
Adaptive Data-Driven Service Integrity Attestation
for Multi-Tenant Cloud Systems

Juan Du
Department of Computer Science
North Carolina State University

jdu@ncsu.edu

Nidhi Shah
Cisco Systems

nidshah@cisco.com

Xiaohui Gu
Department of Computer Science
North Carolina State University

gu@csc.ncsu.edu

Abstract—Cloud systems provide a cost-effective service host-
ing infrastructure for application service providers (ASPs).
However, cloud systems are often shared by multiple tenants
from different security domains, which makes them vulnerable
to various malicious attacks. Moreover, cloud systems often
host long-running applications such as massive data processing,
which provides more opportunities for attackers to exploit the
system vulnerability and perform strategic attacks. In this paper,
we present AdapTest, a novel adaptive data-driven runtime
service integrity attestation framework for multi-tenant cloud
systems. AdapTest can significantly reduce attestation overhead
and shorten detection delay by adaptively selecting attested nodes
based on dynamically derived trust scores. Our scheme treats
attested services as black-boxes and does not impose any special
hardware or software requirements on the cloud system or ASPs.
We have implemented AdapTest on top of the IBM System
S stream processing system and tested it within a virtualized
computing cluster. Our experimental results show that AdapTest
can reduce attestation overhead by up to 60% and shorten the
detection delay by up to 40% compared to previous approaches.

I. I NTRODUCTION

Cloud systems [1] have recently emerged as popular re-
source leasing infrastructures. Application service providers
(ASPs) can lease a set of resources from the cloud system
to offer software as a service [3] without paying the expen-
sive cost of owning and maintaining their own computing
infrastructures. Could systems are particularly amenablefor
data processing services [2], [10], [15], [21], which are often
extremely resource-intensive. In particular, our work focuses
on dataflow processing systems [5], [15], [16] that have
many real world applications such as security surveillance
and business intelligence. As shown by Figure 1, users can
feed data from various data sources into the cloud system to
perform various data processing functions and receive final
data processing results from the cloud.

However, cloud systems are often shared by multiple tenants
that belong to different security domains, which makes them
vulnerable to various malicious attacks. Moreover, data pro-
cessing services are often long-running, which provides more
opportunities for attackers to exploit the system vulnerability
and perform strategic colluding attacks. Although virtual-
ization ensures certain isolation between users, malicious
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Fig. 1. Integrity attack in cloud-based data processing.

attackers can still leverage the shared hardware to launch
attacks [6], [26] from the VMs they own or by compromising
VMs of benign users. One of the top security concerns1 for
cloud users is to verify the integrity of data processing results.
For example, a malicious (or compromised) credit checking
service may provide an incorrect credit score to lead to a
wrong mortgage application decision. Note that the integrity
attack is the most prevalent, which affects both public and
private data processing.

Although previous work has proposed various remote in-
tegrity attestation techniques [7], [30], [31], existing solutions
often require trusted hardware or secure kernel to be co-existed
with the remote computing platform, which are difficult to
be deployed in cloud systems. Although traditional Byzantine
Fault Tolerance (BFT) techniques (e.g., [9], [19]) can detect
malicious behavior using replicated services, those techniques
often incur high overhead and impose certain agreement
protocol over all replicas. To this end, we explore adata-
driven integrity attestation approach that only relies on result
consistency to detect malicious attacks, which is completely
transparent to the attested services without imposing any
special software or hardware requirements.

In this paper, we presentAdapTest, a novel adaptive runtime
service integrity attestation framework for large-scale cloud
systems. AdapTest builds on top of our previously developed
system RunTest [13] that performs randomized probabilistic
attestation and employs a clique-based algorithm to pin-
point malicious nodes. However, randomized attestation still
imposes significant overhead for high-throughput multi-hop

1Note that confidentiality and user data privacy are important orthogonal
issues addressed by previous work [20], [35].



data processing services. In contrast, AdapTest dynamically
evaluates the trustiness of different services based on previous
attestation results and adaptively selects attested services
during attestation. Thus, AdapTest can significantly reduce the
attestation overhead and shorten the detection delay. Specifi-
cally, this paper makes the following major contributions:

• We provide a novel adaptive multi-hop integrity attes-
tation framework based on a newweighted attestation
graph model. We derive both per-node trust scores and
pair-wise trust scores to efficiently guide probabilistic
attestation.

• We have implemented AdapTest on top of the IBM
System S stream processing system [15] and tested it
on the virtual computing lab (VCL) [4], a production
virtualized computing cluster that operates in a similar
way as Amazon EC2 [1]. Our experimental results show
that AdapTest can significantly reduce attestation over-
head for reaching the 100% detection rate by up to 60%
and shorten detection time by up to 40% compared to
previous randomized attestation approaches.

The rest of the paper is organized as follows. Section II
provides a brief background about cloud service integrity
attack and an overview of our approach together with our
assumptions. Section III presents the design details. Section
IV presents the prototype implementation and experimental
results. Section V compares our work with related work.
Finally, the paper concludes in Section VI.

II. OVERVIEW

In this section, we first describe our system model for cloud-
based data processing services and service integrity attestation.
Next, we present the service integrity attack model followed
by an overview of our approach and our key assumptions.

A. System Model

Cloud systems are shared computing infrastructures consist-
ing of a set of physical hosts interconnected via networks. Each
host can run multiple virtual machines (VMs) that may belong
to different owners. The application service provider (ASP)
can lease a collection of VMs to host its software services.
Each service instance, denoted bysi, provides a specific data
analysis function, denoted byfi, such as sorting, filtering, cor-
relation, or data mining utilities. Multiple service instances can
befunctionally-equivalent, providing the same service function
for load balancing or fault tolerance purposes. Moreover,
popular services naturally attract different service providers
for profit. A multi-party service provisioning infrastructure
usually employs someportal nodes [17], [28] to aggregate
different service components into composite services based
on the user’s requirements. The user accesses cloud services
by submitting input data to the portal node that will forward
the user data to different service instances for processingand
then deliver final results back to the user. Portal nodes can
authenticate users to allow only authorized users to accessthe
cloud services.

B. Attack Model

In a shared cloud infrastructure, malicious attackers can
pretend to be legitimate service providers to provide fake
service instances or compromise vulnerable benign service
instances by exploiting their security roles. Our work focuses
on detecting the service integrity attack where a malicious(or
compromised) service instance gives untruthful data process-
ing results.

To escape detection, malicious attackers may want to per-
form selective cheating. That is, they can misbehave on a
selective subset of received data while pretending to be benign
on other received data. Thus, the attack detection scheme must
be able to capture misbehavior that are both unpredictable
and occasional without losing scalability. Although we can
perform integrity attestation on all service instances allthe
time, the overhead of integrity attestation would be very high,
especially for high throughput data processing services in
large-scale cloud systems. Thus, an effective attack detection
scheme must performsneaky attestation, which can prevent
attackers from gaining knowledge about our attestation scheme
(i.e., when and which set of data will be attested.). Otherwise,
the attacker can compromise the integrity of selective data
processing results without being detected at all.

Furthermore, cloud computing infrastructures often com-
prise a large number of hosts running many more VMs and
application service instances. It creates new opportunities for
colluding attacks where multiple malicious attackers launch
coordinated attacks or multiple benign service instances are
simultaneously compromised and controlled by a single ma-
licious attacker. Colluders can communicate with each other
in an arbitrary way and produce the same incorrect results
on the same input. Attackers can also change their attacking
and colluding strategies arbitrarily. However, we assume that
attackers do not have knowledge of other benign service
instances that they do not interact with.

C. Approach Overview & Assumptions

Our service integrity attestation scheme has two major
design goals: 1) support runtime continuous attestation with
low overhead; and 2) pinpoint malicious (or compromised)
service instances among a large number of interacted service
instances without assuming any prior knowledge about which
service instances are trusted. AdapTest adopts a data-driven
approach to achieve the above design goals without imposing
any special hardware or software requirements over remote
attested services, illustrated by Figure 2. AdapTest leverages
the portal node to perform service integrity attestation. To
achieve non-repudiation, each service instance is required to
produce a receipt for each data it receives and sign the data it
has processed [12].

AdapTest performs attack detection using replay-based con-
sistency check [13]. The basic idea is to duplicate some
original inputs and re-send them asattestation data to dif-
ferent functionally-equivalent service instances for consistency
check. Note that attestation data and original data are madein-
distinguishable to service instances. Moreover, our attestation
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Fig. 2. Data-driven service integrity attestation.

scheme does not affect the original data processing. In other
words, original data can be routed as before to different service
instances for processing based on certain load balancing and
quality-of-service (QoS) management objectives. The attesta-
tion data are replayed after the portal receives the original data
processing results rather than being sent concurrently with the
original data. Thus, we can prevent two colluding attackers
from detecting attestation by comparing their received data
and thus escaping detection. Although the replay scheme may
cause delay in a single data item processing, we can overlap
the attestation and normal processing of consecutive data items
to hide the attestation delay from the user.

AdapTest leverages our previously developed clique-based
algorithm [13] to pinpoint malicious nodes, illustrated by
Figure 3. The portal node constructs an attestation graph where
nodes are functionally equivalent service instances. If two
nodes always give consistent output, we use a consistent link
between these two nodes. Otherwise, if they give inconsistent
results on at least one input data, we link them using an
inconsistent link. Since all benign nodes will always give
consistent correct results, they will form aconsistency clique
in the attestation graph. In contrast, the malicious nodes will
be exposed with inconsistent links when their misbehavior
is caught by our attestation scheme. Note that colluding
malicious nodes may try to form a consistency clique by
always giving the same wrong results. However, if we assume
benign nodes are the majority, we can say a node is definitely
malicious if the node is outside of all the cliques whose sizes
are larger than half of the total nodes [13]. For example, in
Figure 3, we can see the attestation graph includes two cliques
{s1, s4, s5} and {s2, s3}. Since the size of the first clique is
larger than half of the total nodes,s2 ands3 are successfully
identified as malicious nodes even though they also try to form
a clique through colluding.

AdapTest performs adaptive attestation to quickly expose
malicious nodes. We make three key observations. First, we
should attest suspicious nodes more often in order to capture
selective cheating with minimum attestation data. Second,in
order to quickly pinpoint malicious nodes, we need to expose
as many inconsistency links as possible. Therefore, AdapTest
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Fig. 3. Clique-based malicious node pinpointing.

dynamically derives a set of trust scores for each node based
on previous attestation results and use those trust scores
to guide future attestation. Specifically, AdapTest attests the
nodes with lower trust scores with higher probability, and gives
priority to those node pairs that have not been attested before
or have been consistent before. Third, attesting multi-hopdata
processing services requires additional consideration since
inconsistent intermediate processing results from upstream
hops will invalidate attestation for all downstream hops. To
address the problem, AdapTest intentionally picks good nodes
based on previous attestation results for upstream hops in order
to effectively attest downstream hops.

Note that AdapTest does not use the trust scores to directly
pinpoint malicious nodes. Without assuming the trustinessof
any nodes, the trust scores only represent the relative goodness
of different nodes. The trust score of a specific node can
dynamically change after the node is attested with different
nodes. Even if the node trust scores are stabilized, it is
very difficult, if not impossible, to pre-define a proper trust
score threshold to separate the malicious and benign nodes.
Such threshold depends on a set of unknown factors such
as the percentage of malicious nodes and the misbehaving
probability of those malicious nodes. Thus, AdapTest only
uses trust scores to guide attestation but still uses the clique-
based malicious node pinpointing algorithm to guarantee zero
false positive [13].

Assumptions. First, we assume that data processing ser-
vices are stateless and deterministic, that is, given the same
input, a benign node always produces the same output.
Many data processing functions such as projection, selection,
filtering fall into this category [15]. We can also extend our
scheme to support stateful data processing services [11], which
however is beyond the scope of this paper. Second, we assume
that benign nodes are the majority within each group of
functionally-equivalent service instances. This assumption is
the same as other common attack detection schemes [25].
Third, we assume that the portal node is trusted, which is
solely managed by the portal service provider whose goal is
to provide trust-worthy data processing services for its clients.
The portal node plays a similar role as the dispatcher used
by previous remote attestation schemes [30], which is also
assumed to be trusted. Further, the portal node can employ
authentication to easily protect itself from malicious clients or
malicious application service providers.
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III. D ESIGN AND ALGORITHMS

In this section, we present the design and algorithm details
of the AdapTest system. We first describe a weighted attesta-
tion graph model that serves as the basis of our approach. Next,
we present the details of per-hop adaptive attestation algorithm
followed by the multi-hop adaptive attestation scheme.

A. Weighted Attestation Graph

AdapTest strives to pinpoint malicious service instances
without making any prior assumption about the trustiness of
any service instance. Moreover, malicious attackers can per-
form selective cheating during long-running data processing
services, which means the trust score of a service instance
must be continuously monitored and updated. Thus, AdapTest
employs aweighted attestation graph to aggregate previous
attestation results and dynamically derives a set of trust scores
for each service instance, illustrated by Figure 4. We formally
define the weighted attestation graph as follows.

Definition 1: A weighted attestation graph is an undirected
complete graph consisting of all functionally equivalent ser-
vice instances as nodes. The weight of each edge consists of
a pair of counters denoting the number of inconsistent results
and the number of consistent results respectively.

For example, in Figure 4,s1 produces three inconsistent
results and two consistent results withs5. Two nodes are con-
nected by a consistent link only if they have zero inconsistent
result. We can derive anode trust score and a set ofpair-
wise trust scores for each node from the weighted attestation
graph. The node trust score denotes how trustworthy a node
is and the pair-wise trust score denotes how well two nodes
trust each other. We formally define both the node trust score
and the pairwise trust score as follows.

Definition 2: The trust score of the nodesi, denoted byαi,
is defined as the fraction of consistent results returned by the
node si when attested with all the other nodes. Node trust
scores range within [0,1], and are initialized to be 1.

Definition 3: The pairwise trust score between two service
instancessi and sj , denoted byβi,j , is calculated by the
fraction of consistent results whensi is attested againstsj . The
pairwise trust score ranges within [0, 1], and are initialized to

be -1, which means thatsi andsj have not been attested with
each other yet.

The trust score of a node takes the consistency relationships
between this node with all the other nodes into consideration.
For example, in Figure 4,s1 has a node trust score of 0.5 since
it has total 10 consistent results and 10 inconsistent results
with {s2, s3, s4, s5}. Intuitively, malicious nodes should have
higher probabilities than benign ones to be inconsistent with
the other nodes given that benign nodes are the majority. Thus,
we assign node trust scores according to how consistent a node
is with the other nodes. Nodes that are more consistent with
the others have higher trust scores and are considered to be
more trustworthy. The node trust scores can be affected by
two factors. The trust score of a nodesi decreases if i) the
nodesi is inconsistent withmore nodes; or ii) the nodesi is
inconsistent with other nodesmore frequently.

The pairwise trust scores reflect how consistent two nodes
are and therefore how trustworthy they think each other. The
more frequently two nodes give inconsistent results, the less
pairwise trust score between them. Note that we initialize
pairwise trust scores with -1 to indicate that the two nodes
have not been attested together before. For example, in Figure
4, if the pairwise trust score between two nodes equals to 1,
we draw a solid line between them. Otherwise, if two nodes
do not always agree with each other, we use a dashed line
to represent the inconsistency relationship. The pairwisetrust
score betweens1 ands2 is 2/(4+2) = 0.33 since they produce
4 inconsistent results and 2 consistent results.

B. Per-Hop Adaptive Attestation

AdapTest leverages dynamically derived trust scores to
intelligently guide probabilistic service attestation. The goal of
our adaptive attestation scheme is to expose malicious nodes
faster. We achieve the goal by capturing more inconsistency
relationships for malicious nodes so that they can be pushed
out from the maximum consistency clique.

AdapTest expedites the exposure of inconsistency relation-
ships and therefore shorten detection time using two adaptive
node selection schemes. First, AdapTest selects suspicious
nodes that have low trust scores and attests those suspicious
nodes more frequently. The rationale is that the nodes that
have already delivered more inconsistent results have the
potential to deliver even more inconsistent results in the future
attestation. By intensively attesting suspicious servicenodes,
we may have higher probabilities to find inconsistency results.
Second, AdapTest strives to attest suspicious nodes together
with benign nodes since two colluding malicious nodes will
try to avoid producing inconsistent results with each other.
Attesting a suspicious node together with a benign one is more
effective in producing inconsistent results.

For scalability, AdapTest performs probabilistic attestation
by randomly selecting a subset of input data for consistency
check. When an input data item is selected for attestation
by the portal, AdapTest first identifies a pool of suspicious
nodes based on node trust scores and randomly selects a
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suspicious node from this pool to attest. Given the assumption
that malicious nodes are no more than half of total nodes,
we rank all nodes in an increasing order of trust scores, and
mark the first⌊N/2⌋ nodes as the suspicious node poolB
and the rest of nodes as the benign node poolG, whereN
is the total number of nodes providing the function. We then
randomly pick one node,si, from the suspicious node pool,
excluding the node processing the original data, for attestation
by comparing with the original node. Note that we do not
want to always attest the node with the lowest trust score for
maintaining attestation coverage and tolerating imprecise trust
scores. Moreover, we want to avoid alerting the malicious node
by continuously attesting it. At the beginning, since all nodes
have the same initial trust scores, AdapTest will randomly pick
nodes from the whole node pool to attest.

AdapTest may send multiple attestation data to attest differ-
ent nodes concurrently. To maximize the chance of capturing
inconsistent results, we want to attest a suspicious node with
a benign node together. Thus, after picking a suspicious node
si from B, AdapTest picks the other attested node from the
benign node poolG using the following rules. First, if there are
benign nodes that have not been attested withsi before (i.e.,
pairwise trust score equals to -1 in the weighted attestation
graph), we randomly pick one from them. Second, if all nodes
in the benign set have been attested withsi, we randomly pick
one from G that have always been consistent withsi. We
avoid attesting two nodes that have already been inconsistent
with each other, since further attestation will not result in new
inconsistency links. Thus, if all nodes inG are inconsistent
with si, instead of attestingsi, we randomly select another
node,sj , from the suspicious node set to attest, and also select
a node from the benign node set according to the above rules
to pair with sj for attestation. Note that if all nodes in the
suspicious node set have inconsistency links with all the nodes
in the benign node set, we randomly picksi, and then pick
the one node fromG that has the highest pair-wise trust score
with si. Our scheme can achieve both good coverage and avoid
wasting attestation traffic on those node pairs that have already
presented inconsistency relationships.

Figure 5 shows an example of adaptive per-hop attestation.
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The number associated with each protocol step indicates the
execution order. If two steps have the same number, it means
that the two steps are executed concurrently. The portal first
sends the original datad1 to s1 for processing. After the portal
receives the result froms1, it decides to perform attestation
by replaying d1 on two service instances. The portal first
randomly picks one node from the suspicious node set{s3, s4}
to attest, say,s3. Then the portal picks the node with the
highest pairwise trust score withs3 from the benign set
{s1, s2, s5}, says5.

Note that our scheme is robust to strategic attacks. For
example, a malicious nodes3 may behave benignly at the
beginning to join the benign node pool and then start to
misbehave by colluding with its colluders4 in the suspicious
node pool, with an intent to hide its misbehavior by sacrificing
s4. However,s3 ands4 are not just attested against each other,
but also attested with the node that processes the original data,
which is randomly selected. Even ifs3 ands4 are consistent
with each other, they will have inconsistency links with all
benign nodes. Thus,s3 ands4 will eventually be pinpointed by
our clique-based algorithm. If eithers3 or s4 is selected as the
original node, our replay-based attestation scheme prevents it
from knowing whether it will be compared with benign nodes
or its colluding party. Thus, ifs3 tries to pretend to be benign,
it will have an inconsistency link withs4 with high probability.
In this case, AdapTest will rarely attests3 ands4 since we try
to avoid attesting two nodes that already have an inconsistency
link between each other. Note thats3 and s4 can help each
other to increase their trust scores and decrease other nodes’
trust scores by providing consistent wrong results. However,
as mentioned in Section II-C, AdapTest does not rely on the
trust scores to pinpoint malicious nodes. Instead, AdapTest
only considers the consistency/inconsistency links and uses
clique-based algorithm to pinpoint malicious nodes. The trust
scores are only used to expose more inconsistency links with
less attestation data.

C. Multi-Hop Adaptive Attestation

Complicated data processing services often comprise mul-
tiple data processing functions called service hops. Malicious



attackers can attack any of the service hops to compromise the
final data processing results. Suppose a data processing service
consists of totaln hops and an input data item is selected for
attestation through two service paths,s1 → ..., si → ... → sn

and s′1 → ..., s′i → ... → s′n, respectively. If the intermediate
processing results begin to become inconsistent at the hopsi,
then the attestation for all service hops aftersi becomes invalid
since all downstream node pairs, such assi+1 ands′i+1, would
receive different input data. In this case, attestation data cannot
be efficiently utilized. More attestation data are requiredto
attest downstream service hops, which will result in extended
detection time in multi-hop attestation.

AdapTest provides adaptive multi-hop attestation by inten-
tionally picking benign upstream nodes based on the node
trust scores in order to efficiently attest a downstream node,
illustrated by Figure 6. Specifically, during an-hop service
attestation, we first randomly select a service hop, say the
ith hop, as the target attestation hop. For each service hop
before theith hop, we intentionally select nodes that have high
trust scores. For theith to thenth service hops, we follows
the same per-hop attestation node selection scheme described
in the previous subsection. Thus, AdapTest maintains high
probabilities for the nodes at theith hop to receive consistent
input to perform valid attestation.

Figure 6 shows an example of multi-hop adaptive attesta-
tion. We target to attest the second service hop. Thus, we select
only benign nodes{s1, s3, s5} for the first service hop. For
the second service hop, AdapTest randomly selectss8 from
the suspicious set, and selectss10 from the benign set for
concurrent attestation. Similarly, for the third service hop, a
suspicious nodes12 and a benign nodes13 are selected for
attestation.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe our experiment setup, the
schemes used for comparison as well as the evaluation metrics.
We then present our experimental results in detail.

A. Experiment Setup

We have implemented AdapTest in c++ on top of the IBM
System S stream processing system [15], a production system
that can analyze massive continuous data streams in real-time.
We have deployed and tested the AdapTest prototype on a
subset nodes of the NCSU virtual computing lab (VCL) [4],
which is a virtualized computing cluster similar to Amazon
EC2. We used 10 blade servers in VCL, each of which runs
CentOS 5.2 64-bit and a set of VMs with Xen 3.0.3 hypervisor.

The data processing application we use is extracted from
the sample application provided by IBM System S stream
processing system. The application takes real weather data
from weather stations as input, performs conversions and cal-
culations, and generates the most recent weather information
for different locations where the fruit suppliers are located.
The results help in making decisions on whether to purchase
fruit from a supplier. We perform attestation on three service
hops, with five service instances at each hop. The input data
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rate is 300 tuples per second. We have one trusted portal node
that accepts input data streams and constructs the weighted
attestation graphs for each service function based on adaptive
attestation results.

We first compare AdapTest with RunTest, both of which
perform attestation probabilistically and employ only a subset
of nodes at a time for attestation. Note that RunTest randomly
selects service instances at every hop independently for attes-
tation. For both schemes, when the portal node receives the
processing result of a new data item, it haspu probability of
duplicating the data tor copies to launch service attestation,
where pu is called attestation probability andr is called
redundancy degree. In this experiment study, both schemes
leverage the portal node to select service paths for attestation,
which strives to avoid selecting the same node on different
attestation paths for good attestation coverage2.

We also compare AdapTest with the full time majority
voting scheme used by traditional Byzantine Fault Toler-
ance techniques [25]. The full time majority voting scheme
performs integrity attestation for all input data using all
service instances all the time. When inconsistency happens,
the scheme relies on majority voting to detect which instances
are faulty.

We evaluate AdapTest using two major metrics:detection
time andattestation overhead. The detection time is the time
duration that is needed to detect all malicious nodes. Early
detection is desired so that the system can make proper actions
to prevent malicious nodes from compromising more data
processing results. The attestation overhead is calculated as
the number of attestation data that are needed to detect all
malicious nodes.

B. Results and Analysis

We first evaluate the detection time and start with the most
challenging case. Figure 7 and Figure 8 compare the detection
time in collusion scenarios, with 40% malicious nodes and
node misbehaving probability of 0.2 and 0.4 respectively.
Here, the detection rate is calculated as the number of
pinpointed malicious nodes over the total number of malicious

2Our original RunTest system implementation makes the portal select
attestation nodes for different attestation paths independently, which often
involves the same node on different attestation paths. Thus, the performance
of RunTest reported in this paper is already much improved compared to [13].



1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Time (sec)

De
te

ct
io

n 
Ra

te

 

 

RunTest
AdapTest

Fig. 8. Detection time comparison under colluding attacks with node
misbehaving probability = 0.4. (40% malicious nodes)
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Fig. 9. Attestation overhead comparison under colluding attacks.(40%
malicious nodes)

nodes that have misbehaved at least once during the experi-
ment. The detection rate starts at zero and keeps increasing
as more malicious nodes are pinpointed. For both algorithms,
the attestation probabilitypu is 0.2. That is, the portal node
randomly selects 20% of original input data for attestation.
Each time, the portal node uses two duplicated attestation data
items to perform two-way concurrent attestation. Our results
show that our adaptive attestation scheme achieves much
shorter detection time than the random attestation scheme.

We also evaluate the attestation overhead. Figure 9 com-
pares AdapTest and RunTest under collusion scenarios, with
40% malicious nodes. The misbehaving probability of all
malicious nodes varies from 0.2 to 1. When they misbehave,
all malicious nodes give the same incorrect processing results.
Our results show AdapTest can consistently achieve lower
attestation overhead than RunTest.

We now evaluate our algorithms under non-colluding attack
cases. Figure 10 and Figure 11 show the time to detect
each of the malicious nodes with 40% malicious nodes under
node misbehaving probability of 0.2 and 0.4, respectively.We
again observe that in both scenarios AdapTest achieves 100%
detection rate much earlier than RunTest. Figure 12 shows the
attestation overhead comparison under non-colluding attack
scenarios, with 40% malicious nodes. Each malicious node
misbehaves independently with the misbehaving probability
varying from 0.2 to 0.8. The results show that AdapTest
consistently incurs less attestation overhead to achieve 100%
detection rate, with up to 60% less attestation overhead
than RunTest. Note that both schemes need less attestation
traffic to detect all malicious nodes when malicious nodes
misbehave more frequently. This is because the schemes have
more opportunities to catch inconsistency results and derive
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Fig. 10. Detection time comparison under non-colluding attacks with
node misbehaving probability = 0.2. (40% malicious nodes)
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Fig. 11. Detection time comparison under non-colluding attacks with
node misbehaving probability = 0.4. (40% malicious nodes)

inconsistency relationships between the nodes. We observethat
AdapTest can achieve significant cost reduction under different
node misbehaving probabilities.

Comparing Figure 9 and Figure 12, we can see that the
attestation overhead for non-collusion scenarios is generally
lower than that in collusion scenarios. This is because the
inconsistency links of malicious nodes increase much faster
in non-collusion scenarios, since malicious nodes producein-
consistent results with both benign nodes and other malicious
nodes.

For sensitivity study, we also evaluate the attestation over-
head for non-collusion scenarios with 20% malicious nodes,
as shown in Figure 13. Again, AdapTest also incurs the lower
overhead among all the probabilistic attestation schemes.We
did not evaluate collusion scenarios with 20% malicious nodes
because we would have only one malicious node per hop,
which cannot form collusion. Comparing Figure 13 and Figure
12, we can see that the attestation overhead that is needed to
detect all malicious nodes is lower under 20% malicious nodes
than that under 40% malicious nodes. This is because we have
less malicious nodes to detect.

We also compare the probabilistic attestation schemes with
the full time majority voting scheme. Figure 14 compares the
detection time with 95% confidence for RunTest, AdapTest
and the full time majority voting scheme under challenging
collusion scenarios with 40% malicious nodes, where attes-
tation probability is 0.2. Since the full time majority voting
scheme employs all nodes all the time, it can detect malicious
nodes in the shortest time. However, as Figure 15 shows, it
has much higher overhead than the probabilistic attestation
schemes. In contrast, RunTest and AdapTest tradeoff a short
detection delay for a much lower attestation overhead. We
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Fig. 12. Attestation overhead comparison under non-colluding attacks.
(40% malicious nodes)
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Fig. 13. Attestation overhead comparison under non-colluding attacks.
(20% malicious nodes)

observe that our adaptive attestation scheme can significantly
reduce the detection delay by up to 40% compared to the
random attestation scheme. Note that AdapTest and RunTest
have the same continuous attestation overhead because they
generate the same amount of attestation data given the same
attestation probability and the same number of duplicates per
attestation.

We evaluate the overhead imposed on the data processing
delay for AdapTest. We compare the average data processing
delay with and without attestation under different data rates.
Figure 16 shows AdapTest imposes little delay overhead on
the stream processing.

V. RELATED WORK

Trust management techniques have been studied in different
contexts [7], [23], [32]. They are generally used in multi-
party systems to protect the interests of honest parties and
expose dishonest or malicious parties. For example, the Eigen-
Trust [23] algorithm aims to reduce the number of fake files
in peer-to-peer (P2P) networks. It assigns each peer a unique
trust score based on the peer’s history of uploading authentic
files. It then identifies and isolates malicious peers by requiring
peers to interact with each other based on the trust score.
NetProbe [27] detects networks of fraudsters in online auction
sites by analyzing user transactions and infers fraudstersby
detecting suspicious patterns. In contrast, our scheme evaluates
different service instances byactively attesting them rather
than merely performing passive monitoring. We use trust
scores to guide the active attestation rather than directlyuse
trust scores for malicious node detection that can be highly
inaccurate, especially under colluding attacks.

Remote attestation uses a challenge-response paradigm for
detecting malicious behavior, which can be classified into
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Fig. 14. Detection time comparison between RunTest, AdapTest
and the full time majority voting scheme.
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Fig. 16. Data processing delay comparison.

system-level and application-level attestation. System-level re-
mote attestation techniques [7], [22], [30] ensure that a remote
software platform is running code that is not compromised or
altered by attackers. Most of the techniques require trusted
hardware or trusted OS kernel to co-exist with the attested
software platform. The integrity of the software platform is
ensured by employing a remote trusted attester to challengethe
trusted entity who provides an integrity evidence through some
cryptographic means. Application-level attestation techniques
perform integrity attestation using application data. They have
been proposed in different application contexts, such as P2P
messaging systems [18], publish-subscribe systems [32], cloud
storage systems [8], and database systems [34]. In contrast,
our work focuses on data processing in cloud systems. Our
approach supports black box service integrity attestation,
which are general to different application service functions.

Previous work [9], [24], [25] has extensively studied Byzan-
tine Fault Tolerance (BFT) techniques for detecting arbitrary
faults in replicated systems. BFT schemes rely on full time
majority voting to resolve inconsistency and enforce a certain
agreement protocol among all replicas to maintain consistency.
Although BFT techniques provide powerful fault detection
capabilities, they are impractical for large-scale cloud systems



due to scalability and deployment concerns. In contrast, our in-
tegrity attestation scheme is completely transparent to remote
services and does not require any application modification.
The service instances attested together are not necessarily
replicas, which can have different internal implementations.
By performing adaptive probabilistic attestation, our scheme
can significantly reduce runtime integrity attestation overhead.

Cloud system security has recently received much atten-
tion [14], [29], [33]. For example, Erway et. al. presented a
framework to protect the integrity of cloud storage system
by employing cryptographic methods [14]. Ristenpart et. al.
investigated the security holes of existing deployed cloud
systems, and identified their vulnerability toward cross-VM
side channel attacks [29]. In comparison, our work focuses on
protecting data processing service integrity in cloud systems.

VI. CONCLUSION

In this paper, we have presented AdapTest, a novel adaptive
runtime service integrity attestation framework for large-scale
multi-tenant cloud systems. AdapTest adopts a data-driven
integrity attestation approach to achieve both practicality and
scalability. Particularly, AdapTest dynamically derivesa set of
trust scores to achieve differentiated probabilistic attestation.
We have implemented AdapTest on top of the IBM System S
stream processing system and tested it on the NCSU virtual
computing lab. Our prototype implementation indicates that
AdapTest is feasible and efficient for real cloud systems.
The experimental results show that AdapTest can reduce
attestation overhead by up to 60% and shorten the malicious
node pinpointing delay by up to 40% compared to previous
approaches.
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