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This paper addresses the issue of designing experiments for

a metamodel that needs to be accurate for a certain level

of the response value. Such a situation is common in con-

strained optimization and reliability analysis. Here, we pro-

pose an adaptive strategy to build designs of experiments that

is based on an explicit trade-off between reduction of global

uncertainty and exploration of regions of interest. A mod-

ified version of the classical integrated mean square error

criterion is used that weights the prediction variance with

the expected proximity to the target level of response. The

method is illustrated by two simple examples. It is shown

that a substantial reduction of error can be achieved in the

target regions, with reasonable loss of global accuracy. The

method is finally applied to a reliability analysis problem;

it is found that the adaptive designs significantly outperform

classical space-filling designs.

1 Introduction

In the past decades, the use of metamodeling techniques

has been recognized to efficiently address the issues of pre-

diction and optimization of expensive-to-compute numeri-

cal simulators or black-box functions [1, 2]. A metamodel

(or surrogate model) is an approximation to system response

constructed from its value at a limited number of selected

input values, the design of experiments (DoE). In many en-

gineering problems, the total number of function evaluations

is drastically limited by computational cost; hence, it is of

crucial interest to develop methods for efficiently selecting

the experiments.

In this paper, we focus on a particular application where

metamodels are used in a way that their accuracy is crucial

for certain level-sets. This situation is common in two popu-

lar frameworks:

In constrained optimization, the constraint function of-

ten relies on expensive calculations. For instance, a typ-

ical structural optimization formulation is to minimize a

weight such that the maximum stress, computed by fi-

nite element analysis, does not exceed a certain value.

When using a metamodel to approximate the constraint,

it is of utmost importance that the approximation error

is minimal on the boundary that separates the feasible

designs from infeasible ones. Substantial errors for val-

ues far from the boundary, on the other hand, are not

detrimental.

In reliability analysis, a metamodel is often used to prop-

agate the uncertainty of random input variables to the

performance function of a system [3, 4]. In particular,

the probability of failure of the system can be computed

using sampling techniques (i.e. Monte-Carlo Simula-

tions, MCS), by counting the number of responses that

are above a certain threshold. The contour line of the re-

sponse equal to the threshold must be known accurately

to discriminate between samples.

The objective of the present work is to provide a method-

ology to construct a design of experiments such that the

metamodel accurately approximates the vicinity of a bound-

ary in design space defined by a target value of the func-

tion of interest. Mourelatos et al. [5] used a combination of

global and local metamodels to first detect the critical regions

and then obtain a locally accurate approximation. Ranjan et

al. [6] proposed a modified version of the famous EGO al-

gorithm (Efficient Global Optimization, [7]) to sequentially

explore the domain region along a contour line. Tu et al. used

a modified D-optimal strategy for boundary-focused polyno-

mial regression [8]. Vazquez and Bect [9] proposed an it-

erative strategy for accurate computation of a probability of

failure based on Kriging. In this paper, we present an alterna-

tive criterion to choose sequentially the experiments, based

on an explicit trade-off between the exploration of the tar-

get region (on the vicinity of the contour line) and reduction

of the global uncertainty (prediction variance) in the meta-

model.

The paper is organized as follows: in Section 2, the Krig-

ing model and the framework of design of experiments are

described. In Section 3, the original criterion of selecting

experiments is presented, followed by its associated sequen-



tial strategy to derive designs of experiments in Section 4.

Results are presented for two analytical examples in Section

5. Finally, the criterion is applied to a probability of failure

estimation problem.

2 Kriging Metamodel and Design of Experiments

Let us first introduce some notation. We denote by y the

response of a numerical simulator or function that is to be

studied:

y : D ⊂ Rd −→ R

x 7−→ y(x) (1)

where x = {x1, ...,xd}
T is a vector of input variables,

and D is the design space. In order to build a metamodel, the

response y is observed at n distinct locations X:

X = [x1, ...,xn]

Y = [y(x1), ...,y(xn)]
T = y(X) (2)

In Eqn. 2, choosing X is called the design of experi-

ments (DoE), and Y is the vector of observations. Since the

response y is expensive to evaluate, we approximate it by a

simple model M, called the metamodel or surrogate model,

based on assumptions on the nature of y and on its observa-

tions Y at the points of the DoE. In this paper, we present a

particular metamodel, Universal Kriging (UK), and we dis-

cuss some important issues about the choice of the design of

experiments.

2.1 Universal Kriging Model

The main hypothesis behind the Kriging model is to as-

sume that the true function y is one realization of a Gaussian

stochastic process Y , y(x) =Y (x,ω), where ω belongs to the

underlying probability space Ω. In the following we use the

notation Y (x) for the process and Y (x,ω) for one realization.

For Universal Kriging [10], Y is typically of the form:

Y (x) =
p

∑
j=1

β j f j(x)+Z(x) (3)

where f j are linearly independent known functions, and Z is

a Gaussian process [11] with zero mean and stationary co-

variance kernel k with known correlation structure and pa-

rameters.

Under such hypothesis, the best linear unbiased predictor

(BLUP) for Y (x) (for any x in D), knowing the observations

Y, is given by the following equation [10, 11]:

mK(x) = f(x)T β̂+ c(x)T C−1
(

Y−Fβ̂
)

(4)

where f(x) = [ f1(x), . . . , fp(x)]
T

is p × 1 vector of basis

functions, β̂ =
[

β̂1, . . . , β̂p

]T

is p× 1 vector of estimates of

β, c(x) = [k(x,x1), . . . ,k(x,xn)]
T

is n× 1 vector of covari-

ance, C = [k (xi,x j)]1≤i, j≤n
is n× n covariance matrix, and

F = [f(x1), . . . , f(xn)]
T

is n× p experimental matrix. In Eqn.

4, β̂ is the vector of generalized least square estimates of β:

β̂ =
(

FT C−1F
)−1

FT C−1Y (5)

In addition, the Universal Kriging model provides an es-

timate of the accuracy of the mean predictor, the Kriging pre-

diction variance:

s2
K(x) = k(x,x)− c(x)T C−1c(x)

+
(

f(x)T − c(x)T C−1F
)(

FT C−1F
)−1 (

f(x)T − c(x)T C−1F
)T
(6)

where σ2 is the process variance. Note that if the predic-

tion variance is written in terms of correlations (instead of

covariance here), Eqn. 6 can be factorized by σ2. For de-

tails of derivations, see for instance [10, 11]. It is important

to notice here that the Kriging variance in Eqn. 6, assuming

that the covariance parameters are known, does not depend

on the observations Y, but only on the Kriging model and on

the design of experiments.

We denote by M(x) the Gaussian process conditional on the

observations Y:

M := (M(x))x∈D = (Y (x)|Y (X) = Y)x∈D = (Y (x)|obs)x∈D

(7)

The Kriging model provides the marginal distribution of M

at a prediction point x:

M(x)∼ N
(

mK(x),s
2
K(x)

)

(8)

The Kriging mean mK interpolates the function y(x) at the

design of experiment points:

mK(xi) = y(xi), 1 ≤ i ≤ n (9)

The Kriging variance is null at the observation points xi,

and greater than zero elsewhere:

s2
K(xi) = 0, 1 ≤ i ≤ n and s2

K(x)≥ 0, x 6= xi (10)

Besides, the Kriging variance increases with the low val-

ues of the covariance between Y (x) and Y (xi) (1 ≤ i ≤ n).

Some parameters of the covariance kernel are often unknown

and must be estimated based on the observations, using max-

imum likelihood, cross-validation or variogram techniques

for instance (see [10, 11]). However, in the Kriging model

they are considered as known. To account for additional

variability due to the parameter estimation, one may use

Bayesian Kriging models (see [12, 13]), which will not be

detailed here. With such models, Eqn. 8 does not stand in

general. However, the methodology proposed here also ap-

plies to Bayesian Kriging, with the appropriate modifications

of the calculations shown in Section 3.



2.2 Design of experiments

Choosing the set of experiments (sampling points) X

plays a critical role in the accuracy of the metamodel and the

subsequent use of the metamodel for prediction. DoEs are

often based on geometric considerations, such as Latin Hy-

percube sampling (LHS) [14], or Full-factorial designs [15].

In this section, we introduce two important notions: model-

oriented and adaptive designs.

2.2.1 Model-oriented designs

Model-oriented designs aim at maximizing the quality

of statistical inference of a given metamodel. In linear re-

gression, [16, 17], A- and D- optimal designs minimize the

uncertainty in the coefficients, when uncertainty is due to

noisy observations. Formally, the A- and D-optimality cri-

teria are, respectively, the trace and determinant of Fisher’s

information matrix.

These criteria are particularly relevant in regression since

minimizing the uncertainty in the coefficients also minimizes

the uncertainty in the prediction (Kiefer, [16]). For Kriging,

uncertainties in covariance parameters and prediction are not

simply related. Instead, a natural alternative is to take ad-

vantage of the prediction variance associated with the meta-

model, assuming that the covariance structure and param-

eters are accurately estimated. The prediction variance al-

lows us to build measures that reflect the overall accuracy of

Kriging. Two different criteria are available: the integrated

mean square error (IMSE) and maximum mean square error

(MMSE) [18]:

IMSE =

∫
D

MSE(x)dµ(x) (11)

MMSE = maxx∈D [MSE(x)] (12)

µ is a positive measure on D and

MSE(x) = E
[

(mK(x)−M(x))2
]

= s2
K(x) (13)

Note that the above criteria are often called I-criterion

and G-criterion, respectively, in the regression framework.

The IMSE is a measure of the average accuracy of the meta-

model, while the MMSE measures the risk of large error in

prediction.

Optimal designs are model-dependent, in the sense that the

optimality criterion is determined by the choice of the meta-

model. In regression, A- and D-criteria depend on the choice

of the basis functions, while in Kriging, the prediction vari-

ance s2
K depends on the linear trend, the covariance structure,

and parameter values. However, one may notice that, assum-

ing that the trend and covariance structures are known, none

of the criteria depends on the response values at the design

points.

2.2.2 Adaptive designs

The previous DoE strategies choose all the points of the

design before computing any observation. It is also possible

to build the DoE sequentially, by choosing a new point as a

function of the other points and their corresponding response

values. Such approach has received considerable attention

from the engineering and mathematical statistic communi-

ties, for its advantages of flexibility and adaptability over

other methods [19, 20].

Typically, the new point achieves a maximum on some crite-

rion. For instance, a sequential DoE can be built by making

at each step a new observation where the prediction variance

is maximal. Sacks et al. [18] use this strategy as a heuristic

to build IMSE-optimal designs for Kriging. The advantage

of sequential strategy here is twofold. Firstly, it is computa-

tionally efficient because it transforms an optimization prob-

lem of dimension n× d (for the IMSE minimization) into

k optimizations of dimension d. Secondly, it allows us to

reevaluate the covariance parameters after each observation.

In the same fashion, Williams et al. [21], Currin et al. [22],

and Santner [2] use a Bayesian approach to derive sequential

IMSE designs. Osio and Amon [23] proposed a multistage

approach to enhance first space-filling in order to accurately

estimate the Kriging covariance parameters and then refine

the DoE by reducing the model uncertainty. Some reviews

of adaptive sampling in engineering design can be found in

Jin et al. [24].

In general, a particular advantage of sequential strategies

over other DoEs is that they can integrate the information

given by the first k observation values to choose the (k+1)th

training point, for instance by reevaluating the Kriging co-

variance parameters. It is also possible to define response-

dependent criteria, with naturally leading to surrogate-based

optimization. One of the most famous adaptive strategy is the

EGO algorithm Jones et al. [7], used to derive sequential de-

signs for the optimization of deterministic simulation mod-

els, by choosing at each step the point that maximizes the

expected improvement, a functional that represents a com-

promise between exploration of unknown regions and local

search. Jones [25] also proposes maximum probability of

improvement as an alternative criterion.

In this paper, the objective is not optimization, but to accu-

rately fit a function when it is close to a given threshold. It is

then obvious that the DoE needs to be built according to the

observation values, hence sequentially. Shan and Wang [26]

proposed a rough set based approach to identify sub-regions

of the design space that are expected to have performance

values equal to a given level. Ranjan et al. [6] proposed a

sequential DoE method for contour estimation, which con-

sists of a modified version of the EGO algorithm. The func-

tional minimized at each step is a trade-off between uncer-

tainty and proximity to the actual contour. Tu et al. [8] used

a weighted D-optimal strategy for polynomial regression, the

acceptable sampling region at each step being limited by ap-

proximate bounds around the target contour. Oakley [27]

uses Kriging and sequential strategies for uncertainty propa-

gation and estimation of percentiles of the output of com-

puter codes. Vazquez and Bect [9] proposed an iterative

strategy for probability of failure estimation by minimizing

the classification error when using Kriging. All these papers

aim at constructing DoEs for accurate approximation of sub-
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Fig. 1. One-dimensional illustration of the target region. Here, T =
1 and ε = 0.2. The target region consists of two distinct intervals.

regions of the design space. Our work proposes an alterna-

tive criterion which focuses on the integral of the prediction

variance (rather than punctual criterion).

3 Weighted IMSE Criterion

In this section, we present a variation of the IMSE crite-

rion, adapted to the problem of fitting a function accurately

for a certain level-set. The controlling idea of this work is

that the surrogate does not need to be globally accurate, but

only in some critical regions, which are the vicinity of the

target boundary.

3.1 Target region defined by an indicator function

The IMSE criterion is convenient because it sums up

the uncertainty associated with the Kriging model over the

entire domain D. However, we are interested in predict-

ing Y accurately in the vicinity of a level-set y−1(T ) =
{x ∈ D : y(x) = T} (T a constant). Then, such a criterion is

not suitable since it weights all points in D according to their

Kriging variance, which does not depend on the observations

Y, and hence does not favor zones with respect to properties

concerning their y values but only on the basis of their posi-

tion with respect to the DoE.

We propose to change the integration domain from D to a

neighborhood of y−1(T ) in order to learn y accurately near

the contour line. We define a region of interest XT,ε (param-

eterized by ε > 0) as the subset in D whose image is within

the bounds T − ε and T + ε:

XT,ε = y−1 ([T − ε,T + ε]) = {x ∈ D|y(x) ∈ [T − ε,T + ε]}
(14)

Figure 1 illustrates a one-dimensional function with the

region of interest being at T = 1 and ε = 0.2. Note that the

target region consists of two distinct intervals.

With the region of interest, the targeted IMSE criterion

is defined as follows:

imseT =
∫

XT,ε

s2
K(x)dx =

∫

D

s2
K(x)1[T−ε,T+ε] [y(x)]dx (15)

where 1[T−ε,T+ε] [y(x)] is the indicator function, equal to 1

when y(x) ∈ [T − ε,T + ε] and 0 elsewhere.

Finding a design that minimizes imseT would make the meta-

model accurate in the subset XT,ε, which is exactly what we

want. Weighting the IMSE criterion over a region of interest

is classical and proposed for instance by [15], pp.433-434.

However, the notable difference here is that this region is un-

known a priori.

Now, we can adapt the criterion in the context of Kriging

modeling, where y is a realization of a random process Y

(see Section 2.1).

Thus, imseT is defined with respect to the event ω:

imseT =
∫

D

s2
K(x)1[T−ε,T+ε] [Y (x,ω)]dx = I(ω) (16)

To come back to a deterministic criterion, we consider

the expectation of I (ω), conditional on the observations:

IMSET = E
[

I(ω)
∣

∣

∣
obs

]

= E





∫

D

s2
K(x)1[T−ε,T+ε] [Y (x,ω)]dx

∣

∣

∣
obs



 (17)

Since the quantity inside the integral is positive, we can

commute the expectation and the integral:

IMSET =

∫

D

s2
K(x)E

[

1[T−ε,T+ε] [Y (x,ω)]
∣

∣

∣
obs

]

dx

=

∫

D

s2
K(x)E

[

1[T−ε,T+ε] [M (x)]
]

dx

=

∫

D

s2
K(x)W (x)dx (18)

According to Eqn. 18, the reduced criterion is the average

of the prediction variance weighted by the function W (x).
Besides, W (x) is simply the probability that the response is

inside the interval [T − ε,T + ε]:

W (x) = E
[

1[T−ε,T+ε] [M (x)]
]

= P
(

M(x) ∈ [T − ε,T + ε]
)

(19)

Using Eqn. 8), we obtain a simple analytical form for

W (x):

W (x) =

T+ε∫

T−ε

g
N(mK (x),s

2
K(x))

(u)du (20)



where gN(mK (x),σ2
K(x))

(u) is the probability density function

(PDF) of M(x). By integrating the PDF we obtain:

W (x) = Φ
(

T + ε−mK (x)

sK (x)

)

−Φ
(

T − ε−mK (x)

sK (x)

)

(21)

where Φ is the CDF of the standard normal distribution.

Note that by dividing W (x) by the constant 2ε, it is possible

to define the weight function with ε → 0:

lim
ε→0

W (x)

2ε
= g

N(mK (x),s
2
K(x))

(T ) (22)

which is the PDF of the Kriging distribution evaluated at

threshold.

3.2 Target region defined by a Gaussian density

Defining the region of interest as XT,ε is intuitive and

makes it easy to derive the weight function. However, one

might prefer a criterion that continuously increases the im-

portance of the location when the response approaches the

threshold. For instance, we can choose a triangular function

(with a maximum at T ) or a sigmoid function. Here, we

choose to use the probability density function of a normal

distribution which leads to a simple analytical form of the

weight function. In the spirit of Eqn. 19, the Gaussian-based

weight function is therefore defined as follows:

W (x) = E [gε (M (x)−T)] (23)

where gε (u) is the PDF of N
(

0,σ2
ε
)

.

When M(x) stands for the Kriging model, we can obtain a

simple form for the weight function:

W (x) =

+∞∫

−∞

gε (u−T)gN(mK(x),s
2
K(x))

(u)du (24)

This integral is the convolution of the two Gaussian den-

sities, which is well-known to be the density of a sum of in-

dependent Gaussian variables. Hence, we obtain:

W (x) =
1

√

2π
(

σ2
ε + s2

K (x)
)

e

(

− 1
2
(mk(x)−T)2

σ2
ε+s2

K
(x)

)

(25)

This new weight function depends on a single parame-

ter σε that allows us to select the size the domain of interest

around the target level of the function. A large value of σε
would enhance space-filling, since the weight function would

tend to a constant and the weighted IMSE to a uniform IMSE

criterion. On the contrary, a small value would enhance the

accuracy of the surrogate on a narrow region around the con-

tour line of interest. In particular when epsilon tends to zero,

the weight function tends to the density g
N(mK(x),s

2
K(x))

(T ),

which is purely local.

In practice, it has been found that the choice of σε -excepting

very large and very small values- has little impact on the cri-

terion and its use in sequential strategies. It only becomes

important when the number of observations is very large

(thus, the target region is well-known). In the numerical ex-

amples of Section 5, we chose σε equal to approximately five

percent of the output range.

3.3 Illustration

We consider a one-dimensional case, where the function

y to approximate is a realization of a Gaussian process (so the

Kriging is an accurate model for y) with isotropic Gaussian

covariance structure:

k(u,v) = σ2 exp

[

−

(

‖u− v‖

θ

)2
]

(26)

y is defined on D = [0,1]; the design of experiments con-

sists of five observations equally spaced in this interval. The

level-set of interest T is chosen as 1.3, and both ε and σε
are taken as 0.2. Figure 2 represents the true function, the

Kriging metamodel and corresponding weights. The weight

function in Eqn. 21 is shown as ”interval”, while that in Eqn.

25 is called ”Gaussian”.

Among the five observations, one is substantially closer to

T than the others. As a consequence, the weight functions

are large around this observation point. For the indicator-

based weight function, the weights are null at the observa-

tion points, since on this example no observation is inside

the target value interval. For the Gaussian-based weight, we

can observe a smoothing effect compared to the interval. For

both functions, high weights are given to regions for which

the actual function is inside the target interval. Both weight

functions are also non-zero where the uncertainty is high,

even if the Kriging mean is far from T (around x = 0.65 and

0.85).

3.4 Application To Probability Of Failure Estimation

3.4.1 Probability of failure using metamodel

Failure of a system can usually be determined through

a criterion, called a limit-state, g. The limit-state is defined

such that the system is considered safe if g ≤ 0, and failed

otherwise. For instance, the limit-state of a structure can be

defined as the difference between response, r, (e.g., maxi-

mum stress or strain) and capacity, c, (e.g., maximum allow-

able stress or strain), g = r− c.

The limit-state depends on a set of factors U (for instance in

structural analysis, material properties and loadings), which

are often uncertain, and the limit-state shows random distri-

bution. Then the safety of the system is evaluated in terms of

reliability or probability of failure. The probability of failure

is defined as:

Pf = Prob(g(U)≥ 0) (27)
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where U is a (multivariate) random variable.

There are many methods for calculating the failure proba-

bility of a system [3, 28, 29]. Some of them use the rela-

tion between input random variables and the limit-state (e.g.,

first-order reliability method) and some consider the limit-

state as a black-box (e.g., Monte-Carlo Simulations, MCS).

MCS generates samples of the limit-state and calculates the

number of failed runs [3]. The ratio between the numbers of

failures and the total sample size approximates the probabil-

ity of failure of the system:

P̂f =
1

N

N

∑
i=1

1[0,+∞[ [g(ui)] (28)

where the ui’s are i.i.d. (independent and identically dis-

tributed) replicates of the random variable U (1 ≤ i ≤ N).

The accuracy of MCS strongly depends on the number of

runs used, especially when the probability of failure is low.

When the cost of simulation is high, engineers can afford

to have only a small number of runs, which is not good

enough to estimate the reliability with acceptable accuracy

[30]. Hence, using a metamodel to approximate the limit-

state g is a natural solution to the lack of data; MCS is then

performed on the metamodel that is inexpensive to evaluate.

Instead of using the indicator function on the Kriging mean,

we use the full Kriging information by computing, at each

sampling point, the probability that the response exceeds the

threshold:

P̂f =
1

N

N

∑
i=1

1−Φ(i)
k (0) (29)

where Φ(i)
k denotes the cumulative distribution function

(CDF) of the Kriging model at xi (N
(

mk (ui) ,s
2
k (ui)

)

).

If the Kriging variance is small, the CDF becomes equivalent

to the indicator function, being 1 if the Kriging mean exceeds

the threshold zero and 0 otherwise. On the other hand, when

the variance is high or the predicted response close to the

threshold, using the Kriging distribution offers a smoothing

effect by giving a number between zero and one instead of a

Boolean number.

3.4.2 Adaptation of the weighted IMSE criterion

When approximating the limit-state, it is clear that ac-

curacy is critical in the regions where it is close to zero,

since error in that region is likely to affect the probability

estimate. The region of interest can be further refined by tak-

ing into account the distribution of the input variables. In-

deed, let us consider the case of two distinct failure regions,

with the probability that the input falls onto the first region

being much larger than the probability that it falls onto the

other). Instead of focusing equally on the two critical re-

gions, it will be more efficient to spend more computational

effort on the one that will affect most the probability esti-

mate. In the same sense, when refining the surrogate in a

single critical region, it is efficient to refine only where the

input probability is high.

To address this probability distribution of input variables,

we modify the weighted IMSE criterion by integrating the

weighted MSE not with a uniform measure, but with the law

µ of the input variables. In the usual case that µ admits a PDF

f (x) with respect to the Lebesgue measure, we then have:

IMSET =

∫

D

s2
K (x)W (x)dµ(x) =

∫

D

s2
K (x)W (x) f (x)dx

(30)

In practice, the criterion becomes the integral of the product

of three quantities: the prediction variance, the weight func-

tion and probability density function of the input variables.



Table 1. Procedure of the IMSET -based sequential DoE strategy.

Create an initial DoE, Xk, and generate observations

Yk = y(Xk)

For i going from one to the total number of additional

observations n:

Fit the Kriging model to the data {Xk+i−1,Yk+i−1}

Find a new training point xnew that minimizes the

criterion IMSET ({Xk+i−1,xnew})

Compute the new observation ynew = y(xnew)

Update the DoE and observations:

Xk+i = {Xk+i−1,xnew}

Yk+i = {Yk+i−1,ynew}

End of loop

4 Sequential Strategies For Selecting Experiments

4.1 Building DoEs using the targeted IMSE criterion

Without any observation, the weight function W (x) is,

assuming stationarity, a constant (the probability is the same

everywhere). Every time a new observation is performed, the

weight function will more precisely discriminate the regions

of interest from the others. Hence, the procedure to build

an optimal DoE is necessarily iterative. If we add one ob-

servation at a time we can use the procedure shown in Table

1.

A good evaluation of the covariance parameters is crit-

ical to obtain a good Kriging model. Besides, those param-

eters directly affect the weight function: for instance, un-

derestimation of the range (θ in Eqn. 26) makes the weight

function flat (constant), which enhances space-filling; on the

contrary, overestimation of the range leads to a very discrim-

inating (over-confident) weight function.

The Kriging parameters can be reevaluated after every new

observation, or only from the initial DoE before the iterative

procedure. However, re-evaluating the parameters at each

iteration is computationally intensive, which can harm the

efficiency of the method. Hence, one would consider es-

timating the parameters only when necessary, as proposed

in Gano et al. [31]. In the numerical examples used in this

work, we found that after a first few iterations, the parameter

re-evaluation had a negligible impact on the efficiency of the

method.

Defining a stopping criterion for this problem is an open and

complex question. We consider here that in most cases the

number of observations is very limited so the iterative pro-

cess stops at early stage. Ideally, the adaptive process should

be stopped when the identified target region does not change

significantly over several adaptations, which can be detected

by looking at changes in the probability to be inside target

regions.

Finding the new training point requires an inner optimization

procedure. When the classical IMSE criterion is considered,

the optimization can be expressed as:

min
xnew∈D

IMSE(Xk+1) = IMSE({Xk,xnew}) (31)

where IMSE({Xk,xnew}) =
∫
D

s2
K (x|{Xk,xnew})dx.

s2
K (x|{Xk,xnew}) is the variance at x of the Kriging model

based on the design of experiments X augmented with the

training point xnew. Since the Kriging variance does not de-

pend on the observation, there is no need to have y(xnew) to

compute the IMSE.

In contrast, the weighted IMSE depends on the observations

through the weight function W (x). The weight function can-

not take into account the new observation, since the response

is not available. Hence, when expressing the weighted IMSE

as a function of xnew, we update only the variance part under

the integral:

IMSET (Xk,Yk,xnew)=

∫

D

s2
K (x|{Xk,xnew})W(x|Xk,Yk)dx

(32)

where s2
K (x|{Xk,xnew}) is the same as in Eqn. 31 and

W (x|Xk,Yk) is the weight function based on the existing

DoE. Using this expression, we have the simple formulation

for the inner optimization problem:

min
xnew∈D

IMSET (Xk,Yk,xnew) (33)

4.2 Solving the optimization problem

Finding the new observation xnew by solving the opti-

mization problem of Eqn. 33 is, in practice, challenging.

Indeed, the IMSET criterion in Eqn. 32 must be evaluated

by numerical integration, which is computationally inten-

sive. Besides, for any candidate xnew, the Kriging model

must be reevaluated with this new observation to obtain

s2
K (x|{Xk,xnew})). Therefore we propose here some alter-

natives that may be used to reduce the cost.

A popular heuristic to minimize sequentially the IMSE is

to find the point where the prediction variance is maximum

[ [18, 21]], which can be used here with the weighted pre-

diction variance. This strategy has the advantage of saving

both the numerical integration and the inversion of a new co-

variance matrix. However, the prediction variance is likely

to have many (local or global) maximizers, which are not

equivalent in terms of the IMSE. In particular, many optima

are located on the boundaries, which is very inefficient for

the IMSE minimization. To compensate for this issue, one

may in a first time get a large number of local optima us-

ing adapted optimization strategies (multi-start, etc.), and in

a second time evaluate those optima in terms of the weighted

IMSE criterion, and perform a local optimization on the best

point. It is to be noted that the gradients of the weighted

MSE can be calculated analytically (in the fashion of Gins-

bourger [32] (Chapter 4) for the Expected Improvement cri-

terion).
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A valuable computational shortcut can be achieved in

the update of the inverse of the covariance matrix when

adding an observation. Let us call Ck the covariance ma-

trix corresponding to a DoE with k observations. Then, the

covariance matrix of the DoE augmented with the k + 1th

observation can be written:

Ck+1 =

[

σ2 cT
new

cnew Ck

]

(34)

with cT
new = [k (xnew,x1) , . . . ,k (xnew,xk)] a 1× k vector.

Using Schur’s complement formula [33], we get:

Ck+1
−1 =

[

1 0

−C−1
k cnew Ik

]

[

1

σ2−cT
newC−1

k cnew
0

0 C−1
k

]

[

1 −cT
newC−1

k

0 Ik

]

(35)

This formula allows to compute Ck+1
−1 from

Ck
−1 without doing any matrix inversion, and compute

s2
K (x|{Xk,xnew}) at reasonable cost.

Another typical problem of sequential strategies for Kriging

is the ill-conditioning of the covariance matrix, which

happens in particular when two (or more) observations

are very close to each other. Since the IMSE criterion

enhances exploration, this risk is limited here. Therefore,

when the number of iterations is large, the observations can

concentrate on the target region and the covariance matrix

becomes difficult to invert. In that case, it is possible to add

a small diagonal matrix (nugget effect) to the covariance

function in order to facilitate the inversion (Neal [34]).

In general, the criterion has several local minimizers. Then,

it is necessary to use global optimization methods, such as

population-based methods, multi-start strategies, etc. In the

test problems presented in this chapter, we optimize the

criterion on a fine grid for low dimensions, and using the

population-based CMA-ES algorithm [Covariance Matrix

Adaptation Evolution Strategies, [35]] for higher dimen-

sions. Experimentation showed that due to the numerical

integration precision, the targeted IMSE strategy becomes

inefficient for dimensions higher than ten.

5 Numerical Examples

In this section, we evaluate the accuracy and efficiency

of the methods presented in the sections 3 and 4 through nu-

merical examples. We consider three examples: the first is

the fitting of an analytical function in two dimensions with

estimated covariance parameters. The second is the fitting

of realizations of random processes in six dimensions with

known covariance parameters, which allows us to decom-

pose the problem and evaluate the relevance of our criterion

since in this case there is no modeling error. Finally, the

method is applied to probability of failure estimation.

5.1 Two-dimensional example

The first example is the approximation of a two-

dimensional parametric function from the optimization lit-

erature (Camelback function, [36]). The original function

is modified (bounds are different and a negative constant is

added) and the target is chosen in order to have two failure

regions, one dominating the other. The two-dimensional de-

sign space is given as [1,1]2. The performance function is



defined as

f (u,v)=

(

4− 2.1ū2+
1

3
ū4

)

ū2+
2

3
ūv̄+

16

9

(

−4+
16

9
v̄2

)

v̄2−0.7

(36)

where ū = 1.2u− 0.1 and v̄ = 0.9v.

For both numerical integration and optimization, the design

space is discretized in a 32× 32 grid. We present the results

for the following configuration:

Target value T is chosen as 1.3,

Gaussian-based weight function is used, with parameter

σε = 0.2,

Initial DoE consists of the four corners and the center of

the domain,

11 points are added iteratively to the DoE as described

in the previous section.

An isotropic Gaussian covariance function (Eqn. 26) is cho-

sen for the Kriging model. The covariance parameters (pro-

cess variance σ2 and range θ) are estimated from the initial

5-point DoE, and re-estimated after each new observation,

using the MatLab toolbox GPML [11]. The final results are

presented in Figure 3.

Figure 3 A) is the plot of the true function, and Figure 3 B) is

that of the Kriging mean. In the contour plot in Figure 3 C),

it is shown that there are two critical regions. After 11 itera-

tions, the sequential strategy used four points to explore the

first critical region, three points to explore the second region,

and four points for space-filling. As shown in Figure 3 D),

the Kriging variance becomes small near the critical regions,

while it is relatively large in the non-critical region.

Figure 4 shows the evolution of the target contour line for the

kriging expectation, which is a good indicator of the quality

of the surrogate. We see that because the first four iterations

(Figure 4 B)) are used for space-filling, the Kriging contour

line is very different from the actual one. After eight itera-

tions (Figure 4 C)), the two target regions are found and addi-

tional sampling points are chosen close to the actual contour

line. Final state (Figure 4 D)) shows that the kriging contour

line is close to the actual one.

5.2 Six-Dimensional Example

In the second example, we consider a realization of a

six-dimensional isotropic Gaussian process with Gaussian

covariance function. The design space is [−11]6. In order

to limit the complexity (number of non-connected target re-

gions) of the target region, we add a linear trend to the Gaus-

sian process. We take σ2 = 1, θ= 0.1 and β = [1 . . .1].
The weighted IMSE criterion is computed by Quasi Monte-

Carlo integration. The integration points are chosen from a

Sobol sequence [37] to ensure a good space-filling, and are

changed at each step to limit the risk of keeping a hole in

the integration region over the iterations. At each step, the

optimization is performed using the population-based opti-

mizer CMA-ES [35]. The number of integration points is

chosen equal to 5,000, and the number of function evalua-

tions for CMA-ES is limited to 1,000. With this set-up, one
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Fig. 4. Evolution of Kriging target contour line (thin line) compared

to actual (bold line) during the sequential process: A) Initial, B) after

four iterations, C) after eight iterations, D) final.

optimization (which is the computational bottleneck) takes

of the order of two minutes on a PC with a 1.8GHz processor

and 1Go RAM. For comparison, the two-dimensional prob-

lem described earlier requires about 1 second to perform the

optimization.

We present the results for the following configurations:

Target value is chosen as 2

Gaussian-based weight function is used, with σε = 0.05.

Initial DoE consists of 20 points chosen from Latin-

hypercube sampling (LHS)

70 points are added iteratively to the DoE.

The Kriging parameters are not estimated here, but taken

equal to the covariance parameters of the true function.

Hence, no modeling error is involved since the function to

approximate corresponds exactly to the assumptions of the

Kriging model, and the error of Kriging is only due to the

lack of sampling. The advantage of using such test case is

to decompose the problem: here, we evaluate only the rele-

vance and efficiency of our criterion, regardless the difficulty

of estimating the covariance parameters from a small num-

ber of observations.

For comparison purpose, we generate a classical space-filling

DoE that consists of 90 LHS points with maximin criterion.

First, we represent the error at 10,000 (uniformly distributed)

data points (Figure 5). The classical space-filling DoE leads

to a uniform error behavior, while the optimal DoE lead to

large errors when the response is far from the target value,

while small errors when it is close to the target.

In order to analyze the error in the target region, we draw

the boxplots of the errors for the test points where responses

are inside the domain [T − 2σε,T + 2σε] (Figure 6). Com-

pared to the space-filling strategy, the optimal design reduces
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Fig. 6. Boxplots of errors for the 90-point LHS and optimal de-

signs for the test points where responses are inside the domain

[T −2σε,T +2σε]. Error at these points is about 2.5 times smaller

for the optimal designs for both intervals.

significantly the error. In particular, the interquartiles inter-

val is 2.5 times smaller for the optimal DoE.

5.3 Reliability Example

The limit state function is taken as the Camelback func-

tion used in the previous section. Let U and V be indepen-

dent Gaussian variables with zero mean and standard devia-

tion taken at 0.28; i.e., U,V ∼ N
(

0,0.282
)

. Then, the failure
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points. Plain green line shows the limit of the failure region; Input

distribution is shown in D).

is defined when f becomes greater than 1.3. Thus, the limit

state is defined as

G = f (U,V)− 1.3 (37)

For this example, we generate two adaptive designs: the first

is generated sequentially as described previously, with uni-

form integration measure (Eqn. 18); the second is generated

using the input distribution as integration measure (Eqn. 30).

Both use the four corners and the center of the domain as

starting DoE and 11 iterations are performed. For compari-

son purpose, a 16-point full factorial design is also used. It

is found that an Ordinary Kriging model (UK without lin-

ear trend) with isotropic Gaussian covariance function ap-

proximates well the function. The covariance parameters are

computed using the toolbox GPML for all the DoEs. For the

sequential DoEs the parameters are re-evaluated at each new

observation.

Figure 7 draws the two optimal designs obtained and the full

factorial designs. Both optimal designs concentrate the com-

putational effort on the failure regions and the center of the

domain. With uniform measure integration in Figure 7 A),

the DoE is more space-filling than the one based on the dis-

tribution (shown in Figure 7 D)). By taking the input distribu-

tion into account in Figure 7 B), we see that all the observa-

tions are located relatively close to the center of the domain.

Part of each target regions is not explored, since it is far from

the center.

Finally, we perform 107 MCS on the three metamodels

to compute the probability of failure estimates. 107 MCS are

also performed directly on the test function to obtain the true

probability of failure. Results are reported in Table 2. The

full-factorial design leads to 77% error, while both optimal



Table 2. Probability of failure estimates for the three DoEs and the

actual function based on 107 MCS. The standard deviation of all es-

timates is of the order of 2× 10−5.

DoE Pf (%) Relative

error

Full Factorial 0.17 77 %

Optimal without input distribu-

tion

0.70 7 %

Optimal with input distribution 0.77 3 %

Probability estimate based on

107 MCS

0.75

designs lead to a small error. Substantial improvement is

obtained by taking the input distribution into account.

6 Conclusions

In this paper, we have addressed the issue of choosing

a design of experiments when the Kriging metamodel was

used to approximate a function accurately around a particular

level-set. This situation frequently occurs in constrained op-

timization and reliability analysis. We proposed a modified

version of the classical IMSE criterion, obtained by weight-

ing the prediction variance using a Kriging-based measure of

the expected proximity to target values. The choice of a new

observation based on such criterion is a trade-off between ex-

ploration of the target region (on the vicinity of the contour

line) and reduction of the global uncertainty (prediction vari-

ance) in the metamodel.

We applied our strategy to examples in two and six dimen-

sions. In two dimensions, we showed that the adaptive sam-

pling efficiently explored the target regions while ensuring

space-filling. In six dimensions, we showed that compared

to a classical space-filling design, the error reduction in the

target region was by a factor of 2.5.

Finally, the method was tested for reliability estimation on

an analytical example. An additional criterion was adapted

to integrate the distribution of input random variables. It was

found that both criterion-based strategies significantly out-

performed space-filling designs, and taking into account the

input distribution provides additional improvement in the ac-

curacy of the probability of failure.

However, it has been found some limitations to the method,

which were not solved here and requires future work to apply

the method to a wide range of problems:

Since it relies on numerical integration, the method can

become computationally expensive if a large number of

integration points are needed to compute the criterion.

We found that for dimensions higher than ten, the cri-

terion minimization becomes critical without the use of

complex and problem-dependant numerical procedures,

such as dimension reduction or adapted numerical inte-

gration.

Secondly, it is important to recall that it is a model-

believer strategy, since the criterion is entirely based on

the Kriging model. Although sequential strategies al-

low some correction of the model during the process

(through re-estimation of the parameters for instance),

the success of the method will strongly depend on the

capability of the Kriging model to fit the actual response.

Future research may compare the results obtained with this

method to alternative methods, in particular in the frame-

works of reliability analysis and constrained optimization.
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