Adaptive Data-Driven Service Integrity Attestation
for Multi-Tenant Cloud Systems

Juan Du Nidhi Shah Xiaohui Gu
Department of Computer Science Cisco Systems Department of Computer Science
North Carolina State University nidshah@cisco.com North Carolina State University
jdu@ncsu.edu gu@csc.ncsu.edu

Abstract—Cloud systems provide a cost-effective service host-
ing infrastructure for application service providers (ASPs).
However, cloud systems are often shared by multiple tenants
from different security domains, which makes them vulnerabe
to various malicious attacks. Moreover, cloud systems ofte
host long-running applications such as massive data proceiag,
which provides more opportunities for attackers to exploit the
system vulnerability and perform strategic attacks. In this paper,
we present AdapTest, a novel adaptive data-driven runtime
service integrity attestation framework for multi-tenant cloud
systems. AdapTest can significantly reduce attestation oxeead
and shorten detection delay by adaptively selecting attestl nodes
based on dynamically derived trust scores. Our scheme treat Fig. 1. Integrity attack in cloud-based data processing.
attested services as black-boxes and does not impose any@pke
hardware or software requirements on the cloud system or ASP. attackers can still leverage the shared hardware to launch

We have implemented AdapTest on top of the IBM System attacks [6], [26] from the VMs they own or by compromising
S stream processing system and tested it within a virtualizé /g of benign users. One of the top security concérios

computing cluster. Our experimental results show that Adaest :
can reduce attestation overhead by up to 60% and shorten the cloud users is to verify the integrity of data processingihiss

detection delay by up to 40% compared to previous approaches FOF _example, a malicious_ (or comprom_ised) credit checking
service may provide an incorrect credit score to lead to a

. INTRODUCTION wrong mortgage application decision. Note that the intggri

attack is the most prevalent, which affects both public and
Cloud systems [1] have recently emerged as popular ISivate data processing.

source leasing infrastructures. Application service futers Although previous work has proposed various remote in-
(ASPs) can lease a set of_ resources from the cloud SyStFéBrity attestation techniques [7], [30], [31], existingutions

to offer software as a service [3] without paying the expeRjiien require trusted hardware or secure kernel to be cateki
sive cost of owning and maintaining their own computingit, the remote computing platform, which are difficult to
infrastructures. Could systems are particularly amenéinle e geployed in cloud systems. Although traditional Byzzati
data processing services [2], [10], [15], [21], which ar€eof 5t Tolerance (BFT) techniques (e.g., [9], [19]) can dete
extremely resource-intensive. In particular, our workuses . iicious behavior using replicated services, those teckes

on dataflow processing systems [5], [15], [16] that haVgien incur high overhead and impose certain agreement
many re_al Wo_rld a_ppllcatlons such as security survelllangleotocm over all replicas. To this end, we exploredata-
and business intelligence. As shown by Figure 1, users cgf\en integrity attestation approach that only relies on result
feed data from various data sources into the cloud systemdigsistency to detect malicious attacks, which is comiylete
perform various data processing functions and receive f'rl?énsparent to the attested services without imposing any
data processing results from the cloud. _ special software or hardware requirements.

However, clou_d systems are often sh_ared b)_/ multiple tenant§p, this paper, we preseAdapTest, a novel adaptive runtime
that belong to different security domains, which makes thegayyice integrity attestation framework for large-scaleud
vulnerable to various malicious attacks. Moreover, dat prsystems. AdapTest builds on top of our previously developed
cessing services are often long-running, which providesemayystem RunTest [13] that performs randomized probalsilisti
opportunities for attackers to exploit the system vulngityb attestation and employs a clique-based algorithm to pin-
and perform strategic colluding attacks. Although virtuahoint malicious nodes. However, randomized attestatidh st
ization ensures certain isolation between users, makiciophnoses significant overhead for high-throughput mul-ho

Data Storage

INote that confidentiality and user data privacy are impartathogonal

978'1'4577'0103'0/11/$26-@2011 IEEE. issues addressed by previous work [20], [35].

data processing services. In contrast, AdapTest dynamicd. Attack Model

evaluates the trustiness of different services based amopI® | 3 shared cloud infrastructure, malicious attackers can
attestation results and adaptively selects attested CBSIVipretend to be legitimate service providers to provide fake
during attestation. Thus, AdapTest can significantly redhe seryice instances or compromise vulnerable benign service
attestation overhead and shorten_the de_tect|0n (_je|a_Y-'fSpeﬁ1stances by exploiting their security roles. Our work feesi
cally, this paper makes the following major contributions: oy detecting the service integrity attack where a malici@us
« We provide a novel adaptive multi-hop integrity attessompromised) service instance gives untruthful data m®ce
tation framework based on a neweighted attestation ing results.
graph model. We derive both per-node trust scores and To escape detection, malicious attackers may want to per-
pair-wise trust scores to efficiently guide probabilistiform selective cheating. That is, they can misbehave on a
attestation. selective subset of received data while pretending to begghen
« We have implemented AdapTest on top of the IBMn other received data. Thus, the attack detection schemme mu
System S stream processing system [15] and testedbé able to capture misbehavior that are both unpredictable
on the virtual computing lab (VCL) [4], a productionand occasional without losing scalability. Although we can
virtualized computing cluster that operates in a similggerform integrity attestation on all service instancesthad
way as Amazon EC2 [1]. Our experimental results shotime, the overhead of integrity attestation would be veghhi
that AdapTest can significantly reduce attestation ovesspecially for high throughput data processing services in
head for reaching the 100% detection rate by up to 60Brge-scale cloud systems. Thus, an effective attack tietec
and shorten detection time by up to 40% compared seheme must perforraneaky attestation, which can prevent
previous randomized attestation approaches. attackers from gaining knowledge about our attestatioemseh
The rest of the paper is organized as follows. Section (i€, when and which set of data will be attested.). Othsewi
provides a brief background about cloud service integrif{€ attacker can compromise the integrity of selective data
attack and an overview of our approach together with o@focessing results without being detected at all.
assumptions. Section IIl presents the design detailsid®ect Furthermore, cloud computing infrastructures often com-
IV presents the prototype implementation and experimen®{iS€ @ large number of hosts running many more VMs and
results. Section V compares our work with related wori@Pplication service instances. It creates new opporesitr

Finally, the paper concludes in Section VI. colluding attacks where multiple malicious attackers t#un
coordinated attacks or multiple benign service instances a
Il. OVERVIEW simultaneously compromised and controlled by a single ma-

(IJ(_:ious attacker. Colluders can communicate with each rothe

In this section, we first describe our system model for clou . .
based data processing services and service integrityaditas ' an arbitrary way and produce the same incorrect results
P 9 grity on the same input. Attackers can also change their attacking

Next, we present the service integrity attack model fo."dweand colluding strategies arbitrarily. However, we assubha t
by an overview of our approach and our key assumptions.

attackers do not have knowledge of other benign service
A. System Model instances that they do not interact with.

Cloud systems are shared computing infrastructures densfs: Approach Overview & Assumptions
ing of a set of physical hosts interconnected via networkshE ~ Our service integrity attestation scheme has two major
host can run multiple virtual machines (VMs) that may belondesign goals: 1) support runtime continuous attestatidh wi
to different owners. The application service provider (ASRow overhead; and 2) pinpoint malicious (or compromised)
can lease a collection of VMs to host its software serviceservice instances among a large number of interacted servic
Each service instance, denoted §y provides a specific datainstances without assuming any prior knowledge about which
analysis function, denoted by, such as sorting, filtering, cor- service instances are trusted. AdapTest adopts a datendriv
relation, or data mining utilities. Multiple service instaes can approach to achieve the above design goals without imposing
befunctionally-equivalent, providing the same service functionany special hardware or software requirements over remote
for load balancing or fault tolerance purposes. Moreovetitested services, illustrated by Figure 2. AdapTest byes
popular services naturally attract different service jmews the portal node to perform service integrity attestation. T
for profit. A multi-party service provisioning infrastruse achieve non-repudiation, each service instance is redjtire
usually employs somgortal nodes [17], [28] to aggregateproduce a receipt for each data it receives and sign the data i
different service components into composite services thadeas processed [12].
on the user’s requirements. The user accesses cloud servicddapTest performs attack detection using replay-based con
by submitting input data to the portal node that will forwardistency check [13]. The basic idea is to duplicate some
the user data to different service instances for processiinly original inputs and re-send them a#estation data to dif-
then deliver final results back to the user. Portal nodes cament functionally-equivalent service instances forsistency
authenticate users to allow only authorized users to adbesscheck. Note that attestation data and original data are nade
cloud services. distinguishable to service instances. Moreover, our i@ties

f1

Attestation graphs
S1 S2 Ss Sg

fi(dq)=f1(d1")

5 fi Fo(f1(c))#E2(f1(d1")

@ &
5 -

\
o ! \
3 | fi(dy) | L & L
{)‘ t\‘\'\)v @7 T — fa(f1(d)). fa(fi(d2)). - ‘\\
| ‘ — 1

| f2(f1(d1))
‘t I' \ @/ Portal a 2
| I f(dy)! dy ad)) User)) o] o
\/ e [Fig. 3. Clique-based malicious node pinpointing.
\

\¢/

O Benign node
@ Malicious node

—— Consistency link

—==Inconsistency link

dq,da, ...

=

Cloud system Data source dynamically derives a set of trust scores for each node based
on previous attestation results and use those trust scores
to guide future attestation. Specifically, AdapTest astebe
nodes with lower trust scores with higher probability, aneg
priority to those node pairs that have not been attesteddefo
scheme does not affect the original data processing. Irr otlag have been consistent before. Third, attesting multi-heatga
words, original data can be routed as before to differemieer processing services requires additional consideratiogesi
instances for processing based on certain load balancidg @ftonsistent intermediate processing results from uastre
quality-of-service (QoS) management objectives. Thest#tte hops will invalidate attestation for all downstream hope. T
tion data are replayed after the portal receives the origia&@ address the problem, AdapTest intentionally picks goodesod

processing results rather than being sent concurrentlytvé based on previous attestation results for upstream hopslér o
original data. Thus, we can prevent two colluding attackets effectively attest downstream hops.

from detecting attestation by comparing their receivecadat)

and thus escaping detection. Although the replay scheme mayjNote that AdapTest does not use the trust scores to directly
cause delay in a single data item processing, we can overfdppPoint malicious nodes. Without assuming the trustiress

the attestation and normal processing of consecutive tiatesi any nodes, the trust scores only represent the relativergissd
to hide the attestation delay from the user. of different nodes. The trust score of a specific node can
%}glamically change after the node is attested with differen

AdapTest leverages our previously developed clique-bas . o o
P 9 P y P q nodes. Even if the node trust scores are stabilized, it is

algorithm [13] to pinpoint malicious nodes, illustrated b)(/ difficult. if not i ible. t defi "
Figure 3. The portal node constructs an attestation graghnevh ery dihcult, 1f not IMpossible, 1o pre-defin€ a proper rus

wpcore threshold to separate the malicious and benign nodes.

nodes always give consistent output, we use a consistént I%uctu thresholtil depefnds I(') na set (;)f uner;O\t/r\:n fa(_:tobrsh su_ch
between these two nodes. Otherwise, if they give incomgist§> M€ Percentage of malcious nodes an € misbehaving
results on at least one input data, we link them using gﬁobablhty of those malicious nodes. Thus, AdapTest only

inconsistent link. Since all benign nodes will always givgses(}rustl_sc_:ores todgu@e gttistat|?n bltjrt] St't" uses th?ﬂ}“
consistent correct results, they will formcansistency clique ased malicious node pinpointing aigorithm to guarantee ze

in the attestation graph. In contrast, the malicious nodis v\}’alse positive [13].

be exposed with inconsistent links when their misbehavior Assumptions. First, we assume that data processing ser-
is caught by our attestation scheme. Note that colludigces are stateless and deterministic, that is, given theesa
malicious nodes may try to form a consistency clique byiput, a benign node always produces the same output.
always giving the same wrong results. However, if we assumiany data processing functions such as projection, setecti
benign nodes are the majority, we can say a node is definit@ilyering fall into this category [15]. We can also extend our
malicious if the node is outside of all the Cliques WhOSGSizgcheme to Support stateful data processing services []_ﬂ_qhw
are larger than half of the total nodes [13]. For example, ibwever is beyond the scope of this paper. Second, we assume
Figure 3, we can see the attestation graph includes twoediqyhat benign nodes are the majority within each group of
{51,814, 85} and {s2, s3}. Since the size of the first clique isfunctionally-equivalent service instances. This assimnpis
larger than half of the total nodes; ands; are successfully the same as other common attack detection schemes [25].
identified as malicious nodes even though they also try tmforrhird, we assume that the portal node is trusted, which is
a clique through colluding. solely managed by the portal service provider whose goal is
AdapTest performs adaptive attestation to quickly expose provide trust-worthy data processing services for isnts.
malicious nodes. We make three key observations. First, Whe portal node plays a similar role as the dispatcher used
should attest suspicious nodes more often in order to captby previous remote attestation schemes [30], which is also
selective cheating with minimum attestation data. Secand,assumed to be trusted. Further, the portal node can employ
order to quickly pinpoint malicious nodes, we need to exposeithentication to easily protect itself from maliciousealis or
as many inconsistency links as possible. Therefore, AdgpTealicious application service providers.

N4

Fig. 2. Data-driven service integrity attestation.

nodes are functionally equivalent service instances. I

fs be -1, which means that ands; have not been attested with

each other yet.

Trust scores of s

ayq .

Bis Z; The trust score of a node takes the consistency relatiomsship

Bia| 1 between this node with all the other nodes into considaratio

B4 | 0.25 For example, in Figure 4; has a node trust score of 0.5 since

Bis| 0.4 it has total 10 consistent results and 10 inconsistent tesul
o) with {sa, s3, 4, s5}. Intuitively, malicious nodes should have
I, - Inconsistency counter © Benign node higher probabilities than benign ones to be inconsistett wi
Cy+ Consistency counter © Malicious node the other nodes given that benign nodes are the majoritys, Thu

we assign node trust scores according to how consistentea nod
is with the other nodes. Nodes that are more consistent with
the others have higher trust scores and are considered to be
more trustworthy. The node trust scores can be affected by
two factors. The trust score of a nodg decreases if i) the
In this section, we present the design and algorithm detaflgde s, is inconsistent withmore nodes; or ii) the node; is
of the AdapTest system. We first describe a weighted attesggconsistent with other nodesore frequently.
tion graph model that serves as the basis of our approach, NexThe pairwise trust scores reflect how consistent two nodes
we present the details of per-hop adaptive attestationiigo are and therefore how trustworthy they think each other. The
followed by the multi-hop adaptive attestation scheme. more frequently two nodes give inconsistent results, tiss le
. . pairwise trust score between them. Note that we initialize
A. Weighted Attestation Graph pairwise trust scores with -1 to indicate that the two nodes
AdapTest strives to pinpoint malicious service instancégve not been attested together before. For example, imeFigu
without making any prior assumption about the trustiness 4f if the pairwise trust score between two nodes equals to 1,
any service instance. Moreover, malicious attackers can p@e draw a solid line between them. Otherwise, if two nodes
form selective cheating during long-running data processido not always agree with each other, we use a dashed line
services, which means the trust score of a service instaneeepresent the inconsistency relationship. The pairtvisst
must be continuously monitored and updated. Thus, AdapTesbre betweer, ands; is 2/(4+2) = 0.33 since they produce
employs aweighted attestation graph to aggregate previous 4 inconsistent results and 2 consistent results.
attestation results and dynamically derives a set of tremtes
for each service instance, illustrated by Figure 4. We fdiyna B. Per-Hop Adaptive Attestation
define the weighted attestation graph as follows.

Fig. 4. Weighted attestation graph.

IIl. DESIGN AND ALGORITHMS

AdapTest leverages dynamically derived trust scores to
Definition 1: A weighted attestation graph is an undirected intelligently guide probabilistic service attestatiornergoal of
complete graph consisting of all functionally equivaleat-s our adaptive attestation scheme is to expose malicioussnode
vice instances as nodes. The weight of each edge consist§aster. We achieve the goal by capturing more inconsistency
a pair of counters denoting the number of inconsistent tesulelationships for malicious nodes so that they can be pushed
and the number of consistent results respectively. out from the maximum consistency clique.

AdapTest expedites the exposure of inconsistency relation
sh|ps and therefore shorten detection time using two adgapti
node selection schemes. First, AdapTest selects suspiciou

. : nodes that have low trust scores and attests those suspiciou
result. We can derive aode trust score and a set ofpair-

Ut ¢ h node f h hted attestati nodes more frequently. The rationale is that the nodes that
wise trust scores for each node from the weighted a estaliog e already delivered more inconsistent results have the
graph. The node trust score denotes how trustworthy a Qggq

s and the pair-wise frust score denotes ho oll two nod ential to deliver even more inconsistent results in ttiare
' pair-wi u W W festation. By intensively attesting suspicious serviodes,

trust each other. We formally define both the node trust ScQf&
and the pairwise trust score as follows.

For example, in Figure 4g; produces three inconsistent
results and two consistent results with Two nodes are con-
nected by a consistent link only if they have zero inconaiste

may have higher probabilities to find inconsistency tssul
Second, AdapTest strives to attest suspicious nodes tegeth
Definition 2: The trust score of the nodes;, denoted byw;, Wwith benign nodes since two colluding malicious nodes will
is defined as the fraction of consistent results returnechby tiry to avoid producing inconsistent results with each ather
node s; when attested with all the other nodes. Node trugtttesting a suspicious node together with a benign one i€mor
scores range within [0,1], and are initialized to be 1. effective in producing inconsistent results.

For scalability, AdapTest performs probabilistic attésta
Definition 3: The pairwise trust score between two service by randomly selecting a subset of input data for consistency
instancess; and s;, denoted byg; ;, is calculated by the check. When an input data item is selected for attestation
fraction of consistent results whenpis attested against. The by the portal, AdapTest first identifies a pool of suspicious
pairwise trust score ranges within [0, 1], and are initedizo nodes based on node trust scores and randomly selects a

f 2. receive fs(f2(f1(d1)))

Target hop

f1 2 f3
o an \/\5/ S 7N
S ol a;=0.9 O de=0.9, T\
0{\%\(\ ! 31\\ / Ss\ Be6s=0.7 / S1
S / \ \ / \

=

!
/ \ ! \ 1
A Og, | Og_ 1 a7=0.6, \
'A’ Sz, | S7i57 =0.3 |
3. send d4"| | | 75— 0.
T ——t— !

portal o

1 1
I
portal o | ©953,@5=0.8| ®ssigy=0.2 7Sz,
B | ! I ! | |
1 I | I 1 !
5. f(dq") == f(d4")? Sene N ®s4l ®©So 2201 | ®Sq4
f(dq) == f(d+")? 7 ! \ f \ /
f((d)):: f((d "))7 \‘\ SW | a10=0.8, \\\ &,/
1 17f 7 \ /7058.1o=7-0 /1/5

) 4. receive f3(f2(f1(d+"))) ,fa(f2(f1(d1™)))
O Benign node ® Suspicious node

. . . © Benign node ® Suspicious node
Fig. 5. Per-hop adaptive attestation.

Fig. 6. Multi-hop adaptive attestation.

suspicious node from this pool to attest. Given the assumpti . . .
that malicious nodes are no more than half of total node-g,m number associated with each protocol step indicates the

we rank all nodes in an increasing order of trust scores, afyecution order. If two steps have the same number, it means
mark the first| N/2| nodes as the suspicious node pddl that the two steps are executed concurrently. The portal firs

and the rest of nodes as the benign node E@olwhere N sends the original daté to s; for processing. After the portal

is the total number of nodes providing the function. We the"r‘?C(aives the result frory, it ‘?‘eCiF’eS to perform attestatic_)n
randomly pick one nodes;, from the suspicious node pool,on replaym_g di on two service mstan_c_es. The portal first
excluding the node processing the original data, for attiest randomly picks one node from the suspicious nOdE{S‘QFS‘*}

by comparing with the original node. Note that we do nat. attest, Sayss. Then the portgl picks the node _W'th the
want to always attest the node with the lowest trust score ||ghest pairwise trust score withs from the benign set
maintaining attestation coverage and tolerating impestrisst SNSQ’ ‘95&" Say s5. H S rob , s E
scores. Moreover, we want to avoid alerting the malicioueno otel that oulr_ s¢ emed|s ro ustbtcr)] stra‘:)eg|_c alttac S'h or
by continuously attesting it. At the beginning, since altes example, a malicious node; may behave benignly at the

have the same initial trust scores, AdapTest will randondi p be_glnmng to join th_e ber_1|gr_1 node poo! and then_ §tart to
misbehave by colluding with its colludey, in the suspicious

nodes from the whole node pool to attest. ;) -) ! L

. node pool, with an intent to hide its misbehavior by sacrifici

AdapTest may send multiple a}ttgstatmn data to attestrd|ff% . However,s; ands, are not just attested against each other,
ent nodes concurrently. To maximize the char_1c_e of Captu”B@t also attested with the node that processes the origata) d
inconsistent results, we want to attest a suspicious notte Wihich is randomly selected. Even 4§ ands, are consistent

a benign node together. Thus, after picking a suspicioug nc{ﬂ'th h other. th il h ; ist links with all
s; from B, AdapTest picks the other attested node from tr}?' cach ofher, they Wil have Inconsistency finks with a

. i : S [des. Th d ill tually be pinpointed b
benign node podlr using the following rules. First, if there are enigh Noaes. 1hliss ands, WIT SVentualy be pinpointed by

beni des that h b ttested withef . our clique-based algorithm. If eitheg or s4 is selected as the
enign nodes that have not been atiested withetore (ie., .original node, our replay-based attestation scheme pteven
pairwise trust score equals to -1 in the weighted attestati

graph). we randomly pick one from them. Second, if all nodegom knowing whether it will be compared with benign nodes

i its colludi ty. Thus, ifs tries t tend to be beni
in the benign set have been attested withwe randomly pick ' cOTLAING party: “nus, Bs tries 1o prefent to be Lenign,

. . it will have an inconsistency link witlk, with high probability.
one from G that have always been consistent with We_ In this case, AdapTest will rarely attesf ands, since we try

% avoid attesting two nodes that already have an incomsigte
) ot links. Th it all nodes i@ . istent link between each other. Note thag and s, can help each
Inconsistency links. us, Ih-all nodes 1 are INCoNSIStent o 4 increase their trust scores and decrease othes’node

Wltg St |fnstezi(r1] of atte_zs_tmgl-, v(\;e rart'utllomtlty stelec('; aanthe:trutst scores by providing consistent wrong results. Howeve
node,s;, from e suspicious node setlo altest, and also SeIgLl o tigneq in Section II-C, AdapTest does not rely on the
a node from the benign node set according to the above r

¢ i with s, f ttestati Note that if all nodes in th ft scores to pinpoint malicious nodes. Instead, AdapTes
O pair with s; Tor attestation. Note that 1t all nodes in eonIy considers the consistency/inconsistency links ares us
suspicious node set have inconsistency links with all treeso

in the benign node set, we randomly pisk and then pick cligue-based algorithm to pinpoint malicious nodes. Thisttr

X o scores are only used to expose more inconsistency links with
the one node fronds that has the highest pair-wise trust Scor?eas attestation data.

with s;. Our scheme can achieve both good coverage and avoi

wasting attestation traffic on those node pairs that haeadjr C. Multi-Hop Adaptive Attestation

presented inconsistency relationships. Complicated data processing services often comprise mul-
Figure 5 shows an example of adaptive per-hop attestatitdiple data processing functions called service hops. Malg

with each other, since further attestation will not resalhew

attackers can attack any of the service hops to compromngse th
final data processing results. Suppose a data processingeser
consists of totah hops and an input data item is selected for
attestation through two service paths,— ...,s; — ... — s,
ands} — ..., s, — ... — s}, respectively. If the intermediate
processing results begin to become inconsistent at theshop
then the attestation for all service hops aftebecomes invalid -
since all downstream node pairs, suchsas ands;,;, would L S Fime (sedy
receive different input data. In this case, attestatioa dahnot

be efficiently utilized. More attestation data are requited Fig- 7. Detection time comparison under colluding attacks with noe
attest downstream service hops, which will result in exéehd misbehaving probability = 0.2. (40% malicious nodes)

detection time in multi-hop attestation.

AdapTest provides adaptive multi-hop attestation by 'mejite is 300 tuples per second. We have one trusted portal node

N
>

o
©
..g“-

Detection Rate
o (]
N o

o
N

tionally p'C"'T‘g benign upstream nodes based on the no at accepts input data streams and constructs the weighted
trust scores in order to efficiently attest a downstream no

illustrated by Figure 6. Specifically, duringahop service a?:::gﬂgﬂ ?ézﬁﬂss for each service function based on idapt
attestation, we first randomly select a service hop, say tﬁew : : . .
. . . e first compare AdapTest with RunTest, both of which
ith hop, as the target attestation hop. For each service ho . -

rform attestation probabilistically and employ only dset

before theith hop, we intentionally sele_ct nodes that have h'gg'f nodes at a time for attestation. Note that RunTest rangoml
trust scores. For thé&h to thenth service hops, we follows

the same per-hop attestation node selection scheme mcrsoel_ects service instances at every hop mdependentlyt&gx-at
) %tlon. For both schemes, when the portal node receives the

in the _prgvious subsection. Thus, AdapTest. maintai.ns hI%rocessing result of a new data item, it hasprobability of
probabilities for the nodes at théh hop to receive ConS'StemdupIicating the data t@ copies to launch service attestation,

input to perform valid attestation. . : o .
Figure 6 shows an example of multi-hop adaptive attest\é\\/—here pu i called attestation probability and is called

tion. We target to attest the second service hop. Thus, wetse edundancy degree. In this eXpe”meF‘t study, both _schemes
. ; ; everage the portal node to select service paths for aitasta
only benign nodeqs1, s3, s5} for the first service hop. For . . . : .
. which strives to avoid selecting the same node on different
the second service hop, AdapTest randomly selegtirom . .
. : attestation paths for good attestation covefage
the suspicious set, and selecats from the benign set for

concurrent attestation. Similarly, for the third serviogpha We also compare AdapTe;t_ with- the fuI_I time majority
L . voting scheme used by traditional Byzantine Fault Toler-
suspicious node;>; and a benign node;; are selected for

ance techniques [25]. The full time majority voting scheme

attestation. ;) . . .
performs integrity attestation for all input data using all
IV. EXPERIMENTAL EVALUATION service instances all the time. When inconsistency happens
In this section, we first describe our experiment setup, tl%z ?acgﬁ;ne relies on majority voting to detect which instanc

schemes used for comparison as well as the evaluation metrr

We then present our experimental results in detail. We evaluate AdapTest using two major metridstection

time and attestation overhead. The detection time is the time
A. Experiment Setup duration that is needed to detect all malicious nodes. Early

We have implemented AdapTest in c++ on top of the IB,\ﬁetection is desired so that the system can make propenactio

System S stream processing system [15], a production systttg.‘)rrrmeve_nt malicious nodes frOT" compromising more data
that can analyze massive continuous data streams in neal-tjProcessing results. Th_e attestation overhead is calclimie
We have deployed and tested the AdapTest prototype or]ihg _n_umber of attestation data that are needed to detect all
subset nodes of the NCSU virtual computing lab (VCL) [4]r,naIICIOUS nodes.
which is a virtualized computing cluster similar to Amazoré
EC2. We used 10 blade servers in VCL, each of which runs
CentOS 5.2 64-bit and a set of VMs with Xen 3.0.3 hypervisor. We first evaluate the detection time and start with the most
The data processing application we use is extracted frgtallenging case. Figure 7 and Figure 8 compare the detectio
the sample application provided by IBM System S streaftine in collusion scenarios, with 40% malicious nodes and
processing system. The application takes real weather daegle misbehaving probability of 0.2 and 0.4 respectively.
from weather stations as input, performs conversions ahd ddere, the detection rate is calculated as the number of
culations, and generates the most recent weather infamatpinpointed malicious nodes over the total number of malisio
for different locations where the fruit suppliers are l@zht
The results help in making decisions on whether to purchasgOur original RunTest system implementation makes the pardect
fruit from a supplier. We perform attestation on three ssvi fﬁ;if&i‘s"’tﬁe”‘s’g;i f,?gd‘i‘“jgi;;;ﬁ‘;f‘g{{g;aﬁfgﬁS '?ﬁéﬂmﬁw ; Wh'fCh often
patns. , [thespertormance
hops, with five service instances at each hop. The input dat®&unTest reported in this paper is already much improvedpesed to [13].

Results and Analysis

1 a
§ 0.8 F4
= LA
S 06 H
2 4
D 0.4 H
(=) ZF'A
0.2 A RunTest
o E -Ac- AdapTest
L 15 2 25 3 3.5
Time (sec)

Fig. 8.

Detection time comparison under colluding attacks with noe&

misbehaving probability = 0.4. (40% malicious nodes)

250

I RunTest

1 a
° H
Zos 44
& 1
o= ﬁ'A
S 06 |
2 4%
D 0.4 H
a P SN
0-2 s RunTest
i -Ac- AdapTest
e 4
1.5 2 2.5 3 3.5
Time (sec)

Fig. 10. Detection time comparison under non-colluding attacks win
node misbehaving probability = 0.2. (40% malicious nodes)

\

Il AdapTest

[

200

o
©

150

100

11 ;

0.2 0.4 0.6 0.8 1.0 i 1.5 2 2.5
Misbehaving probability Time (sec)

Detection Rate
(] o
N o

o
o

Number of attestation data
o
N

Fig. 9. Attestation overhead comparison under colluding attacks(40%
malicious nodes)

Fig. 11. Detection time comparison under non-colluding attacks win
node misbehaving probability = 0.4. (40% malicious nodes)

nodes that have misbehaved at least once during the expmronsistency relationships between the nodes. We obteate
ment. The detection rate starts at zero and keeps increashupapTest can achieve significant cost reduction underreiffie
as more malicious nodes are pinpointed. For both algorithnmode misbehaving probabilities.
the attestation probability, is 0.2. That is, the portal node Comparing Figure 9 and Figure 12, we can see that the
randomly selects 20% of original input data for attestatiomttestation overhead for non-collusion scenarios is gdiyer
Each time, the portal node uses two duplicated attestatiten dlower than that in collusion scenarios. This is because the
items to perform two-way concurrent attestation. Our mssulinconsistency links of malicious nodes increase much faste
show that our adaptive attestation scheme achieves mirmon-collusion scenarios, since malicious nodes prodluce
shorter detection time than the random attestation schemeconsistent results with both benign nodes and other makcio
We also evaluate the attestation overhead. Figure 9 conodes.
pares AdapTest and RunTest under collusion scenarios, with-or sensitivity study, we also evaluate the attestatiorr-ove
40% malicious nodes. The misbehaving probability of alead for non-collusion scenarios with 20% malicious nodes,
malicious nodes varies from 0.2 to 1. When they misbehawas shown in Figure 13. Again, AdapTest also incurs the lower
all malicious nodes give the same incorrect processindtsesuoverhead among all the probabilistic attestation schefves.
Our results show AdapTest can consistently achieve lowaid not evaluate collusion scenarios with 20% maliciousasod
attestation overhead than RunTest. because we would have only one malicious node per hop,
We now evaluate our algorithms under non-colluding attaekhich cannot form collusion. Comparing Figure 13 and Figure
cases. Figure 10 and Figure 11 show the time to detdd, we can see that the attestation overhead that is needed to
each of the malicious nodes with 40% malicious nodes und#gtect all malicious nodes is lower under 20% malicious sBode
node misbehaving probability of 0.2 and 0.4, respectiwdlg. than that under 40% malicious nodes. This is because we have
again observe that in both scenarios AdapTest achieves 10@%s malicious nodes to detect.
detection rate much earlier than RunTest. Figure 12 shogs th We also compare the probabilistic attestation schemes with
attestation overhead comparison under non-colludinglattahe full time majority voting scheme. Figure 14 compares the
scenarios, with 40% malicious nodes. Each malicious nodetection time with 95% confidence for RunTest, AdapTest
misbehaves independently with the misbehaving probgbiliand the full time majority voting scheme under challenging
varying from 0.2 to 0.8. The results show that AdapTesbllusion scenarios with 40% malicious nodes, where attes-
consistently incurs less attestation overhead to achi®@8ol tation probability is 0.2. Since the full time majority vt
detection rate, with up to 60% less attestation overheadheme employs all nodes all the time, it can detect makciou
than RunTest. Note that both schemes need less attestatiodes in the shortest time. However, as Figure 15 shows, it
traffic to detect all malicious nodes when malicious noddges much higher overhead than the probabilistic attestatio
misbehave more frequently. This is because the schemes hssleemes. In contrast, RunTest and AdapTest tradeoff a short
more opportunities to catch inconsistency results andveerdetection delay for a much lower attestation overhead. We

I RunTest
[l Hl AdapTest

=, N W b

Detection time (sec)

o

Number of attestation data

50
I l RunTest AdapTest full-time majority
o .

0.2 0.4 0.6 0.8 (Pu=0.2, r=2) (Pu=0.2, r=2) voting
Misbehaving probability

. . .) Fig. 14. Detection time comparison between RunTest, AdapTest
Fig. 12. Attestation overhead comparison under non-colluding attaks. 4 the full time maioritv votina scheme.

(40% malicious nodes) x 1000

. |

100

50

RunTest AdapTest Full-time majority

o 02 04 (Pu=0.2,r=2) . (Pu=0.2, r=2) voting
Misbehaving probablllty

=
o
oS

250

00
o

I RunTest

AdapTest
200 | p]

=)
(=]

S
o

150

(# of tuple duplicates)
N
o

Attestation overhead

o

Number of attestation data

Fig. 15. Attestation overhead comparison between probabilistic
Fig. 13. Attestation overhead comparison under non-colluding attaks. attestation schemes and the full time majority voting schere.
(20% malicious nodes)

R
o

Wlthout AdapTest
Wlth AdapTest

observe that our adaptive attestation scheme can sigrilfican
reduce the detection delay by up to 40% compared to the
random attestation scheme. Note that AdapTest and RunTest
have the same continuous attestation overhead because they
generate the same amount of attestation data given the same
attestation probability and the same number of duplicaées p 100 200 L R ate 4°°
attestation.

We evaluate the overhead imposed on the data processing
delay for AdapTest. We compare the average data processing

delay with and without attestation under different datasat

Figure 16 shows AdapTest imposes little delay overhead 8¥Stém-level and application-level attestation. Syskevet re-
the stream processing. mote attestation techniques [7], [22], [30] ensure thataate

software platform is running code that is not compromised or
V. RELATED WORK altered by attackers. Most of the techniques require tduste
Trust management techniques have been studied in differbatdware or trusted OS kernel to co-exist with the attested
contexts [7], [23], [32]. They are generally used in multisoftware platform. The integrity of the software platfors i
party systems to protect the interests of honest parties a@ttsured by employing a remote trusted attester to challérege
expose dishonest or malicious parties. For example, therkigtrusted entity who provides an integrity evidence througie
Trust [23] algorithm aims to reduce the number of fake filegryptographic means. Application-level attestation teghes
in peer-to-peer (P2P) networks. It assigns each peer a anig@rform integrity attestation using application data. yrhave
trust score based on the peer’s history of uploading attherfteen proposed in different application contexts, such @ P2
files. It then identifies and isolates malicious peers byirggy messaging systems [18], publish-subscribe systems [&Ridc
peers to interact with each other based on the trust scostorage systems [8], and database systems [34]. In cagntrast
NetProbe [27] detects networks of fraudsters in onlineianct our work focuses on data processing in cloud systems. Our
sites by analyzing user transactions and infers fraudstgrs approach supports black box service integrity attestation
detecting suspicious patterns. In contrast, our scheneates which are general to different application service funusio
different service instances bactively attesting them rather Previous work [9], [24], [25] has extensively studied Byzan
than merely performing passive monitoring. We use trushe Fault Tolerance (BFT) techniques for detecting aaloytr
scores to guide the active attestation rather than directy faults in replicated systems. BFT schemes rely on full time
trust scores for malicious node detection that can be hightyajority voting to resolve inconsistency and enforce aaiert
inaccurate, especially under colluding attacks. agreement protocol among all replicas to maintain consigte
Remote attestation uses a challenge-response paradigmAitihough BFT techniques provide powerful fault detection
detecting malicious behavior, which can be classified intapabilities, they are impractical for large-scale cloysteams

Avg data processing delay (ms)
Q N A

I

]

|

1

Fig. 16. Data processing delay comparison.

due to scalability and deployment concerns. In contrastisu [10] J. Dean and S. Ghemawat. MapReduce: Simplified DataeBsing

tegrity attestation scheme is completely transparentrtote on Large ClustersProc. of USENIX S/mposium on Operating System
. d d t . licati dificati Design and Implementation, 2004.

services f”m) 0€s not require any applicaton moaii 'Q'i‘;] J. Du, X. Gu, and T. Yu. On verifying stateful dataflow pessing

The service instances attested together are not necgssaril services in large-scale cloud systems.Phoc. of CCS (poster session),

replicas, which can have different internal implementagio Oct. 2010. o
B f . dapti babilisti . | [12] J. Du, W. Wei, X. Gu, and T. Yu. Toward secure dataflow pssing in
y performing adaptive probabilistic attestation, our open distributed systems. Rroc. of ACM Scalable Trusted Computing

can significantly reduce runtime integrity attestationrbvead. Workshop (STC), Nov. 2009.

Cloud system security has recently received much attdk?l J- Du, W. Wei, X. Gu, and T. Yu. Runtest: Assuring intégiof dataflow
tion 1141 1291, 1331, For example. Erwav et. al. presented a Prcessing in cloud computing infrastructures. AGM Symposium on
[]. []7 [] pie, y et. al. p Information, Computer and Communications Security (ASACCS), 2010.

framework to protect the integrity of cloud storage system4] C. Erway, C. Papamanthou, A. Kupcu, and R. Tamassia. aByn
by employing cryptographic methods [14]. Ristenpart et. provable data possession. fnoc. of CCS, 2009.

|
. . . s 3]d5] B. Gedik, H. Andrade, and et. al. SPADE: the System S &rative
investigated the security holes of existing deployed clo Stream Processing EnginBroc. of SGMOD, Apr. 2008.

systems, and identified their vulnerability toward cro9d-V [16] T.S. Group. STREAM: The Stanford Stream Data ManaffeEE Data

side channel attacks [29]. In comparison, our work focuses 0)Engc';f:lee{é”?\l;‘:'r's‘i‘égt Zgglg:é?'if' '\gg-s_zggire 4 Service Gasiion in

protecting data processing service integrity in cloud eyst Managed Service Overlay NetworkBroc. of ICDCS, 194-202, 2003.
[18] A. Haeberlen, P. Kuznetsov, and P. Druschel. Peefsevieractical
VI. CONCLUSION accountability for distributed systems. A€M Symposium on Operating

. . Systems Principles, 2007.
In this paper, we have presented AdapTest, a novel adapiiMg 1. Ho, B. Leong, R. Koetter, and et. al. Byzantine modifion detection

runtime service integrity attestation framework for lasgmle in multicast networks using randomized network coding/BEE ISIT,
i _dri 2004.

_multl Fenant clogd systems. AdapT.eSt adopts a C_I<aI drIV[%g] P. C. K. Hung, E. Ferrari, and B. Carminati. Towards dtadized web

'ntegnt_Y_ atteSta_uon approach to aCh|eve_ both prQCtbcadnd services privacy technologies. IEEE |nternational Conference on Web

scalability. Particularly, AdapTest dynamically deriveeset of Services, pages 174-183, San Diego, CA, June 2004.

trust scores to achieve differentiated probabilisticsagtton. [21] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. yd: Distributed
data-parallel programs from sequential building blocksProc. of

stream processing system and tested it on the NCSU virtual 2007.

; ; ; [2] E. Kaiser, W. Feng, and T. Schluessler. Fides: Remotenaiy-based
computing lab. Our prototype implementation indicatest thE cheat detection using client emulation. finoc, of CCS, 2009,

AdapTest i.S feasible and efficient for real cloud systemgg; s p. kamvar, M. T. Schiosser, and H. Garcia-Molina. EigenTrust
The experimental results show that AdapTest can reduce Algorithm for Reputation Management in P2P NetworksPtnceedings
attestation overhead by up to 60% and shorten the malicic&E of the 12t International World Wide Web Conference, 2003.

. L. o . R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. yZzyva:
node pinpointing delay by up to 40% compared to previous ' speculative byzantine fault tolerance. Proc. of SOSP, 2007.

approaches, [25] L. Lamport, R. Shostak, and M. Pease. The byzantinergénproblem.
ACM Transactions on Programming Languages and Systems, 4(3), 1982.
VIl. ACKNOWLEDGMENT [26] L. Litty, H. A. L.-Cavilla, and D. Lie. Computer metedogy:
Monitoring compute clouds. IfProc. of HotOS May 2009.
This work was sponsored in part by NSF CNS09155677] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Net?rébFast

: and Scalable System for Fraud Detection in Online Auctiotwseks.
grant, NSF CNS0915861 grant, U.S. Army Research Office In Proceedings of the 16th international conference on World Wide Web

(ARO) under grant W911NF-10-1-0273, and IBM Faculty owww), 2007.
Award. Any opinions expressed in this paper are those of tf#8] B. Raman, S. Agarwal, and et. al. The SAHARA Model for \iee

: : Composition Across Multiple Providers. Proceedings of the First
authors and do not necessarily reflect the views of the NSF, = = < trence on Pervasive Computing, August 2002.

ARO, or U.S. Government. The authors would like to thanig] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, ytey get off

the anonymous reviewers for their insightful comments. my cloud! exploring information leakage in third- party cpate clouds.
In Proc. of CCS 2009.

[30] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, andkiosla.
REFERENCES Pioneer: Verifying code integrity and enforcing untampeo®de exe-
[1] Amazon Elastic Compute Cloud. http:/aws.amazon. eV, cution on legacy systems. Proceedings of the 20th ACM Symposium
[2] Apache Hadoop System. http://hadoop.apache.orglcore on Operating Systems Principles (SOSP), Oct. 2005. ,
[3] Software as a Service. http://en.wikipedia.orgiwiki/Software as a [31] E. Shi, A. Perrig, and L. V. Doorn. Bind: A fine-grainedtesitation
Sarvice. service for secure distributed systems.Firoc. of SSP, 2005.
[4] Virtual Computing Lab. http:/vcl.ncsu.edul. [32] M. Srivatsa and L. Liu. Securing publish-subscribe rtae services
[5] D. J. Abadi and et al. The Design of the Borealis Streamc®ssing with eventguard Proc. of ACM Computer and Communication Security
Engine. Proc. of CIDR, 2005. (CCy), 2005. _ _
[6] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C.a&ky. [33] P. Williams, R. Sion, and D. Shasha. The blind stonestaldutsourcing
Hypersentry: Enabling stealthy in-context measuremenhygfervisor durability. In Proc. of NDSS, 2009.) .
integrity. In Proc. of CCS, Oct. 2010. [34] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity auditing outsourced
[7] S. Berger, R. Caceres, D. Pendarakis, R. Sailer, E. Yal&e Perez, data. Ininternational Conference on Very Large Data Base (VLDB),
W. Schildhauer, and D. Srinivasan. Tvdc: Managing secunitthe 2007.) .
trusted virtual datacenterACM SIGOPS Operating Systems Review, [35] W. Xu, V. N. Venkatakrishnan, R. Sekar, and I. V. Ramskrian.
42(1):40-47, 2008. A framework for_ building privacy-conscious composite wedrsces.
[8] K. Bowers, A. Juels, and A. Oprea. Hail: A high-availatyil and In IEEE International Conference on Web Services, pages 655-662,
integrity layer for cloud storage. IRroc. of CCS 2009. Chicago, IL, Sept. 2006.

[9] M. Castro and B. Liskov. Practcal byzantine fault tofeze. InProc.
of OSDI, New Orleans, LA, 1999.

