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The problem

A, B, C are three treatments with unknown probabilities of
success, pA, pB, pC .

A - placebo, B - standard treatment, C - new treatment.

An n subjects experiment (binary response) is preformed
in order to test the new therapy.

Target: to find a sequential design that maximizes the
power of the relevant tests keeping in mind the ethical
goal of assigning a small fraction of subjects to the inferior
treatment.
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The problem (cont.)

Let νA(n), νB(n), νC(n) be the fraction of subjects
(allocations) assigned to treatments A, B, or C.

Two steps:
1 Oracle : to find the optimal allocation (asymptotically) for a

fixed design .
2 As the optimal allocation depends on unknown parameters,

implementation requires a sequential design.
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Preliminaries

At the end of the experiment, three one-sided hypotheses may
be tested:

H0 : pA = pB versus H1 : pA < pB (1)

H0 : pA = pC versus H1 : pA < pC (2)

H0 : pB = pC versus H1 : pB < pC . (3)

We assume that pA < pB < pC ; two criteria of optimality are
studied:

Correct selection: to maximize the power (=probability
that both are rejected) of (2) and (3) .

Correct order: to maximize the power of (1) and (3).
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Preliminaries (cont.)

At stage n, the estimators p̂i(n), for i = A, B, C, are available.

p̂i(n)
(d)
=

Binomial(nνi(n), pi)

nνi(n)
.

For example, we reject the null in (1) if

p̂B(n) − p̂A(n)

V̂ 1/2
≥ Cr ;

V̂ = an estimator of the variance; Cr ≥ 0 = a critical value.
The power of correct selection is

PCS(n) := P
[{

p̂C(n) − p̂A(n)

V̂ 1/2
≥ Cr

}

⋂

{

p̂C(n) − p̂B(n)

V̂ 1/2
≥ Cr

}]

The power of correct order is

PCO(n) := P
[{

p̂B(n) − p̂A(n)

V̂ 1/2
≥ Cr

}

⋂

{

p̂C(n) − p̂B(n)

V̂ 1/2
≥ Cr

}]

.
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Step 1 - optimal allocation for a fixed design

Two different notions of optimality, related to Pitman and
Bahadur efficiency, can be considered.

In this case, Pitman’s approach does not work (details are
omitted).
Bahadur’s approach:

PCS(n) ≈ 1 − e−C1(ν)n, PCO(n) ≈ 1 − e−C2(ν)n.
We aim at finding the allocation that maximizes C1(ν),
C2(ν).
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Two treatments; Azriel, Mandel and Rinott (2012)

We would like to find allocations that maximize

P
{

p̂B(n) − p̂A(n)

V̂ 1/2
≥ Cr

}

.

The standard argument is based on the following normal
approximation:

PpA,pB

{

p̂B(n) − p̂A(n)

V̂ 1/2
≥ Cr

}

=

PpA,pB

{

p̂B(n) − p̂A(n) − (pB − pA)

V 1/2
>

Cr V̂ 1/2
− (pB − pA)

V 1/2

}

≈1 − Φ

(

Cr · V̂ 1/2
− (pB − pA)

V 1/2

)

≈ 1 − Φ
(

Cr −
pB − pA

V 1/2

)

= 1 − Φ

(

Cr −
n1/2(pB − pA)

(nV )1/2

)

.

The normal approximation is not valid because V ≈ C/n. The
error of the Normal approximation is in the order of 1/

√
n while

the approximation itself is in the order of e−n.
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Two treatments; Neyman allocation

Neyman allocation, i.e., νNeyman =

√
pA(1−pA)√

pA(1−pA)+
√

pB(1−pB)
is

recommended by many authors, since it minimizes
nV = pA(1−pA)

ν + pB(1−pB)
1−ν .

(e.g., Brittain and Schlesselman (1982); Rosenberger et. al (2001); Hu and

Rosenberger (2003); Bandyopadhyay and Bhattacharya (2006); Hu et. al

(2006); Hu and Rosenberger (2006); Tymofyeyev et. al (2007); Biswas et. al

(2010); Zhu and Hu (2010); Chambaz and van der Laan (2010)).

For example, Hu et. al (2006) state that “If one wishes to
maximize the power of the usual test comparing two binomial
probabilities, it is well-known that Neyman allocation, the ratio
of the standard deviations, should be used".
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Two treatments (cont.)

Theorem

Assume that pB > pA and limn νA(n) = ν, limn νB(n) = 1 − ν for
certain 0 < ν < 1; then for any Cr ≥ 0

lim
n

1
n

log
{

1 − P
(

p̂B(n) − p̂A(n)

V̂ 1/2
≥ Cr

)}

= g(pA, pB, ν),

where g(pA, pB, ν) := log{(1 − pB)ν(1 − pA)1−ν + pν
Bp1−ν

A }.

Let ν∗ = ν∗(pA, pB) := arg minνg(ν, pA, pB), (g(·, pA, pB) is
convex).
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Two treatments; numerical illustration.

Table: The optimal allocation ν∗ for different parameters compared to
Neyman allocation.

pA pB ν∗ νNeyman

0.5 0.8 0.518 0.556
0.5 0.65 0.504 0.512
0.6 0.75 0.510 0.531
0.7 0.75 0.505 0.514
0.7 0.85 0.521 0.562
0.7 0.9 0.535 0.604

0.85 0.95 0.541 0.621
0.5 0.9 0.542 0.625

Conclusion: For two treatments the optimal allocation is quite
close to 0.5 and therefore adaptive design cannot significantly
improve power in that case.
We shall see that for three treatments the situation is different.
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Large deviations result - three treatments

Theorem

Assume that limn νA(n) = νA, limn νB(n) = νB and
limn νC(n) = νC for certain νA, νB, νC > 0; then for any Cr ≥ 0

lim
n

1
n

log{1 − PCS(n)} = HCS(νA, νB, νC),

and,

lim
n

1
n

log{1 − PCO(n)} = HCO(νA, νB, νC).
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Definitions

Where

g(p1, p2, ν) := log{(1 − p2)
ν(1 − p1)

1−ν + pν
2p1−ν

1 }.

HCS(νA, νB, νC) = max{(νB + νC)g(pB, pC ,
νB

νB + νC
),

(νA + νC)g(pA, pC ,
νA

νA + νC
)}.

HCO(νA, νB, νC) = max{(νB + νC)g(pB, pC ,
νB

νB + νC
),

(νA + νB)g(pA, pB,
νA

νA + νB
)}
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Properties of the optimal allocation

We now focus on PCS(n). Consider the case Cr = 0.

PCS(n) = P [{p̂C(n) ≥ p̂B(n)} ∩ {p̂C(n) ≥ p̂A(n)}] ;
1 − PCS(n) = P[{p̂B(n) > p̂C(n)} ∪ {p̂A(n) > p̂C(n)}]

=P{p̂B(n)>p̂C(n)}+P{p̂A(n)>p̂C(n)}−P[{p̂B(n)>p̂C(n)}∩{p̂A(n)>p̂C(n)}].

The large deviations rate is determined by the maximum rate of
the first two probabilities in the latter expression; this explains
the form of HCS, which is based on the result in two treatments.
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Properties of the optimal allocation (cont.)

The optimal allocation is arg min HCS(νA, νB, νC);

νCS := arg min
νA,νB ,νC

max{(νB + νC)g(pB, pC ,
νB

νB + νC
),

(νA + νC)g(pA, pC ,
νA

νA + νC
)}.

By “minimax argument”, under the optimal allocation the
two terms in the curly brackets are equal.

The same “effort” is made to distinguish between pA and
pC and between pB and pC .

The latter is harder to distinguish than the former and
therefore νCS

A is smaller than νCS
B , νCS

C .
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Numerical examples

Table: Comparison of optimal allocations.

pA pB pC νCS
A νCS

B νCS
C νCO

A νCO
B νCO

C

0.1 0.2 0.5 0.119 0.415 0.466 0.449 0.497 0.054
0.1 0.6 0.9 0.039 0.519 0.442 0.100 0.492 0.408
0.2 0.7 0.8 0.008 0.507 0.485 0.012 0.505 0.483
0.3 0.5 0.7 0.066 0.471 0.462 0.290 0.421 0.290
0.3 0.5 0.8 0.105 0.459 0.436 0.433 0.460 0.107
0.4 0.5 0.7 0.128 0.433 0.439 0.466 0.472 0.062
0.5 0.6 0.7 0.071 0.467 0.462 0.315 0.416 0.269
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Step 2 - adaptive design

The optimal allocations νCS and νCO depend on pA, pB, pC ,
which are unknown, and in order to implement them an
adaptive rule is needed.
Adaptive design:

xn ∈ {A, B, C} is the treatment assigned to the nth subjects
and yn denotes its binary response.

xn ∈ Fn−1 := σ{(x1, y1), (x2, y2), . . . , (xn−1, yn−1)}.

We assume that yn|Fn−1 ∼ Bernoulli(pxn).
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Adaptive design - RCS

Consider the function

νCS(pA, pB, pC) :=
(

νCS
A (pA, pB, pC), νCS

B (pA, pB, pC), νCS
C (pA, pB, pC)

)

.

At each stage n of the experiment the next subject is allocated
according to

xn+1 =







A w. p. ν̂A(n + 1) := νCS
A (p̂A(n), p̂B(n), p̂C(n))

B w. p. ν̂B(n + 1) := νCS
B (p̂A(n), p̂B(n), p̂C(n))

C w. p. ν̂C(n + 1) := νCS
C (p̂A(n), p̂B(n), p̂C(n)),

under some truncation. We call this design RCS - random
correct selection.
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Properties of the RCS design

The properties of the RCS design are stated in the following
theorem.

Theorem

The RCS design satisfies
I p̂A(n), p̂B(n), p̂C(n) are strongly consistent, asymptotically

normal and asymptotically independent;

II

(

ν̂A(n), ν̂B(n), ν̂C(n)
)

n→∞−→ νCS(pA, pB, pC) almost surely;

III

(

νA(n), νB(n), νC(n)
)

n→∞−→ νCS(pA, pB, pC) almost surely.
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The large deviation rate of the RCS

Consider the following randomized design

Let πA, πB, πC > 0 be such that πA + πB + πC = 1.

At stage n of the experiment we choose xn = i with
probability πi for i = A, B, C.

Theorem

For this design we have for any Cr ≥ 0

lim
n

1
n

log{1−PCS(n)} = max{R(pA, pC , πA, πC), R(pB, pC , πB, πC)},

where

R(p1,p2,π1,π2):=maxK∈[p1,p2] log{f (K ,p1,π1)+f (K ,p2,π2)+1−(π1+π2)},

f (K ,p,π):=π( p
K )

K
( 1−p

1−K )
1−K

.
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Comment

It can be shown that

R(p1, p2, π1, π1) ≥ (π1 + π2)g(p1, p2,
π1

π1 + π2
).

The R term is minus the rate in a randomized design and
the g term is that of a fixed design.

Thus, the probability of an error decreases faster to zero in
a fixed design than in a randomized design.

Designs such as the biased coin of Efron that decrease the
randomness may also cause increase of power.
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Comment (cont.)

Table: Comparison of rates between the optimal fixed design (optimal) and
the randomized design with optimal proportions (rand).

correct selection correct order
pA pB pC optimal rand optimal rand

0.1 0.2 0.5 0.0464 0.0419 0.0096 0.0089
0.1 0.6 0.9 0.0652 0.0325 0.0610 0.0501
0.2 0.7 0.8 0.0067 0.0046 0.0067 0.0051
0.3 0.5 0.7 0.0199 0.0178 0.0147 0.0146
0.3 0.5 0.8 0.0472 0.0407 0.0190 0.0181
0.4 0.5 0.7 0.0186 0.0179 0.0048 0.0046
0.5 0.6 0.7 0.0051 0.0050 0.0036 0.0036
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The large deviation rate of the RCS (cont.)

The following theorem implies that the RCS design is as good
as the randomized design with the optimal proportions.

Theorem

The RCS design satisfies for any Cr ≥ 0

lim sup
n

1
n

log{1 − PCS(n)} ≤ max{R(pA, pC , νCS
A , νCS

C ),

R(pB, pC , νCS
B , νCS

C )},

The theorem states that the lim sup is smaller than the limit in
the randomized design. The other direction seems also true but
we could not find a formal proof for this claim.
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Simulations
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Figure: Estimates of PCS(n), νA(n), PCO(n) for pA = 0.3, pB = 0.5, pC = 0.8,
based on the mean of 2000 simulations. The solid line presents the RCS or
RCO designs and dotted line is BD; the thin line indicates a 95% CI.
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Simulations (cont.)
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Figure: Estimates of PCS(n), νA(n), PCO(n) for pA = 0.3, pB = 0.5, pC = 0.8,
based on the mean of 2000 simulations. The solid line presents the RCS or
RCO designs and dotted line is BD; the thin line indicates a 95% CI.
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Extensions

We considered the Wald test; the same results hold also
for other tests such as log-risk and arcsin transformation.

The generalization for more than three treatment is simple.
For four treatments, for example, the maximum is
computed over three terms rather than two.

Similar results can be obtained for normal responses as
well as other distributions (with m.g.f).
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Normal responses

Table: Comparison of optimal allocations for normal responses.

µA µB µC σ2
A σ2

B σ2
C νCS

A νCS
B νCS

C νCO
A νCO

B νCO
C

1 2 3 1 1 1 0.07 0.46 0.47 0.29 0.41 0.29

1 2 3 2 1 1 0.12 0.43 0.44 0.42 0.37 0.21

1 2 3 4 1 1 0.22 0.38 0.40 0.56 0.31 0.14

1 2 3 3 2 1 0.12 0.51 0.37 0.44 0.41 0.15

1 2 3 1 2 3 0.03 0.44 0.54 0.15 0.41 0.44
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Implication

Strand et al. (2004) analyze two double-blind randomized
trials comparing leflunomide (treatment) with placebo and
sulfasalazine, or methotrexate, (standard) in active
rheumatoid arthritis.

In both trials the patients were randomized in a 2:3:3 ratio
to placebo, standard and treatment.

Primary outcome measures in both trials were ACR20
responses after several months. This criterion is binary
and is defined as 20% or more improvement in at-least four
out of six selected measures.
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Implication (cont.)

This kind of three arms clinical trials are referred to as “active
control equivalence trials” in Liu (2000).
To establish equivalence it is required that the hypotheses
below will be rejected:

H0 : pA = pB versus H1 : pA < pB

H0 : pA = pC versus H1 : pA < pC

H0 : pC ≤ pB − δ versus H1 : pB − δ < pC ,

for some small δ > 0 (e.g. δ = 0.05).
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Implication (cont.)

Table: Optimal allocation for active control equivalence trials.

pA pB pC ν∗
A ν∗

B ν∗
C

0.29 0.55 0.57 0.017 0.492 0.490
0.3 0.5 0.6 0.150 0.440 0.410

0.35 0.55 0.6 0.065 0.471 0.464
0.25 0.6 0.58 0.002 0.499 0.499

Actually used 0.25 0.375 0.375

The optimal allocation is both more powerful and more
ethical than the allocation actually used .
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Discussion

For two treatment adaptive designs can lead, at best, to a
practically negligible improvements in terms of power.

For three treatments the situation is different.

An adaptive rule can be optimal for power maximization
and also assigns a small fraction of subjects to the placebo
treatment in certain situations.

The optimal allocations are generally both more powerful
and more ethical than standard allocations.
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Discussion (cont.)

Consider three statisticians that:
1 Knows the true parameters but can use this knowledge

only for the purpose of designing the experiment and not
for inference.

2 Also knows the parameters but he can use only
randomized designs, that is, at each stage he assigns
xn = i with probability πi for i = A, B, C.

3 Does not know the parameters and uses an adaptive
design.

We showed that, in terms of the large deviation rate of an error,
the first statistician can outperform the others and the second
and third statisticians can perform equally well.

David Azriel, Paul D. Feigin Adaptive designs to maximize power



The end.

End.
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