposed

method shows gains of up to 94 % in signalling reduction

if best CQI scheduler is used when compared with state of

the art if the packet loss is capped to 5 %.
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