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Abstract—A novel low-complexity decision feedback detection
algorithm with constellation constraints (DFCC) is proposed
for MIMO systems. An enhanced interference cancellation is
achieved by introducing multiple constellation points as decision
candidates. A complexity reduction strategy is also developed
to avoid redundant processing with reliable decisions. For time-
varying channels, the proposed receiver updates the filter weights
using a recursive least squares (RLS) based algorithm. This
efficient detector is also incorporated in a multiple branch (MB)
structure to achieve a higher detection diversity order. A soft-
output DFCC detector is also proposed as a component of an
iterative detection and decoding receiver scheme. Simulations
show that the proposed DFCC technique has a complexity as low
as the adaptive DF detector while it significantly outperforms the
ordered successive interference cancellation (OSIC) processing.

Index Terms—spatial multiplexing, RLS algorithm, detection
complexity, successive interference cancellation, V-BLAST.

I. INTRODUCTION

Spatial multiplexed multi-input multi-output (MIMO) wire-
less communication has the ability to increase the channel
capacity through additional data streams [1], [2], which need
to be separated by a detection algorithm. The optimal maxi-
mum likelihood detection (MLD) [3] requires an exponentially
increasing complexity with the system size and the modulation
level. The newly developed sphere decoders (SD) [4], [5]
approach the MLD performance with reduced complexity [6],
however, they still have a lower bound on the complexity
which is polynomial or exponential depending on the number
of dimensions or the signal-to-noise ratio (SNR) [7].

Decision-driven detection [8]-[15], such as ordered succes-
sive interference cancellation (OSIC) [8]-[11] and decision
feedback (DF) detectors [8], [12]-[14] are able to provide
good performance with reasonable complexity. However, the
application to systems with time-varying channels is still
difficult due to the excessive computational load of parameter
estimation. The filter and channel coefficients at the receiver
need to be updated at each time instant in order to track
the channel variations [13]. To address this problem, some
simpler strategies have been proposed. In [13], an interpolation
based channel tracking is deployed and a complexity and
performance tradeoff is established. As a promising alter-
native, adaptive detection techniques may also be deployed
for MIMO systems in time-varying channels [12]. The inter-
stream interference introduced by spatial multiplexing can be
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suppressed by successively detecting the transmitted symbols
at each time instant. A low-complexity data-aided adaptive
detection technique for time-varying channels based on the
generalized decision feedback equaliser GDFE [8] structure
is developed in [12], the weight vectors are updated using
the recursive least squares (RLS) algorithm. However, these
DF algorithms have performances far from optimal and are
severely limited by the effect of error propagation (EP) [18]-
[21]. Recently, a multiple-branch (MB) based adaptive receiver
structure [15] has been examined, this method can attain a
near-optimal performance at the cost of a higher complexity
than the conventional DF algorithms [8], [12].

In this paper, an innovative DF detection technique for
MIMO systems is developed. With this low-complexity de-
tector, the performance is improved through the introduction
of constellation constraints (CC). In each time instance, the
estimates of the symbols made by the filter are refined by
a scheme that uses several selected constellation points to
produce a number of tentative decisions. Thanks to this
algorithm, 1) an enhanced interference cancellation can be
achieved. 2) The refined symbol estimation produces better
information for updating the adaptive filter weights by the
RLS algorithm. 3) Unlike SDs [4], [5] which preserve several
tree branches as the tentative decisions, the proposed detector
preserves only one branch in the decision tree which prevents
the complexity from growing exponentially. For soft-output
processing, the proposed detector uses the produced tentative
decisions to form a ”list” [5] to compute the likelihood
for each transmitted bit, the probability of decision errors
is significantly reduced. Computer simulations indicate that
the proposed decision feedback detection with constellation
constraints (DFCC) significantly outperforms the conventional
DF schemes (i.e. [12] ) with very low additional detection
complexity and is able to approach the optimal performance
with a MB structure. The main contributions of this paper are:

• A decision feedback based algorithm is developed for
detecting the signals transmitted in MIMO channels.

• A reliability checking scheme named CC is introduced
to improve the performance of the detector.

• The MB processing [15] is incorporated into the scheme
to achieve a higher detection diversity.

• The error performance and the detection complexity of
the proposed algorithm are compared with several popular
existing detection schemes.

• A soft-output DFCC is developed as a component of an
iterative detection and decoding (IDD) receiver structure.

The organization of this paper is as follows. Section II gives
the spatial multiplexing MIMO system model. The proposed
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DFCC and its multiple branch implementation are described
in section III, and is followed by a complexity comparison
in section IV. The soft-output DFCC detector structure is
introduced in Section V. The simulation results are given in
Section VI and section VII concludes the paper.

II. DATA AND SYSTEM MODEL

A spatial multiplexing MIMO system with NT transmit
antennas and NR receive antennas is considered, where NR ≥
NT . The system transmits NT symbols which are organized
into a NT × 1 vector s[i] =

[
s1[i], s2[i], . . . , sNT [i]

]T
at

each time instant [i], each transmitted signal is taken from a
constellation A = {a1, a2, . . . , aC}, where (·)T denotes
transpose and C denotes the number of constellation points.
The output of the symbol mapper is the modulated symbol
sk = map(bk), where bk is a length log2 C bit sequence.
We assume that anti-Gray mapping is used. The symbol
vector s[i] is then transmitted over the fading channels and
the signals are collected at the receiver equipped with NR

antennas. The received signal is collected in an NR×1 vector
r[i] =

[
r1[i], r2[i], . . . , rNR

[i]
]T with sufficient statistics

for detection
r[i] = H[i]s[i] + v[i], (1)

where the NR × 1 vector v[i] is a zero mean complex
circular symmetric Gaussian noise with covariance matrix
E
[
v[i]vH [i]

]
= σ2

vI , where E[·] stands for expected value,
(·)H denotes the Hermitian operator, σ2

v is the noise variance
and I is the identity matrix. The symbol vector s[i] has zero
mean and a covariance matrix E

[
s[i]sH [i]

]
= σ2

sI , where
σ2
s is the signal power. The elements hnR,nT of the NR×NT

channel matrix H are the complex channel gains from the nT -
th transmit antenna to the nR-th receive antenna. The SNR per
transmitted information bit is defined as

Eb

N0

∣∣∣
dB

= 10 log10

( NR

R log2 C
· σ

2
s

σ2
v

)
. (2)

The total transmitted power Es = NT · σ2
s which is evenly

distributed to NT transmit antennas. The NR receive antennas
collect a total power of NREs which carries NT log2 C coded
bits or RNT log2 C information bits. R < 1 is the channel
coding rate and R = 1 is assumed for the simulations without
channel coding.

Nulling and Cancellation Order (NCO) of the DF

In DF detection algorithms, the optimal NCO is obtained
according to the signal-to-interference-plus-noise-ratio (SINR)
where the signals with higher post-detection SINR are detected
first. The post-detected SINR can be computed using the linear
minimum mean square error (LMMSE) detection with the
following equation

SINRk =
σ2
s |ωk,MMSEhk|2

σ2
s

∑
l 6=k |ωk,MMSEhl|2 + σ2

v‖ωk,MMSE‖2
, (3)

where ωk,MMSE is the k-th row of the MMSE matrix

ΩMMSE = (HHH + σ2
vI)

−1HH , (4)

and hk is the k-th column vector of the channel matrix H .
In the following, this criterion is used to decide the optimal
NCO.

III. PROPOSED DECISION FEEDBACK DETECTOR

In the proposed DF detector, the received signal r[i] is
filtered by a NR × 1 feedforward filter ωH

f,k[i] which acts
as the nulling vector of the OSIC algorithm. Then for each
data stream k = 1, . . . , NT , the decisions are accumulated
and cancelled by the (k − 1)-dimensional decision feedback
filter ωH

b,k[i]. Let ŝ[i] =
[
ŝ1[i], ŝ2[i], . . . , ŝNT

[i]
]T represent

the detected symbol vector and uk[i] denote the difference
between the forward filter output and the backward filter
output, which can be described as

uk[i] = ωH
f,k[i]r[i] + ωH

b,k[i]ŝk−1[i], (5)

where ωH
b,1 = 0 and the (k− 1)-dimensional detected symbol

vector is defined as ŝk−1[i] =
[
ŝ1, ŝ2, . . . , ŝk−1

]T
.

For notational convenience, the feedforward and feedback
filters can be concatenated together as [12]

ω̃k[i] =

{
ωf,k[i], k = 1[
ωT

f,k[i],ω
T
b,k[i]

]T
, k = 2, . . . , NT .

(6)

The input can also be concatenated as

r̃k[i] =

{
r[i], k = 1[
rT [i],−ŝTk−1[i]

]T
, k = 2, . . . , NT .

(7)

Then, we can rewrite (5) as

uk[i] = ω̃H
k [i]r̃k[i]. (8)

The weight vector for time-varying channels ω̃H
k [i] can be

obtained by solving the standard least squares (LS) problem,
the LS cost function with an exponential window is given by

Jk[i] =

i∑
τ=1

λi−τ
∣∣∣ŝk[τ ]− ω̃H

k [i]r̃k[τ ]
∣∣∣2, (9)

where 0 � λ < 1 is the forgetting factor. The optimal tap
weight minimizing Jk[i] is given by

ω̃k[i] = Φ−1
k [i]pk[i], (10)

where the time-averaged cross correlation matrix is obtained
by

Φk[i] =
i∑

τ=1

λi−τ r̃k[τ ]r̃
H
k [τ ], (11)

and the time-averaged cross correlation vector is defined by

pk[i] =

i∑
τ=1

λi−τ r̃k[τ ]ŝ
∗
k[τ ]. (12)

Using the RLS algorithm [22], the optimal weights in (10) can
be calculated recursively. The RLS algorithm is summarised
in [12] and [15].

qk[i] = Φ−1
k [i− 1]rk[i], (13)

kk[i] =
λ−1qk[i]

1 + λ−1rHk [i]qk[i]
, (14)
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Φ−1
k [i] = λ−1Φ−1

k [i− 1]− λ−1kk[i]q
H
k [i], (15)

ω̃k[i] = ω̃k[i− 1] + kk[i]ξ
∗
k[i], (16)

where

ξk[i] =

{
sk[i]− ω̃H

k [i− 1]r̃k[i], Training Mode,
ŝk[i]− ω̃H

k [i− 1]r̃k[i], Decision-directed Mode.
(17)

This adaptive detection algorithm works in two modes. In the
first mode, the filter weights are trained by the known training
sequence s[i]. After the filter weights converge to a certain
point, the algorithm is then switched to the decision-directed
mode. In this mode, the detector uses the detected symbols
to update the tap weights. In this case, the quality of the
detected symbols has a significant impact on the performance
of this adaptive DF detector. In the following subsection the
CC algorithm is introduced to obtain enhanced decisions for
each stream and to allow this adaptive procedure to achieve a
significant error performance improvement.

A. Constellation Constraints
The CC structure introduces a number of selected constel-

lation points as the candidate decisions when the filter output
uk[i] is determined unreliable. A selection algorithm is intro-
duced to prevent the search space from growing exponentially.
The reliability of the detected symbol is determined by the
CC device. The CC device distinguishes the reliable feedback
signals from the unreliable ones, which allows the DFCC to
maintain the complexity at the same level of the conventional
DF structure. In the following, the procedure for detecting
ŝk[i] for the k-th spatial stream is described, the detection of
the other streams can be obtained accordingly.

I

Q

a1 a2

a3 a4

uk[i]

dth

d

| σs
√

2
− dth|

Fig. 1. The constellation constraints (CC) device. The constellation con-
straints procedure is invoked as the soft estimates uk[i] dropped into the
shaded area.

After the system is switched to the decision-directed mode,
the concatenated filter output uk[i] is checked by the CC
device which is illustrated in Fig. 1. The structure is defined
by the threshold distance dth, which can be either a constant
or a (linear) function of the signal power σs, and noise power
σv . The CC device finds the constellation point which is the
nearest to uk[i] according to

ak[i] = arg min
ac∈A

{
|uk[i]− ac|

}
. (18)

where ac represents each element of the constellation. The
decision is considered unreliable if one of the following
equations is true

d > dth when

{∣∣Re{uk[i]}
∣∣ ≤ σs√

2∣∣Im{uk[i]}
∣∣ ≤ σs√

2

, (19)

∣∣Re{uk[i]}
∣∣ < σs√

2
− dth

OR∣∣Im{uk[i]}
∣∣ < σs√

2
− dth

when

{ ∣∣Re{uk[i]}
∣∣ > σs√

2∣∣Im{uk[i]}
∣∣ > σs√

2

,

(20)
where d denotes the distance between uk[i] and ak[i]. Equation
(19) represents the shaded region inside the square obtained
by connecting the four ac (the ac are assumed to have the
form, ac = (±σs/

√
2± jσs/

√
2)). Equation (20) denotes the

shaded region outside the square. This can be further extended
to higher order constellations (eg.16-QAM) where the outer
tier would be very similar to (19) and (20). However, for the
inner tier constellations, if

∣∣ak[i]−uk[i]
∣∣ ≥ dth is true, then the

symbol estimate is considered unreliable. This implementation
saves the computational complexity by avoiding redundant
processing with reliable decisions.

Reliable: If the filter output uk[i] is dropped into the lighted
area of the constellation map, the decision is considered
reliable. A quantization operation Q(·) is then performed as

ŝk[i] = Q(uk[i]). (21)

This quantized symbol is a reliable decision for the current
stream and used to compute ξk[i] in the decision-directed
mode.

Unreliable: If it is the case that uk[i] is dropped into
the shaded area of the constellation map, the decision is
determined unreliable. The CC processing is invoked and a
candidates set is generated as

L = {c1, c2, . . . , cm, . . . , cM} ⊆ A, (22)

The candidates are constrained by the constellation map and
the vector is a selection of the M nearest constellation points
to the uk[i]. The size of L can be either fixed or adaptive with
the channel condition which introduces a tradeoff between
the performance and the detection complexity. The refined
estimate for this unreliable decision is obtained by

ŝk[i] = copt, (23)

where copt is the optimal candidate selected from L. This
refined decision will produce a more accurate ξk[i] which
minimizes the MSE in (17) in the decision-directed mode.
The benefits provided by the CC algorithm are based on
the assumption that the optimal feedback candidate copt is
correctly selected. This selection algorithm is described as
follows:

In order to find the optimal candidate, tentative decision
vectors in the set Bk =

{
b1k, . . . , b

m
k , . . . , bMk

}
are defined,

the number of these tentative decision vectors M equals the
number of selected constellation candidates. Each vector bmk
is defined as

bmk [i] =
[
ŝ1[i], . . . , ŝk−1[i], cm, b̂k+1[i], . . . , b̂NT [i]

]
. (24)
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This NT × 1 vector bmk consists of the following parts:

• (k−1)-dimensional detected symbol vector ŝk−1[i] which
is used in (7).

• A candidate symbol cm taken from L for substituting the
unreliable Q(uk[i]) in the k-th data stream.

• By concatenating the above two parts as the previ-
ous decisions, the tentative decisions of the following
streams b̂k+1[i], . . . , b̂NT

[i] are subsequently obtained by
the adaptive detector.

Let us define the vector with the candidate constel-
lation point as šk,m[i] =

[
ŝ1[i], . . . , ŝk−1[i], cm

]T
=[

ŝTk−1[i], cm
]T

. Therefore, (7) is transformed into

r̄k+1,m[i] =
[
rT [i], šTk,m[i]

]T
, k = 1, . . . , NT . (25)

The tentative decision of the (k + 1) stream is

b̂k+1[i] = Q
{
ω̃H

k+1[i]r̄k+1,m[i]
}
. (26)

The CC algorithm selects the best constellation point among
M candidates according to the maximum likelihood rule given
by

mopt = arg min
1≤m≤M

∥∥∥r[i]−Hbmk [i]
∥∥∥2. (27)

Then copt is chosen to replace the unreliable decision uk[i].
The same filter weight ωk[i] is used to process all the
candidates, which allows the proposed algorithm to have the
computational simplicity of the adaptive DF detector. The
pseudo-code of the proposed DFCC algorithm is summarized
in TABLE. I.

B. Multiple-Branch Processing and Channel Estimation

The previous subsection shows that the DFCC solves (9)
with optimal NCO patterns. In this subsection, a parallel
branches architecture is incorporated to achieve a higher
detection diversity order. The MB processing is initially intro-
duced in [15], where a parallel receiver structure is examined
by modifying the NCO of the original DF detector in an
appropriate way such that the detector obtains a group of
L different estimate vectors and then selects the most likely
estimates. Let us employ the variable l to denote the l-th
branch. It is easy to re-formulate (8) and (9) as

uk,l[i] = ω̃H
k,l[i]r̃k,l[i]. (28)

Jk,l[i] =

i∑
τ=1

λi−τ
∣∣∣ŝk,l[τ ]− ω̃H

k,l[i]r̃
′
k[τ ]

∣∣∣2 (29)

At the output of the parallel branches, the decision is
selected among L decision vectors as

ŝopt = arg min
1≤l≤L

∥∥∥r[i]−H lŝl[i]
∥∥∥2. (30)

the Euclidean distance can be obtained directly from (27).
As we discussed above, the MIMO channel state informa-

tion is required for obtaining the optimal NCO, selecting the
CC candidates (27) and generating the cancellation ordering

TABLE I
THE PSEUDO-CODE OF THE DFCC ALGORITHM

Initialization: i = 0

0: for k = 1 to NT do
1: Φ−1

k [0] = δ−1I ; ωf,k[0] = 1 ; ωb,k[0] = 0;
2: end for where δ is a small positive constant.

RLS weight update: i > 0

3: qk[i] = Φ−1
k [i− 1]rk[i];

4: kk[i] =
λ−1qk[i]

1+λ−1rH
k

[i]qk[i]
;

5: Φ−1
k [i] = λ−1Φ−1

k [i− 1]− λ−1kk[i]q
H
k [i];

6: if the system is in the training mode
7: ξk[i] = sk[i]− ω̃H

k [i− 1]r̃k[i];
8: if the system is in the decision-directed mode
9: ξk[i] = ŝk[i]− ω̃H

k [i− 1]r̃k[i];
10: end
11: ω̃k[i] = ω̃k[i− 1] + kk[i]ξ

∗
k[i];

Constellation constraints: Decision-directed mode only

12: for k = 1, . . . , NT

13: uk[i] = ω̃k[i− 1]Hr[i];
14: if uk[i] is unreliable
15: L = [c1, c2, . . . , cm, . . . , cM ]T ;
16: for m = 1 to M do
17: šk,m[i] = [ŝT

k−1[i], cm]T ;
18: for q = k + 1 to NT do
19: r̄q[i] =

[
rT [i], šT

k,m[i], b̂k+1, . . . , b̂q−1

]T ;
20: b̂q = ω̃H

q [i]r̄q[i];
21: end for
22: bmk [i] =

[
šk,m[i], b̂k+1[i], . . . , b̂NT [i]

]
;

23: end for

24: copt = argmin1≤m≤M

∥∥∥r[i]−Hbmk [i]
∥∥∥2

;
25: ŝk[i] = copt;
26: else
27: ŝk[i] = Q(uk[i]);
28: end if

codebook for MB processing. The LS channel estimation algo-
rithm has been investigated in [15] and [16]. For the channel
estimation, if it is the case where block fading is assumed,
the channel will remain constant for a number of consecutive
symbols [2]. In this situation, the channel is estimated over the
training sequence and then assumed constant for the remainder
of the block until the next block. For time-varying channels,
the channel estimation is not only used in the training sequence
(training mode) but also used in the data sequence to track the
channel (decision-directed mode) [12].

IV. DETECTION COMPLEXITY

The detection complexity of the proposed DFCC and its
MB version is given in this section. Essentially, we detail the
complexity of the DFCC procedure with a single branch, and
the complexity of the DFCC-MB can be obtained by multiply-
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TABLE II
COMPUTATIONAL COMPLEXITY OF ALGORITHMS

Algorithms Required complex multiplications

Non-Adaptive OSIC 2N3 +N2 +N

LMMSE -RLS 4N2 + 4N

DF -RLS 28
3
N2 − 4

3

DFCC -RLS WORST ( 28
3
N2 − 4

3
) +M( 5

2
N2 − 3

2
N)

DFCC -RLS BEST same as ”DF -RLS”

DFCC-MB -RLS L times ”DFCC -RLS”

Standard SD [6]
∑N

k=1
Ckπk/2

Γ(k/2+1)
dkSD + 2N2

ing the complexity of the DFCC by the number of branches
L. The detailed computational complexity is shown in terms
of the averaged number of required complex multiplications.

In terms of complex multiplications, the proposed algo-
rithms and other existing schemes are represented in Table
II, where N = NT = NR. The parameter M denotes
the number of candidates in L. The complexity of the SD
is associated with C, the k-dimensional sphere radius dSD

is chosen to be a scaled version of the variance of the
noise [6]. The proposed DFCC has the worst case and the
best case complexities situated at the same level of the
conventional DF algorithm [12]. In the worst case, all N
decisions are considered unreliable, which means the L is
generated for every stream and the CC is invoked N times
which brings M(5/2N2 − 3/2N) multiplications on top of
the DF algorithm. The probability of unreliable estimates is
decreased as the detection diversity increases. This leads to
the processing of 6.1%, 4.65%, 3.59% on average over the
streams of the estimated symbol for N = 2, 4, 8 antennas
with SNR = 16 dB, respectively. For the remaining symbols,
the conventional quantization is performed. The decreased
probability of invoking the CC selection suggests that the
DFCC may be suitable for a MIMO system with a larger
number of antenna elements.

In addition, Fig. 2 depicts the number of required complex
multiplications per symbol detection. The plot compares the
required operations as the number of antennas increases. Each
DFCC-RLS branch has a complexity slightly above the con-
ventional DF-RLS while it achieves a significant performance
gain over the DF-RLS. The DFCC-RLS shown in the plot has
the configuration of M = 4, dth = 0.5 and the DFCC-MB-
RLS has L = 10 branches with QPSK modulation. The low
complexity of the DFCC algorithm provides an opportunity
to deploy the MB structure with low computational cost,
especially for systems with large antenna arrays. Compared
with SD, the DFCC is simpler, this is also verified when we
add more branches. In this figure, even with L = 10, the
proposed DFCC-MB still has a complexity lower than SD
when N > 6. Moreover, by introducing an approach named

Fig. 2. Detection complexity in terms of required number of arithmetic
operations per symbol detection against the number of antennas. The proposed
DFCC-MB algorithm has L times the complexity of DFCC which has a
similar complexity with the DF scheme.

frequently selected branches (FSB) [15], it is sufficient to use
a reduced number of branches. For example, we can use L = 2
for N = 4, L = 4 for N = 6 and L = 6 for N = 8 systems
to obtain near-optimal performances.

V. CONSTELLATION CONSTRAINTS WITH SOFT-OUTPUT

In the following, a soft-output detector with the CCDF struc-
ture is described. Let bk,j be the j-th bit of the constellation
symbol and (j = 1, 2, . . . , log2 C). We also denote L[bk,j ]
as the log-likelihood ratio (LLR) [5] value for the coded bits
bk,j . The extrinsic information is obtained by subtracting the
dependency on L[b

(p1)
k,j ] as [17]

L[b
(e1)
k,j ] = ln

∑
s∈A1

k,j
P
(
r
∣∣s) exp (f(s))∑

s∈A0
k,j

P
(
r
∣∣s) exp (f(s)) . (31)

where A1
k,j is the set of all symbol vectors that consist of bits

satisfying bk,j = 1 and A0
k,j is similarly defined for the bits

satisfying bk,j = 0. In the complexity-reduced detection, the
probability density for all the possible transmitted vectors are
not available. A small set of vectors can be found by deploying
the DFCC detection, the ML vector may still be found as a
tentative decision. Since only a small set of symbol vectors
is considered, the DFCC performance is worse than that of
MAP detection when the soft-output is required. However,
by appropriately selecting the tentative decisions, the DFCC
performance can approach the MAP detector performance. Let
B denote the set of tentative decisions obtained from the DFCC
detector

B̃ = B1 ∪B2∪, . . . ,∪BNT
, (32)

If L > 1, we have

B = B̃1 ∪ B̃2∪, . . . ,∪B̃L, (33)
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and the extrinsic information is obtained by

L[b
(e1)
k,j ] = ln

∑
s∈A1

k,j

⋂
B P

(
r
∣∣s) exp (f(s))∑

s∈A0
k,j

⋂
B P

(
r
∣∣s) exp (f(s)) . (34)

In the case that the intersection of the MAP set and the
candidate vector set is empty, that is,

A1
k,j ∩ B = ∅ or A0

k,j ∩ B = ∅, (35)

the LLR for that specific bit can be filled with an arbitrary
number with a large magnitude. Using an IDD structure [5],
the extrinsic information L[b

(e1)
k,j ] is de-interleaved and fed

to the channel decoder. The decoder provides the interleaved
extrinsic information for detecting symbols in the next turbo
iteration. After a number of iterations, the decision is made by
slicing the LLR taken from the output of the channel decoder.

VI. SIMULATIONS

In this section, several numerical examples are used to
demonstrate the overall system performance by using our
algorithms. The performance is measured in terms of bit
error rate (BER). In the following simulations, the transmitted
vectors s[i] are grouped into blocks consisting of 500 vectors
where the first s[1], . . . , s[I] vectors form a training sequence.
We also assume that the original detection order of streams
has been sorted according to the optimal order discussed in
Section. II.
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Fig. 3. BER vs. Eb/N0. The DFCC algorithm achieves a significant
performance gain compared with the DF detector. The optimal performance
can be approached by employing MB in an 8 × 8 system configuration
with perfect (solid) and imperfect channel estimation (dash). QPSK symbols,
Rayleigh fading. Number of training vectors I = 50.

The BER against Eb/N0 plot for a system with 8 × 8
antennas is shown in Fig. 3. We consider that the proposed al-
gorithms and all their counterparts operate with a channel with
a block fading model. The complex channel gain matrix H
with independent and identically-distributed (i.i.d) CN (0, 1)
varies from one block to another. The proposed DFCC has a
8 dB performance gain compared to the DF at the target BER
10−4. The channel is assumed unknown and the LS channel
estimation is applied to all the detectors indexed by Hest.

By introducing MB (FSB L = 6), the proposed DFCC-MB
achieves a performance with about 1 dB loss from the optimal
at the target BER 10−4. By introducing more branches, the
DFCC-MB-RLS can further improve the performance at high
SNR regions.
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Fig. 4. Comparison of BER performance for various values of the normalized
Doppler frequency fdT when NT = NR = 8 with QPSK modulation.

In order to demonstrate the tracking ability of the pro-
posed detectors in time-varying channels, Fig. 4 presents the
comparison of BER performance for various values of the
normalized Doppler frequency fdT . In this simulation, each
channel between a transmit and receive antenna pair follows
the Jakes’ model [23]. LS channel estimation is applied to
the unknown channel. Let Eb/N0 = 14 dB for N = 4 and
Eb/N0 = 10 dB for N = 8. The length of the training
sequence is I = 50. The configuration of branch setting is
(FSB L = 6 [15]). The simulation results show that even with
a SB, the performance of the SD with channel tracking can
be approached.
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Fig. 5. Coded BER curves for QPSK over 8 × 8 MIMO time-varying
channel with fdT = 10−3 and the RLS algorithm. After 20 training vectors
transmitted, the decision-directed mode is switched on. The interleaver size
is 1000. Code rate is R = 1/2, the convolutional code has memory 2.
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The curves in Fig. 5 are given for convolutionally coded
BER performance with a time-varying channel. The proposed
SB DFCC with M = 4 candidates and dth = 0.5 improves
the conventional DF detection performance by about 3.4 dB
at the target coded BER of 10−4. The number of branches L
incorporated in the scheme introduces a tradeoff between the
complexity and the performance. With (FSB L = 18) branches,
the DFCC-MB detector approaches the optimal MAP detection
performance with only 0.7 dB performance loss at the BER
equal to 10−4.

In this work, we discuss the systems with the antennas
less than 10, for large MIMO and massive MIMO systems,
designers can resort to reduced rank [24], [25] adaptive
estimation algorithms.

VII. CONCLUSIONS

In this paper, we have developed an adaptive decision
feedback-based detector for MIMO transmission systems with
time-varying channels. We have presented a novel way to
improve the BER performance by using the feedback with
constellation constraints. This approach has the ability to
effectively address the error propagation problem in decision
driven interference cancellation techniques while maintaining
the low complexity of adaptive detectors. The multiple branch
technique can also be implemented to obtain a close to optimal
performance. The soft-output requirement of the proposed
detector is fulfilled by using a list of candidate decisions
generated by the constellation constraint and a multiple branch
procedure.
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