
Adaptive Delayed Channel Access for
IEEE 802.11n WLANs

Dionysios Skordoulis1, Qiang Ni1, Geyong Min2 and Kevin Borg1

1 Electronic & Computer Engineering Division, School of Engineering and Design, Brunel University, West London, U.K.
2 Department of Computing, School of Informatics, University of Bradford, Bradford, U.K.

Email: {Dionysios.Skordoulis, Qiang.Ni}@brunel.ac.uk, g.min@brad.ac.uk

Abstract— In this paper we investigate potential benefits that an
adaptive delayed channel access algorithm can attain for the
next-generation wireless LANs, the IEEE 802.11n. We show that
the performance of frame aggregation introduced by the 802.11n
adheres due to the priority mechanism of the legacy 802.11e
EDCA scheduler, resulting in a poor overall performance.
Because high priority flows have low channel utilization, the low
priority flows throughputs can be amerced further. By
introducing an additional delay at the MAC layer, before the
channel access scheduling, it will retain aggregate sizes at higher
numbers and consequently a better channel utilization. Also, in
order to support both UDP and TCP transport layer protocols,
the algorithm’s operational conditions are kept adaptive. The
simulation results demonstrate that our proposed adaptive
delayed channel access outperforms significantly the current
802.11n specification and non-adaptive delayed channel access.

Adaptive delayed channel access; frame aggregation; IEEE
802.11n; medium access control.

I. INTRODUCTION
Nowadays, the most dominant wireless network is the IEEE

802.11 wireless local area network (WLAN) [1] with
impressive growing support across the enterprises, the public
sector, homes and many data service providers. Over the past
years, the research and development communities have narrow
down their studies within innovations that can offer mainly
higher throughput and performance, better reliability and
robustness, but also in protocols that allow the devices to
provide sufficient Quality of Service (QoS) for either the
applications or clients. Since the current standards and further
resolutions are bounded from a theoretical throughput
limitation [2], the IEEE 802.11 working group established in
September 2003 a Task Group (TG), known as TGn (‘n’ stands
for next-generation), in order to compose a High Throughput
(HT) amendment. Their main aim is to achieve higher data
rates of at least 100 Mbps as measured at the MAC service
access point and at the same time provide co-existence with
previous amendments.

The latest TGn draft document includes various pioneering
PHY and MAC enhancements, such as MIMO and frame
aggregation, respectively [3]. The later is considered as a major
contribution for reaching high data rate targets since it consents
to mitigate transmission overheads, namely, backoffs prior to
accessing the shared channel, physical layer preamble, by
concatenating multiple data units into a single frame [4].

Additionally, the asynchronous data service is handled by IEEE
802.11e’s mandatory coordination function, the Enhanced
Distributed Channel Access (EDCA) [5]. EDCA defines a set
of QoS mechanisms, where delay-sensitive applications can be
concerned with high importance and preeminent low priority
flows. However, since a station (STA) with high priority traffic
defers, on average, for less period than a STA with low priority
traffic, the number of data packets assigned in each aggregated
frame turns out low too, thus more overhead is required. This
abominable consequence was firstly described in [6] where the
authors review the poor channel utilization which consequently
reduces in overall the network’s throughput and QoS
performance. A delayed channel access (DCA) algorithm was
initially proposed that it impels STAs into further deferring in a
way that it allows throughout more packets to arrive and it
results to the end aggregate size to accumulate. Although this
work is very interesting, Transmission Control Protocol (TCP)
flows with various TCP window sizes, wasn’t considered
during the evaluation and as we explain in this paper, these
conditions can result in aggravate and negative behavior. This
paper exposes the impact that DCA applies over TCP
performance and proposes a solution with an enhanced MAC
based algorithm with conditional triggers that will be regularly
adapted over the progressive traffic status. Our enhanced
algorithm, named as Adaptive DCA (ADCA), can be applied
on future 802.11n device and can improve channel efficiency
that will increase the network’s overall performance.

The remainder of this paper is organized as follows: Section
II introduces the poor channel utilization that high priority
applications have over HT networks and an overview of the
related work on delayed channel access algorithms. In Section
III we analyze the consequences of further deferring over TCP
traffic and how this can be avoided by adapting the triggering
thresholds. Our ADCA algorithm is validated using extended
simulations in Section IV where in most cases outperforms the
current TGn specification. Finally, Section V we conclude the
paper by pointing out the importance of our findings.

II. OVERVIEW OF DELAYED CHANNEL ACCESS

A. 802.11e and 802.11n in conjuction
As we mentioned earlier, TGn’s latest draft standard builds

upon 802.11e’s probabilistic priority mechanisms along with
other MAC enhancements, such as frame aggregation. In the
specification there are two types of frame aggregation

978-1-4244-1708-7/08/$25.00 ©2008 IEEE 167

Authorized licensed use limited to: Brunel University. Downloaded on August 6, 2009 at 09:45 from IEEE Xplore. Restrictions apply.

suggested that reduces significantly the MAC and PHY
overhead, Aggregated MAC Service Unit (A-MSDU) and
Aggregated MAC Data Unit (A-MPDU). Overhead is defined
as the length of time that the wireless medium is engaged for
each header, control frame, or interframe space (IFS) period,
which are adapted for the transmission or reception of each
data payload. The analysis in [2] has shown that as a result of
the overhead, the maximum ideal throughput is bounded by a
maximum relative MAC throughput which is less than 50% of
the average peak PHY. The principle of the A-MSDU is to
allow several MSDUs being sent to the same receiver
concatenated in a single MPDU, where in A-MPDU
aggregation is to joint multiple MPDU subframes in order to
use a single PHY header. Both choices are adequate, in their
own manner, to extensively improve the channel efficiency and
the data throughput with the condition that there are enough
data units bided in the buffered queues [4].

Apart from the traffic load, where a high offered load from
the application will signify a big pile in the MAC stack, we
need to investigate the operation of EDCA on each prioritized
flow. Within this QoS mechanism, there are separate access
categories (ACs) which each has a separate queue buffer and an
analogous channel access waiting time depending on the AC’s
importance. So, higher priority categories can acquire channel
access faster than the lower priority as a set of distinct
parameters are assigned: Arbitrary IFS (AIFS) and a pair of
min/max values for the Contention Window (CW). Although
this situation can induce unfairness to the lower ACs, it is the
most adequate mechanism for the higher ACs to attain channel
access within the delay-constraints appointed from the higher-
layers [7]. But, as the waiting period is decreasing for the
higher ACs, so is the number of packets within an aggregated
frame (aggregate size), thus less channel efficiency.

To check the effect that EDCA mechanism has over the
frame aggregation in HT networks, let us consider a simple
scenario, named as Scenario 1 for future reference. We
consider an overloaded 802.11n WLAN that includes three
STAs and an Access Point (AP). All STAs are relative close
with each other and in line of sight (LOS). Their operational
PHY rate is 117 Mbps since we’ve set a 64-QAM modulation,
a ¾ coding rate and 800 ns guard interval (see MCS parameter
table for two spatial streams at 20 MHz in [3]). Also, we set
two types of HDTV flows over User Datagram Protocol (UDP)
with 200 ms maximum end to end delay between the AP and
two of the STAs and an internet file transfer from the third
STA over TCP transmitted to the AP. All MSDUs are 1500
bytes in size and the offered loads are 19.2 Mbps, 24 Mbps and
120 Mbps for the HDTVs and FTP, respectively. The
scenario’s model is implemented and simulated in OPNET
Modeler [8] and since we examine the potentials of frame
aggregation the channel is regarded as error-free.

 The results that we are interested in are the goodput (the
total throughput minus the packets that miss the time
constraints), the average aggregate size of each transmitted
frame, the average delay and the maximum delay. Both, Table
1(a) and Table 1(b) list the simulation results for the last 4
seconds of a 5 seconds run as we allow the TCP congestion
window (CWND) to fully build up. In Table 1(a), the average
packet number per aggregate for the video flows (UDP traffic)

is 1.80 and 1.31, and for the best effort flow (TCP traffic) is
24.57. Also, we observe that the delay constraints are met in all
flows but the overall MAC efficiency is 46.9% as the MAC
throughput is 54.987 Mbps out of the total 117 Mbps Peak
PHY rate. The later validates our earlier analysis regarding the
poor interaction between EDCA and frame aggregation
because of small aggregates within the high priority ACs.

B. The idea of DCA algorithm
The concept of implementing a delayed channel access

algorithm was first introduced in [6] and it was designed to
intentionally commence a further delay at the MAC layer in
order to increase the number of packets that can be buffered in
each AC’s queue and correspondingly the end frame’s
aggregation size. The following equation shows the
dependency of the number of packets (N) in the queue over

time (t):
L

ttN ρ×=)(, where ρ and L are the mean data rate

and payload size, respectively. Thus, as time t increases so is
the number of packets in the frame formed by aggregation.

The channel access delay for a frame arriving at the MAC
is defined as the period from the time that the frame arrives at
the front of the queue buffer till its successful transmission to
the intended receiving STA, excluding the wireless propagation
delay. However, the additional delay may lead to unnecessarily
idling or might effect the QoS experienced by the application
therefore a set of conditions need to be applied so that it can
match the aggregated packet formation with the traffic burst
within an appropriate time scale. The initial DCA algorithm has
three basic triggers [6]:

• The number of packets in the aggregation buffer has
reached or exceeded an aggregated threshold size (σ).

• The maximum delay threshold (τ) of the first packet in
the stack is reached or exceeded, usually less than
maximal delay allowed from the originated application.

• No packets arrive at the MAC from the higher layers
within a dynamically calculated threshold period (α):

)(catr TT −×= λα , where lambda is a predefined
factor and Ttr and Tca the transmission and channel-
access starting time for an aggregate, respectively.

TABLE 1: SIMULATION RESULTS FOR SCENARIO 1 (TCP WINDOW SIZE =
655350 B)

Name Goodput
(Mbps)

Avg. Aggregate
Size

Max.
Delay (sec)

Avg. Delay
(sec)

HDTV 23.994 1.80 0.012666 0.001146
HDTV 19.197 1.31 0.011200 0.000997
Internet

File 11.796 24.57 0.654076 0.396930

(a) 802.11n typical process

Name Goodput
(Mbps)

Avg. Aggregate
Size

Max.
Delay (sec)

Avg. Delay
(sec)

HDTV 23.865 13.11 0.044573 0.013416
HDTV 19.116 12.21 0.044710 0.015202
Internet

File 51.999 25.27 0.134162 0.088660

(b) 802.11n with DCA algorithm enabled

168

Authorized licensed use limited to: Brunel University. Downloaded on August 6, 2009 at 09:45 from IEEE Xplore. Restrictions apply.

So, these three conditions are dictating when the additional
differing shall be terminated and by followed with the channel
access process as normal. The values for the σ, τ and λ
attributes may be constants or dynamically adapted based on
the traffic behavior.

The DCA’s performance is evaluated through the
previously defined scenario, Scenario 1. Table 1(b) shows the
results for λ = 10, t = ½ maximal delay and σ = 48 packets.
Now, both HDTV average aggregated sizes have been
increased dramatically, on the point of ensuring a better
channel utilization. The efficiency has been increased from
46.9% (no DCA) to 81.17% (with DCA). Also, we observe that
by introducing additional delay before channel access, the end-
to-end delays of both HDTV traffic flows had an insignificant
increase and the maximum delays remain way below the 200
ms delay boundary. DCA doesn’t override the AC’s priority
but it limits the frequent channel accesses from high UPs to
less and more efficient. It is obvious that the DCA algorithm
has increased the system’s effectiveness.

III. ADAPTIVE DCA

A. The TCP problem with DCA
The two core communication protocols on which most

networks operate are the UDP and TCP. The latter is a reliable,
robust and connection-oriented method of data delivery that is
commonly used over the Internet because of its flexibility to be
adapted according to the network’s disparate conditions. On the
other hand, it is known to be very troublesome when used over
wireless networks, for these reason there many variations of its
implementation [9]. In every case, TCP maintains a flow
control, known as congestion control, where both sender and
receiver control the size (in segments) of the next transmitted
information according to the link’s conditions but this
congestion window (CWND) can not exceed the receiver’s
TCP advertised window size. But, an end-to-end link may
contain intermediate bottlenecks with smaller window sizes, so
the sender node sets a starting CWND usually equal to a single
segment, and every time it receives a positive
acknowledgement (ACK) from the receiver, it increases the
CWND according to the running TCP implementation.

However, during our investigation on the DCA, we’ve
found that TCP’s speed of transmission is very dependent on

the delay caused by DCA, where in some cases it can bear
diverge and unwanted outcomes. Figure 1 and Figure 2 show
the TCP’s flow goodput and maximum delay in Scenario for
various TCP window sizes. Previously, while evaluating DCA
the window size was not indicated, which was actually set for
655350 bytes following the recommendations in [10] where it
is suggested that the maximum TCP window size should be at
least as large as the bandwidth-delay product of the wireless
link. However, in reality this is not always the case, so when
we run the same scenario with smaller values, say 4KB, 8 KB,
16 KB, 32 KB, 64 KB etc, the TCP throughput decreases
rapidly while the delay increases dramatically. This is because
TCP is waiting for a number of segments that already had sent
before it can carry on with the next set of segments while at the
MAC layer the DCA algorithm defers as usual till one of the
conditions met. But since this is best effort (BE) traffic, the τ
attribute has no delay boundaries, hence no triggering from this
condition. Also, as the maximum segment size (MSS) is 1500
bytes, any window sizes lower than 65355 bytes can contain
less than 43 packets, so the aggregate size threshold (σ) will
never be reached as is set for 48 packets. So, the only condition
left is the λ condition but this increases waiting times, hence
the delays and consequently the low throughputs. In
conclusion, although we previously demonstrate that DCA
increases the network’s performance, when it comes down to
TCP traffic with small window buffers there is an issue which
needs to be resolved.

B. The ADCA algorithm
By observing Figure 1 and Figure 2, we notice that when

the TCP buffer size exceeds a specific point, then DCA
operation carries out gains in the overall throughput. This point
has been found to be equal to 70080 bytes, which is the product
of 48 by 1460 bytes (the MSS omitting the TCP/IP
encapsulation headers). Considering that 48 packets was the set
value for the aggregate size threshold, we justify that a quick
solution for this problem would be to always appoint σ similar
to the corresponding sender’s maximum segments in its
CWND. But the TCP and MAC are two layers transparent with
each other with no shared information except the data payload
(segments). On the other hand, if we try to alter the delay
within DCA by changing the other triggering attributes with
smaller values, in doing so the total performance drops into
adjacent levels than these without the DCA operation. A good

Figure 2: Max. delay results for TCP flow with varying window sizes

Figure 1: Goodput results for TCP flow with varying window sizes

169

Authorized licensed use limited to: Brunel University. Downloaded on August 6, 2009 at 09:45 from IEEE Xplore. Restrictions apply.

solution is to implement an enhanced DCA algorithm which
can dynamically adapt its parameters accordingly.

Our proposal introduces an adaptive aggregate size
threshold that gradually increases or decreases until the flight
size (number of segments in the sender’s buffer size) of the
TCP flow is reached, so it will always be guaranteed that σ≤
flight size. Since a cross-layer solution is infeasible or too
complex and no information can be shared, the adaptive DCA
algorithm will be totally based on its own characteristics, the
two main conditions: the burst factor (λ) and the current
aggregate size (σcur). These conditions will be used with a
perspective to find a value where the queue is most likely to be
at steady state, considering that the TCP connection doesn’t
have many imbalances. At the beginning, every AC will
maintain a σmax as an originated point of start and each time the
λ condition is triggered, meaning that there was an excessive
waiting time at the MAC, the current aggregate size will be
reduced its threshold down to a predefined minimum value
(σmin). On the other hand, if the σcur is met or exceeded then the
next value of this threshold is updated by a predefined
increment but without exceeding the maximum size (σmax).
Eventually, the fluctuation shall be stabilized with σcur being
equal to the number of segments of the TCP connection.

Nevertheless, it is possible for the algorithm to develop an
oscillatory behavior where the triggering will bounce from the
aggregate size threshold condition to the burst factor condition.
In order to balance such an attitude, we also introduce some
oscillation controllers which establish the number of times the
individual triggers shall occur before an action takes place. If
the pattern is serial and the number of count is converged, then
we can assure that the oscillations have been reduced and
ADCA reduces or increases the σcur value accordingly. We use
two oscillation counters, beta (β) and phi (φ) for the λ and σ
triggering, respectively. In Figure 3, we examine ADCA
operation by giving an example, where the σcur varies with time
according to the number and type of the triggering conditions;
φ = 3 times and β = 2 times. In conclusion, such a variable and
adaptable σ, allows the MAC layer to proceed with the ADCA
operation without the need to have a priori knowledge of the
flight size or what type of flow will be received from the upper
layers. The ADCA can work for both UDP and TCP protocols
and each AC queue will maintain individual values for the
aggregate size threshold.

IV. PERFORMANCE EVALUATION OF ADCA
In this section we evaluate the performance of ADCA using

various scenarios that easily represent a home, a large
enterprise and hot spot environment. All scenarios use TCP
New Reno and the receiver’s window size equal to 65535 B,
since this is a common used window size and a point where a
huge variation was shown at Section III when simple DCA was
operated. For the home scenario, the previously defined
Scenario 1 is applied and for the other two, we utilize scenarios
4 and 6 from TGn’s usage models document [11]. The usage
models intend to support the definitions of network simulations
with a mixture of applications that will allow TGn to evaluate
performance of various proposals in terms of network
throughput, delay, packet loss and other metrics. The outputs of
these simulations that have used the specified scenarios, will be
subsequent sufficient for evaluation.

Due to the page size limit, the following set of standard
performance metrics is shown: the goodput for the WLAN and
each individual flow when applicable, the average aggregated
sizes, the maximum and average latency values for every AC,
and the packet loss rate (PLR) for QoS flows. PLR for a QoS
AC is defined as the percentage of packets that are delivered
successfully before the allowed maximal delay of the AC. All
scenarios use as ADCA parameters: σmax = 48 packets, σmin =
10 packets, σincρ. = 2 packets, φ = 5 times and β = 2 times.

Table 2(a) and Table 2(b) show the results of our model for
Scenario 1 with ADCA disabled and enabled, note that when
ADCA is disabled we just use current TGn’s specification.
From Figures 1 and 2, we established that any further delay
with TCP window sizes less than 70080 B delivers abhorrent
results. But, with ADCA on and TCP window size of 64 KB,
notice that the average aggregate sizes for both HDTV traffic
increases notably from 1.26 and 1.72 packets per aggregate to
6.85 and 5.98 respectively. Hence, we can assume that the
overall channel utilization and the goodput must be improved
significantly too. Actually the performance data unquestionably
proves this conjecture: the system’s overall goodput boosts
from 52.91 Mbps to 81.55 Mbps which is a 54.12% increase.
Furthermore, all video packets, while having slightly longer
delay than those without DCA are still delivered well below the

TABLE 2: SIM. RESULTS FOR SCENARIO 1 (TCP WINDOW = 65535 B)

Name Goodput
(Mbps)

Avg.
Aggregate

Size

Max.
Delay
(sec)

Avg.
Delay
(sec)

HDTV 23.997 1.72 0.008973 0.000998
HDTV 19.200 1.26 0.009646 0.000869
Internet

File 9.714 22.49 0.113258 0.031937

(a) 802.11n typical process

Name Goodput
(Mbps)

Avg.
Aggregate

Size

Max.
Delay
(sec)

Avg.
Delay
(sec)

HDTV 23.970 6.85 0.029742 0.005950
HDTV 19.122 5.98 0.021217 0.004952
Internet

File 38.454 19.72 0.101951 0.007747

(b) 802.11n with ADCA algorithm enabled

Figure 3: An example of the ADCA operation

170

Authorized licensed use limited to: Brunel University. Downloaded on August 6, 2009 at 09:45 from IEEE Xplore. Restrictions apply.

allowed maximal delay (200ms). For example, the longest
delay for the video packet is 29ms and 21ms that on average
are about 1/8 of 200ms. Thus, as the use of ADCA improves
performance, it proves to be effective.

Table 3 shows the simulation results for ADCA for
Scenario 4 and Scenario 6. In both scenarios the simulations
include the outcomes for when ADCA is on and when is off.
Same as in Scenario 1, we’ve adapted the ADCA attributes
according to the maximum allowed delay that the included
applications have preset. Again, we observe that the ADCA
algorithm improves the system goodput significantly from
58.69 Mbps to 80.73 Mbps and 49.84 Mbps to 62.53 Mbps,
respectively. There is a significant increase of 37.1% for
Scenario 4 and 27.25% for Scenario 6. Furthermore the
maximal PLR for video flows is 0% in both scenarios and only
for voice flows is 0.16% and 2.53% but again is less or equal
than the allowed maximal PLR 5% as specified in [11].
ADCA’s key role in increasing performance can be noted
extremely when comparing the PLRs for video (VI) in Scenario
6. Without ADCA, the network fails to deliver 66.6% of the
total video flows in time while when ADCA is enabled all
packets received successfully with 0% PLR. All multimedia
flows meet their QoS requirements when ADCA is enabled
even though we defer further the transmission at the MAC
layer. This is because ADCA manages to increases aggregate
sizes for high priority flows and hence uses the channel more
efficiently. More specifically, in Scenario 4 the VI flows have
gone up 5.8 packets and the voice (VO) flows by 0.85 packets.
On the other hand we see a decrease on the VI flows in
Scenario 6 but this is normal since ADCA has stabilized the
EDCA prioritization and now that VO flows have better
channel utilization, the VI have more channel access and
consequently the significant drop on the PLRs. Based on the
above analysis, we can claim that the ADCA fixes the
significantly negative performance impact by the poor
interaction between EDCA and 802.11n plus it can effectively
confine the TCP problem too.

V. CONCLUSION
In this paper, we first identified issues arising from the poor

interaction of the EDCA prioritized channel access mechanism
defined in the 802.11e standard and the frame aggregation
mechanisms proposed by TGn in the latest draft standard.
Using original DCA algorithm with static parameter, we show
that these issues are addresses successfully however when
various TCP windows sizes are considered a further problem
was found. By incrementing the aggregate size threshold
gradually until the flight size of the TCP flow is reached, we
eliminate any TCP problems and MAC deadlocks. The static
DCA is too rigid and there is no flexibility in dynamically
adjusting the parameters. Our proposed adaptive DCA
administers the contingency to incorporate adaptability. The
simulation results evinced that the ADCA operation with
various TCP window sizes improves the system performance
significantly as compared with systems abstaining delayed
channel access and hence it could be considered as a guide for
the future High-Throughput standards.

REFERENCES

[1] IEEE Std. 802.11 WG, “Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications”, IEEE-SA Standards
Board, August 1999 (Reaffirmed June 2003).

[2] Y. Xiao and J. Rosdahl, “Throughput and Delay Limits of IEEE
802.11”, IEEE Communications Letters, Vol. 6, No. 8, pp. 355-357,
August 2002.

[3] IEEE P802.11n, Draft 2.5, “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications:
Enhancements for Higher Throughput”, IEEE-802.11 WG, July 2007.

[4] D. Skordoulis, Q. Ni, U. Ali & M. Hadjinicolaou, "Analysis of
Concatenation and Packing Mechanisms in IEEE 802.11n", PGNET
2007, Liverpool, UK, June 2007.

[5] IEEE Std. 802.11e WG, “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Amendment 8: Medium
Access Control (MAC) Quality of Service Enhancements”, IEEE-SA
Standards Board, November 2005.

[6] L. Changwen; A.P. Stephens, “Delayed Channel Access for IEEE
802.11e Based WLAN”, IEEE International Conference on
Communication ‘06, vol.10, pp.4811-4817, June 2006.

[7] Q. Ni, “Performance analysis and enhancements for IEEE 802.11e
wireless networks”, IEEE Network, vol.19, no.4, pp. 21-27, July 2005.

[8] OPNET Technologies, Inc., OPNET Modeler: Accelerating Network
R&D [www] Available from: http://www.opnet.com/solutions/
network_rd/modeler.html [Accessed 20th September 2007].

[9] J. Postel, “Transmission Control Protocol”, RFC 793, Sept. 1981.
[10] IEEE P802.11.2, Draft 1.0, “Recommended Practice for the Evaluation

of 802.11 Wireless Performance”, IEEE-802.11 WG, April 2007.
[11] IEEE P802 Wireless LANs, “Usage Models”, 11-03-0802-23-000n-

usage-models.doc, May 2004.

TABLE 3: SIM. RESULTS FOR SCENARIO 4 AND 6
Scenario 4 Off.

Load
Good
put Avg.Aggr. Max

Delay
Avg.
Delay

Max
PLR

BE 38.7046 0.2247 0.1117 N/A
VI 2.69 0.0578 0.0077 0% ADCA

Off
VO

460.1
8 58.69

1.1333 0.0339 0.0053 0.25%
BE 38.16 0.1519 0.0726 N/A
VI 8.49 0.0572 0.0182 0% ADCA

On
VO

460.1
8 80.73

1.98 0.0297 0.0096 0.16%

Scenario 6 Off.
Load

Good
put Avg.Aggr. Max

Delay
Avg.
Delay

Max
PLR

BE 30.715 0.6131 0.2448 N/A
VI 40.753 0.5554 0.2937 66.6% ADCA

Off
VO

64.88 49.84
1.4687 0.0495 0.0091 2.4%

BE 46.121 0.3692 0.1857 N/A
VI 14.337 0.0727 0.0175 0% ADCA

On
VO

64.88 62.53
2.258 0.0422 0.0118 2.53%

171

Authorized licensed use limited to: Brunel University. Downloaded on August 6, 2009 at 09:45 from IEEE Xplore. Restrictions apply.

