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"ABSTRACT

The problem of target detection and signal parameter estimation in a
background of unknown interference is studied, using a multidimen-
sional generalization of the signal models usually employed for radar,
sonar, and similar applications The required techniques of multivariate
statistical _a:lysis are developed and extensively used throughout the
stud:, and the necessary mathematical background is provided in
Appendices. Target detection performance is shown to be governed by a
form of the Wilks' Lambda statistic, and a new method for its numeri-
cal evaluation is given which applies to the probability of false alarm of
the detector. Signal parameter estimation is shown to be directly related
to known techniques of adaptive nulling, and several new results rele-
vant to adaptive nulling performance are obtained.
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1. INTRODUCTION AND PROBLEM FORMULATION

The basic physical model which motivates this study corresponds to an array of

sensors of some kind, positioned in an arbitrary way in space, and providing inputs to
a processor whose nature is the subject of the analysis. One "sample" is a set of out-

puts from this array, arranged as a vector. These samples may come directly from
the elements of the array, or they may be the outputs from a beamforming network
of some kind. We use complex variables to represent the data since we are concerned
with signals which modulate a carrier. Then the real and imaginary parts of a com-
plex quantity represent the in-phase and quadrature components of such a signal.

The modifications required to deal with real data are generally straightforward.

The basic data set upon which a processor will operate is a collection of sample
vectors, arranged as the columns of a rectangular data array. We do not wish to

specify the physical arrangements in greater detail because the mathematical model
itself is applicable to many diverse systems which may use adaptive processing of
array outputs in the radar, optical, and acoustical fields, and so on Indeed, the ele-

ments of the sample vectors could easily have a significance other than the direct

outputs of some set of sensors. However, we wish to draw etl.ention to certain basic
assumptions made in our model which, in certain cases, will limit its relevance.

We model the data array as a set of Gaussian random variables, and the covari-

ance structure of the modei is used to characterize the "noise" component of the

data, including both system noise and any random external interference. On the other
hand, "signals" are considered to be more structured contributions to the input, and
these are modeled by making appropriate assumptions about the mean values of the

elements of the data array. The emphasis here is on the detection of these signals
and the estimation of their parameters, and the most natural applications are to
radar or active sonar, where coherent processing is possible due to the known form of

the signals. In this study, a general linear model is used to represent signals.

Our strongest assumption concerning the covariance structure is a postulate of
stationarity: the sample vectors are assumed to be statistically independent and to

share a common covariance rmatrix. If the samples correspond to successive times,

then this is stationarity in the usual sense. However, the concept can be applied in

other ways. Fbr example, in the iadar case the samples may correspond to successive

range bins; but the data may already have been subjected to some form of processing

embracing a larger interval of time, such as Fourier transformation (Doppler process-

ing) of the array outputs before the adaptive phase of the process in which we are

interested.
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Another strong assumption is that the covariance matrix of the sample vectors

is completely unknown. The advantage of this assumption is that it makes the math-

ematics more tractable, and also leads to a decision rule for which the probability of

false alarm is independent of the actual covariance structure of the interference. This

is a highly desirable feature, much stronger than the usual constant-false-alarm-rate

(CFAR) property in which the false alarm rate is independent of the level of the noise.

The disadvantage of our model in this respect is that it includes no constraint on the

structure of the covariance matrix, other than the obvious one of positivity. This

generality results in a restriction on the signal parametrization to assure a meaning-
ful decision rule, a point discussed more fully in Appendix 5. We now proceed to a

detailed description of the model.

Let Z be a complex N x L data array whose elements are modeled as circular

complex Gaussian random variables. The columns of Z (i.e., the sample vectors) are

assumed to be independent and to share the covariance matrix S. This is expressed
by the formula

Cov(Z) = e I-)

where ® stands for the Kronecker product, and IL is the L x L identity matrix. This

notation is defined in Appendix I. where several basic properties of random arrays

needed in this analysis are derived The more general problem, in which the matrix IL
is replaced by a given positive definite matrix in Equation (1-I). is easily transformed

into the model used here by post-multiplication of the data array by a suitable
"whitening" matrix.

The mean of Z is assumed to have the form

EZ = aBT, (,-2)

where a (N x J) is a given array, B (J x M) is an array of signal amplitude parameters,

and T- (M x L) is also a given array. The fixed arrays a and T describe the assumed sig-

nal structure, as will be illustrated by examples. It is further postulated that the

rank of a is J<S N, while that of T is Me L. The mathematical setting we have just

described is a generalization to complex random variables of a formulation often used

in multivariate statistics to model quite different kinds of problems.

The basic task is to decide between two hypotheses concerning this statistical

model: H0. in which B = 0 and Z is unknown; and H1. in which both B and E are

unknown. An unknov'n B matrix is completely arbitrary, but the covariance matrix
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must be positive definite, a property we denote by E > 0. The decision will be based on
the Generalized Likelihood Ratio (GLR) principle,. and a GLR test is derived below. An
estimate of the signal parameter array B is also of considerable interest, and the
Maximum Likelihood (ML) estimator of B is automatically obtained in the derivation
of the test statistic.

As noted earlier, the GLR test has the CFAR property in that its probability of
false alarm (PFA) is completely independent of the actual covariance matrix of the
data. Under the null hypothesis, the GLR test turns out to be a complex version of
Wilks' A-statistic,2 which is well known in the literature of multivariate statistical
analysis. The PFA for this test will be evaluated by a technique of numerical integra-
tion in the complex plane. Complete results for the probability of detection (PD) are
obtained only in special cases, but certain general properties of the PD will be estab-
lished in Section 6.

The signal model introduced above allows considerable flexibility. The simplest
case corresponds to J = 1 and M = 1, in which the signal array is represented as a single
dyadic product. The T array becomes a column vector of N elements, and T is then a
row vector of L elements. A specific example of this case, in which a is a general vec-
tor and

r dl,O....0],

is discussed in References 3, 4, and 5. In this specialization, a may represent a steering
vector, as that concept is usualiy applied for adaptive arrays, and the model allows

signal contributions in only one sample vector. In this special case, it is often conven-
ient to normalize the a and T vectors to unity, which amounts to a simple redefini-

tion of the parameter B.

A dual version, featuring a general T vector and a a vector of the form

o : i. .. _ 0 1T

is treated in Reference 6, on the basis of a totally different physical model, Although

these special cases are really different versions of the same problem, and can be

transformed into one another by a coordinate change of the kind discussed below,

their analyses take rather different forms when they are carried out in the original

coordinates.

3



In the general model, the a array controls the distribution of signal contributions
among the rows of the data array, while -r controls their appearance among the col-
umns. If the components of the sample vectors represent the outputs from the sen-
sors of an array, then a will relate to the spatial character of the signals. Similarly. if
the sample vectors themselves correspond to successive instants of time (snapshots).
then T will describe the temporal aspects of the signals.

Two other cases, which are natural duals of one another, are direct generaliza-
tions of the examples given above. In the first, a is an arbitrary fixed array which
satisfies the rank constraint mentioned earlier and T is taken to be

T- = [I 0 (1-3)

where IM is the M x M identity, and the zero array here is M x (L - M) in dimension.
With this model signals appear in the first M columns only, and each of these is rep-
relented as a different linear combination of the columns of a. These latter columns
determine a J-dimensional subspace of the N-dimensional complex vector space C
This represents a generalization of the ordinary notion of an array steering vector. An
example of such a model for signals is provided by multipath, which commonly
occurs in seismic, acoustic, and "over the horizon" radar applications. For our model
to be to be directly applicable, however, the multipath characteristics associated with
a given principal signal component must be predictable, except for a set of complex
amplitude factors. Another example is one in which the signal spatial structure is
totally unknown, which corresponds to the special case J = N.

In the dual version, a is taken to have the form

Ij!
a= (1-4)

and Tr is arbitrary (but full-rank), sc that signals are described as row vectors, con-
fined to the first J rows of Z. These row signals are independent linear combinations
of the rows of T which determine an M-dimensional subspace of the L-dimensional
complex vector space eL. The characteristic feature of the general problem is the
restriction of signals to subspaces in both the row and column directions, and the key
to its analysis is the use of mathematical techniques which are adapted to this geo-
metrical structure.
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By changing coordinates, the general problem can be put in a "canonical form,"
which provides further insight into the postulated signal structure. We note first that
the data array Z can be simultaneously pre- and post-multiplied by unitary matrices
without changing the form of the problem. We write

ZI = WNZWu , (1-5)

where WN and WL are unitary matrices whose dimensions are indicated by their sub-
scripts. The new array is characteri2ed by the properties

Cov(Z1) H WN Nw (1-6)

[see Appendix 1, Equation (AI-44)] and

EZI = WNOBTWL. (1-7)

Since the matrix E is unknown and the unitary transformations are reversible, the
new matrix

El N E WWI'

can be taken as the unknown covariance matrix of the columns of the new data
array Z1, instead of E; hence, the only real effect of this change of coordinates is on
the signal components, as expressed by the mean of Zr.

Now we introduce the singular value decompositions7 of a and T:

a = x I D,,IX20

00

=Y1 DID 0 Y

where D. and DT are diagonal matrices of dimension J x J and M x M, respectively, and
H Hthe arrays XP, X2 , Y,, and Y2 are unitary. If we choose WN = X1 , WL =Y 2 , and then set

B, = DX 2 BYID,

we obtain the desired canonical form for the signal matrix;
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EZ 0= KIBIIIM0 0 = {B0 0] (1-8)

The new signal parameters now appear only in the upper left-hand corner of the data
array, uniting the dual forms of the problem into one. In this formulation, the logic
of our restrictions on the ranks of the original a and -r arrays can be seen, since rank
deficiencies in these arrays would lead to zero singular values in D. or D . As a con-
sequence, some of the signal parameters in the original B array would be redundant.
The canonical form of the problem will not be used as a basis for analysis. It seems
preferable to derive the decision rule in the original coordinates, since they will retain
some physical meaning from the initial formulation of the problem. The canonical
form then appears as a special case. In some situations, of course, a change of coordi-
nates may be quite useful, and examples of this will be provided in Section 2.

We mentioned above that a certain limitation must be applied to the signal
model in order to derive a GLR test. This takes the form of an inequality relating
three of the dimensional parameters of the problem, namely:

L_> M-N. (1-9)

If this inequality is not satisfied, then the GLR procedure does not lead to a meaning-
ful test statistic. In effect, there are too many free parameters in the model, and the
likelihood function under the H, hypothesis can be made infinite. The point at which
this occurs will be noted in passing, where the sufficiency of our condition will be evi-
dent. A proof of its necessity is given in Appendix 5.

In the decision problem formulated above, the null hypothesis (H0 ) represents the
complete absence of signal components in the data array. Following the example of
multivariate statistics, a more general rull hypothesis can be introduced in which a
homogeneous linear constraint on the signal parameter array B replaces the original
H0 . This constraint takes the form

0By = O, (1-10)

where a and y are fixed arrays of dimension r xJ and M x t, respectively. The more
general decision p'oblem will be treated in Section 7, where the physical significance
of this model wil' be discussed. Here, we mention only that it represents the presence
of "nuisance signals," in addition to the desired signals in the data. These nuisance
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signals may be present under either hypothesis, but the desired signals are either
present or totally absent. A decision rule will be found in this case whose PFA retains
the CFAR property and is also completely insensitive to the presence or absence of
these nuisance signals.

We have seen that the a array determines a J-dimensional subspace of M N which

contains al! permissible signal vectors. If e N is decomposed into a subspace A and its
orthogonal complemenl, where A contains this J-dimensional "signal subspace." then
the covariance matrix E; will automatically be partitioned into four components. Par-
titionings ot this kind play a prominent role in our analysis. Suppose it is now
assumed that the off-diagonal blocks of the partitioned covariance matrix vanish,
thus adding some structure to the oA'iginal interference model. This means that the
interference in the subspace A is independent of that in its orthogonal complement,
while the didgonal blocks of the covariance matrix are still considered to be unknown.

In this model, the components of the data vectors which lie outside the subspace A
play no role in signal detection or signal parameter estimation, and a GLR test for
this problem disregards them completely. it is usually advantageous to reduce the
dimensionality of the data model, if possible, and this kind of supplementary knowl-
edge of the covariance structu:'e will facilitate such a reduction. This is one way in
which our model ca-a be extended to allow some structure in the covariance of the

interference.

The model can be generalized in other ways as well. For example, the arrays a
and - may contain "internal" parameters which are also free under the H1 hypothe-
sis. To deal with these, we first obtain the GLR test statistic for fixed a and T. and
then proceed to maximize it over the internal parameters. If an internal parameter
takes on only discrete values, then es' mation of this parameter is equivalent to car-
rying out e multipie-hypothesis test. Some examples of these generalizations will be
mentioned briefly later, but discussion of them will be limited to the character of the
GLR test itself.

"The specie! case J = N. with a = IN and a = IN, represents a ccrnplex version of the
classical multivariate !rlear regression problem, which is thoroughly treated in sev-
eral textbooks 8'910 (The same arme is often given to the special case in which 7Y = IM.)
In the literature, the regression problem is frequently discussed in terms of a data
array which is the transpose of ours, so that its rows arc independent instead of its

columns. The analog of oui" general problem in terms of l-eal variables also appears in

the statistical literature 11' under other names, such as the generalized multivariate

analysis of variance (OMANOVA). In statistics, the interest is usually centered on the
null hypothesis, which corresponds to the PFA in our context. The detection problem,

7



described in terms of complex variables, has recently been studied by Khatri and

Rao.13.14 The explicit results we have obtained concerning detection probability and
the statistical character of the signal parameter estimates are specific to the class of

problems wc are modeling here, and many of these are new.

Our study is organized as follows. In Section 2, the GLR test itself is obtained, and
the test statistic is exprcssed in several different forms. The basic statistical character
of the test statistic is derived in Section 3, and the probability of false alarm is dis-

cussed in Section 4. In Section 5, the probability density function of the estimator of

the signal amplitude parameter array is treated, and the probability of detection of

the GLR test is discussed in Section 6. In these two sections, complete results are
obtained only in the special cases J= 1, any M, and M-= 1, any J. Certain properties of
the solution of the general '.roblem are also obtained. In Section 7. the generalization
mentioned above is analy2'ed, with the result that this problem is reduced to the
original one by means of straightforward transformations which eliminate the

redundant data.

The Appendices tre of two kinds: the first three contain mathematical results of
a background nature, all used freely in the main portion of the text. The other

Appendices contain special topics, separated out for readability. In Appendix 1, a col-
lection of known results concerning matrices and random arrays is assembled.

Perusal of this Appendix is recommended, since it contains a number of identities and

lemmas indispensable to an understanding of the analysis. Appendix 2 is a collection
of formulas for diPjtributions related to the Gaussian in complex form. The corre-

sponding real distributions are well known; some of the formulas derived here are
less frequently seen. More background material is included in Appendix 3. The latter

results relate mainly to integral properities of multivariate complex distributions, and
they are less essential to the main development than are those of Appendix 1.

In Appendix 4, an alternate derivation of the GLR test is presented. The resulting

test statistic is of a different form than those obtained in Section 2, but it is shown

in this Appendix that it is statistically completely equivalent to the others. In Appen-

dix 5, a proof of the necessity of the condition expressed in Equation (1-9) is provided.

The probability of false alarm for the GLR test is evaluated explicitly in Section 4

only for certain special cases. In Appendix 6, a procedure is described by which

numerical evaluation of this probability for arbitrary values of the parameters can

be carried out. Finally, in Appendix 7, computational algorithms applicable to the GLR

test in either of two forms are presented.
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2. THE GENERALIZED LIKELIHOOD RATIO (GLR) TEST

This section contains a derivation of the GLR test for the original problem
described in Section 1, in which the null hypothesis corresponds to a mean of zero for
the data array. Background material on the complex multivariate Gaussian probabil-
ity density function will be found in Appendix 1.

Under the null hypothesis, the joint probability density function (pdf) of the ele-
ments of the data array is given by

f0 (Z:E) = N -, Tr(,LZZM) (2-1)
ITNLII;IL

where Tr stands for trace, the superscript H represents Hermitian transpose, and the
bars surrounding E denote its determinant. According to the model described in Sec-
tion 1, the pdf under hypothesis Hi is

1 e- Tr 'E(Z -aBr)(Z -oBr)H) (2-2)f1(ZB)- = NLILIL

Each of these density functions must be maximized over the unknown covariance
matrix E, and, for the H0 hypothesis, we obtain the ML estimator 15

i0 = 1 ZZ" (2-3)

The square array ZZH is subject to the complex Wisharf. distribution, with dimension
N and L "complex" degrees of freedom. A discussion of complex Wishart matrices and
some of their properties is given in Appendix 1. A derivation of the complex Wishart
distribution itself will be found in Appendix 3. By the as.sumption expressed in Equa-
tion (1-9), we are assured that this matrix is positive definite w;Lh probability one.
Substituting in Equaticn (2-1), we obtain

fo(Z;•,o) = [(e 7T)NZOi]"L (2-4)

The analogous ML estimator of E2 under H1 is, of course.
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Ei(B) = I(Z-aBT)(Z -aBT)H (2-5)
L

which is a function of B. The final estimator of the covariance matrix under the H1

hypothesis will be obtained when B is replaced by its estimator, which must still be
derived. The formula analogous to Equation (2-4) is, of course,

fI[Z;-X1(B),B] = [(e 7 )N i(B)]L (2-6)

The GLR test statistic is, by definition,

Max f1(Z;E,B) Max fl[Z;E1(B),B]

Max fo(Z;E) fo(Z1 0 ) (2-7)
E

A test using this statistic is evidently equivalent to a test based on

Ir-0!

Min ,Zu,
B

which is the L"" root of the GLR statistic, after substitution from Equations (2-4) and

(2-6). Combining results, we obtain

IZZI (2-8)

Min I(Z -oBT)(Z -aBT)HI
B

and HI is accepted if I•> 1o.

We now introduce some tools which will allow us to manipulate the various

arrays in a manner directly related to certain subspace projections associated with

the given signal arrays, a and -r. Beginning with -r, we note that the M x M array T H

is positive definite, since T- itself has rank M. Therefore, we can introduce a square-root
array

(7T TH) > 0
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the notation indicating that a positive-definite square root has been chosen. Square
roots of positive-definite matrices are used frequently in the ensuing work. An equiv-
alent procedure would be to represent such matrices in terms of Cholesky factors. It
should be emphasized that these factorizations always occur in intermediate stages of
the analysis, and that none of the results will depend on which choice which has been
made.

Using the above definition, we introduce the array

p (T TrH)l/2 i. (2-9)

If M = 1, p reduces to a unit vector in the direction of the row vector -r. In general, the
following properties follow directly from the definition:

H
pp = IM

p p= 7 H(T Hy-I

S= (TrH )o p (2-10)

The first of these equations shows that the rows of p are orthonormal, and the right
side of the second equation (which is idempotent and Hermitian) is a standard form
for a projection matrix16 onto the subspace of (6L which is spanned by the rows of -r.
This is the M-dimensional row space of -r, and the rows of p form a basis in it. The
last equation is the analog of the representation of a vector as the product of its
norm and an appropriate unit vector. When M = L, -r is invertible, p is unitary, and the
last of Equations (2-10) is a polar decomposition of r. It is characteristic of our
approach that basis arrays for subspaces are used directly, rather than the projection
operators themselves, to carry out the analysis.

The subspace of Z L which is orthogonal to the space spanned by p is of dimension
L - M, and we can introduce an orthonormal set of L - M row vectors to serve as a
basis for it in many ways Let q be an (L - M) x L array whose rows form such a basis.

The relations

qq = ILM

q (2-11)

qp = 0



express these properties, and p and q together will form a unitary matrix of dimen-

sion L x L

[P] = UL. (2-12)

The unitary property of UL contains the orthonormality rules already given, and also

the relation

pHp + qHq = IL, (2-13)

L
which expresses the fact that the rows of p and q together span (1.

If we multiply Z by IL on the right and make use of Equation (2-13). we obtain
the decomposition

Z = ZpP + Zqq = [Zp Zq] [ q (2-14)

where the "components" of Z are defined by the equations

ZP ZpH

Zq ZqH (2-15)

Note that Z has dimension N x M, while Zq is an N x (L - M) array. This decomposition

may be introduced in an equivalent way by writing

zH z JpH qH = IZp zq (2-16)

which shows that the components of Z are formed by first rotating the coordinates

in M L (by means of the unitary transformation) and then partitioning it into two

subspaces.

The complex vector space (CN is also decomposed, based on the structure of the a

array. Since a has rank J, we can introduce the positive-definite square-root matrix

(a H )l/ > 0
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and the corresponding array

e = aHa)- .H 2 (2-17)

The properties

eHe = lJ

eeH = a.(a aH)- CH

a = e (aHa) t2 (2-18)

then follow directly from the definitions. The e array forms a basis for the
J-dimensional subspace of (FN spanned by the columns of a (the column space of d).

The second of Equations (2-18) contains a projection matrix which projects onto this
column space.

Next, we introduce a basis in the (N - J)-dimensional subspace orthogonal to the
span of e. These new vectors will form the columns of an array of dimension
Nx (N - J) which will be called f, and which satisfies the orthonormality relations

fF f= 1N-J

fiHe = . (2-19)

The unit arrays e and f together form another unitary matrix, this time of dimen-
sion N x N, as follows

[ e f I = UN. (2-20)

and the analog of Equation (2-13) is then

eeH + ffH = 'N . (2-21)

Using this apparatus, we can express the signal model in terms of e and p. writ-
ing

EZ = aBT = ebp. (2-22)

13



where b is defined by

b = (aHa)" B(2-BH)• . (2-23)

We now work with b as the array of unknown signal amplitude parameters, returning
to B only at the end of the derivation. In terms of the new quantities. Equation (2-5)
can be written

ý,(b)= (Z - ebp)(Z -ebp)H (2-24)

L

and Equation (2-8) is the same as

zHi
IZZi H (2-25)

Min I(Z - ebp)(Z - ebp) I
b

The denominator of this equation is now written

Min IF(b)I,
b

where F(b) is given by

F(b) a (Z -ebp)(Z -ebp)H

-ebbH e -- ebZ H - Z bHeH + ZZH (2-26)

In the second line we have used the new definitions and also the first of Equa-
tions (2-10). It follows directly from Equation (2-14) that

ZZ H =ZZH + Z
Sq(2-2)

and, therefore, we can write

F(b) = (eb - Zp)(eb - Zp)H + S , (2-28)

in which we have introduced the new quantity

14



S ZqZ . (2-29)

HLike Z2 , the S array is subject to a complex Wishart distribution of dimension N, but

this time with L - M complex degrees of freedom, in accordance with the dimensional-

ity of Zq. S is positive definite (with probability one) as a consequence of Equa-

tion (1.9). and is therefore an invertible matrix.

Returning to the minimization problem, we note the following fact:

MinJAI + uH A2ul -- AI, (2-30)
U

which is valid when A, and A2 are positive-definite matrices (not necessarily of the

same dimension) and u (in general rectangular) is an arbitrary array. To prove this

result, we introduce positive-definite square roots of A, and A2 and define

w =- A 12 u A-L/2

Then

JA1 -, u A2 u! = 1A1 II ll-r W W!

and the minimization can be carried out over w instead of u. But

Mn 11+ wwH = 1, (2.31)

because w Hw, being positive semidefinite, has non-negative eigenvalues. It follows that

the determinant in Equation (2-31) is a product of eigenvalues, all of which are

greater than or equal to unity. A unique minimum is therefore achieved for w=O,

which corresponds to u = 0 in the original notation.

In order to apply this result, we make use of an elementary determinant identity

[Equation (Al-2) of Appendix 1] to write

IF(b)I = ISI IJ(b)',

where J(b) is given by

15



J(b) = IM + (eb-Zp)HS-l(eb-Zp) (2-32)

It is clear that the second term on the right side of this expression for J(b) is positive
semi-definite, hence J(b) itself is positive definite for any array b. Multiplying out the
terms of Equation (2-32). we obtain

H -H -l HS-I Hi-

J(b) = IM + bH e HS eb - bH e HS IZp - ZS eb + Z SZI. (2-33)

Since S > 0 and e has full rank, it follows that

eHS-1e > 0

This allows us to define the array

b - (e S-e)- eHSiZ (2-34)

and, using this definition, we can "complete the square" with respect to b in Equa-
tion (2-33). The result is the formula

J(b) = + S I - H(eHS-le)ý + (b-S)H(eHS-le)(b-b)

We have noted that J(b) is always positive definite; hence, in particular,

J(b) > 0

Thus, we can apply Equation (2-30) to the determinant of J(b), since the conditions for
its validity are satisfied. The result is

Min jJ(b)I = IIM + Zp Zp- H H(eHS-)bI . (2-35)
b

The ML estimator of b is therefore given by Equation (2-34), and the final estima-
tor of covariance under hypothesis H, is given by

. [ S + (zp - e;)(zp -eb)H1 (2-36)
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It is an interesting fact that this estimator can be substituted for S in Equa-
tion (2-34). and the result is still a valid representation of the amplitude parameter
array estimator. To see this, we first observe that

Zp-e b = Z p-e(eHS- e)-' eH szp .

from which it follows that

eH S1(Z -eb) = 0. (2-37)

Next, we use the generalized Woodbury identity,7 which is derived as Equation (AI-5)
in Appendix 1, to write

(LUY)-I = S-1-S- I(Zp-e)IIM+(Zp-eblHs-1(ZP- eb)](Zp-eb)HS-1 (2-38)

Using the Hermitian transpose of Equation (2-37), we see from Equation (2-38) that

(LEI)-' e = S-'e .

When this equivalence is used in Equation (2-34), the result is

E = (eH (2.1)-1 I e -H e(YP- p (2-39)

which is the desired form.

Returning to the derivation of the test statistic, we substitute from Equa-
tion (2-34) to obtain

H -I ; HZ S Z bH(eHS-e)b Z'PZ.

where

P =_ S- - S1 e(eH s- I el e S-1 (2-40)

Combining these results and substituting in Equation (2-35), we obtain the desired

minimization
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Min IF(b)I = ISI Min J(b)I = ISIIIM + ZpPZpI (2-41)
b b

The numerator of Equation (2-25) can be developed in the form

IZZHI = IZpZH + SI = ISH11M + ZpHS-I ZpI

and then, finally, the GLR test statistic is obtained as a ratio of determinants:

11" + ZH 1Zp 1I = P (2-42)

JIM + Z P PZpi

In the special case described by Equation (1-3), where the signal contributions are

confined to the first M columns of the data array, the decomposition of 2 into the

components Z and Zq is simply a separation of columns into two groups, and for-

mula (2-42) has a natural interpretation in this case. In Appendix 4 a derivation of

the GLR test is carried out, by a variation of the technique used here, which leads to
a result of quite different form than Equation (2-42), although completely equivalent

to it. This other form is naturally suited to the dual special case, described by Equa-

tion (1-4), in which signals are confined to the first J rows of the data array.

Working back through the definitions, we obtain the relations

ZP = Z TH (- -H)-V

S = ZqH qz H = Z[IL - TH(T-H)-I T]Z H (2-43)

and

P = S-I- S-Ia(oH S-Ia)-1aHs-I. (2-44)

With their help, the test statistic can be expressed directly in terms of quantities

which appear in the original formulation of the problem. In particular, none of the

arrays introdured as bases in the various subspaces appears in the final result. Fbr-

mula (2-42) is a direct generalization of the GLR test obtained for the special case

treated in References 3 and 4.
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Th facilitate comparison with these previously obtained results, the GLR test can
be recast in a different form. If we make the definitions

D - IM + ZH Sz
p p

G S aHS-la

A -= uHSIZP, (2-45)

and also make use of Equation (2-44), we can write Equation (2-42) as

I = (2-46)

ID - AHG-IA';

Since D is positive definite, we can multiply both numerator and denominator by
D",/2' both on the right and on the left, and thus convert the test statistic to the

form

S - Ih

where 7) is given by

,r7 =- D-"' A HG- IAD-"'

If M= 1, 77 is a scalar, and the test statistic is simply

I =
i- 7

Moreover,

AH s- 1 _ Hl. I(oHS a)-I H S 1 I ZAHG- A Zp

D 1 +H 1I
P

in this case.
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On the other hand, if J = 1 (and M is unrestricted), then G is a scalar and we can

apply identity (Al-3) of Appendix 1 to obtain

JIM- 771= 1- 7',

where

- IH o H _ IzP I" Z1 S - IZp)- I Z11S-I
AD- 1 AH •HS- Zp(IM+ Zp ZA PS

G a Hs-1a

If J = I and M = 1, then 77 and 77' coincide and the test becomes

[a H S - I Z P 12 t o - (cyt> (2-47)
(aH s-o)(l H -1 0

which is the form obtained in Reference 3.

For general values of J and M, the A array introduced above can be expressed as

A a s ZpH w ZpI,

where

w - S-1

Post-multiplication of the data array by pH corresponds to ordinary coherent inte-

gration of the elements of Z, in the row direction, using a set of matched filters

determined by the T array. Similarly, pre-multiplication by w corresponds to axdacp-

tive whitening and coherent integration in the column direction, by means of a

"weight array" w, formed from the signal "steering array" a and the S matrix.

Except for a constant factor, the matrix S is a sample covariance matrix based on

the signal-free vectors which comprise the array Zq. We introduce the notation

(L-MM)-S =_ Eq (2-48)

for this estimator, indicating that it is formed from the Zq component alone.
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The ML estimator of the signal amplitude array B is recovered by the use of
Eque.tions (2-23), (2-34), and (2-43) The result is

B = (a S- o)T H Sal-lzTH( H)y 1 (2-49)

This expression represents a direct generali7ation of a starndard algorithm used for
adaptive nulling. Th illustrate this more explicitly, consider the case in which the -r
array has the rimple form expressed by Equation (1-3). This mode.s a situation in
which Z consists of the first M columns of the data array, representing the data
vectors which may contain signals, while the others constitute the Zq array. We can
then write Equation (2-49) in the form

(aH la)- aH-l Z

which .xpresses the columns of the B estimator array as matrix products involving a
"weight array" and the columns ci Z P, In this interpretation, the columns of the B

t stimator array represcn- the outputs of a generalized adaptive nulling processor
whose inputs are the sample vectors which form the columns of Z If J -1, the

weight array reduces to a weight vector, and the correspondence with the standard

adaptive nulling technique, based on sample matrix inversion, is complete. In Sec-
tion 5, the joint probability densiiy of the elements of the B estimator array (which is

a row vector in this case) will be obtained, and 'he relation to adaptive nulling will be

pursued further.

For the special case: J = N, the matrix a is square and, by hypothesis, it has full

rank. From Equations (2-18) we see that the array e is unitary under this assumption,

and our for.nulas will simplify accordingly. In particular, the matrix P will vanish in

this case, leav .ng only the numerator in Equation (2-42) for the GLR test. In addition,

the estimator of the amplitude array, given by Equation (2-49), will assume the sim-

ple form

B J I Zr (TTH )-I

when J= N. As noted in Section 1, the complex version of the multivariate linear

regression problem (without the generalized null hypothesis) is characterized by a= IN;

hence, our results are easily speciahled to this problem.
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In an extension of our model, of the type mentioned in Section 1, -r is allowed to
contain a discrete internal parameter. In other words. T is actually one of several
given -r arrays, and the problem is to decide which of these arrays best describes the
signal, if signal is actually deemed to be present. One can evaluate the GLR test statis-
tic for each r, and if the largest of these exceeds a threshold for signal detection, then

use it to decide which signal was received.

A simple example. in which M= 1, would arise if the sample vectors corresponded
to regular instants of time and the paramctrized - arrays, each a row vector,
described different possible temporal sequences, such as those corresponding to the
Doppler phase variations of a moving radar target. One could test for one value of the

Doppier parameter at a time, using the remaining part of the data array, described

by Zq, for noise estimation via the matrix S. As noted earlier, the GLR test involves

post-multiplication of the data array by p and p is just a normalized version of the
-r vector in this case; hence, this represents coherent integration in the ordinary
sense.

The formation of a conventional "Doppler filter bank," based on L time samples,

is equivalent to post-multiplication of the original dtata array by a suitable unitary
matrix. The new T vectors will then be unit vectors, each containing a single compo-

nent equal to unity, and the rest all zero. Each of the multiple hypotheses in this
case amounts to placing the signal in a different column of Z. This is an example of a

situation 'n which a change of coordinates, mentioned in Section 1, is a ratural thing
to do.

Added insight into the significance of the GLR test statistic and the associated ML
signal pa.vameter estimator is gained by considering the simpler version of our prob-

lem in which the covariance matrix E is known. The hypotheses concerning the signal
componerts remain the same. From Equations (2-1) and (2-2), together with Equa-

tions (2-22) and (2-26), it follows that the logarithm of the likelihood ratio for this

problem is given by

A(b) = TrIE-'[F(b)- F(O)

= -Tr[ -l(eb-Zp)(eb-Zp)H - E-'ZPZ'j

-Tr[(eb-Zp)H E (eb-Z,) - Z - . (2-50)

We define

(eH -1)I E 7I , (2C51)

22



using the subscript to indicate that B is known, and complete the square in
Equation (2-50). The result is

X(b) = -- - bHH- e)b)

which is clearly maximized by the choice

b = bE.

thus establishing the ML estimator of b. This is, of course, the classical solution,
expressed here in terms of the component Zp. Formula (2-34) is a direct

generalization of this result.

For the non-adaptive test statistic itself, we have

X Max X(b) = Tr[ýH (eH E- e)bE] , (2-52)
b

or

, TrZp a(CH'l-I)-1 H z -1 (2-53)

These formulas will be developed further in Sections 3 and 5, and the relationship to
the GLR test statistic for the general problem will be elucidated.

We close this section with the derivation of some alternative expressions for the
GLR test statistic which exhibit the roles of the subspace projections in a rather nice
way. To obtain the first of these forms, we apply identity (A1-2) of Appendix 1,

IGIID - AHG -'A!= IDIIG - AD -I AM, (2-54)

to Equation (2-46), with the result

IGI 
H

IG - AD-IA

Eliminating the new definitions, we have
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la= (2-55)

aH[s-1 - s-I Z'(I. + ZIS-IZp,)-Y ZS-1]a

Applying the generalized Woodbury identity [Equation (AI-5)] to the denominator of
Equation (2-55), we obtain the desired result:

aH S-lI lleHS 1e (2-56)S-

Io'H (S + Z Z y'aI JeH(S + Z Z H-e!

Equivalent versions of this test statistic are:

aH(ZqZH)_l'aI IOH(ZZH- _ Z H)-1
q =Zý . (2-57)

la H (ZZH)- I a1 (zzH)-lz (2-57)

Note that the second form above makes use of a sample covariance matrix based on
the full data array Z.

Equation (2-57) is a generalization of a formula stated by Brillinger.17 For the
case J= 1, in which a is a column vector, Equation (2-57) may be interpreted as the
ratio of maximum-likelihood (Capon) spectral estimates,18 in the direction of a, using
either all the data in the Z array or only its projection onto the orthogonal comple-

ment of the row space of -r.

The simple form which the GLR test assumes when J = N is easily reproduced
from Equation (2-56). Since a is then square and non-singular, its determinant may

be factored out of the numerator and the denominator of this ratio, with the result

IS -Z- 7 H1
S I.IM + ZpS- ZpI. (2-58)

Equation (2-54) has been applied to obtain the final form, which is the same as that
to which Equation (2-42) reduces when J = N. If t-.' eigenvalues of the matrix ZpHS Zp p
are called Xm, then, obviously,

H I

11 + Z S-1 Zp H(1 + Xm). (2-59)
M=1
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If M > N, some of these eigenvalues will vanish since the corresponding matrix will not
have full rank, but Equation (2-59) will remain valid.

A generalization of our basic problem will be mentioned briefly here, since Equa-
tion (2-57) is especially suitable to its analysis and a result very similar to Equa-
tion (2-59) can be obtained. In this model, everything is the same as already postu-
lated, but the a array is now ailowed to be an arbitrary full- rank array of dimension
N x J. In the original model, the signals are drawn from the given J-dimensional sub-
space of WN which is determined by the a array. In the generalization, the signals are
drawn from any subspace of dimension J. The structure imposed by T, which controls
the distribution of signals among the columns of the data array, is not changed.

A likelihood-ratio test for the new problem is evidently obtained by maximizing
the statistic expressed by Equation (2-57) over the a array, since the likelihood ratio
itself is directly related to I. Suppose that A, and A2 are positive-definite matrices of
order N. Then, it can be shown that

Ia HAlai i
Max H = JI . (2-60)

a oC AZo j=1

where the maximization is carried out over all full-rank N x J arrays a. and the J
are the eigenvalues of the matrix A1(A2)', ordered from largest to least:

P•1 -> A2 ý- A >/N"

For application to Equation (2-57). this matrix product is

(Z ZyI ZZ: 1 H = (s H + S Z Z H

But the matrices S' Z ZHH and ZH S'IZ share the same non-zero eigenvalues and, con-
.1 ZHistesmastepoutfsequently, the product of the eigi alues of I + S ZPZ is the same as the product of

the eigenvalues of S÷ Z 1S Zp. A proof of this result, and also of Equation (2-60), will

be found in Appendix 1. The CLR test statistic for the generalized problem therefore
takes the form

H M(ZqZ H )-IlH (zqzH)' I7 CTM~x -- f-r- (1+ -,) . (2-61)
( )2 j=1
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If J > M in the generalized model, the test c i ,cides with that obtained for the
special case of the original problem in which T understand this feature, it is
useful to imagine the special form of the T a: *bed by formula (1-3), in which
signals are confined to the first M columns o. • array. Fbr M = 1, the two mod-
els are equivalent ways of allowing the signal in L. first column to be arbitrary, and
the equality of the tests is obvious. Fbr M > 1. the models coincide only if the freedom
conferred by the dimensionality of the subspace OJ (in the generalized problem) is
sufficient to overcome the fact that the signals from the first M columns must lie in
the same J-dimensional subspace.

Equation (2-57) was a convenient starting point for the problem generalization
just discussed, because al' the dependence of the test statistic on the a array appears
in a simple and explicit way in this formula. An analogous expression, in which all
the r-dependence is exhibited in the same simple way, also can be obtained This form
will not contain the matrix S explicitly, since the formation of that matrix carries
with it an implicit dependence on T through the p and q arrays.

We begin with Equation (2-42), and rewrite it in the form

(+ZH pZ Z)-I
IM H P I ' (2-62)

(IM + ZP

where P is the matrix defined in Equation (2-40). We use the generalized Woodbury

identity, Equation (AI-5). to evaluate the matrix in the denominator.

(I+ + ZS-IZ)-1 = IM -Z(S + Z Z p Zp.

We make the definition

S+ H- S + ZHZ H = ZZH (2-63)

thereby giving a name to a matrix which has already entered our previous form for
the test statistic. S+ is proportional to the sample covariance matrix based on all the
data vectors which comprise the Z array. We make use of the first of Equations (2-10),
together with the new definition, and write

ZH )-I = I HZS+I = P(IL zHs-Z)PH
M ZS-ZP M - Zp ++
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We can therefore write the test statistic in the form

I(M+ zM P Zp)- IIIOM ZPZ (2-64)

Ip(IL - zHS+I Z)PHi

The denominator now has the desired structure, with all the p-dependence in the
outer factors of a matrix product. The numerator, however, requires a little coercion.
We introduce some temporary notation to simplify the writing. as follows:

G e H S- e

S=eI- I z

W S IM - z -Iz(2-65)

Next, we use the Woodbury formula again, this time to express the inverse of S in
terms of S+:

S-I = (S. - z .H)p- = S-I + S- 7 W- zHs+ (2-86)

To evaluate the numerator of Equation (2-64), we require the following results,
which are direct consequences of Equation (2-66) and the new definitions:

e HS-le = G + FW-IFH

eH S-Iz = F + FW- 1 (IM- W)-- FW- 1  (2-67)

We have already seen that

M + Z H"s-IzP = (im - zH-sSIz")-' = w-I

Combining all these results, and recalling definition (2-40), we obtain

I+ZH P - I -W- I F H (+W- IF Hy-I F- I

M p W - (G + F F FW

= (W + FHG-iF)-I
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again with the help of the indispensable Woodbury identity. We now substitute from
definitions (2-65) and write

-I _1 _ HH

W + FG F = I IM ZpQZP p(iL QZ)p"

where

Q a" S - S+Ile(eHS+Ile)1 eHS+; (2-68)

The new matrix Q is closely analogous to P, but Q involves S+ where P has S itself.
Finally, we obtain the desired form

Ip( 1L - ZHQz)pHi IT(IL - ZH QZ)rHI

IP(IL - zSH IZ)p, I = (IL - Z HS+ I z)YrH (2-69)

from definition (2-63). we see that

IL - Z IZ = IL - Z H(ZZ H)I Z

is a projection matrix. In fact, it projects onto the orthogonal complement of the row
space of the data array Z. For fixed p, the denominator of Equation (2-69) is positive
with probability one. since its inverse is the numerator of Equation (2-42). The latter
is finite (with probability one), so long as our basic constraint L > N + M is satisfied. Fbr
fixed data, however, we cannot generalize our GLR test by letting T be arbitrary (as
we were able to generalize it earlier by letting a be an arbitrary array), since the
rows of T could always be chosen from the row space of Z, thus making the denomi-
nator of Equation (2-69) vanish. This is another example of a statistical model which
provides too much freedom in the parameters to sustain a meaningful decision rule.

With suitable constraints on -r, Equation (2-69) could be made the basis of a gen-
eralization of our basic GLR test, but this topic will not be pursued further here. This
equation does, however, provide us with a useful property of the basic GLR test, which
may be mentioned at this point. Suppose that -r can be expressed in the form
T=TiWL . where T1 is another MxL array of rank M, and where WL is a unitary
matrix of order L If this representation for T is substituted in Equation (2-89), the
equation will have the same form as before, but with r replaced by 'r, and with Z
replaced by Z1 = ZUL This replacement for Z also may be made in the formula for S+
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without changing that matrix. Since Q depends on Z only through S+, we see that the
simultaneous replacement of r by Tr and Z by Z, leaves the test statistic unaltered.
When Z is considered as a random array, the post-multiplication by WL does not
change its covariance, as we can see from Equations (1-5) and (1-6) of Section 1. The

mean value of Z is altered, of course, as shown by Equation (1-7). The effect is simply
to replace T by 7WL = T, in the formula for the mean. We conclude that the perform-
ance of the GLR test, as a detection criterion, is unchanged if the T array is
post-multiplied by any unitary matrix. In particular, T can be converted to a form in
which all but the first M columns are identically zero, by means of a suitable unitary

transformation. We will encounter this invariance property again in Section 6.

In Section 3, the performance of the GLR test will be studied starting from Equa-
tion (2-42). An algorithm for the efficient computation of this expression is presented
in Appendix 7. This is a "square-root" algorithm which uses standard signal process-
ing techniques applied to the data arrays themselves, and it avoids the computation
and inversion of the sample covariance matrices. In Appendix 1. we show that the
same performance results can be derived directly from Equation (2-56), and a
square-root algorithm for the computation of the GLR test statistic in this form also
can be devised This algorithm is also discussed in Appendix 7.
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3. STATISTICAL PROPERTIES OF THE GLR TEST STATISTIC

We turn now to the statistical properties of the test statistic, given by Equa-
tion (2-42). Recall the arrays e and f, defined in Equations (2-17) and (2-19). with their

properties as derived in Section 2. Together they form a unitary matrix UN

[Equ;.-ion (2-20)]. which we now use to decompose both Z and Zq into further com-
ponents. We define

[eH)= VA1 H (3-1)

and

U q= (e H zl (WA] (3-2)

in analogy to Equation (2-16), so that

Zp = eZA + f ZB

Zq = eWA + f WB. (3-3)

We have now resolved the data array Z into four components:

UHzUH ZA WA e" IZp )ieHZq H 34= U~ I(3-4)
ZB WB fH ZpH fqH H'

where UL is the unitary matrix defined in Equation (2-12). The A-components of the
new arrays have J rows, and the B-components consist of the remaining (N - J) rows.

We also define

UH SU SAA SABI eHS e e HSf(35
SBA SBB f HSe fH Sf

and its inverse
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S AA sAB eHS-1e e S-I fuNs IU1
H- S S Be (3-6)SSA SBB 1s-e j~-I

The AA-portions of these arrays are (J x J) in dimension, and the BB-parts are also
square, of dimension (N - J). The transformed S array may also be expressed in terms

of the W-components. as follows:

H WWH WAW~ H
UNSUN [ HBW (3-7)

We introduce a : - .ar notation for the components of the actual covariance matrix

after transforrm.t ion by UN:

UNU LAA 1 (3-8)
EBA EBB

together with an analogous terminology for its inverse:

N UN I (3-9)

E BA E BBj

In terms of the new components, we have

S AA SAB

~s- zZ = [z H s sz ] Z]

and, using Equation (A1-9) of Appendix 1, we obtain

H- H zP + z s-IzB, (3-10)

where
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Y ZA-SABSBBZB (3o11)

Using these results, the numerator of the test statistic [Equation (2-42)] becomes

IIM + zH s- z5 + YH SAA Y1

From the definition of P [Equation (2-40)] we see that Pe= 0 and eH P= 0. Then.

using the first of Equations (3-3), it follows that

H = fH (3-12)
p BpP

Moreover, with the help of Equations (Al-8) of Appendix I and Equation (3-6). we find

that

fHpf= sBB BA(sAA)-I sAB ISB,

and, consequently, the GLR test statistic can be written

11 H +-1 z + yH SAA y!
1 =

1. + ZH sBB ZBI

This expression obviously depends on the subspace decompositions which have been

introduced, but it is invariant to any changes in the actual bases defined in them.

According to Equation (3-6), we have

H,- I AAeH S_ e = SA,

and we also find that

eHS-IZp = SAAZA 4 SAB ZB

These results allow us to evaluate the ML estimator of the signal amplitude array

[Equation (2-34)] in terms of quantities introduced in this section. Using Equa-

tion (AI-8) again, we obtain
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b = ZA + (S AA)- SA ZB

A zA-sAB SZB = Y (3-13)

We now define the quantities

CM 'IM + ZH S_ I
ZBSBBZ

V Y r_,"

T (SAA)- 1  (3-14)

which allow us to express the test in the desired form:

ICM + YH T- 1 Y1 J VH T-I (1

ICI== jit+ T VI. (3-15)

This quantity is a complex analog of the so-called Wilks' Lambda statistic, which

arises in many applications of the multivariate analysis of variance. Fbr the case of

real variables, a test statistic analogous to Equation (3-15) is known.2"9 It should be

noted that the definition of V depends on the particular way in which CM was fac-

tored to form a square-root matrix. The matrix CM could also have been represented

in terms of Cholesky factors, and an equation identical to Equation (3-15) obtained,

with an appropriate V array. This freedom of choice cannot affect the statistical

character of the GLR test statistic, and it is actually a useful feature in some cases.

The point is taken up again in Section 6.

It is interesting to compare the form of this GLR test with the simpler result

found in Section 2 for the non-adaptive problem (i.e.. the case of known Z). With the

notation introduced here, we can express the non-adaptive ML estimator of b

[Equation (2-51)] in the form

ýE = (EAA )I(EAAZA + AB ZB)

= ZA - EAB BI ZB (3-16)
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The second line of this equation expresses the estimator as the difference between ZA
and its conditional expectation given ZB. The latter term is the predictable portion of
the random noise part of ZA. and the estimator can be viewed as the prediction error.
This makes sense as an estimator, since the expected value of ZA is the true value of
b (see below). Conditional expectations and linear prediction are discussed in Appen-
dix 1. Fbrmula (3-13) shows that the estimator in the adaptive case (unknown E) has
the same form as Equation (3-16), but with E replaced by an estimator of covariance,
namely the one defined in Equation (2-48).

In the non-adaptive problem, the GLR test statistic is given by Equation (2-52),
which may be restated as

X, = Ti•AA; • .(3-17)

The trace operation describes non-coherent integration over the columns of bE. and
these, in turn, depend only on ZA and ZB, the components of Zp. The Zq component of
the data array is not used at all in the test, since, in the non-adaptive case, it con-
tains no information of use for the detection problem.

As noted in Appendix 1, the matrix EAA is the inverse of the covariance matrix
shared by the independent columns of br, inasmuch as they may be interpreted as
prediction errors. Thus, each term of the trace on the right side of Equation (3-17)
itself represents a form of non-coherent integration (following a suitable whitening
operation) over the J components of each column of the estimator. This is a logical
way of detecting the presence of a signal specified only as a vector in a subspace of
dimension gr-eater than unity. The formation of bz itself is an application of coherent
integration, which takes account of the structure of the actual signals that determine
the subspace. This may be seen by referring to the original definition [Equation (2-51)]
of this estimator, which depends on the data array through the term

eH SIZp = (7ia)&/ aHE-1 z

The array aH -1 ZP which appears on the right side of this formula may be inter-
preted as comprising the outputs of a set of colored-noise matched filters, which are
matched to the columns of the signal array a and applied to the columns of Zp.
These, in turn, are formed by coherent integration along the rows of Z.

In the adaptive problem, the columns of the ML signal parameter estimator b are
correlated, because they all use the same estimator of covariance. It will be shown
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below that this correlation is described by the matrix CM, and it is removed in the
formation of the GLR test statistic by the transition from the Y array to V. Except
for a constant factor, the matrix T of this statistic is just like the inverse of DAA, but

using the estimated covariance matrix instead of the known one. Thus, the general

GLR test is built with structures quite similar to those which appear in its

non-adapL..e analog. The final form, however, appears to be quite different, since it
involves a determinant instead of a trace. This distinction disappears when we con-

sider the limiting process by which the adaptive problem tends toward the

non-adaptive one, namely the unbounded growth of L - M. This is the number of data

array columns in excess of M, the dimensionality of the signal-defining T" arrey.

Without attempting to be precise, we can say that the covariance estimator given

in Equation (2-48) will tend to the true covariance in this limit, and write

S -, (L-M)E .

The inverse of S therefore becur,.es smaller as L increases. In the limit, CM becomes
the identity matrix, as the second term in its definition [see Equation (3-14)] becomes
vanishingly small. He-ice, in this limit, the correlation between the columns of b disap-

pears. Then

and also

-I AA 1 AA
L-M

so that

vHT-IV L -M bA -A
L-M E

In this form, the GLR test statistic is the determinant of the sum of the identity

matrix and a "small" term, so that we obtain

+ __!M+; gHEAA

M + T _M E

I _M+ -I Tr [bSH AAr SE I + L-

L-MJ L--M
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Thus, heuristically at least, the GLR test for the adaptive problem goes over into that
for the non-adaptive case in the appropriate limiting situation.

From this discussion, it follows that the simpler decision rule

Tr(VH T- V) > Constant ,

should perform well for large values of L. The analog of this detector with real vari-
ables is known as the ldwley-Hotelling test.19

Until now, the data array has been considered as a given set of complex num-
bers, while the parameters characterizing the statistical model, namely B and E, have
been treated as variables for the derivation of the GLR test. To evaluate the perform-
ance of the test, these parameters must be considered fixed and given, while the ele-
ments of the data array are considered to be random variables. The remainder of this
section is devoted to establishing the sta.tistical properties of the test statistic.

Suppose that the true signal parameter array is B and that the actual covari-
ance matrix of the columns of Z is E. Then.

E Z = aBT = ebp, (3-18)

and

Cov(Z) = E . (3-D)

The mean value of the transformed data array will be

H H e p H ~ H r '* 0 3,(-0EuNZUL =- IfH Iebp I p' q'1 0 (320

and its covariance, using formula (AI-4,1) of Appendix 1, will be

Cov(UN ZUL) = (U EUN)xlL

Comparing Equation (3-20) with Equation (3-4), we see that the expected value of ZA
is just b, while the other three components of the transformed array have zero mean.
The columns of the transformed array are still independent, and they now share the
covwriance matrix which has been expressed in component form in Equation (3-8).
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Note that the situation corresponding to the "true" parameters, as described by
Equations (3-18) and (3-19) above, coincides exactly with the model postulated in Equa-
tions (1-1) and (1-2) of Section 1. We refer to thi as the "matched" situation. It is

interesting to consider the effect of various departures from this matched condition
on the performance of the GLR test. At the end of this section we introduce a partic-
ular form of "mismatch" which proves to be amenable to analysis, and take up its

implications in Sections 5 and 6.

To proceed, we first fix the arrays Z9 and WB, and we refer to this conditioning
by using the subscript B. Referring again to Appendix 1 for details, we have the fol-
lowing conditional expectations:

EBZA = b + EADrBE I . (3-21)

and

EBWA -AB FB-BEWB. (3-22)

Florn Equation (3-7), we see that

Y = ZA - WAW HSZD I

hence, Y is a Gaussian array under the conditioning, with conditional expecta.o.Jn

EBY - b + EABEDBZB - ABEBBWBWSBBZB B

But WBW = SBB therefore,

EBY = b . (3-23)

Finally, using Equations (3-14), we obtain

EBV = bC-0 . (3-24)

We note that the matrix CM depends only on quantities fixed under the conditioning,

and it may therefore be treated as a constant as long as the conditioning holds.

Therefore, V itself is conditionally a Gaussian random array.
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Since the columns of the transformed data array are all independent, the condi-
tioning variables only affect their own columns. It follows that the conditional covari-

ance of any of the columns of ZA or WA is given by
(£^A)-l -

-AA - ABEBB BA

using a standard property of Gaussian random variables, reviewed in Appendix 1. We

can therefore describe the conditional covariance properties of ZA and WA together by
the statement

COVB(IZA WAI) = (LA-l, (3-25)

To evaluate the covariance properties of Y and V, it is convenient to write

Y = ZA - WAQ I IZA WA] IM]

where Q is defined by

Q • H s-I ZB (3-26)

Then, using Equation (AI-44) of Appendix 1, we have

COVB(Y) = (ZAA) -(I ®M +QHQ),.

But it is easily verified that

H H -1

HQ = ZBSBBZB ,

and, thus, Y has the covariance matrix

COVB(Y) = (EAA)-1 ® CL. (3-27)

Since Y is actually the ML estimator of the signal parameter array b, Equation (3-2:)

expresses the conditional correlation between the columns of this estimator which
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was mentioned earlier. A fuller discussion, including the effect of removing the condi-
tioning for this estimator, is given in Section 5.

Recalling the definition of V. and using the same covariance identity, we find that
the columns of V are independent under the conditioning.

COVB(v) = (3-28)

It is useful to write V as the sum of two parts:

S- VS + Vn . (3-29)

where

V- = (3-30)

Then Vn, which we may call the "noise component," is a complex Gaussian array,
with zero mean and covariance ýZven by Equation (3-28), independent of the condi-
tioning variables which appear only in the "signal compcnert" Vs.

AATurning now to the T array, we recall that T is the inverse of S , and that the
matrix

[SAA SAB 1 WA' wHw

[SBA SBB j W B A

is a complex Wishart matrix, of order N. with L- M complex degrees of freerlcm. The
unconditioned means of WA and WB are zero, and from Equations (3-2) and (A: .44) we
obtain the unconditioned covariance

Cov([WA]) = (uUN)H lLU

The partitioned form of the transformed E matrix is given by Equation (3-8)

Some of the properties of Wishart matrices are discussed in Appendix 1, where it
is proved that a matrix such as T, which is the inverse of a diagonal block of a parti-
tioned complex Wishart matrix, is also a complex Wishart matrix of an appropriate
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order and with a reduced number of complex degrees of freedom. In the case of T. the

dimension is J and the number of complex degrees of freedom is L + J - N - M. fI'om

the results of Appendix 1 it also follows that T is independent of SAB. These facts are

established in Appendix I first under conditioning on the B components, but the

probability density function of T does not depend on the values o. the conditioning

variables. Therefore, the complex Wishart character of T, as well as its independence of

SAD, remains true when the conditioning is removed. By the same argument, T is

proved to be unconditionally independent of SABSBB. because the second factor of this

product is constant under the conditioning. Since T is formed from WA and WB, it is

clearly independent of the components ZA and ZB. Thus. T is unconditionally indepen-

dent of Y, as defined by Equation (3-11). and also of Cu and V. defined in Equa-

tions (3-14). T can be expressed in terms of a Gaussian array, say W, of dimens.-on

J x (L + J - N - M), as follows!

T = WWH. (3-31)

The mean of W is zero, and its covariance is

Cov(W) = (EAA)-I - IL+JN . (3-32)

a property established in Appendix 1.

The last step in the statistical characterization of the test statistic is a

"whitening" operation. With the conditioning on the B-components still in effect, we

define the new arrays

VO - (EAA)t/A v

To (EAA)'/2 T (,AA)l/2 (3-33)

using the subscript zero to indicate the whitening. The matrix To is also a complex

Wishart matrix, and it can be expressed in terms of a new zero-mean complex Gauss-

ian array W0 (unrelated to WA and WB):

To-__ WOWH' (3-34)

These new arrays have identity matrices for their covariances:
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COVB(VO) = Ij GIN

COVB(WO) = 'J ® 'L+J.N.M (3-35)

Thus, all the elements of these arrays are conditionally independent. The whitened
array Vo is made up of the components

V0 = VoS + Von, (3-3C')

where Von is a complex Gaussian array, with zero mean and covariance equal to the
identity, and where

Vs ( kA)1R bC _V. (3-37)

The columns of the conditioning arrays ZB and WB share the covariance matrix
EBB. The marginal probability density functions of these arrays are direct analogs of
Equation (AI-79) of Appendix 1. These arrays are now also whitened, with the intro-
duction of the new quantities

ZBO (EBB)- 2 ZB

WB10- (E3B)-0 WB (3-38)

The whitened arrays have zero means; their covariance matrices are given by

Cov(ZBO) = INJE®IM

Cov(WBO) = INJGILuM (3-39)

The whitening matrix cancels out in the formation of CM, which has the same

structure in terms of ZBO and WBO:

CM = lN + Z0 H(WBoWHo)' ZBO (3-40)

Finally, the test statistic also retains its form when expressed in terms of the whit-

ened arrays V0 and Wo:

= iM VoHTIVV (3-41)o0 04
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and this is the form which is analyzed in later sections. We note that the original
covariance matrix Z survives only in the "signal" array V08. The conditioning vari-
ables ZBO and WBO are also confined to that component, entering through its depen-
dence on the CM array.

We can therefore state that Von and W0 are (unconditionally) independent com-
plex Gaussian arrays, with zero means and covariance matrices given by the right
sides of Equations (3-35), and that To is subject to a complex Wishart distribution of
dimension J. with L + J - N - M complex degrees of freedom. To is expressed in terms of
W0 by Equation (3-34). From this point forward, unless explicitly stated otherwise,
when we say that a matrix is complex Wishart we mean that it has a form corre-

sponding to Equation (3-31), and that the covariance matrix of the underlying Gauss-
ian array is a Kronecker product of identity matrices.

The test statistic is expressed by Equation (3-41) and Vo is given by Equa-
tion (3-36). Moreover, V09 is independent of Von and W0 . To compute the probability of
detection (PD) one can, in principle, begin by conditioning on V0 . itself, determine the
conditional PD, and remove the conditioning at the end. The statistical character of
V08 is required, of course, and this is discussed in Section 5 . Fbr the probability of
false alarm (PFA), however, V05 vanishes and our statistical analysis is formally com-
plete. The statistical properties of the test can depend only on the dimensional
parameters of the problem (in t"',e absence of signal); hence, the GLR test is a CFAR
decision rule. A more explicit statistical characterization will be obtained in Section 4.

The possibility of "mismatch" was mentioned earlier, and we introduce an
example of it here. The departure from the modeled situation relates only to the sig-
nal component; hence, it will have no effect on the discussion of false alarm probabil-
ity in the next section. We suppose that the true mean of the data array is not given
by Equation (3-15), but instead has the more general form

EZ = DT =dp . (3-42)

The case of a completely arbitrary mean value of Z is certainly interesting. but its
analysis appears to present considerable difficulties. With the new model, Equa-
tion (3-20) is replaced by

H H e dp [p1 qH _- b 0 (343)EUNZUL up H Pq bA 0

where
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bA e H d

bB fH d

d D(rTH)T (3-44)

According to Equation (3-43), the components WA and WB retain their zero means, but
now

EZA ba

and

EZ3.- b 8 .

In tbl- ana!y ;is of the matched problem, we began by conditioning on the B !oyn-
ponents Zp atr, WE. Formula (3-22) remains valid for the conditional mean of WA, but

Equation (3o21) n.•st. now be replaced by

EBZA = bA + B (ZB -- b5 ) (3-45)

This is a direct analog of Equation (Al-81) in Appendix 1. The conditional mean of Y is
evaluated as before, but P.ow with the result

EB = bA - rAB - b8 . (3-46)

The conditional covariance of Y is still correctly expressed by Equation (3-27), with CM
as defined by Equation (3-14). The effect of the non-vanishing mean value of ZB which

enters this definition will be felt when the conditioning is removed later.

After the transition to whitened arrays, Equation (3-37) becomes

VOs = (EA•(bA - r-AB EBB1 bB) C-M(AAVl (3-47)

Expression (3-40), which defines CM in terms of these whitened arrays, remains cor-

rect, but now

E ZBO = (EBB)-r2 bB (3-48)
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These results will be utilized in Sections 5 and 6, where the effects of this kind of
mismatch are studied in terms of signal parameter estimation and probability of

detection.
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4. THE PROBABILITY OF FALSE ALARM

The fundamental problem of performance analysis is the computation of the
probability of accepting hypothesis H1 by means of the GLR test: I!10. The general
case is discussed in Section 6. We devote this section to the evaluation of the prob-
ability of false alarm (PFA), i.e., the probability of accepting H, when B-=O. We simplify
the notation of Section 3 by dropping the subscript 0 which was used to indicate the
whitening of various arrays. The GLR test statistic, given by Equation (3-41), again

assumes the form

I = 1lm +i VHT-VI , (4-1)

where

T =WWH. (4-2)

The arrays V and W are Gaussian, independent of one another, and they both
have mean value zero. We introduce the new parameter

K =_ L-N-M , (4-3)

and recall that K Ž 0 by the constraint first expressed as Equation (1-9). The dimension
of V is J x M, W is J x (J + K), and the covariances of these arrays are given by

Cov(V) = Ij E IM

Coy(W) = IoJ®I+K .(4-4)

The PFA will depend only on J, M, and K, and not on the actual covariance matrix E;
hence, the GLR test has the CFAR property. The only change when signals are added
will be the addition of a non-zero mean value for V.

Using Equation (Al-2), the test statistic can also be expressed in the form

IT+ VV1 (4-5)
4TI
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The inverse of I is the complex analog of Wilks' Lambda statistic,2.9 which often

arises in multivariate statistical analysis. It is usual in that context to test for the
validity of H0 against HI, as we have defined the hypotheses, which accounts for the

inversion of the test statistic. We note that T is a complex Wishart matrix and is

non-singular (with probability one), but that VVH is non-singular only when M Ž J.

It is useful to consider some special cases, and we begin with the simplest,

namely J= 1, with arbitrary M and non-negative K. Then, V and W are row vectors and

T is a scalar:

K<+I

T = WWI, Iwi 2 .

where the wi are the elements of W. Thus. T is a complex chi-squared variable, with

K + I complex degrees of freedom. This terminology is introduced in Appendix 2, where

a discussion of the complex chi-squared and other related distributions will be found.

Using Equation (4-5). the test statistic takes the form

VVH
I = I + ---- (4-6)

and VV H is also a complex chi-squared variable:

M

VV" L Ivi!
i=1

with M complex degrees of freedom. The ratio of complex chi-squared variables which

appears in Equation (4-6) is subject to a complex central F distribution, but we prefer

to express the test statistic in the form

÷+1
J=1

1/I = K+1 M xO(K +1,M) . (4-7)

E wl + L liv!
j=1 i=1
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In this formula, the notation xp(n,m) is used in a generic sense to denote a random
variable which obeys the complex central Beta distribution, whose probability density
function (pdf) is given by Equation (A2-12) of Appendix 2. The PFA, defined by the
equation

PFA = Prob( > 1O) = Prob[xp(K +1,M)_< I/0 , (4-8)

is just the cumulative of the complex central Beta distribution, also presented in
Appendix 2. Substituting the appropriate parameter values in Equation (A2-14), we

obtain

M-1

PFA 1 m) (o-(1) m (4-9)
•0 M=

With the further specialization M = 1, this formula reproduces the simple result found
in Reference 3:

PFA 1 _ 1 (4-10)1K+1 IoL-N
0 0

The other special case we wish to discuss is the dual version in which M= 1, J is
arbitrary J, and K is non-negative. V is now a column vector, and

I = 1V+ VHT V.

The T matrix is of order J and satisfies a complex Wishart distribution with J + K
complex degrees of freedom. T is expressed in terms of a zero-mean Gaussian array in

Equation (4-2). The covariance matrix of this array is the identity, as stated in Equa-
tion (4-4). As noted in the previous section, these properties of the underlying Gauss-
ian array will be tacitly assumed for Wishart matrices in the following.

We define the unit vector

g V(VHV)'O

and write

I = i+ (VH V)(gHT-g). (4-11)

49



Obviously, the quantity

JVHV L I Ivi 12

i=l

is a complex chi-squared variable, with J complex degrees of freedom.

The unit vector g may be considered to form the basis for a one-dimensional
subspace of (0J, and thus, according to the general property of Wishart matrices estab-
lished in Appendix 1, the inverse of gHT1 g is also subject to a complex Wishart distri-
bution. This latter Wishart matrix is simply a complex chi-squared variable in the
present case, since its dimension is unity. This dimension is smaller than that of T by
J - 1, hence the complex chi-squared variable has K + 1 complex degrees of freedom,
according to the rule derived in Appendix 1. It is therefore statistically equivalent to
the sum

K+1(g HT-1g)-1 = iwnr

where the w, are complex Gaussian variables of zero mean and unit variance. These
properties are independent of the conditioning variables, hence they remain true
without the conditioning which is now removed. Then, Equation (4-11) can be written

J

I = 1 + , (4-12)
K+1

j=1

where the vi are independent of the wk. In other words,

1/1 x(K+ 1,J) (4-13)

Fbr the special case M = 1, we have therefore found:

J-i

P .FA j) (io - l)j (4-14)to j=o
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This expression is in agreement with the corresponding result given in Reference 5.

We return to the general case and introduce a generic notation for the random
matrix which appears in Equation (4-1):

t(J.M,K) = 1M + VyT-IV (4-15)

The GLR test statistic itself is given a more specific notation, indicating the dimen-
sional parameters to which it relates:

i(J,M,K) = 1'(J,M,K): = je(JM,L-N-M)[ . (4-16)

It is useful to study some of the propcrties of these quantities, under the assumption
that V and W are independeTL. zero-mean Gaussian arrays, with covariances given by
Equation (4-4). By its very structure, the 1 matrix is always positive de'finite, and,
when M = 1, it reduces to a scalar In the latter case, according to Equation (4-13),

I(J,1,K) = l/xP(K-rl,J) (4 17)

Similarly, when J = 1, Equation (4-7) yields

I(I,M,K) = I/x,(K+I,M) . (4-18)

Equalities such as these are meant to indicate statistical identity. i.e., the equality of
the probability density functions of the random variables which enter the equation.
These two results constitute a particular example of a general duality property which
will be derived later. We also note that the matrix CM, defined by Equation (3-40), is of

the same form, namely,

CM = 6(N-J,M,L+J-N-M) =(N-J,M,J+K') . (4-19)

,his matrix plays a central role in the analysis of performance under hypothesis Hr.

Let us introduce a decomposition of the vector space 0 j into a sub.vpace of
dimension J1 and its orthogonal complement, whose dimension will be J. =- J-. The
arrays V and W are partitioned as follows:
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VI2,

w= (4-20)

and we have

wJwH wJwH TI, T12

1 2
T w2w1 2 w2w2  T21 T2r

We recall that T is a complex Wishart matrix of dimension J, with J + K degrees of

freedom, and that the covariance of W is given by Equation (4-4).

We also define

[T" T1 2 ]!

T -1 = T21 T21 (4-22)
&~ T2

and then substitute:

[ 1 2 2[ , T '2  v 2

Making use of identity (AI-9) of Appendix 1. we obtain

vHTIV T (V -TTvz)H T"(VI-TT1T1V ) + V4T_1V 2  (4-24)

By adding the identity matrix to Equation (4-24), we can express 16(J.M,K) in the

form of a product:

'(J,M,K) = (IM 2HT2z V2)"2 (IM +VH- ')(IM V VHTzv 2 )w, (4-25)

where
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V (VI - T2 T - Vý) (11, + V2HT _ V)- (4-26)

and

- (T11)- 1 = Tu - T 2 T•T21  (4-27)

The arrays V2 and W2 are Gaussian, independent of one another, and have mean val-
ues zero. Their covariances are given by

Cov(V 2) = ]j2 elm

Cov(W2) = ]j2®Ij+ X

We can therefore write

,m 2T 2  = •-(J 2 ,M,J,+K) T (4-28)

indicating thereby the statistical character of this matrix as an example of the fam-
ily defined by Equation (4-15). It is directly analogous to the matrix CM of the previ-
ous section.

We again recall the analysis of Section 3, which may be applied directly to the
study of V and Y. These quantities correspond to V and T of that section. Conditioning
on VZ and W2, it follows that V) is a zero-mean Gaussian array with covariance

Cov(V) = IjIG 1 M ,

and that V) and 5 are independent. According to a property of complex Wishart
matrices, established in Appendix 1, it follows that 5 is a complex Wishart matrix, of
dimension J,, and with J, - K complex degrees of freedom. Thus, 5 may be expressed in
the form

= WH

where W is a zero-mean Gaussian array, with covariance
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Cov(W) = Ij 1 J+K .

All these statements are valid under the conditioning, but they do not involve the
conditioning variables. In particular, the pdf of 5 does not depend on these variables.
Hence, these statements remain true without the conditioning, which we now remove.
We have therefore shown that

IM +VH 51 = V(J1 ,M.K) (4-29)

again using this notation to identify the statistical character of this matrix. In addi-
tion, since the statistical properties of this array do not depend on the conditioning
variables, it follows that the matrices expressed by Equations (4-28) and (4-29) are

themselves independent.

From these results, we obtain the basic matrix factorization identity

S(J,M,K) = [,6(J 2 ,M,J 1 +K)]IR 1(Ji,.M,K)[6(J 2 ,M,JI+K)]"'2 , (4-30)

and, from it. the recursion relation

I(J,MK) = 1(J-J,,M,J 1 +K) I(J 1,M,K) . (4-31)

The factors on the right are independent, aild the recursion holds for any J1 <J.
Choosing J1 = 1 and iterating, we obtain a representation in terms of independent fac-
tors:

I(J, K) 1 (1,M,K + j). (4-32)
j=0

The factors on the right side of this equation correspond to the special case J1=1
which we have already studied. Thus, using Equation (4-18), we have

J

1/1(JM,K) = I-J x,(K+j,M) . (4-33)
j=5
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The inverse of the test statistic is therefore the product of a set of independent com-

plex central Beta variables. In the case of real data, Wilks' Lambda statistic is expres-

sible as a product of independent real central BeLa variables, with a sequence of
parameters increasing in half-integral steps. Equation (4-33), which refers to the com-

plex version of Wilks' statistic, is a direct analog. (See also Reference 20, where this

result and the complex analogs of a number of other statistical theorems concerning
real Gaussian variables are stated.)

We have also shown that

1(1,M,K) =- I(M,1.K) . (4-34)

by our discussion of the two special cases at the start of this section. As a special case

of Equation (4-ý3), we have

M

1/1(M,1,K) = H xO(K+m,1)
M=l

which, together with Equations (4-18) and (4-34), yields the following identity among

complex central Beta variables.

M

xS(K -i,M) = H x 0(K + m,1) (4-35)
rn-1

The factors on the right are, of course, independent, and this identity can easily be
verified by other means. Combining these results, we obtain the desired

representation of the GLR test statistic as a double product of JM independent factors:

J M

1/1(J,M,K) = H H x,(K+j +m-l,1). (4-36)

The notation indicates the statistical character of each factor, their independence

being understood. From this expression, it is clear that J and M may be interchanged

without change to the PFA, provided only that K remains the same. This generalizes

the duality noted earlier in this section.
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Equation (4-36) provides a formally complete statistical characterization of the

GLR test statistic under the null hypothesis. Ex'.ept in the special cases already evalu-
ated it is, however, of limited utilit., as a ' .*or numerical evaluation. This is par-
ticularly true in radar applications, whe FA values as small as I0" commonly
occur. Similar difficulties are encountered ih the evaluation of the real Wilks' statis-
tic.21 The double-product representation is, on the other hand, well suited to evalua-
tion by the technique of numerical integration in the complex plane, following a con-
tour of steepest descent. This procedure has been developed and successfully applied
to a number of detection probability evaluations by Helstrom,22 building on earlier
work by Rice.23 The analytical techniques involved in this procedure are quite unre-

lated to those used elsewhere in this study, and the entire topic is relegated to
Appendix 6.

At this point it is useful to derive a result that will be needed in the next Sec-
tion. We return to the definition of the 6 matrix and apply a unitary transformation
to both sides, writing

U H(J.M,K)U = ] + H T- 1, (4-37)

where

•'-, VU ,

and U is an arbitrary unitary rnatrix of order M. Since 4 is statistically indistingui-
shable from V. the joint pdf of the elements of 6(J,K,M) must also be invariant to
the transformation expressed by Equation (4-37). It then follows that

E = E(IJH S U)n = UH ES U. (4-38)

for any positive or negative integer n. Since Equation (4-38) holds for all unitary
matrices, E~n must be a multiple of the identity matrix.

We are particularly interested in the first moment of 1, and we make the defini-

tion

E 16(J,M.,K) = y(J, M,K) IM (4-39)

Taking 4he trace of both sides of this equation, we have
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p(JM,K) = M-_ ETr6(J,M,K)

= 1 +MI E Tr (T- VVH). (4-40)

But T and V are independent, and

EVV = MI,

according to Equation (AI-42) The dependence on M therefore disappears, and

4(J,MK) = I + E Tr(T-1) .

If we take the trace of both sides of the factorization formula [Equationl (4-30)] and

recall the independence of the factors, we obtain the recursion

p(J,MK) = jt(J-J 1 .M,J 1 +K) p(J1 ,M,K)

This is just like Equation (4-31). and by iteration we find

J-i

,U(J,MK) = 17 u(1,MK+j) (4-41)
J=O

When J= 1, Equation (4-40) yields

LzIviý
ýt(l,M ,K) = I + M -E K=I-- -- .

K+i
Z Iwir
,J=1

As noted earlier, the ratio of complex chi-squared variables which enters here is sub-
ject to the complex F distribution [Equation (A2-9) of Appendix 2], and the required

expectation value is just M/K. Thus,

1(l,M,K) = K+1 (4-42)
K



from which we obtain

J-1

M(J.M,K) =F K+j+ I + J/K (4-43)
j=o K+j

and

E (JM,K) = (I + J/K)IM. (4-44)

This is the result we need later, and we note that the evaluation has also yielded the
expected value of the trace of the inverse of a complex Wishart matrix, of dimension
J and with J + K complex degrees of freedom:

ETr(T-1 ) = J/K . (4-45)

It is worth noting that, by a completely analogous argument, the following result
may be obtained:

Ej t(J,MK)]- = 1 M-+IK +J ]l . (4-46)
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5. THE ESTIMATION OF SIGNAL PARAMETERS

We begin this section by returning to the non-adaptive version of the problem

and complete the analysis of its performance, both in terms of signal parameter esti-
mation and detection probability. This exercise provides useful background for the
adaptive version, and also serves to introduce some relevant notation. We recall that
only the component Z p of the data array enters the results in this case, since the
covariance matrix IZ is assumed to be known.

The non-adaptive signal parameter array estimator, derived in Section 2, is

bE = (e Ee)- e E-Zp (5-1)

In Section 3 [Equation (3-16)], it was expressed in terms of the A and B components of
Z p, as follows:

bE = Z A - EABZBBZB

This estimator is completely characterized as a Gaussian array, whose mean and
covariance are

Ebr- b
Cov(,) = (rAA)- IM. (5-2)

The first of these equations, which states that the estimator is unbiased, follows from
Equation (3-20). The second equation is a direct analog of Equation (AI-82) of Appen-
dix 1, since the estimator has the form of a prediction error.

A whitened estimator may be defined as follows:

bEO0 (r_)AAV V g (5-3)

Its expected value is

Eb.0 (FAA)l/ 2 b b0 , (5-4)
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which we will call the whitened true signal parameter array. The covariance of this
whitened estimator is

Cov(brO) = Ij IM , (5-5)

and its pdf is equal to

f (bro) = 1 e' W - bH){r0 - b0)

7T

The components of the whitened estimator array are independent, and all have vari-
ance unity.

The non-adaptive decision rule, given by Equation (3-17). assumes the simple form

,, = Tr(bH:o}) _ Const

in terms of the whitened signal parameter estimator. The test statistic is thus equal
to the sum of the squared magnitudes of the elements of this matrix. Statistically, X
is a non-central complex chi-squared random variable, with JM complex degrees of
freedom, according to the usage introduced in Appendix 2.

The "non-centrality" parameter of this distribution is

a0 ý Tr(b0Hbo). (5-7)

We call this quantity the non-adaptive signal-to-noise ratio. To express it in terms of
the original variables of the problem, we write

bmb = bHEAAb bHeH H -leb

and note that

eb = UBTpH = orB(T TH)O.

Then, we have

b Hbo = (TrTrH)V' B"H r"I oB ("r'r)t' (5-8)
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and, finally.

a0 = Tr [i(a B)H -r (oaB r)] (5-9)

In the special case M = 1, -rrH is a scalar, the squared norm of the T vector. As noted in

Section 1. this vector can be normalized to unity by a redefinition of the B array. If

this is done, we will have

ao = b0obo = B a AaB

Moreover, if J = 1, then B itself is a scalar, and the signal-to-noise ratio reduces to the

familiar form

ao = IB a H -1 a.

In radar terms, the test statistic is a non-coherent integrator of JM complex

samples, and its pdf is the non-central complex chi-squared distribution, which is dis-

cussed in Appendix 2. The detection probability is given by the Marcum Q-function:2 4

00

PD Prob(- Xo0 ) = {e-a°-" (X/ao)(JM1-)/ 2 j1 M-1 (2 /aX)d> (5-10)

The corresponding probability of false alarm is

PFA = GjM(XO) (5-11)

where

G,(y) a E Y (5-12)

is the incomplete Gamma function, introduced in Appendix 2.

We return to the adaptive problem and recall that the adaptive parameter array

estimator, found in Section 2, has the form:
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"b (eS-e)- 1 eHS 1 Zp (5.13)

which is just like Equation (5-I), with S replacing E. The matrix S. of course, is (L - M)
times the ML estimator of E, based on the Zq component of the data array alone, as
expressed by Equation (2-48) of Section 2. The proportionality constant will cancel out
in the above expression for the amplitude parameter estimator. This estimator was

later shown to be identical to the array Y. introduced in Section 3 [see Equa-
tion (3-13)]. Under conditioning on the B components of the data array, we found that
this array is Gaussian, with conditional mean and covariance matrices given by
Equations (3-23) and (3-27), respectively:

EBb = b

CovB(S) = (rAAj)-1

We introduce the whitened estimator

"O m (AA)E ) (5-14)

as in the non-adaptive case. Its conditional mean is

EBb0 = bo , (5-15)

and the corresponding conditional covariance matrix is

CovB(bO) = I1C C . (5-16)

The b0 array is the whitened signal parameter array defined in Equation (5-4), and
the matrix CM (defined in Section 3) is

C=I+ ZB SBB 1B (5-17)

In accordance with the usage begun in Section 4, we have dropped the subscript zero
(which indicated whitening) on the B arrays in this definition. In the notation of Sec-

tion 4, we have

CM = 6(N-J,M,J+K) , (5-18)
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as noted there. It will be recalled that K= L - N - M. The conditional mean of our

estimator is independent of the conditioning variables, hence it remains an unbiased

estimator (like its non-adaptive counterpart) when the conditioning is removed:

Eb 0 = b 0 . (5-19)

The unconditioned covariance matrix may be evaluated from the equation

Cov(bo) = IJe (ECM)° .

obtained by taking the expected value of both sides of Equation (5-16). The required

expected value of CM was found in Section 4, and Equation (4-44) [together with

Equation (5-18) above] yields

ECM + (l+• ) IM.

Finally, we obtain

Cov(b 0 ) = K+N I® E(2
Cov (S J-K M. (5-20)

The removal of the conditioning has left us with uncorrelated columns for the

parameter array estimator, but it is no longer Gaussian; hence, we cannot infer inde-

pendence, as in the non-adaptive case. The relation between .nLX covariance matrices

in these cases is interesting. We have

Cov(bo) = Cov(ý)

and the factor which connects them is generally greater thF., un-Ly.

K+N L-M >
J+K L+J-M-N -

Equality is attained when J = N, as we should expect, because in this special case the e

array is unitary, and definitions (2-34) and (2-51) tell us that the estimators coincide

in this case:

J=N: D= eHZp (5-21)
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At the end of Section 3 we introduced a particular form of "mismatch," in
which the signal component present in the actual data differs from the model on
which the GLR detector and parameter estimator are based. In this model, the mean

value of the data array is the form

EZ = DT = dp, (5-22)

where D and d are N x M arrays, and T" and p have their usual meanings. The true

parameter array now has a component bA which is in the subspace defined by the

signal model, and a component bB in its orthogonal complement, These arrays, origi-

nally defined by Equations (3-44), are given by

bA = e dH, be _f d . (5-23)

In order tc assess the effects of this mismatch on parameter estimation, we
introduce whitened versions of these signal components. as follows:

bAo (bA - AB EBB bB"

bBo (EBB)-Y 2 bB (5-24)

These definitions are motivated by Equations (3-47) and (3-48) of Section 3, If

become

VO$ = bo CV2  (5-25)

and, again dropping the zero subscript on ZB,

EZB = bBo. (5-26)

Recalling Equations (3-9) and (3-44) of Section 3, together with Equation (A1-8) of

Appendix 1, it can be seen that

-1 +(AA- I AB ZAA)-I H -1
bA-LABEBBbB = bA+(E4)-I bB= (E) e - d

hence, we may writ- the first of Equations (5-24) in the form

bAo =(AA)- eH -1 d. (5-27)
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The conditional mean of the whitened parameter array estirnator is

EBb O = bAo. (5-28)

which follows directly from Equation (3-46). Since this result does not depend on the
values of the conditioning variables, Equation (5-28) expresses the unconditioned
mean value array as well. The mean value of the original (unwhitened) estimator
array is therefore given by

Eb = (EAA)-E0 (rAA)_v 2 b (5-29)

Using Equation (5-27), together with the definition of ZAA, we obtain

Eb = (eH -e)- eHi-'d (5-30)

By way of comparison, we can evaluate the expected value of the non-adaptive
parameter array estimator directly from Equation (5-1), using the fact that

.zP = dppH= d

We obtain

EbI = (e-H E eI 1 eie" EEZp = (eHZ-le)-1 eHE-ld (5-31)

which expresses the remarkable fact that the adaptive and non-adaptive parameter
array estimators have the same expected values, even when the signals are not
matched to the model in our original formulation.

Equation (5-16), which expresses the conditional covariance of the parameter esti-
mator, is still valid in the presence of mismatch, whose effects will become apparent
only when the conditioning is removed. To evaluate ihe expected value of CM, we
recall that ZB and WB are Independent, and that their covariance matrices are

Cov(ZB) INJ®IM

Cov(W 8 ) 'IN-J 'L-M (5-32)

Since
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SBB - WBW H

it follows that SBB is a complex Wishart matrix, of order N-J. with L-M complex

degrees of freedom. Fbllowing the convention established near the end of Section 3, it

is understood that the covariance matrix of the underlying Gaussian array of the

Wishart matrix is the identity. In the present case, this is expressed by Equa-

tion (5-32). Using Equation (4-45), we evaluate the mean of the trace of its inverse:

E11(S N-J N-J
BB( L+J-N-M = J+K

It is clear from the complex Wishart pdf, Equation (A3-10) of Appendix 3, that the

expected value of any power of SBB is proportional to the identity matrix. The argu-

ment is the same as that used in Section 4 to establish Equation (4-38), and we con-

clude that

ESBB J+K

We can now evaluate the required expectation of both sides of Equation (5-16)

when mismatch is present. First, we condition on ZB in Equation (5-17). and then

average over this array, to obtain

ECM4 M 1)4+K~E4

But,

E(ZBZB) = (EZB)H(EZB) + E(Z3 - EZB)H (ZB - EZB) , (5-33)

and EZB is given by Equation (5-26) above. The second term on the right of Equa-

tion (5-33) is evaluated as a special case of Equation (AI-42) of Appendix 1. In view of

the covariance matrix, given in Equation (5-32), the result is

E(ZB - EZ) H(ZB - EZB) = (N-J) I)4

Combining these facts, we have the properties
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Ebo = bAo

COV(kbO) = j-_1 Ij®[(K+N)IM + bVobBo0 ] (5-34)

which characterize the parameter estimator in the mismatched case. The estimator

attempts to produce the component of the actual signal array which lies in the mod-

eled subspace, and its performance is degraded by the effect of the orthogonal com-

ponent of the signal array which increases its variance.

It is interesting to note that

H H -1H EAA -1H F-1b•0bAo + bBObBO = (bA--EABEB bB)H b (bA-£Alq E _bB) + bB EBN b5

HHI F'A EAB ir
A E jBA E BB jb13

by application of Equation (Al-9). Moreover, we can write definitions (3-44) in the form

bA] H d (5-35)

where UN is tne unitary matrix defined by Equation (2-20). Then, recalling defini-

tion (3-9), we obtain

bAObAo + bHObBO = dH E-I d = (TTrH)V' DH E-I D (-r H)1/ (5-36)

Ia the matched case we have D = oB, and Equation (5-36) then passes over into
HbC~b0, as expressed by Equation (5-8) above. We return now to the matched problem,

and its postu!ates are to be assumed throughout the ensuing discussion, except where

the contrary is explicitly noted.

Before discussing the pdf of the amplitude parameter estimator, we recall the

definition of the general 1 matrix [Equation (4-15)] and introduce the notation R for

its inverse:

67



+VH T-IV1X(J,M.K) = (J,M,K)- = (IM+VHT'V)-

IM - V (T+VVH)- V . (5-37)

As in the definition of the W matrices, R is often used as a "generic" designator for a

random quantity, not always a specific example. In the above definition, V is a
zero-mean complex Gaussian array of dimension J x M, with covariance

Cov(V) = ]J 0I1, (5-38)

and T is a complex Wishart matrix of order J, with J + K complex degrees of freedom.

By analogy with CM, we will write

R = C-1 = X(N-JM,J+K). (5-39)

The general A matrix is a complex multivariate generalization of the complex

central Beta random variable, and the joint pdf of its elements is derived in Appen-

dix 3. We use the notation fB for the probability density function of an X* matrix, and

d0 (R) for the corresponding volume element. This pdf depends only on the dimen-

sional parameters J. M. and K, and, when M= I. it reduces to the ordinary scalar com-

plex Beta pdf (see Appendix 3 for details). The volume element is specific to positive-

definite matrices, and it is the same as the volume element for the complex Wishart

pdf. The notation is defined in Appendix 3. If 0 is a function of the random matrix S,

then we can evaluate its expected value by integrating over the appropriate pdf:

E44[Z(JMK)] = f O(R) fB(R;M,K+M,J)do(R) . (5-40)

In the special cases to be discussed later, this Beta matrix will reduce to a complex

scalar Beta variable, and the integration will be a simple, one-dimensional integral

over the complex (scalar) Beta density.

The X matrices have some interesting properties, two of which will be established

here and used presently. Let UM be a unitary matrix of order M, which is partitioned

as follows:
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U= S
s

We assume that r is MI x M, s is M2 x M, and that the sum of M, and M2 is M. The V

array is also partitioned, using U.:

vu•- =v (v1  l

where

VI= VrH

V2 = VsH (5-41)

The new components are complex Gaussian arrays with zero means, and with
covaria nces

Cov(Vi ) = Ij®

Cov(V 2 )= I, E IM. (5-42)

We note that

vvH= V VH + V vH (5-43)

and consider the matrix

H H H VV)
X(JM,K) s ss - V2(T +vvHIv 2  (5-44)

Flom the unitary character of UM, we have

SS =

Then, using Equation (.-43), we can write



s st (J,M,K)s -s - vH(T+V VH, + v Hv ) I' V

= [IM2 + V2(T +V 1 ) 1 V2 -1

The complex Wishart matrix T can be expressed in terms of e zero-mean complex
Gaussian array W:

T= WW

where

Cov(W) = lj®IJ+K

It follows that

is also a complex Wishart matrix, of order J, and with J + K + M, complex degrees of
freedom. Since the covariance of the V2 component is given in Equation (5-42), we

have therefore shown that

HsX(J,M,K)s = t(J,M2 ,K+M 1 ) (5-45)

Recall that s is M2 x M in dimension, and that M, = M - M2 . In this equation, as in others
which relate generic random variables, the equality sign refers to statistical identity,

or equality of the corresponding probability density functions.

The second property concerns the determinant of an X matrix, which has the
form of the inverse of the GLR test statistic in the signal-free case, as discussed in
Section 4:

IX(JM,K)I = 1/I(J.M,K) . (5-46)

As shown in Appendix 3, by a simple factoring of the determinants,

l(J,M,K) = 1(JM 2 ,K +M 1)1(J.M 1,K) . (5-47)
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This is Equation (A3-63) of Appendix 3, where it is further established that the two
factors on the right side of this equation are statistically independent. The same
applies, obviously, to their inverses, and we can therefore write the determinant of a
general X matrix as a product of independent factors:

Il.(J,M,K)I = LR(J,M 2 ,K+MI)I IZ(J,MIK)I . (5-48)

We resume our discussion of the parameter array estimator, in its whitened

form, and define the estimation error array:

So - Eb60 = •b0- b0  (5-49)

We exclude the special case J = N. because in this situation the adaptive estimator
coincides with the non-adaptive one, as we have already noted. There are no B com-
ponents when J = N, the CM matrix reduces to the identity, and the pdf of the estima-
tion error [see Equation (5-6)] takes the simple form

I -Tr(04) (5-50)
TrNM

in this case.

In general, the expected value of 4 is zero, and its conditional covariance is given
by the right side of Equation (5-16). In terms of RM, we may write it as

COVB(Q) = Ij e (RM1),

and then the conditional pdf of 4 becomes

f(tjRm) = -L IRM" e- C(R.J') (5-51)

This form of the multivariate Gaussian distribution is a special case of Equa-
tion (A1-62) of Appendix 1, and we have indicated the conditioning variables as the
components of R1 itself, since it is only through them that the B components sur-
vive. The unconditioned pdf of t can therefore be expressed as the integral over the
appropriate density of RM:
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f(f) = -L,, f IRe e"T(RU) fB(R;M,J÷4MM+K,N-J)do(R) • (5-52)

This is, of course, the pdf of the whitened parameter estimator array. and it can
depend only on the dimensional parameters of our model.

It is also clear that f({) depends on the estimation error only through the prod-
uct t H ý. In fact, it can depend only on the non-zero eigenvalues of this matrix, and
these, of course, are the squares of the singular values of 4 itself. To prove this asser-
tion, we express H 4 in terms of its eigenvalues Xm as follows:

S4 = UAUH ,

where U is unitary, of order M, and

A = Diag[X1 .... XM].

In the conditional pdf we have

Tr(RM44) = Tr(UHRMU A)

and, of course,

IRMI = IURMUI .

from its definition, we see that X is statistically indistinguishable from U HAU. since
the latter is expressible as an X matrix in terms of VU. which is statistically identical

to V. Thus, the pdf of t depends on e only through A.

If signal mismatch is present, the 4 array is defined by the equation

So= - F E 0 = b0- bA0, (5-53)

so that it still has zero mean. In addition, RM is now a particular example of the

non-central generalization of the X matrix. RM is the inverse of CM, defined in Equa-
tion (5-17), and the non-centrality arises from the non-vanishing mean of the ZB
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array, which is now given by Equation (5-26). The effect of mismatch on the pdf of

the estimator will be discussed later, in connection with a special case in which RM
reduces to a non-central complex (scalar) Beta variable.

If J > M, the matrix f H will have full rank, except for a set of measure zero in
the ordinary Euclidean sense represented by the volume element d(Q). Equation (5-52)
provides a convenient starting point for the study of the unconditioned pdf of 4 in
this situation. On the other hand. if J<M the product 44 H will have full rank, in the
sense described above, and an alternative form of the conditional pdf of t can then be
obtained. This form will be more convenient because it will involve an R matrix of
lower order. To obtain this form, we introduce the array

H / (5-54)

which has the familiar properties

SS H =Ij

s H 4 H (t4 H)- I

S= (•H)L (5-55)

The orthonormal rows of s form a basis in the row space of 4. The orthogonal

complement of this space, which has dimension M - J. is given a basis array r which,
together with s, forms a unitary matrix:

in the standard way. Expressing 4 in terms of s, we have

Trf(RM ( H) = Tr(sRMsH t4H) , (5-56)

and the first property of the R matrices, derived above, may be applied. In the pres-
ent application, M2 = J and M1 = M - J; therefore,

sRMsH = sR(N-J,M,J+K)sH = X(N-J,J,M+K). (5-57)
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Comparing this form with Equation (5-39), we note that J and M have been inter-
changed in the second and third arguments of the X matrices here. We make the

definitions

Rot -(N-J,J,M+K)

RP - (N-J,M -J,J+K), (5-58)

to simplify the writing. Thus,

sRMs = RO

IRM] = lR.1 IRPI, (5-59)

And

f(lR,,,R,) = I__JR je TIrR0 e-'(R_.,H) (5-60)
7T

Since the factors on the right side of the second of Equations (5-59) are indepen-
dent, we can average over R. to obtain a form of the pdf which is conditioned only
on R.. Using Equation (4-36), we have

IR•I = I/I(N-J,M-J,J+K)

N-J M-J

= F 1 xp(J+K+j+m-1',)"
j-1 m-1

All the complex Beta variables in this double product are independent, and it is easily
shown from the complex central Beta density [Equation (A2-12)] that

n+J

When applied to our problem, we get
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S EIRt = h-J J+K+j+m-1
A2 F K J+K+j+m-1

N-J-1 (M+K+j)!(2J+K+j)! (5-81)
F1 C J÷,K+j)!(J+M+K+j)!"
j=0

This evaluation has given us the following expression for the conditional pdf of

the estimation error, valid when the indicated inequality is satisfied:

< I R. i e-r(R- "•) (5-62)
7T i

and the corresponding 'unconditioned pdf of t is then

f(7) = fI R'je-• B(R;J,J+M+K.N-J)dO(R) . (5-63)

It is established in Appendix 3 [see Equation (A3-57)] that

J) (K+j)!(K-M+n+j)! fB(R;M,K+n,J) , (5-64)
I(K-M+j)'(K+n+j)Bj=0

which holds for negative values of n, so long as K - M + n is non-negative. When this

identity is applied to our example, we obtain

+' fB(R;J,J+M+K,N-J) = IRIMJ fB(R;J,2J+K,N-J),

and, consequently, Equation (5-63) can be written in the form

f(m) -L BRIM ( (R;J,2J+K,N -J)do(R). (5-65)
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We have obtained this result under the assumption that J < M. However, it is also
true when J = M, in which case it may be seen that Equations (5-52) and (5-65) differ
only in the argument of the trace operator, which appears in the exponential factor.
But when J and M are equal, 4 is square and invertible (except for a set of zero mea-
sure) in the sense referred to earlier. It follows from Equations (5-55) that the array s,
now square, is unitary. We have already been that such a unitary transformation
may be applied to an R matrix with no effect on its statistical properties, and Equa-
tion (5-56) tells us that interchanging the order of the factors t and ýH in the argu-
ment of the trace is equivalent to subjecting RM to such a unitary transformation.
The determinant of RM is also unaltered by this unitary transformation, as we have
observed already. Equation (5-65) is therefore obtained directly, without the need to
factor the R matrix explicitly, and this completes the proof of our assertion.

The analysis which has led us to Equations (5-52) and (5-65) made use of an
intermediate stage of conditioning (on the B components of the data array) which
was originally introduced in Section 3. This method is particularly appropriate for the
analysis of the GLR test statistic itself. However, another technique can be employed
to obtain a formula for the conditional pdf of the estimation error array. This
approach leads directly to Equation (5-65), but without the restriction on the relative
values of J and M, and it is presented here as an interesting alternative.

We start from Equation (5-13), as before, and write it in the form

b = (eHS-le)-' eHS-IZp = wnZ P (5-66)

where w is a "weight array," given by

w = S-le (eHS- e)-! (5-67)

This array is of dimension N x J, and it has the property that

H

e w = I

We recall that

Zp = ZpS

and that the mean and covariance of the original data array are
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EZ = ebp

Cov(Z) = E .IL . (5-68)

ZP is a complex Gaussian array, of course, with mean and covariance given by

EZp = eb

COV(Zp) = Z®I. (5-69)

The covariance has been evaluated using Equation (AI-44) of Appendix i.

In the new technique, we condition on the Zq array instead of the P components,
and we indicate this by a subscript q- Since

H

the S matrix and the weight array w are fixed under this conditioning. The form of
Equation (5-66) makes this a natural step in the analysis of the statistical properties
of the estimator of the b array. Under the new conditioning, this estimator is obvi-
ously a complex Gaussian array, with conditioned mean and covariance given by

II H H _Eq b w EZp - w eb = b

Cov() I C

where

Cb w H EW

= (eHS-le"I e eH S -Sle (eHS-le)-. (5-70)

The conditional pdf of the estimator array is therefore

f 1 e- T[cb,( - b)(; - h)] (5-71)
fq(b) = _jM ICIM
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The conditioning variables survive only in the matrix Cb. whose statistical prop-
erties we now examine. The first step is a whitening transformation, in which we
introduce the array

o a r-,zq (5-72)

Like Zq. this is a complex Gaussian array with zero mean, but with covariance matrix

Cov(Zo) = IN OIL-M

We also introduced the whitened version of the S matrix:

so = (5-73)

which obeys a complex Wishart distribution, and which, like S, is invertible with prob-

ability one.

Let e0 be a whitened version of the e array:

eo - E-1e . (5-74)

This array is no longer a basis array, and its column space is different from that of
the original e (or a) array. In terms of eO, we have

eHS- e = eHSo-e 0 ,

and

Cb = (eH S eo)-1 e0H S2 e0 (e0 HS1 e0 )-1 (5-75)

from the definition of e0 we nriake the evaluatinn

H H 1 AA
eo eo = e e

which is a positive-definite matrix of order J. We can establish a basis array in the

column space of e0 by the standard prcc'edure, introducing the array
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He-v O(EAA)I/2 (-76)

e,- eoC• T (e eOo'•)' (5-}

This development parallels the introduction of e itself from the original array a. and

we obtain the following identities directly:

H H -1 Hee, = eO(eO eo e0

eo = e.(lA ), (5-.7)

Continuing the analogy, we let f, be a basis array in the orthogonal complement

of the column space of e0 . and form the unitary matrix

UN =el fI (5-78)

We use this matrix to transform and partition the ZO array:

UH =o IeZ 1 A (5-79)
[fiZ ]o bBJ

the matrix SO:

UH S UAB XA XA- AXB (5-80)
UNSOU YBB XBA XBXB

and its inverse:

N~SO UN ,•- BA [ BB -- A (5-81)

According to the third of Equations (5-"7), we have
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H I~ A)/ H I1 e (ZAA)VQ
eo So-'eo ,:(F.AA} el SO el [^^•

and

H~Se (EAA)1/ 4S 2 e (rAA)I/2
eo Soeo el (A}e•So- el (^~'..

Then, substituting in Equatioi. (5-75), we obtain

C (FAA)-/"Z CO (BAA)-, (5-82)

where

CO (eI So e-1  e SH el (eH Soe) (5-83)

We make use of Equation (5-81) to express CO in terms of the new partitioned compo-

nents:

C = (YAA)-I (yAA AA + BASA) (YAA)-I

= Ii + (YAA)I Y AB.IBA (yAA)-l

In view of the identities contained in Equation (AI-8), this expression is equivalent to

2CC = IJ + YAB 'BB YBA

The statistical properties of CO do not depend on the true covariance matrix E. In
fat, they ra;: depend only on the dimensional parameters of tlc problem. We will

caerive these properties shcrLly, but first we wish to express the conditional pdf, Equa-

tion (5-71), in terms of CO. From Equation (5-82), it follows directly that

ICbI = IC0o 0AA 1i` (5-84)

and

m[c_1(ý- b)(b- b)H] = Tr[c-(1&.A)O(;b b)(b- b)H (AA)O 1 (5-85)
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But

(EAA)o (• b) = So0 -b 0 = , (5-86)

according to definitions (5-4) and (5-14), hence we can obtain the conditional pdf of
the f array itself. We can view Equation (5-86) as a change of the variables of integra-
tion, and use Equation (AI-66) of Appendix 1 to find the appropriate Jacobian:

d(b) = "AA1 -M d(f).

Combining these results, we get

_1)

fq( Tj COIM . (5-87)

Returning to the Co array, we define

T YBB = XBXB (5-88)

which is a complex Wishart matrix of order N- J, since XB is a zero-mean complex
Gaussian array, whose covariance matrix is easily found to be

CoV(XB) = INJI'L.M . (5-89)

From this property it follows that T has L - M = N + K complex degrees of freedom. We
also define

_AB ,YBB) (5-90)

which has dimension J x (N - J), and then we can write

CO = lI + V T-_V

V3 is a function of the arrays XA and XB which are, of course, complex Gaussian
arrays with zero means. The covariance matrix of XA is

Cov(XA) = I3@)LM
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We write 71 in the form

V - XAQ.

where

Q -X4 (YBB)-O (5-91)

If we condition on the elements of XB, Q will be a constant array and V will be condi-

tionally Gaussian, with zero mean and conditional covariance matrix

COVB(V) = Ij 0 (QHQ)

using Equation (A1-44) of Appendix 1. The subscript B is intended to indicate condi-

tioning on XB. But

H XBX (410- = IN-J (5-92)

Q Q = (YB XB4 YB~='

hence,

COVB(V) = lj®IN-J (5-93)

The P} array has been shown to be conditionally Gaussian, with a mean array and a

covariance matrix which do not depind on the conditioning variables. Hence, P has

the same statistical properties without the conditioning. and this is now removed.

Finally, we replace V by its Hermitian transpose, making the definition

V = IPH. (5-94)

Then, V is a zero-mean complex Gaussian array, with covariance matrix

Cov(V) = IN ® IJ (5-95)

and Cu can be written

CO = I + vHT-V.
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This is clearly a random W matrix, of the kind defined in Section 4. Its parameters are
determined from the definitions of that section, together with Equations (5-88), (5-89),
and (5-95). Since (N + K)-(N - J) = J + K, we obtain

CO = I(N-J.J.J+K) . (5-96)

The inverse of C0 . which we call R7. is an X matrix:

R 7 -= C0 = X(N-J,J,J+K) . (5-97)

The conditional pdf of 4 is therefore given by

fq(Q) = f(IR,) IR 7  e-Tr(Rv H) (5-98)

and the unconditioned pdf is therefore

f(1) = fIRW c-T(R ) fB(R;J,2J+K,N-J)d 0 (R) . (5-99)

This is identical to Equaticn (5-65), but it is valid for all values of J and M which are
permissible in the general formiulation of Section 1.

Using the apparatus of Appendix 3, it is possible (when J > M) to integrate out the
extraneous variables in Equation (5-51) in order to obtain a formula for the condi-
tional pdf of the elements of 4 4t itself, which is positive definite under this assump-
tion. A similar formula can be derived [from Equation (5-98)] for the conditional pdf
of the elements of tP which is positive definite when J • M. To give expressio, to
these conditional densities, we define the matrices

A -H H

A'-I

The conditional pdf of A then assumes the form

-M: g(AIR) f 1 A RMJ e"Tr (Rb A) (5-101)
M j(A!R ) -r((J)
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and that of A' becomes

J_<M: g(A'1Ry)= ro(M)IA IR Y.MA (5-102)

The associated volume elements are d0 (A) and d0 (k), respectively. As noted earlier, this
is the same volume element used in connection with the Wishart pdf. The normaliza-
tion factor rn(m) is defined in Appendix 3 [Equation (A3-8)]; it is a multivariate gen-

eralization of the Gamma function. The unconditioned densities of A and A' are

expressed as the following integrals:

J>M g(A) IA;-M • { IRe fB(R;M.J+M+K,N-J)do(R)

_! M-: g(' im Rjl~e-Tr(RA') f B(R;J,2J+K,N-J)d0(R) . (5o103)

To get explicit results for the unconditional pdf of the estimation error array, we

must specialize to either of the cases: J = 1, M arbitrary, or M = 1, J arbitrary. We note
that the original parameter array B has rank unity in these situations, and we antic-
ipate that only in these special cases will we find explicit results for the probability of
detection.

We consider the case M = 1 first, and recall that J must be less than N, but is oth-

erwise arbitrary. In this specialization of the signal model, T becomes a row vector

which distributes the signal among the columns of the data array Z with known rel-
ative amplitudes. If Z is post-multiplied by . suitable unitary matrix, r can be con-
verted into a vector all of whose components are zero except the first The value of

this first component can then be factored from r, and incorporated into a redefined

B array. The general problem with M = I is thus equivalent to the special choice

' = [1,0'.... 0]

In this model, the signal is confined to the first column of Z, which becomes synony-

mous with Z P, defined in Section 2. The remaining components comprise the Zq array.

The signal itself is any vector in a given J-dimensional subspace of (0 , and B is a col-

umn vector of dimension J These specific transformations have been mentioned only
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to illuminate the special case at hand; in the following discussion, we do not assume

that they have been made.

When M=1. the X matrix of definition (5-37) becomes a scalar. The relation

expressed by Equation (5-46) is then simply

X(J.1,K) = I/I(J,1,K) . (5-104)

We can therefore make use of Equation (4-17) of Section 4 to obtain the statistical

character of RM in this case:

R, = t(N-J,1,J+K) = I/I(N-J,1.J+K)

= xo(J+K+I,N-J) . (5-105)

The same result can be obtained by specialization of the complex multivariate Beta
distribution, given by Equation (A3-53), which becomes a complex scalar Beta variable
as indicated in Equation (A3-54). from Equation (5-52) we now obtain the uncondi-
tioned pdf of 4 as the integral:

f(4) = p iJpJe-Pt fgi(p;J+K+1,N-J)dp' (5-106)
7T

0

The complex central Beta pdf which enters this formula is defined in Equation (A2-12).
Note that N - J is positive, so there will be no difficulty at the upper limit of this

integral.

The estimation error is a J vector in this case, and A= H f is a scalar, the square
of its norm. According to Equation (5-106), the pdf of t is a spherically symmetric

function in (6J, depending only on A. By setting M = 1 in the first of Equations (5-103),

we obtain the pdf of A directly:

A J-1 p

g(A)-- (J- J1! e-pA fp(p;J+K41,N-J)dp . (5-107)

0

Alternatively, one can introduce spherical coordinates in the 2J-dimensional real space

corresponding to 0J, and then integrate out the angle variables in Equation (5-106).
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The result is a function of radial distance only, and the quantity A is the square of
this radius. The procedure just described is exactly that to which the integration the-
orem, used in the derivation of Equation (5-101), reduces when M = I. It is also the
starting point for our inductive proof of the theorem in Appendix 3.

The integration indicated in Equation (5-107) leads to a confluent hpergeometric
function.2 5 We introduce it here by means of an integral representation:.2

f{ePX fp(p;nr)dp = 1Fl(n;n+m ,x)

0

which is valid when n and m are positive integers. More relevant to our needs is the
formula obtained when the variable of integration is changed from p to 1 -p:

{fe-PX fp(p;mn)dp = ex IF,(n;n+m:x) .(5-108)

0

The effect of the change of variable on the complex Beta density function is to inter-
change its parameters, an obvious consequence of its definition. The process we have
just carried out is equivalent to Kummer's first transformation of the confluent
hypergeometric function. Equation (A2-21) of Appendix 2.

Another property of the complex Beta pdf is

k ~~(n + r-I)' (n +k -1)!
pk fg(p;n.m) = (n-l)!(n+m+k-l)! f(p;n+k,.m) , (5-109)

which is easily verified from tha definition of this function. This formula holds for
negative integral k as well, as long as n + k is positive, and it represents a special case

of Eqi ation (5-b4).

Returning to integral (5-107), we apply Equation (5-109) to obtain
(K +N)! (2J+K)'

PJ fp(p;J+K+1,N-J) = (J+K (+K-N)! fp(p;2J+K+I'N-J) .

and then make use of Equation (5-108). The result is
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(K+N)!(2J+K)' AJ- 1  A
g (J+K)=(J+K+N)- (-)! -A- 1FI(N-J;J+K+N+I;A) (5-110)

The normalization of this pdf can be verified by using the formula

xO_ k!(n+m-1)!(m-k-2)!f xkeX 1 F1 (n;n+m;x)d_ (m-1)!(n+m-k-2)!

0

which holds when m + k >_ 2, and which follows from results already obtained.

If the first argument of a confluent hypergeometric function is -k, where k is a
non-negative integer, then the function is expressible as a polynomial of order k. The
general case is given as Equation (A2-22) of Appendix 2, and, in particular,

IF 1(O;m;x) = 1 (5-111)

If we formally put J = N in Equation (5-110) and use this result, we obtain

AN- -A
g(A) = eN-1)e

(N - 1)!

which is the correct answer. It follows directly from Equation (5-50), with M = 1, when
the integration theorem of Appendix 3 is applied to convert it to a density function
for A.

When M = 1 and J is less than N, exact results can be obtained for the mismatch

problem described earlier. (There can be no mismatch problem when J = N!) As noted
earlier, the expected value of the parameter estimator is altered by the mismatch. ý
always refers to the difference between the estimator and its mean, as given by
Equation (5-53). The quant'ty bAo is expressed by Equation (5-27) and, in the present
instance, the d array is an N vector.

We recall the definition of CM and note that

1 1 + ZB SB Z7
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where ZB is now a column vector, of dimension N -- J, and SBB is a complex Wishart
matrix of order N - J, with L - M = K + N complex degrees of freedom. We have noted
the effect of signal mismatch on the expected value of the parameter array estima-
tor and on the mean value of ZB, given by Equations (5-28) and (5-26).

The method of analysis used to deal with the case M= 1 in Section 4 may be
applied directly to the study of C1 and its inverse RV We write Z8 as the product of its
norm and a unit vector, condition on ZD, and then make use of the property of com-
plex Wishart matrices established in Appendix I. As a result, we may write

N-J

SH - - (5-112)ZB BB Zu J+K+1

J-I

where the vi and wj are independent circular complex Gaussian variables, all with
variance unity. The wj have zero means, but the vi. which are the components of ZB,
have non-zero expected values, as noted above. Thus, the ratio expressed by for-
mula (5-112) is subject to a complex non-central F distribution, with non-centrality
parameter

H Hc r- (EZB)H(EZB) = bBobBo. (5-113)

It follows that R1 is the corresponding complex non-central Beta variable:

Z H 1 ZI xO(J+K+l,N-Jlc). (5-114)
1 B B ZBB

This notation is defined in Appendix 2, and the pdf of the complex non-central Beta is
given by Equation (A2-23). Thus, the generalization of Equation (5-106) is

I1(4) = i-•1 {p~e-p x f•(p;J+K+l.N-J~c)dp .(5-115)

0

Similarly. the generalization of Equation (5-107). the pdf of the squared norm of 4, is
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g(A) = p p e e-pA f(p;J÷K+1.N-Jlc)dp. (5-116)

0

In the present case, we have

J+K+1'++)(+)

fo(p;J+K+1,N-Jlc) = e-' 0 JK__- ( ik (K+ N)!
k (KJ+NK+k)

k=0 K+O)

X ck fp(p;J+K+1,N-J+k) . (5-117)

The required integrations are carried out by the same methods used before. The
exponential factor which occurs in the above formula combines with those already
present in the integrands of Equations (5-115) and (5-116). In the latter case, the result
is

g(A) = (K+N)!(2J+K)! AJ-1 -A-c

(J-1)!(J+ K)! e

J+K+I k

X JZ ( J+K+1) c (JK~ sk) 1FI(N-J~k;,J-IK+N+k+1;A+c) . (5-118)xk=O k )(J+K+N+k)!

When c vanishes, this expression reduces to Equation (5-110).

The covariance of t in the general mismatched case is given by Equation (5-34).
Putting M= 1 in this expression and using definition (5-113), we obtain

Cov(t)= ij e) (K+ N (5-11+)

Since A= 4 H4 , we can apply Equation (A1-42) to compute

EA (K+N+c) (5-120)
J+K

It can be verified directly that this result is consistent with the pdf of A, as expressed
by Equation (5-118). There is, however, a much simpler route in which we start from
Equation (5-116) and write
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00

EA = f (J)' f A PJe-PAf(p;J+K+1,N-JIc)dpdA

0 0

The order of integration is now reversed, which gives us

I

EA =J fp-f(p;JK+1,NJIc)dp

0

Next, we make use of the infinite series representation for the non-central corn-
plex Beta pdf, given by Equation (A2-20) of Appendix 2, which gives us the form:

1

EA = Je-c f q f P- fo(p.J+K+1,N-J+k)dp (5-121)k=O k'"
0

oRom Equation (5-109), we obtain

P_ 1f6(p;J+K+1,l J+k) = K+N+K f#(p;J+K,N-J+k)

and, when this result is substituted in Equation (5-121), the integrals all evaluate to
unity due to the normalization of the Beta densities. The result is therefore

EA = Je"c c K+N+k I (K+N+c) (5-122)F-O k! J÷K J÷K

which agrees with Equation (5-120).

The other special case mentioned earlier corresponds to J = 1, with arbitrary M. We
exclude the case M = J 1 1, which is covered by our previous analysis. We also return to
the matched version of the problem, the analysis of which cannot so easily be
extended to mismatched signals in this instance.

A particular example of the special case now under study is described by a a
array. now an N vector, all of whose components vanish except the first, which is
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unity. 'ilhs form can be attained by pre-multiplication by a suitable unitary matrix.
Signals are now confined to the first row of the data array Z, whose signal component
is an arbitrary row vector in an M-dimensional subspace of ML: the row space of T. As
before, we do not assume that a transformation to this special form has been carried
out.

The estimation error is now a row vector, of dimension M, and its conditional pdf
can be obtained from Eqtvaon (5-98) by putting J= 1. This pdf is a spherically sym-
metric function in (S , honce it depends only on the squared norm of t. We could
obtain the unconditioned pdf of this latter quantity (previously called A') from the
second of Equations (5-103) by integrating over the conditioning R matrix, which is
now a scalar complex Beta variable. However, we prefer to derive the unconditioned
pdf of t itself in this case, because of its relevance to the adaptive nulling problem
mentioned in S -ction 2.

Substituting J= 1 in Equation (5-98), we observe that the quantity R7 which
enters there is a scalar in the present case. Using Equation (5-104) and Equation (4-17)
once again, we obtain its explicit representation as a complex Beta variable:

Rf- = (N-1.1,K+I)= 1/1(N-1,1.K+I)

= xo(K + 2,' 1). (5-123)

The unconditioned pdf of 4 is the integral of the conditional pdf over the density
function of the Beta variable:

f - e-PU fg(p;K +2,N - 1)dp . (5-124)

0

This result also follows directly from Equation (5-99), of course, when the
specialization to 3 = 1 is carried out [see Equation (A3-54) of Appendix 3].

Although the special case M = 1 was originally excluded to assure the validity of
Equation (5-62), the result when we set M equal to unity in Equation (5-124) is correct,
as may be seen from Equation (5-106) (with J = 1), together with the fact that 4 is a
scalar in this case.

The integral in Equation (5-124) can be evaluated as another confluent hypergeo-
metric function, but it is much more useful to view it as the expected value of a
conditional pdf of the row vector ý. Under conditioning by the Beta variable p, this
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pdf is Gaussian, and the elements of ý are conditionally independent with zero means
and variances equal to p- . The pdf of the whitened signal parameter estimator itself
is thus given by

1

fo(;o) f0(;ol P) fp(p;K +2,N-1)dp , (5-125)

0

where

fo(zolp) =(R)He-P(O -b,)(;, -bo)" (5-126)

If we make the definition

a (AA)-_ (5-127)b e HiE;- le

we can express the original parameter array estimator as

ý b ýbO

Then, the joint pdf of the elements of this estimator is

I

f(b) = f f(blP) f (p;K+2.N-1)dp (5-128)

0

where

R 2 \ -Mp(;-b)(9b b)H129

f(blp) = (5-e2( )

Since J= 1. we can a:su-ie that the a vector is normalized to unity with no loss
of generality, in which case a and e are identical. Moreover, let us now consider the
special form of the -r array described by Equation (1-3), in which si7,nals appear in the
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first M columns of the data array Then, b and B are identical [see Equation (2-23)],
and we have the same situation for which the connection with adaptive nulling was
first discussed in Section 2. Equations (5-i28) and (5-129) then describe the joint pdf of

the M outputs of an adaptive nulling systý,m which applies weights based on the Zq
array to the data vectors which comprise Zr.

The marginal pdf of the mth elemcnt of this output vector can be obtained by
integrating out the other components under the integral sign in Equation (5-128). The
result is an integral of the product of the same complex Beta density and a univari-

ate complex Gaussian pdf. This conditional pdf describes a complex Gaussian variable
th 2

with mea:n ,alue bm (the m component of b) and variance equal to ab divided by
p. A "concitional signal-to-noise ratio" can be defined for this variable, in the usual
way, as the ratio of squared rnean to variance. It is given by

ibm!2

SNRO = b p.

Ub

which repi oduces the well-known result of Reed, Mallett, and Brennan,27 in which the

Beta variabi- plays the role of a loss factor.

Quite apart from the detection problem which has been the focus of our atten-

tion in this study, one can use these formulas to analyze the performance of various
algorithms for processing the output sequence of such an adaptive nulling system.
The procedure is first to use the conditional pdf (which describes simple, independent

Gaussian variables) and later average over the complex Beta pdf according to Equa-

tion (5-128). It has been tacitly assume(: that the adaptive weights based on the Zq

array are not changed as they are applied to the sample vectors of Zp. In practice,

such weights are often "frozen" in this way for a brief interval of time, after which

new weights, based on a new array like Zq, are found and applied to a new block of

data vectors. If the "new" Zq and Zp arrays are independent of all the "old" vectors,

then the new adaptively nulled outputs are statistically just like those of the first

blccK and independent of them. In our model, the true covariance matrix is the same

for all the sample vectors in the data array, which now constitutes only one of many

such blocks of data. If we allow this covariance matrix (always unknown) to be differ-

ent from block to block, the only effect on the adaptively nulled outputs will be a

changing value of Cb from block to block. This extension of our original model begins

to accommodate the non-stationarity typical of situations ordinarily met in practical

applications.
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6. THE PROBABILITY OF DETECTION FOR THE GLR TEST

We proceed now to a discussion of the probability of detection (PD) of the GLR

test, beginning with the same special cases for which the pdf of the amplitude array

estimator was analyzed in Section 5. The general method will be to formulate the

conditional PD, given the B components of the data array, and then to remove the
conditioning by averaging over these components. As noted at the end of Section 3,
the conditioning variables survive only through the matrix CM, which enters the
"signal component" V0 s of the V array. For the special cases to be considered first,
we can build on the analysis of Section 4, making suitable modifications to account

for the presence of signals, in order to derive the conditional probabilities of detection.

As we have already seen, when J = N the CM matrix reduces to the identity and there
are no conditioning variables. This case is relatively simple, and it will be therefore be
considered separately.

Let M= 1 and J be less than N, but otherwise arbitrary. In Section 4, the following

expression was obtained for the test statistic:

+ (6-1)
E jwji
j=1

The vi are the components of the original V array, which is a J vector in this case.
The argument which led to this formula remains valid when V contains a signal

component, but the numerator of the fraction here is now a non-central complex
chi-squared variable under the conditioning. In Section 3, we wrote V as the sum of a
"signal component" and a "noise component." After whitening, this representation

took the form of Equation (3-36).

V = V03 + Von *

The subscript zero has been dropped from V itself, but retained on the components.

The noise component has zero mean and, in the present special case, the signal

component is

Vos = bOC-"'2 = bOR (6-2)
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In these expressions b0 is the whitened signal parameter array (a J vector) and R1 is
a scalar, given by Equation (5-105). It follows that

VoHV 0 , = boHboR,

is the non-centrality parameter of the complex chi-squared variable in the numera-
tor of Equation (6-1). We write

p-- R1 = xf(J+K÷1.N-J) , (6-3)

and also make the definition

a aop , (6-4)

where a0 is again the non-adaptive signal-to-noise ratio (SNR). This quantity was
expressed in terms of the arrays in which the detection problem was originally for-
mulated by means of Equation (5-8), which takes the form

a0 = b0Hb0 = rrH (aB)H EI (aB), (6-5)

in the present case. Since M =, oB is an N vector, while T-rH and a0 are scalars. The
new quantity "a" will play the role of a SNR for the conditional detection problem,
and p will act as a "loss factor." When J = N, the same reason-ing is valid. except that
a= a0 . Hence, this special case can be recovered by replacing p by unity in the follow-
ing analysis.

Under the conditioning. the inverse of the test statistic is a complex Beta vari-
able, but now it is a non-central one, and we may write

1/I = xo(K+1,Jla) (6-6)

which reduces to Equation (4-13) when a vanishes The conditional detection probabil-
ity is a cumulative non-central complex Beta distribution, and we can make use of
Equation (A2-26) of Appendix 2 to write it in the form
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ProbB (I > 1o) F# ( 1/1 0 ; K + 1, J I a0 p)

= , K (J+K) (a) (6-7)
1 +Io F- J+k io-1)kck÷i 7

Considering again the case J = N. we see that Equation (6-7), with p replaced by unity,

provides the final detection probability for the GLR test in that specialization.

In general, we must still average over p, which gives us the formula

PD = 1 - K J+l (to -1)kHk+ ! (6-8)J+K E /Jk)1
to k=O

where

1

Hk(y) - EGk(yp)= fGk(yP) fP(P;J+K+1,N-J)dp. (6-9)

0

Substituting for the incomplete Gamma function [Equation (5-12)) and using Equa-

tion (5-109), we obtain

k I

Hk(Y) = f] e-YP p 8f(p;J+K+l,N-J)dp

k-1 f1~ yk- (K+N)'(J+K~m)' yn_.__
m=0 (J+K)!(K+N+m)! m! je-Y fIJ(P;J+K+m+I'N-J)dP (6-10)

0

Prom Equation (5-108), we obtain the final result

k-1 (J+K+m)l y m

Hk(Y) J+K mo (K+N+m). L F(N-J;K+N+m+I;y) (6-11)
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Once again, the formula derived for J< N gives the correct answer when J= N. As can

be seen from Equation (5-111), the confluent hypergeometric function in Equation (6-11)
is simply unity in this case, hence Hk reduces to Gk-

Equations (6-8) and (6-11) provide a complete solution for the probability of detec-
tion of the GLR test in the special case wher) M = 1. These formulas depend only on the

non-adaptive SNR, the detection threshold, and the dimensional parameters of the
problem. The threshold, in turn, is related to the probability of false alarm, which is
given by the cumulative complex central Beta distribution:

PFA = F0(1/10;K+1.J) J+K (I0-,)k (6-12)
0 k=0

which otherwise depends only on the same dimensional parameters. This is the result

previously obtained in Section 4. When a0 vanishes, the Hk functions of Equation (6-8)

aUl reduce to unity, and that equation becomes identical to Equation (6-12), as is easily
verified.

These equations are the basis of the numerical analysis and results of Refer-

ence 4, in which the performance of the GLR test (in this specific case) is compared
with that of a conventional non-adaptive test for the same problem, but assuming

that the covariance is known. It may be seen from Equation (6-11) that the function
Hk depends on k only through the upper limit of the summation, hence these func-

tions can be computed recursively. The confluent hypergeometric functions are well
behaved, since the second argument always exceeds the first as they occur in this

formula. The terms of their series are positive, and they decrease faster than those of

exp(y). The error caused by truncation of these series is easily bounded by the tail of
the series for this exponential. The bound becomes tighter as one progresses along in

the series. Once these functions are obtained, the remainder of the computt.tion of PD,

from Equation (6-8), is quite straightforward.

From Equation (6-12), we can evaluate the derivative;

d PFA = - 2 ff(l/10 ;K+l,J) = (J+K)!' (-,K+I
21 (J-'1)! K! jJ-tK+1d io io lo

which may be used to carry out an iterative solution for threshold in terms of PFA,

by the Newton-Raphson technique. The threshold that is obtained by approximating
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Equation (6-12) by its first term has been successfully used as a starting point for
this procedure.

As long as M = 1, we can evaluate the detection performance in the case of signal
mismatch, paralleling our discussion of the estimation error, from which many of the
results we need can be obtained. The signal component of the V array, given by Equa-
tion (5-25), becomes

V= b0 C-2 = b Rvo

in the present case Thus, the non-centrality parameter of the numerator of Equa-
tion (6-1) is changed to

a = VoIsVOs = bAHbAO R, bAHbA0 p

The non-adaptive SNR of the matched case is now replaced by the scalar

(H Zb -1 H AA

:b-- A - ZAB BBbB) A (bA - EABEB~bB)

According to Equation (5-27). this quantity can also be written

bAH bAO = dHr-le (eHE-le)-l e- d (6-13)

The "loss factor" p is now a non-central complex Beta variable, given by Equa-
tion (5-114). The pdf of p is now ffl(p;J+K+1,N-Jlc), given ecplicitly by Equa-
tion (5-117). and the appropriate non-centrality parameter for this distribution is
expressed by Equation (5-113):

Hc = bH0bBo

The sum of these non-centrality pa-ameters was evaluated in Equation (5-36).
which is a scalar in the present case. We define

81-= TTH DHE'iD = Tr[(DT)HE-'(DT)] (6-14)

and then Equation (5-36) becomes

H H
bAobAo ÷- bBobB0=-` al (6-15)
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Had we modeled our problem differently, so that signal arrays of the form DT were

expected. then a, would play the role of the non-adaptive SNR. In fact, it would be the
actual non-adaptive SNR for a processor designed to anticipate such signals. Fbr this

reason, a, may be called the "available SNR" associated with this signal and interfer-
ence environment.

Since the non-centrality parameters are non-negative, we can make the defini-
tions

bHbAo = a1 cos 20

b~ob = c = asin 2 e (6-16)

and then 0 characterizes the degree of mismatch in a simple way. Thus,

a = a~cos2Ep ,

and the detection probability becomes

PD = 1 - ) Kk(--

k-0O

where

Hk(y) f Gk(YP)f (p;J+K+1,N-Jlc)dp (6-18)

0

Substituting for the complex Beta density, we obtain

J+K+1

Hk(Y)- E (J+K+1 (K+N)'
0= j (K +N +7j)

x .fecp Gk(yp)f#(p;J+K+l,N-J+j)dp

0
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These integrals have the same form as those evaluated before, since the exponential
factor combines with a similar one contained in the Gk function. When these integra-
tions are carried out, and the order of summation reversed, we obtain the generaliza-
tion of Equation (6-11):

Hk(Y) = (K+N) e- k-1 (J+K+m)! ym

(J+K)! e (K+N-+-m)! m!

J+K+I
×E (J+K+1)(K + N+)KNm)! cJlF(N-J+j;K+N+m+j+1;y+c) . (6-19)

When c vanishes, or 0 = 0, this formula reduces directly to Equation (6-11). The PFA for
the mismatched case is. of course, unchanged and is given by Equation (6-12).

Numerical evaluation of the PD from Equation (6-19) presents no new difficulties,
relative to the use of Equation (6-11). The problem of the detection of mismatched sig-
nals using the GLR decision rule has been discussed for the special case J=M=I in
Reference 5 where numerical results are presented, together with an interpretative
analysis cf the behavior of this detector. The parameter E plays a central role in that
analysis.

The other special case considered in connection with the estimation error is
characterized by J = 1 and arbitrary M. We exclude the case J = N by requiring N to
exceed the value unity. The form taken by the test statistic was found in Section 4.
Equation (4-6) may be written

M

iK1+i1 1 (6-20)

Eziwjý2

j=-

which is analogous to Equation (6-I). The vi are the components of the V array, which
is now a row vector of M elements. The denominator here is a complex central
chi-squared variable, just as before, and the numerator is again a non-central com-
plex chi-squared variable. In the present case, the (scalar) non-centrality parameter of
this variable is

a = (EV)(EV)H
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The general expression for the signal component, Equation (3-37), takes the form

Ev = Vo = boC =bMR0 , (6-21)

in terms of the whitened signal array, which is also a row vector in this case. Thus,

a = bH (6-22)

We define the row vector

t -- (b 0bo)-obo,

which is always possible unless b0 itself is identically zero. We expressly exclude this

case, since we are dealing here with the probability of detection. It follows that

bo (boboH•t

and

H
tt 1.

Then,

a boboH tRMtH a0 p . (6-23)

where

a0 = b0 b0H = Tr(boHbo) = a HEa (BT)(Br)H (6-24)

is again the non-adaptive SNR, and

p = tRMt (6-25)

Using identity (5.45), applied to the present situation, we obtain

H
p = tX(N-I,M,K'-1)t = X(N-1..K+M)= xo(K+M+I.N-1) (6-26)
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The identification of this one-dimensional X matrix with a complex central Beta vari-
able is exactly the same as in the study of the estimation error in Section 5.

The remainder of the evaluation is a direct parallel to the previous special case,
but without mismatch. The test statistic, Equation (6-20). is the inverse of a
non-central complex Beta variable, and the conditional probability of detection is
given by

ProbB(I >t 0 ) F6(1/Io;K+1,Mjaop)

_10 __) M / I\p _\ ( -7K+M \M O-lk / 00o10 
k=O

Note that this formula is the same as Equation (6-7), but with J and M interchanged
and K held constant. Similarly, the probability of false alarm is given by

PFA = iM N Kk)1 _ )k (6-28)

This is formula (4-9) of Section 4, and it is also the limiting form of Equation (6-27)
when the SNR tends to zero.

The unconditional PD is therefore

PD = 1 - (KM kO K ( )k (6-29)--- k=o\M+k -tO

where

Hk(y) = fGk(YP) f(p: K+M+lN-i)dp

0

(K+N M-1)! k-1 (K+MIm)! m
--O (V - N-+Mm-103 1FI(N -" K+N+M+m;y).(6-30)(K + M)!I-(-NMml!!
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Recalling the definition of K, it is seen that Equation (6-30) takes a somewhat simpler
form in terms of the original parameter L

- (L-1)! -y k-1 (L -Nm)' Y rn
(L-N)! F (L+-_1)!

If we put N = I formally in this expression, and use Equation (5-111) again, we see that
the Hk functions reduce to the corresponding Gk functions, and the PD formula
reverts to the conditional PD expression, which we have seen to be correct whenever
J=N.

The behavior of the GLR test in the special cases just discussed can be
interpreted in a simple way in terms of familiar radar concepts. If we express the
decision threshold in the form

10 = I + t , (6-31)

then for M = 1 (and J < N) the decision rule based on the test statistic of Equation (6-1)
can be written as

J K+1

v i 2 _> / E Iwj'2  (6-32)
)=I j=1

In this criterion, the vi and wj are mutually independent complex Gaussian variables
of variance unity. The w , have zero means, and

J

Z jEv 1, = a = a 0 p
1=!

Equation (6-32) may be interpreted as the detection criterion of a conventional
CFAR detector, based on K + 1 = L - N samples of "noise," and using non-coherent inte-
gration of J samples of "signal plus noise." The effective SNR for this equivalent
detector is the product of a0 and the loss factor p, which appears in the place of a
more conventional random target fluctuation variable, as these fluctutation models
are frequently used in radar analysis. Unlike the conventional models, our loss factor
is always less than or equal to unity. Due to this effect, the average value of the
effective SNR is reduced and is given by
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Recalling the definition of K, it is seen that Equation (6-30) takes a somewhat simpler

form in terms of the original parameter L:

S(L -1)! k-1 (L-N-om)' ym
Hk(y) =(-N)e = (Lea-l)' m! 1FI(N-1;L+m;Yy)

If we put N = 1 formally in this expression, and use Equation (5-111) again, we see that
the Hk functions reduce to the corresponding Gk functions, and the PD formula
reverts to the conditional PD expression, which we have seen to be correct whenever

J=N.

The behavior of the GLR test in the special cases just discussed can be

interpreted in a simple way in terms of familiar radar concepts. If we express the
decision threshold in the form

10 -= + A , (6-31)

then for M = 1 (and J < N) the decision rule based on the test statistic of Equation (6-1)
can be written as

J K+1Z vi2> ,,,j! (6-32)
1=1 j=1

In this criterion, the vi and wj are mutually independent complex Gaussian variables
of variance unity. The w, have zero means, and

J

J 1Ev 1! = a = a 0 p

Equation (6-32) may be interpreted as the detection criterion of a conventional

CFAR detector, based on K + 1 = L - N samples of "noise," and using non-coherent inte-

gration of J samples of "signal plus noise." The effective SNR for this equivalent

detector is the product of a0 and the loss factor p, which appears in the place of a

more conventional random target fluctuation variable, as these fluctutation models

are frequently used in radar analysis. Unlike the conventional models, our loss factor

is always less than or equal to unity. Due to this effect, the average value of the

effective SNR is reduced and is given by
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Ea = a0 Ep

The mean value of a complex Beta variable is easily derived from the complex Beta
pdf [Equation (A2-12) of Appendix 2]:

E x (n m) = n

rL + MT

and in the present case, which is characterized by Equation (6-3), we obtain

J+K--1 L+J-N (6-33)Ea = ao N+K-l L

There is, of course, no loss when J = N and p is replaced by unity-

Formulas (6-7) and (6-12) are well known in connection with the performance of
conventional CFAR radar detectors. The loss factor is, of course, directly associated
with adaptive detection and its inevitable covariance estimation. It is easy to insert a
target fluctuation model, such as orne of the Swerling models, into the analysis at this
point. The procedure is to replace a0 by ua 0 in the formula for the conditional detec-
tion proba,_ility. The new factor u is a random variable, independent of everything
else, and subject to a pdf which represents the desired target fluctuation model. (In
effect, every element of the true signal parameter array has been multiplied by the
square root of u.) In the Swerling models. u is a complex chi-squared variable, and the
number of its complex degrees of freedom can be related to J, the dimensionality of
the signal subspace, so as to achieve the desired effect in the model. This is analogous
to choosing the number of degrees of freedom in relation to the number of pulses
which are subjected to non-coherent integration in the ordinary application of the

fluctuation models.

To compute the probability of detection using one of the Swerling models, it is

best to average first over the target fluctuation parameter, since this will usually
lead to a simpler formula than Equation (6-7) for the conditional PD. A collection of
such detection formulas, for various fluctuation models, may be found in Refer-
ence 28 The resulting expression is then averaged over the complex Beta pdf to
obtain the final result. The probability of false alarm is, of course, unaffected by the
addition of a target fluctuation model.

The other special case studied ea.lier can be interpreted in an analogous fashion,
and a target fluctuation factor can be added to the model. Our starting point will be
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Equation (6-20), which describes the performance of an equivalent CFAR detector
based on K -1 samples of "noise" and M samples of "signal plus noise." The effective
SNR has the same form as before, namely the product of a0 and a loss factor p,
whose statistical characterization is expressed by Equation (6-26). The average SNR is
now given by

E a =a, K + M +Il - a L±1-NK+M+N L

In terms of L, this is the same as Equation (6-33), with J = 1. Target fluctuation can be
added to the formulation exactly as before, and now the number of complex degreas
of freedom of the variable u must be related to M. In the special case described by
Equation (1-3), so often invoked here for illustrative purposes, M is just the number of
sample vectors for which sig'nal components may be present, arid the correspondence
with ordinary non-coherent integration is quite precise.

In Section 3 we discussed the transition from the adaptive test to the
non-adaptive one in a heuristic way. Now, with explicit formulas before us, we can
sharpen that discussion, at least for those special cases for which we have obtained
explicit results. We consider c..ily the first of the special cases, naniely M = 1, since the
other can be obtained by a trivial interchange of parameters. If we put

NO

- K+1

Equation (6-32) becomes

J •0 K+1

ZIvi 2 - , Etwji2
1=1 j=i

The expected value of the right side of this equa'.ion is just No. and its variance will
tend to zero as K is allowed to increase indefiniteli. The test will then correspond to a
non-adaptive decision rule which takes the form of non-coherent integration of J
samples of "signal plus noise." Making the same substitution in Equation (6-12), and
letting K tend to infinity, we obtain
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PFA (+ X.41 ) IJ-1(J+K >( o k

k=O

which is the standard result for the PFA of such a test, and it agrees with Equa-
tion (5-11), when the substitution M = I is made.

When K tends to infinity, the pdf of the loss factor becomes more and more con-
centrated near the value p = 1. Formula (6-9) suqgests that we should have

Hk(y) K*-.o Gk(y)

in this case. amd this is confirmed by an analysis of Equation (6.11) as K goes to infin-
ity. The detection probability can thus be obtained from Equation (6-7) by replacing p
by unity and substituting for .i. The result is

/ (dO K J,+K, /,0a(Ks1
PD 1 -1 1+ E- '.Jk K+ Gk+l aK +

Passing to the limit on K, the final result may be written

0 X J~k

Lim PD= 1- e ( GkOl(aO)
K-oo k=O (J+k)!

- GJ(>o) + e -\0 [I -- Gk Ja+l(aO)]
k-Jk

This is a well-known IN series representation for the Marcum Q-function, and it is in
agreement with our earlier result for the non-adaptive problem, Equation (5-10). again
with M=1. It follows that the performance of the GLR test will tend to that of a
non-adapLv-. decicsrjr rule as K tends to infinity. This is the same limit, of course, in
whict ;i.! X ample covariance matrix tends to the true covariance.
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In the general case, the rvaluation of the probability of detection presents formi-
dable difficulties. It is not evaluated explicitly here, but somrer general properties of the
exact solution will be derived. We will then review the analysis of Section 4, taking
account of the presence of signal components in the data. This exercise will illustrate
the difficulties of the general problem, and will also provide the basis for a proof of
another useful property of the exact probability of detection.

To deal with this generalization ef:Xctively, some new notation -s required. As
before, let T be a complex Wishart matrix of order J, with J + K complex degrees of
freedom. This matrix can be expressed in the form T=-WW H, where W is a complex
Gaussian array with zero mean. We also let V be a complex Gaussian array of dimen-
sion J x M, independent of W, whose mean value is given by a constant array A, and
whose covariance matrix is the identity. The complete set of definitions is:

EV = A , CoV(V) = lj®IM

EW = 0 , Cov(W) = I®IjO . (6-34)

We now introduce the "non-central"' t matrix, extending the notation used earlier.

6(JM,KIA) M+VHT- IV . (6-35)

Continuing the analogy, we define

X(J,M,KIA) IS(J,M,KIA)-Y (6-36)

and

1(J,MKIA) jI1(J,M,KIA)J . (6-37)

The matrix A can actually be a function of different random quantiti,.s, as long
as these are completely independent of the random variables wh-ch appear in thy
definition of the 1 matrix. A is then the conditional mean value of V, with thlese
"different" random quantities held fixed. More precisely, we can say that V -A is a
zero-mean complex Gaussian array, whose covariance is the identity matrix given
above for the covariance of V itself. This extension of t! ; significance of the notation
is needed in the discussion of the GLR test in the general case.
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The first property we wish to establish is a generalization of the duality between
the parameters J and M, observed first in connection with the PFA, kind noted again
in the study of the two special cases of the present section. To establish this property,
we assume that J is less than M and note that VVH will then be positive definite
(with probability one). We fix the arrays V and T, and introduce the array

6 =- (V vH)V . (6-32)

The properties

H

V =V )/

follow directly. Now let J be a complex Wishart matrix, of order M. with M + K complex
degrees of freedom Like T, the new matrix can be expressed in term3 of a complex
Gaussian array with zero mean. According to the property established in Appendix 1,
the matrix

(g-leH)- I

is also complex Wishart, of or( - J, and with J + K complex degrees of freedom. It is
statistically identical to T, hence we can write

I[I+VTM + VIHI 6-1SHv .

The factor-i in this determinant may be permuted cyclically, as shown in Appendix 1,
so that

IIM+V HT- V = ilj+1- ISH VV HI

= lj 3+(V f V1 ) 6 .6 -1 6 H(V VH) ij 1Ij +V .- I VH .

Finally, if we define

D = V H (6-39)
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we obtain the form:

[II + VHT-'Vj = jIj +V H S-1

where now V5 is M x J and 5 is of order M.

This is the desired duality property, and it may be expressed by the relation

l(J,M,KIA) = l(M,J.KIAH) (6-40)

As in other similar situations, the equality here refers to statistical identity, or equal-
ity of the corresponding distribution functions. The form of the result itself shows

that it is valid regardless of the relationship between J and M. The symmetry between

J and M will be lost when this identity is applied to the conditional detection prob-

ability and the conditioning is subsequently removed, as we have seen in the two spe-

cial cases already worked out.

The non-central 6 matrices exhibit another feature, which will lead us to a useful

general property of the unconditioned probability of detection Let Uj and UM be

arbitrary unitary matrices, whose orders are indicated by their subscripts, and let

T UH T U. (8-41)

It follows that

1 + H -1i (
IM + T V! - Iu+ VT T-1 , (6-42)

and also that

EV = AU" A (6-43)

The unitary transformation has no effect on the statistical character of the T matrix,

and the transformed V array is still complex Gaussian, with the same covariance

matrix as V itself. Only its mean value is changed, according to Equation (6-43). This

yields another statistical equivalence, expressed by the relation

I(JM,K!A) = 1(J,M,KK ) A (6-44)
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We now introduce the singular value decomposition of the A array, writing

A = Uj AOUM . (6-45)

where Uj and UM are unitary matrices of orders J and M, respectively, and Ao is a

diagonal array. The diagonal elements of A0 are the singular values of A, ordered in

an arbitrary way. If we identify Uj and UM with the unitary matrices of Equa-

tions (6-41), we see that

l(JM.KIA) = i(JM,KIA0 ) , (6-46)

in the sense of statistical equivalence. Thus, the probability distribution function of

the random variable l(JM,KIA) depends only on the singular values of the A array.

It is, in fact, a symmetric function of these numbers, since they may be permuted

arbitrarily by a transformation of the kind described by Equations (6-41). The sin ular

values of A are, in turn, the non-negative square roots of the eigenvalues of AA - (If

J > M, this matrix will be rank-deficient, and it will have J - M zero eigenvalues. in

addition to the squares of the singular values of A.) In any case. we can say that the

statistical properties of I(J,M,KiA) depend only on these eigenvalues. In particular.

we can write

Prob[I(J.M,KIA) >1O] 4-,(J.M,K;IO;AAH) (6-47)

where *(J,M,K,x,X) is a real-valued function of the scalar parameters J, M, K, and

x, and of the square J x J matrix X. $ depends only on the eigenvalues of X, hence it is
unaffected if X undergoes a similarity transformation:

X - UJXUH

Now let us apply these results to the GLR test statistic, by identifying A with the

signal component of the V array, V0 s, first defined in Equation (3-37). Then we will

have

A = Vos = boRM

where b0 is the whitened true signal amplitude parameter array, and RM is statisti-

cally described in Equation (5-39) as a central A matrix.
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RM = X(N-J,M,J+ K).

which is completely independent of Von -V - A and T. With this substitution for A,
Equation (6-47) expresses the conditional probability of detection of the GLR test. The
unconditioned PD is obtained, formally, by averaging over the R matrix:

PD= fO(J.M.K;1o;boRbO) fB(R;M,J+M+KN-J)do(R) , (6-48)

where fB is the pdf of the multivariate Beta matrix. This integral is an example of a
general type discussed in Appendix 3 [see Equation (A3-52)].

We now introduce the singular value decomposition of b0 :

b0 = UJPUH, (6-49)

where uj and uM are unitary, and 16 is a diagonal J x M array, whose diagonal ele-
ments are the singular values of bo In terms of f, we have

b0 Rb H = ujfluMRuH 0HU H

We can now make a change of variables in the integral, defining the new matrix

UulH-- (6-50)

The Jacobian of this transformation is unity [it is a special case of Equation (A3-14) of
Appendix 3], and it also leaves the pdf of the matrix R unchanged, a fact we used
repeatedly in Section 5. Finally, the function 4' is unaffected by the application of the
similarity transformation described by up, and we conclude that

PD= fj (J,M,K;10 ;f3RO? ) fB(R'M,J+M+K,N-J)do(R). (6-51)
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This shows that the final probability of detection depends only on the singular values
of b0 . the whitened signal parameter array. The b 0 array depends. in turn, on the
true covariance matrix : and the true signal parameter array b (or the original
array B). The singular values of b0 are the non-negative square roots of the eigen-
values of the matrix bibo. which we have encountered already in Equation (5-8) of
Section 5. We may call it the "signal-to-noise-ratio matrix," and we recall that the
non-adaptive SNR is its trace. According to Equation (5-8), the SNR matrix depends on
-r only through the product TTH. and it is therefore unchanged if T is post-multiplied
by any unitary matrix of order L This fact confirms the invariance property of the
GLR detection probability already observed at the end of Section 2. In the two special
cases for which we have obtained complete performance results, the SNR matrix has
rank unity. The extension of our results to cases for which this matrix has higher
rank remains an interesting challenge.

In Section 4 we derived a formula which expresses the test statistic as a product
of two factors which proved to be statistically independent of one another. This fac-
torization was then iterated, to obtain a double-product representation which pro-
vides the basis for Lhe evaluation of the PFA in the general case. When signal compo-
nents are present, the factorization is still valid, but the factors are no longer
independent, and the conditional detection probability (conditioned on Ru) cannot be
obtained by the methods used for the evaluation of the PFA. The factorization is use-
ful, however, for the proof of a rnonotonicity property of the exact solution which will
now be derived.

Following closely the analysis of Section 4, we introduce a subspace of the vector
space Z # by separating all column vectors into two components of dimension J, and
J 2 , where J1 + J 2 J. We write

V -AJ W -W-. , (6-52)
V2 A2 2

which extends Equations (4-20) to include the mean value array A, introduced in

Equation (6-34). Components of the T matrix and its inverse are introduced, using
definitions (4-21) and (4-22). and then Equations (4-23) and (4-24) are still valid. We

can write

IM+v 2 T2 V2 = V(J 2 .MIJ 1 +KIA 2) , (6-53)
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applying our new notation to the problem, and this equation replaces Equation (4-28)
as a statement of the statistical character of the quantity on the left side. As before,
we put

I•=-(VI - T12 T_' V2) (IM + 2 T22)-22 (6-54)

and

5 (T1 1 , (6-55)

and then we have

l(J,M,KIA) = !M +VH T- 1V'I = IIM+UHqI,11 IIM+VZT1 V2. (6-56)

If we condition on the 2-components, and recall that we are dealing with whit-

ened quantities in the present case, we can compute

E2V -- .4 = AI (I •M vTi V 2 )"w H (6-57)

since T12 =WiW2, and W1 has zero mean. Stretching the notation slightly, we can

express the statistical character of the left side of Equation (6-56) by writing

i(JM,KIA) = 1(J1,M,KI4j) i(J 2 ,M,J 1 +KIA 2 ) • (6-58)

Because .41 depends on the 2-components of V and W, the factors in this expression
are not independent, and this fact is the main impediment to the derivation of an

explicit formula for the conditional probability of detection. Of course, if we had such

an expression, we would then be faced with the evaluation of the integral in Equa-
tion (6-48)1

To obtain the monotonicity property referred to above, we specialize our factori-
zation to the case J = 1, so that A, becomes a row vector of M components. Condi-
tioned on the 2-components, .41 is fixed, and we can write

Prob2 [I(1, M.K1.) K ps] = 4ý(I,M,K;/A;G) , (6-59)

where g is a constant, and G is given by
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=G.1i =A I H T-I - I H* (6-60)

When J, = 1. we have

(1,M,K1•41) = i/xo(K+I,MIG) , (6-61)

which is a direct generalization of Equation (4-18) of Section 4. The extension to a

non-central Beta variable made here is very much like the extension discussed in

detail in Section 5, in connection with the mismatched signal problem. Reference may

be made to Equations (5-112) and (5-114) for details of that discussion. Finally, using

the notation of Appendix 2, we can write

4(1.MK;C;G) = F,(1/p;K+1,MIC) . (6-62)

From the explicit form of the cumulative complex non-central Beta distribution,

given by Equation (A2-27) of Appendix 2, it may be seen that the right side of Equa-

tion (6-62) is an increasing function of G (we will use the term "increasing" here as

shorthand for "monotone non-decreasing".

Now we let

10 to,U = JIM (6-63)

tM ,+V2UT~ V i 1(32'MJ1-+KjA2)'
22'

which makes u a function of the 2-components. Then, in view of Equation (6-58), we

can express the right side of Equation (6-47) in the form of an expectation value over

the 2-component variables implicit in Az and G:

4(J,M,K;Io;AAH) = E4(J 1 ,M.K; w',G) . (6-64)

We have seen that this probability depends only on the singular values of A. We can

therefore assume that A is already in diagonal form, since this can be accomplished

by the transformation indicated in Equation (6-45). Now suppose the two unitary

matrices which appear in that equation are fixed, and that one of the singular values

is allowed to vary, all the others being held constant. Since the order of the singular

values was, in any case, immaterial, we can take the variable one to be the first entry

115



in the diagonal form of A. When we apply the factorization described above, with J1 = 1,
the row vector A, will then have all zero entries except the first, which we may call
a,:

A, = [a, 0...o0

Then G, defined by Equation (6-60). will take the form

(ae)' [10... O)(lM+VH - [I OP

This matrix product is necessarily positive; hence, the left side of Equation (6-62) is an
increasing function of a,. This property is preserved when the expectation indicated in
Equation (6-64) is carried out. We have therefore shown that the left side of that
equation is an increasing function of a, which was an arbitrary singular value of A.

Let A and B be two J x M arrays which have identical singular values except for
one, say a and b. Then, if a<, b, we will have

4(J.M,K 10 ;AAH) < 4ý(J.M,K;10;BBH) , (6-65)

since A and B can be put into diagonal form. with a and b as the first entries in the
respective diagonals, and the result proved above can then be applied. More generally,
let the ordered singular values of A and B be related as follows:

a, 1_ bi , I < i < Min(J,M) . (6.66)

Then, Equation (6-65) is again correct since the singular values can be increased one
by one, changing from the A values to those of B, and the corresponding probability is
always increasing. Inequality (6-66) defines an ordering of J x M arrays, and, in terms
of this ordering, the probability function on the left side of Equation (6-65) is an
increasing function of the A array.

Let bo and b'0 be two whitened signal parameter arrays, and suppose that
0

bo _ b0 , (6-67)

in the sense of the ordering defined above. Let the singular value decompositions of

these arrays be given by the equations

bo= ujuM, b 0 = uý U7 ,
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and let us assume that in both cases the singular values are ordered, say from the
largest to the least. Then. according to the ordering of the arrays. we have

fli -< 7i . 1 < i < Min(J,M) .

From our previous discussion, it follows that we can replace the original signal
parameter arrays by the diagonal arrays fi and y in the expressions for the uncondi-
tioned probability of detection for these two cases. This probability is given by Equa-
tion (6-51) for b0 , and by the same formula (with -y replacing P) for the other case.
The two probabilities are therefore expressible as integrals of appropriate conditional
probabilities over the same complex multivariate Beta distribution.

The conditional probabilities depend, in turn, on the eigenvalues of the matrices
PRpH and yRYH . Let v stand for the smaller of the parameters J and M. Then, the Lv

largest eigenvalues of these J x J matrices coincide with the v largest eigenvalues of
the respective M x M matrices, X and Y, which are defined by the equations

X #R RYH=RRI2 y 1__ RTy HyR1/2.

If v = J. then the eigenvalues of these new matrices will be augmented by one or more
zero values. The difference

Y-X = R'(-/H R/2

is clearly a non-negative definite matrix. In Appendix 1, by an application of the Cou-
rant-Fisher theorem, it is shown that the ordered eigenvalues of X are less than or
equal to their counterparts in the list of ordered eigenvalues of Y. We may conclude
that the ordered eigenvalues of PR i are less than or equal to their counterparts in
the list of ordered eigenvalues of -,Ry H. From this relation it follows that the uncon-
ditioned probability of detection for the signal parameter array bo is less than or
equal to that corresponding to the other parameter array b0. Thus, the probability of
detection is an increasing function of the singular values of the whitened signal

Hparameter array, or, equivalently, of the eigenvalues of the SNR matrix bobO, and this
is the monotonicity property we set out to establish.
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7. A GENERALIZATION OF THE MODEL

In Section I we mentioned a generalization of the basic model of the hypothesis

testing problem. The null hypothesis, which previously corresponded to the complete
absence of signal components, is replaced by the hypothesis that a particular compo-
nent of the signal parameter array is zero, the rest being arbitrary. More precisely,

this model takes the form

H0 : aBy = 0

H, : B is arbitrary (7-1)

The fixed arrays a (r x J) and y (M x t) determine the component of the B array whose
presence or absence constitutes the purpose of the test. We postulate that the rank of

a is r•_ J, while that of y is t< M, and anticipate that these arrays will determine sub-

spaces in TZJ and T M, respectively.

The significance of the model is illustrated by the specific example

C-t 0 Ir

lIt

in which a and y provide direct decompositions of (9 and (6M€ In accordance with

these decompositions. we may partition B as follows:

Bit B12 ]

B21 B22

Then, the test becomes a decision on whether or not B22 is zero, while the other three

components of B may have any values on either hypothesis. These latter components

may be considered to describe "nuisance signals," while B22 describes the "desired

signal" component which may be present in the data array.

To specialize further, suppose that both Equations (1-3) and (1-4) hold, so that the

signal structure itself corresponds to the "canonical form" discussed in Section 1. As

119



shown by Equation (1-8), the signal components are then confined to the upper left
corner of the data array, and the first M - t of these columns contain only nuisance
signals. The remaining t columns which are allowed to contain signals are further
divided into two subspaces (corresponding to B12 and B22 ), of which one contains
desired signals and the other only more nuisance components.

The task of the decision rule in the general case is to detect the desired signals in
the presence of the others, against a background of unknown noise and interference.
A GLR test will now be derived which accomplishes this goal ana which turns out to
have very similar structure to the test studied in the earlier sections of this study. In
particular, this test will have the same extended CFAR property as the former one,
and, in addition, its performance will not be influenced by the presence of nuisance
signal components.

We begin by expressing the null hypothesis in terms of the "normalized" signal
parameter array b, defined in Equation (2-23), writing

aBy = abc (7-2)

where

a - a(a H)- 2

c - (7-3)

To set up the subspace projections, we introduce the basis arrays

a2  (aaH)-1/2a

c2  c(cHc)i12 (7-4)

in the usual way, and note that the null hypothesis now corresponds to the condition

a 2 bcz = 0 (7-5)

The relations
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a 2 a2 = Ir

a = (a a)2 a 2

c2  t

C = 02 (c c)" 2

follow directly. and we work with a2 and c2 from here on, instead of with a and c.
JThe row space of a2 is an r-dimersional subspace of (0 , and we introduce an

orthonormal basis a, for its complementary subspace. (This nomenclature, which uses
the subscript 2 for the subspaces representing desired signals, is arbitrary, but proves
convenient in the later analysis.) Similerly, let cl be an array of basis vectors in the
space complementary to tIhe column space of c2 , so that

,ala• I---- Ijr

H Ha, al - ý 2 a 2 = ]j

Hc, IM-t

H H H
cicI + c2 -- .

Finally we introduce unitary matrices

Uj = UM - Cl c2 1 (76)

in analogy to the matrices

UN le f UL= q

which we will also need.

121



As before, the data array is first decomposed using UL:

zu3• = Izp zqI

where

Zp ZpH

Zq Zq H (7-7)

The ZP component is further decomposed by means of UM:

zp U" = I zpl zp2]

where

Zp-- Z pH cI

Zp H c2  (7-8)

Together, a threefold decomposition of Z L is produced, based on the unitary matrix

IH 
C1 cl

UM UL] Hp (7-9)
0 I1 _q

When applied to the data array, this decomposition gives us the equution

ZU L [z, z zp Zq (7-10)

In a similar way, Uj and UN are combined ýo form a threefold decomposition of ¢IIV.

UN UN [ JH= 1e, e2  f (7-11)
0 INj
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where

He, eal

e2 H- (7-12)

The derivation of the GLR test begins, as in Section 2. with the maximization of
the probability density functions over the unknown covariance matrix. The test sta-
tistic can then be expressed in the form

Min IF(b)I
Ho

Min IF(b)i
H,

where F(b) is still given by

F(b) = (Z - ebp)(7 - ebp)

Onder Hi the array b is unconstrained, while under H0 it is subject to the linear con-
straint (7-5). We begin with the null hypothesis and introduce some notation in order
to accommodate the constraint. Consider the matrix product

a l b c , a l b c 2 ] [ 6 1 ( 1 3

UJbUM = =.(7-13)
Sa2bcl azbcz 1 62 0

by which P, 61, and 62 are defined. The zero component is the result of the constraint,
as expressed by Equation (7-.5). We use the new parameters to express b in the form

b l= 6! 10 U H 6C H + 8 H Pc H (7-14)

where

6 -U • 
,

21
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and, of course,

I, [ fl] = If

The (J - r) x t array # is the analog of B12 in the special example described above,
while 6, which is of dimension J x (M - t). represents the components analogous to both
B11 and B21. The minimization required under H-o is the same as an unconstrained
minimization over 6 and f.

To bring the new arrays into play, we separate F(b) into terms corresponding to
the decomposition of CL by writing

F(b) = (Z - ebp) UL U(Z - ebp)H

= (Zp! - ebcl)(Zp1 - ebc1 )H + (Zp 2 - ebc 2 )(Zp 2 - ebc2 )H + S

where, as in Section 2,

S-= ZqZ H

Using the representation (7-14), we have

bcI = 6

bc 2 = a, (7-15)

and, therefore.

F(b) = (ZpI - e6)(Zpl - e6)H + (Zp2 - e1gf)(Z. 2 - efl)- + S . (7-16)

We make the definition

(zp2 - elfl)(ZP2 - e~f)H + S (7-17)

and proceed to carry out the minimization over 6. This follows precisely the proce-

dure of Section 2. with a result analogous to Equation (2-41):
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Min IF(b)I = g'(6)1 JIM-t + H P Zp1l (7-18)

6 
pI

where

S S e (e S e) eH Sý (7-19)

This quantity appears to depend upon P, but it is actually independent of that array;

hence, the right side of Equation (7-18) will depend on f only through the first of the
two factors. In analogy to Equation (3-12), only the component

f Pf = (f-19f)-1

is non-vanishing, and the evaliation

fS = fH(zp2zp2 + S)f

shows the claimed independence of •. It follows that

Min IF(b)1 = JIM t + ZPI Zp I M
H0 0

The minimization over ^ is the same problem over again, and we can immedi-
ately write

H

Min Is (O)i = I Sl It + ZP2 fZP21,

where 11 is defined by

n- s 1 - SIel (eSSe 1 e I - e H S_1  (7-20)

Combining our results, we obtain

Min IF(b)I = IS! ilM t + Z P1 P Zpl' lit + Z 2 FnZp21. (7-21)
Ho
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The minimization of F(b) under H1 has, of course, been carried -,, in Section 2,

but it is useful to derive the result again, in a slightly different V' -h parallels
the analysis just given. Specifically, we represent b in terms of tv ays, as fol-
lows:

b = 6'cH + P' c2H (7-22)

These arrays are unconstrainied, and their role is to allow the minimization to be car-
ried out in two steps, as was done under H0 . The new expression for F(b) is the same
as Equation (7-16), but with the array el replaced by e itself. The final result is then

Ji , HMin IF(b)[ = ISI JIM-t + zpIPZp~i FIt + Zp2PZp2H ,

HI

where P is the same array which appeared in Section 2:

P - S-S - F L(e HS Ie)1 eHS-1 (7-23)

The two versions of the minimization under H, yield the equation
H H - ii t + }

IIM -f Z PZp I = IlM-t + LPl ZpI l + Zp 2 PZp2 ! (7-24)

which can also be verified directly as an identity involving determinants.

The GLR test statistic now assumes the form

IIt + p2 (7-25)
+ H P Z

lit + Zp2 PZp 2l

which corresponds to Equation (2-42). We note that the component Zp1 has dropped

out of the test completely In the case of the special example described at the begin-
ning of this section, the first M - t columns of the data array would be discarded in
forming the GLR test statistic. The remaining data array components, Zp2 and Zq, are
partitioned as follows:
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r ZN WN]

UN Zp2 Z Iq ~WA
"ZB WB.

The subscript N refers to the "nuisance" components, while the A and B portions are
directly analogous to the corresponding components employed in Section 3. In analogy

to Equation (3-5), the S matrix is also expressed in component form:

SNN SNA SNB

UNSUN SAN SAA SABI (7-27)

SBN SBA SBB

By repeating the analysis of Section 3, using appropriate partitionings of this S
matrix, we obtain the evaluations

Z~PZ 2  BS BB

and

H~n~ H HI SAA SAB ZAISBA S BB ZB

Again, using Equation (A1-9) of Appendix 1, we have

Z H -lZp2 = YH T- iY -I ZBHSBZB , (7-28)

where Y and T are given by

y ZA - SABSB1Z8

T SAA - SABSBSBA . (7-29)
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Substituting these results, we find that

II + ZBSBBZB +Y T- YJ

=+ Zi~t ÷ B SBR ZBI

By introducing the definitions

-t +BS1 ZB

V E Y Ct, (7-30)

we obtain the final result

S= iIt + VH T 1 V' , (7-31)

all in direct correspondence with the analysis of the original model of the hypothesis
testing problem. We note that the components ZN and WN have also dropped out of
the test, so that in the special example mentioned earlier, the first J - r rows of the
data array would also be discarded.

The performance of the GLR test in the more general context of the present sec-
tion is exactly the same as in the original problem, when the appropriate parameter
correspondences are made. To establish these correspondences, we retrace the steps
through the various transformations which have been made, evaluating their statis-
tical consequences. The quantities B (or b) and E now represent the actual values of
these arrays, hence the expected value of the original data array is

EZ = ebp

Recalling the definition (7-9), we have

EZUL eb lC c2 0 .

and, therefore, in view of Equation (7-10), the component Zq has zero mean, while

EZpz = ebc 2  (7-32)

Similarly, from the original covariance property
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CovCZ) = EGIL

and Equation (AI-42) of Appendix 1. we obtain the results

Cov(Zp2) = ZE) It

COV(Zq) = E®ILM

In addition, the components Zq and Zp2 are independent.

The components WA and WB obviously have zero mean, and from definitions (7-11)
and (7-12). together with Equation (7-32). we obtain

"'HE UNZp2; a2 bc2.
0

and, consequently,

EZA = a~bc 2

EZB = 0.

The only component of the actual signal parameter array which can have any effect
on the GLR test is a 2bc2 , which is just the component whose presence is being tested.
The fact that nuisance signals enter into the hypotheses has the consequence that, in
general, only a portion of any signal of the original postulated form aBT will contrib-
ute to the decision to accept H.

In analogy to Equation (7-27), we introduce the components of the transformed
true covariance array:

ENN ENA ENB

S- ~= L A ZAA a .(7-33)

-F'BN EBA EBB-

It follows that
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Cov(z 2 ) =Z t

N ~i~q) 01®I..

If we introduce the notations

Z C Z- I WC WA

ZB J WB

for the surviving components of Zp2 and Zq, we can write

0 01EZc~ fabc} ' EWc = 0

and

CAA EAB 1AA ZAB1

Cov(ZC) ®I , Cov(WC) = ® LM

1 EBA EBB .1 BA EBB

Next, we define the components of the inverse matrix:

-AIA [•AA EAB 1EAA EABI- - ;A ZAF E BEBA EB (7-34)

•BA EBB J BA •B(B4

to complete the parallel with the original problem. Note that the components defined
on the right side of Equation (7-34) are not partitions of the inverse of the full E
matrix.

Finally, a whitened array is defined:

V0 = (iAA)O 2v = Vos + Von, (7-35)

in which the "signal component" is given by
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V (EIAA)l"a 2 bc2Ctw (7-36)

Note that the dimension of V0 is r x t. The whitened T array in the present case obeys
a complex Wishart distribution of dimension r (and with L + J - N - M complex degrees
of freedom) as it did in the original problem.

The rest of the analysis is identical to that of Section 3, whose results apply
directly to the present case with the replacements

b -, a~bc 2

J-,r

M -. t

L -. L~t-M

N -. N+ r-J. (7-37)

With these correspondences, the results obtained in Sections 4, 5, and 6 are also
directly applicable.
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APPENDIX 1

MATHEMATICAL BACKGROUND

Several groups of related mathematical results, most of them well known, are
collected here for reference: they are used freely in the text.

A. LEMMAS INVOLVING PARTITIONED MATRICES

Partitioned matrices occur frequently in the analysis, and we begin with a deri-
vation of some indispensible identities. If A and D are square non-singular matrices,
where A is of order K and B is of order L, then the partitioned array whose blocks are
A, B, C, and D can be factored in two ways, as follows:

C D = [CA- IL 0 D-CA- B 0 IL

'K BD_ [A-BD 1c 'KC 1 (Al-i)= 0 IL 0 CDI D-1C IL

As a direct consequence, we obtain the useful determinant identity

A B I [AlD -CA -'B[ = DIA -BD _'Cl. (AI-2)

The special case

II+BCi =I+CB (A1-3)

is frequently applied in the text.

By inverting the factors in Equation (Al-i), which is a straightforward process,
and then multiplying out the results, we obtain the standard inversion formulas
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A B A- I~ +A- IB(D-CA 1'B)-'CA-' -A 1 'B(D-CA1 'B) 1 *
C D -(D-CA-1 B)-YCA- 1  (D -CA -B)-'

(A - BD -C)-' -(A-BD-'C)' BD-A
(AI-4)

-D-1 C(ABD-'C)-1 D-+D- C(A-BD-CY'-BD- 1

Further, by comparing these expressions, we obtain the generalized Woodbury7 for-

mula

(A-BD-'C)-1 = A-iA-A'B(D-CA- B)-1 CA-' (A1-5)

Another useful identiLy may be obtained, using the first of Equations (Al-i), as follows:

U V[A BD I = (U+VCA1) A(X +A-'BY) + V(D-CA 'B)Y (A1-6)

We often use the notation

Mil M12  - n [ ( )

"M 21  M 22 . M ---- M 22 (A 1-7 )

as a convenient way of identifying the blocks of a partitioned matrix and its inverse.
By applying Equation (A1-4) to M and also to its inverse, we obtain the relations

M" = _iMl M1 22 M2 1)

M11 = M _ MI?(M 2Z)-MI M2

(MI '12 = - M1

-1MI 12 (M22 YM11 M12 -- -•(M 2)- (Al-8)

and so on. A special case of Equation (Al-6) is frequently encountered:
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[U H V H! M-1 = (U - M12 M V)H M1i (U-M 12 M-'V) + VHMIV , (A1-9)

in which we have also made use of some of the relations expressed in Equation (Al-B).

B. MATRIX LEMMAS INVOLVING BIGENVALUES

Suppose the product AB.. .YZ of some number of arrays is square, although
some or all of the factors may be rectangular. Then ZAB... Y is also square, and gen-
erally of a different order than the origina) matrix, as is every other product formed
by cyclic permutation. Suppose the original product has a non-zero eigenvalue A.
There will then be a normalized eigenvector V which satisfies the eigenvalue equation

AB...YZk = N .

Since \V is not zero, the vector Z-0 cannot vanish.

Multiplying on the left by Z, we obtain

ZAB...YZ - XZ=\ ,

which shows that X is also an eigenvalue of ZAB...Y. Thus, X is an eigenvalue of
every cyclic permutation of the original product. Many (perhaps all) of these products
will be rank-deficient, with null eigenvalues supplementing the shared non-vanishing
ones. We may -;ay that these products are "eigenvalue-equivalent" matrices, since
every non-vai .Thing eigenvalue of one of them is an eigenvalue of every other.

The sum of all the non-zero eigenvalues of each of these products is the same.
which is consistent with the equality of their traces. If we add the appropriate iden-
tity matrix to each cyclic product and form the determinants of the resulting sums,
then all these determinants will be equal, a fact which also follows from Equa-

tion (A1-3).

We consider the maximization problem posed in Section 2. We are given a pair of
positive-definite matrices A1 and A2 , of order N, and we are to evaluate

1CHAaliA10'
y MaxH (Al-0)

C !C 'A2o1
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the maximization being carried out over all full-rank arrays a of dimension N x J. We
introduce the positive-definite square root of A? and define

-1 AO a (Al-li)

Then,

uH Bu
y = Max L (AI-12)

Sl ulHu

the maximization b&ing over all N x.J arrays u, of rank J, where

B = -- / A,' AA • AV2

The matrii: u Hu is positive definite, as a result of our rank assumption; hence, we
can introduce the array

uz -u(uu) -v, (AI-14)

which satisfies the relation

H = I . kA1 15)

Since

u =: (uHu) .

we have

4 11 Hlu Bul = Iu ul IpHB•.i

Thus,

y = Max I/.SHB/ZI , (Al-16)
AL

subject to the validity of Equation (Al-15), now viewed as a constraint.
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If the eigenvalues of the positive-definite matrix B are called Xn. placed in
decreasing (or non-increasing) order from X1 through AN. then

y = '\ ...•, (Al-17)

as will be proved below. By the cyclic permutation lemma, the Xn are also the eigen-
values of A(A2)", and this is the property which was used in Section 2.

To prove the assertion made above, !e. the eigenvectors of B be @n' properly
orthogonalized in case of the degeneracy of any of the eigenvalues, and also normal-
ized. If we take for A the array whose columns are the first J of these- eigenvectors,
the constraint will automatically be satisfied and the result claimed for the
maximum will be attained.

Now suppose that A is an array which satisfies Equation (AI-15), and such that

4 > (Al-l8)

We define

M - UH (AIM19)

and note that M is a positive-definite matrix of order J. Let its ordered eigenvalues be

•m, and let Uj be a unitary matrix which diagonalizes M, placing the eigenvalues in
decreasing order, according to

Uj MUj = Diagp 1Y, . -. ,

or

vHBv = Diag[ju1l ..... uj]

where

v - . (A1-20)

Ther.,

IMi = J B = A B ,.../ .j > A1....Xj (A1-21)
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Since the u's and the X's are positive and similarly ordered, we must have

Ak > Xk (AI-22)

for at least one value of k between unity and J. Fixing this value of k, we form an
array 7), of dimension N x k, which consists of the first k columns of v. Then,

77HM7 = Diag[, 1 . I....k], (AI-23)

and, since lJj is unitary,

n H 7 = Ik. (AI-24)

Let S be the subspace of (6 N for which the columns of 77 form a basis, and let 0 be
an arbitrary vector in S. Then,

k

E kirn I em!MH• r=1
x e() == __ _ (A1-25)

0 H 0 k

M= 1

where the Om are the coefficients of 8 in the basis defined by 7:

k

M=1

Equation (Al-25) follows directly from the properties of 7. as expressed by Equa-
tions (AI-23) andl (Al-24). krom Equation (Al-25). we conclude that

Min x(E) = Ak > Xk, (AI-26)

because the gm are positive and in decreasing order. But Equation (AI-26) contradicts
the Courant-Fisher theorem, according to which
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eHo
Max Min ME- fk (AI-27)

s ecs ee

the maximization being carried out over all subspaces of dimension k, and this com-
pletes the proof.

In Section 6 of the text, another relationship between eigenvalues was used which
is a direct consequence of the Courant-Fisher theorem itself. Suppose that A and B
are Hermitian matrices, of order N, and that the difference B - A is non-negative defi-
nite. We can write A<_ B to indicate the ordering of these matrices. If the ordered
eigenvalues of A and B are ak and bk, respectively, then it follows that ak • bk for all
k from I toN.

To prove this claim, we let w be any N vector and observe that

w HAw < wHBw .

This inequality is fully equivalent to the statement that B - A is non-negative definite.
If Sk is any k-dimensional subspace of 0 . then we can certainly say that

wHw wHBw

Min w H < Min H
wcSk WHw LwSk W W

But, according to the Courant-Fisher theorem, we have

wHBw .wHBw

Min w H <Max Min = bk,
wcSk WHW Sk wcSk wHw

where the Max is taken over all k-dimensional subspaces of (I . Thus,

wHw

Min WAw < bkwcSk wHw

and the desired result follows immediately:

ak = Max Min wHAw< bk• (A1-28)
si wrSk W Hw
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C. THE KRONECKXER PRODUCT

In the main text, we dealt with collections of random variables which are
arranged as rectangular arrays. Such a collection may also be viewed as a vector, by
mapping the pair of indices of the array into a single index in some definite way. The
covariance matrix of a rectangular array of random variables will be an array which
is characterized by a pair of double indices, and the use of this mapping will allow us
to establish a consistent notation for such matrices and their products with vectors.

Let Z be an array with components Z., and let the single index a correspond to
the pair (iJ), according to some one-to-one mapping such as lexigraphical ordering.
Then, the Z array can be written as a vector, as follows:

zc. = Zij - C - (i) j) . (AI-29)

We use a lowercase symbol to indicate the vector which corresponds to an array

identified by the same letter in uppercase The inner product of a pair of such vectors
can then be expressed in terms of the original arrays. according to the evaluation

xH y-= E 9y.= EXjyYj- Tr(XH Y) .- (AI-30)
a ij

The notation is extended in a natural way to matrices whose rows and columns are
each designated by index pairs. An element of such a matrix may be written in the
form A(Ij);(kl)' or, equivalently, as

aa,# = A(i.j);(k,|)

where

A general bilinear form in this notation is evaluated as follows.

xH ay = x.a 0 ,pyp (Al-31A
Ij kJI

If the elements of such an array can be expressed as products of the elements of
two other arrays, indexed in the ordinary way, according to the rule
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A(i~j);(k.l) = Bikk Cj.1 - (AI-32)

then A is called the Kronecker product of B and C, and we write

A = (A1-33)

If B is J x K and C is M x N, then A is JM x KN in dimension. The algebraic properties of
the Kronecker product, as an operator, follow easily from its definition. In particular.

we note that

(B®c)H BH BHcH

Tr(B B = Tr(B)Tr(C)

(B1 ®C1)(B 2 ®C2 ) = (B1B2 )®(CI C2 ) (A1-34)

and, if B and C are square and non-singular,

(B®C)-' = B-e C-. (AI-35)

If the square matrices B and C are of orders J and M, respectively, then the Kronecker
product is square and of order JM. Its determinant is given by

IB®CI = IB!M'ICI3  (A1-36)

Finally, if A has the form of Equation (AI-33), the general bilinear form

[Equation (AI-31)] becomes

x Hay = Tr(X HBYCT) , (AI-37)

and, as a special case, we obtain the multiplication rule

(ay), = (BYCT)I.j C, (i.j) (A1-38)
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D. RANDOM ARRAYS

Consider a complex random array Z. of dimension J x M. For simplicity of writing,
we assume that the mean value of Z is zero, since we are interested primarily in its
covariance properties here. Since Z is a doubly indexed set of random variables, its
covariance matrix is automatically of the doubly indexed type, and we make the def-
inition:

[CovMZ)i~j);(k~l) w E ZijjZk.1. (AI-39)

If this covariance has the form

EZij Z1k. = Bi~k Cj.l (AI-40)

then we have

Cov(Z) = B®C. (Al-41)

In this case, B is square and of order J, while C (also square) will be of order M. The
paradigm for this choice of ordering of the indices is the array ZiJ. = bic;, where b and
c are independent random vectors whose covariance matrices are B and C. respec-
tively. The full covariance matrix is, of course, Hermitian, and it can always be
arranged that the factors B and C are individually Hermitian. Then, the identities

EZZH =,BTrC

E ZH = C TrB (AI-42)

follow directly from the definition. More generally, if X and Y are complex random
arrays whose means are zero and whose elements satisfy the equation

E Xij Yk,1 = Dk E;1

then we write

Cov(X,Y) = DOE" (AI-43)
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Now suppose that U and V are fixed arrays, and that the product

Z' a UZV

makes sense dimensionally. If the covariance of Z satisfies Equation (Al-41), it follows
that

Cov(Z') = (UBUH) H (V CV), (Al-44)

More generally, if X and Y satisfy Equation (AI-43) and if

X, = UxXVx

Y = Uy YVy.

where Ux, U V, X. and V y are fixed arrays, then we have

Cov(X'.Y') = (UxDUH) (VH EV) (A1-45)

E. COMPLEX GAUSSIAN VECTORS

In the above discussion, and also throughout the main text, we encounter collec-
tions of complex random variables. In order to fix our ideas and our notation about
such collections, especially about arrays of Gaussian random variables, we review here
some of the basic facts concerning them, beginning with complex Gaussian vectors.
Let z be a column vector of dimension J. whose elements are complex Gaussian ran-
"- variables with zero means. Then, the joint probability density function of z takes

the general form

f(z) = I e-zHriz (AI-46)

where r is a complex positive-definite matrix. With the definition zk = xk + iyk for

each of the elements of z, the volume element associated with this pdf is written

d(z) dXl ... dxjdY...dyj• (A1-47)
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The statistical significance of definition (A1-46) will follow from its expression in terms

of the real component random variables themselves. To derive this form, we consider

the one-to-one correspondence between z and the real vector u, of dimension 2J,
defined by

z [zl...ZjT u M (XI ..... 'x -Y ..... Yj

Let 4 be a complex matrix, of order J, and let

Z' a 4z. (AI-48)

Then, if the real vector co,.-resnoriding to z' is called u'. a linear relationship

u' = Fu (AI-49)

will hold for a suitable, re&i mritrix F. We reparate 4' into real and imaginary parts,

making the definition

4' = (R + ilti (AI-50)

where 4' R and 4ý are real matrices ci order J. Then, a~pl;ing our definitions, we find

that F is expressible in block •or-n. as follows:

F = IR (Al-51)
I1 it IR

This equation establishes a mapping between complex matrices of a given order
and real matrices of twice that order. Under this mapping, the product '24' corre-
sponds to FFj, the inverse 4-1 correponds to F_1 , and so on. If 0 is Hermitian, then F
is symmetric, since 4' R is symmetric and 41 is skew-symmetric in this case. It is also
easily verified that

zH z = uT Fu. (AI-52)

Obviously, each vector z has the same quadratic norm as its real counterpart u.

Finally, by elementary row and column operations, we evaluate the determinant
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IFI = =0 1 OR 01 O R

[ R+ i¢ 0 = - IAI-53)

If Equation (A1-48) is viewed as a linear transformation of variables, applied to a mul-
tiple integral over the volume element of Equation (A1-47), then Equation (Al-53) pro-
vides an evaluation of its Jacobian.

Returning to the Gaussian pdf, we put r = rR+ ir] and make the definition

x,=-I FRF -FI.r, (AI-54)

Thus, F is associated with 2A, according to the mapping just discussed, and r-1 corre-

sponds to 1/2 .44i". Then, from Equation (A1-52) we obtain

z 4 - 1 iT-AtI
zPFl 2= • u .

Since F is Hermitian, Equation (A1-53) yields

IrI-- 12. 1/2  = 2' At11/2 .

Substituting in Equation (A1-46), we find the desired form

1 1 UT At 1 t

f(u) = V2 e -2 (AI-55)

This represents a conventional Gaussian pdf for a real vector u with zero mean value

and with covariance matrix

.4 EuuT (A1-56)

If we put

145



{x] .(AI-s7)
U YX

where

x [x1 ..... Xj] Y [y ...... yj , (AI-58)

then we can write

ExxT ExyT ]

EyxT Eyy T

Comparison with Equation (AI-54) shows us that

ExxT = EyyT r.

and

T T 1Eyx -Exy = P.

Thus, the real variables corresponding to a set of complex Gaussian variables have a

special covariance structure, expressed by the above equations. These relations, in

turn, give us the basic covariance properties of the complex random vector itself:

EzzH _ E(xx T + yyT) + iE(yxT _ xyT)

= r, + ilr = r (AI-59)

and

EzzT = E(xxT_ yyT) + iE(yxT + xyT) = 0 . (AI-60)

Equation (Al-60) expresses the "circular symmetry property," which is a necessary

and sufficient condition for the validity of the complex Gaussian probability density
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itself. Fbr a complex scalar random variable, the joint pdf of the real and imaginary
parts exhibits circular symmetry in the x-y plane.

F. COMPLEX GAUSSIAN ARRAYS

Now let us identify z with a J x M-dimensional array of random variables Z,
according to the correspondence (Al-29). We assume that the mean value of Z is not
zero, but is given by an array Z, and that the associated vector z has a corresponding
mean value. The circularity condition will then be expressed by the relation

E (Z -Z)iJ (Z -Z)k.1 = 0 , (A1-61)

and the covariance matrix of Z will be given, in general, by an expression analogous
to definition (A1-39). The Gaussian joint pdf of Z will be a direct generalization of
Equation (AI-46).

We now assume that the covariance of Z has the special form given in Equa-
tion (A1-41), and we associate the covariance matrix F of the vector variable with the
Kronecker product matrix B ® C" of the Z array. The determinant of this matrix is
equal to the right side of Equation (Al-36), since C is Hermitian, and we make use of
Equation (A1-35) for its inverse. Equation (A1-37) is then used to evaluate the exponent
of the Gaussian distribution, completing the transition from the vector form of Equa-
tion (AI-46) to the desired expression in terms of the Z array itself. The resulting joint
pdf of the elements of Z is

f(Z) = 1 e_ -Tr[ B-(Z-fZ)C-'(Z-Z)H (AI-62)n JM 1BIM 1elJ

The corresponding volume element is written

J M
d(Z) a ]- II d[Re(Zjm)]d[Ilm(Zj.m)]' (A1-63)

j=1 m=1

which generalizes Equation (A1-47).

Consider the linear transformation

Z' = FZG , (AI-64)
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where F and G are square matrices of appropriate orders. Then, according to Equa-

tion (AI-38), this is the same as

z' = az , (AI-65)

where z corresponds to Z, z' corresponds to Z', and a corresponds to the Kronecker

product matrix F ® GT. Identifying Equation (AI-65) with transformation (AI-40), we

conclude that the Jacobian of transformation (AI-64) is given by

laaH I = 1FF ®GTGH E G

Finally, the change of volume element corresponding to this transformation can be

expressed in the form

d(Z') = IFFHIm IGGH1 d(Z) (AI-66)

As an example, suppose that Z is a Gaussian array, subject to the pdf given by

Equation (A1-62), and consider the "whitening" transformation

Z' B-3ZC-t (A1-67)

Inverting this relation, we see that the volume elements are related according to the

equation

d(Z) = I B I ICI Id(Z') .

In terms of the expected value of the new random array.

Z =- EZ' B-" C-0

the joint pdf of Z' is

f(Z') -e Tr [ (Z'-2') (Z'-)H] (AI-88)

This pdf is, of course, coinsistent with the new covariance matrix

Cov(Z') = IJ®elm .
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G. THE MULTIVARIATE CONDITIONAL GAUSSIAN DISTRIBUTION

Let Z be a Gaussian array, of dimension J x M, with expected value Z and covari-

ance given by

Cov(Z) = E E®IM (AI-69)

This special case, in which the columns of Z are independent and share a common
covariance matrix E, forms the setting for the entire analysis given in the main body

of this study. It is also the usual setting for discussions of multivariate Gaussian sta-
tistics in the large literature of that subject. The covariance matrix E is, of course, a
J x J positive-definite matrix, and, with these assumptions, the joint pdf of Z assumes

the form

f(Z) - I e-Tr[E -(z -•)(z -j)] (AI-70)

Let UJ be a unitary matrix, of order J, which is partitioned as follows:

Uj =_ a bI , (A1-71)

where a has dimension J xj, b is Jx k, and j + k= J. Then, a and b are basis arrays in
orthogonal subspaces of (Z . We apply this matrix to Z, viewing the result as a rotation,

followed by a partitioning of the Z array. In analogy to the many similar transforma-
tions used in the main text, we write this operation in the form

UJZ H= - 2 UP H - (AI-72)

where ZI has dimension j x M and Z2 is k x M. As indicated by this equation, the mean

value array Z is also subjected to this rotation and partitioning. The same transfor-

mation is applied to both the rows and columns of the covariance matrix E:

H a H Ea a H I 2 (AE-73)
I bH Eb bH 12b EJ121 22 j-7

and also to its inverse:
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u H E-IUJ = (UIEUJ)-l & aH E- Ia a H E-Ib I- = El E12 . (A-4
SjbH E- Ia bH E- Ib E2' E22I74

These equations serve to define the components of E and its inverse relative to the
pair of subspaces determined by a and b.

We now apply identity (Al-9) to obtain the formula

(Z -Vi) "z-) E j(z 1 -Z1 )H (z 2 --?)"I r-, z

= H .~11 H I A.5Y z 1Y + (Z2 - Z) -2-2 (Z2- Z) (Al-75)

where

Y - £1 2 22 (Z2 -Z2 )(A-)

We also note, using Equation (AI-8), that

E (Ell - £12 £22 £21) (AI-??)

Next, by taking the trace of Equation (Al-75), we obtain

Tr[Z.-'(z -tlrZ -)H] := Tr(EllyyH) + rlr-1( -_ 21(Z2 -k )h •

Prom this result, we obtain the formula

f(Z) d() = f1(ZlIZ 2 ) fz(Zz) d(ZI) d(Z2 ) , (AI-78)

where

= 1kM e -Tr (Z2- 2)(Y- ý2 (AI-79)f2(Z•)- •kIF22ý

and
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f1CZ11Z2) = TrI Me F1 - -q 1:2(A-0
11M~t - E'12 E22 E21 I

The volume elements which appear in Equation (Al-78) are all of the kind defined by
Equation (Al-63), and the Jacobian of the original unitary transformation is, of course,
unity. Identity (AI-2) has been used to f.Actor the determinant of E, and the condi-
tional mean of Z1 which appears in Equation (Al-80) is given by

Z12 =_ E(ZIIZ 2 ) = 21+ Z)22  (Z2 -- Z) - (Al-81)

The corresponding conditional covariance of Z, is

COv(ZlIZ2) -= (Z 1)'I0 ]M . (A1-82)

These formulas are straightforward generalizations of standard results for Gauss-
ian vectors, expressing the pdf of Z as the product of the conditional pdf of Z, (given
Z2) and the marginal pdf of Z2 . The conditional expectation given by Equation (Al-81)
is, of course, the least-squares predictor of Z, (given ZZ), and Y [defined in Equa-
tion (AI-76)] is the corresponding prediction error. The conditional expectation of Y is
zero, and its conditional covariance matrix is the same as that of Zr.

H. SOME PROPERTIES OF COMPLEX WISHART MATRICES

We return to the untransformed Gaussian array Z and assume that its mean
value is zero. The object of our discussion is the J x J matrix

S M ZZH (AI-83)

We also make the assumption that J< M, in which case S is a complex Wishart matrix
of random variables. Ir. accordance with the dimension of the Z array, we say that S
is of order J, with M complex degrees of freedom. The notation CWj(M,Z) is often used
tc describe the distribution of S. In addition to the dimensional parameters, it indi-
cates the covariance matrix shared by the columns of the original Gaussian array
from which S is formed. Whenever Wishart matrices are discussed, it should be under-
stood that the actual covariance matrix of the underlying Z array has the form
expressed by Equation (A1-69).
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A derivation of the Wishart distribution function is given in Appendix 3. We note
here that S is positive definite with probability one, according to this distribution. The
S matrix we have defined here is a "central" c.omplex Wishart matrix, because the
mean value of the underlying Gaussian array is zero. If this Gaussian array has a
non-zero mean value, the corresponding S matrix is subject to a non-central Wishart
distribution. The latter distribution is not explicitly discussed in this study, but some
of the consequences of a non-vanishing mean value for the underlying Gaussian
array are derived later on.

We recall the transformation of Z described by Equation (Al-72) and apply it to
the rows and columns of S. The result is a partitioning of S itself, according to the
equation

Z1 H zJz~ 1 sit s12
H H jU (A? -84)72suI -- 2Z Iz• z sZ1 S221

The diagonal blocks in this partitioned matrix are square: S11 is of order j end S22 is
of order k, according to the definitions used previously. The transformation is also
applied to the inverse of S, and we write

U H -I = 1

u [ S 21 s22  .

We will now show that the matrix

T r (S11)I

is a complex Wishart matrix, of order j, with M - k complex degrees of freedom. In
addition, we will show that T is independent of the matrix block S12 . These properties
are indispensable to the analysis carried out in the main text. Making use of Equa-
tions (Al-8), we cari write

T S11- S12 S2 21

= z1 (I,-H(Z 24yz Z (AI-86)
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Recall that ZI is an array of dimension j x M, and note that a projection matrix
appears in the second line of the expression for T. This matrix is very similar to the
one which occurs in Equation (2-43) of Section 2, and we deal with it in much the
same way.

First, an array analogous to p is introduced:

a ---((Z2Z )- 2 , (Al-B?)

which is possible because Hi a c e ishart matrix of dimension k, with M
complex degrees of freedom. Since M exceeds k, this matrix is positive definite (with
probability one); hence, it has a positive-definite square-root matrix. The properties

at at = Ik
aa=
a ~a = ZH (7, Z H Z2

Z2 = )a (AI-88)

follow directly from the definition of a. The projection matrix ala thus defines a
subspace c- dimension k of (0MV which is, in fact, the row space o! Z2 . Now, correspond-
ing to the q array of Section 2, we introduce an array P, which provides a basis in
the orthogonal complement of this subspace. This array has the properties

H = lM-k

H _= 0

aH01 + ftHP8 = IM (AI-89)

The two rets of basis vectors form a unitary matrix, in analogy to Equation (2-12):

SC I M (AI-90)

Finally, we decompose the array Z1 into further components, according to the
definition
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zIUHM - , [zip (Al-91)

where

Z1. . ZiaH

ZIP Z 9H (AI-92)

Using this apparatus, we find that T has the form

T = ZIgH H ZIHP (A1-93)

We now condition on the elements the Z2 array so that the subspaces, as well as

the bases introduced in them. beccme fixed. For brevity of notption, we will use the

qubscript "2" to indicate this conditioning. The conditional covariance of Z1 (given Z2 )

is expressed by Equation (Al-82), and a straightforward evaluation [using Equa-
tion (AI-44)] now gives us the conditional covariance matrix

Cov 2 (Zip) = (E 1)-I 0(fPH) = (E1 Y*)-l ®M-k . (Ai-94)

Thus, Zip is a zero-mean complex Gaussian array with independent columns, when
conditioned on 22. As the conditioning variables themselves do not appear in any way
in this statistical characterization, we have shown that Zip is a zero-mean complex
Gaussian array, whose covariance is given by the right side of Equation (A1-94) when

the conditioning is removed. Thus, T is a complex Wishart matrix of dimension j. The
number of degrees of freedom of this distribution is M - k, which is the dimensionality
of the subspace onto which #H projects. Since j = J - k, we can say that the number
of degrees of freedom of T is smaller than that of S by the same amount that its

dimension is less than that of S. Taking cognizance of the covariance properties of

Zip, we may say that T has the distribution CW 1(M-kX 11-E 12EE 2 1 ).

The array ZIa also has independent columns, and the two components of ZI are
conditionally independent. To show this, we restore the conditioning on Z2 and use
Equation (A1-45) to make the evaluation

Cov 2 (Zia.ZIP) = (F1)-i ®(aH)- 0. (Al-95)
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Since

Z1 = ZJ ZZ)o= ZH-
2 1 ( 2  ~ 12 (Z2Z 2~

we can write

=H
S1 = Za(z2z DO,

from which it follows that

Cov 2(S 12 ,Z10) = 0. (A1-96)

Under the conditioning. S12 and Zip are zero-mean Gaussian arrays, and the vanishing

of this covariance matrix implies that they are independent as well. Independence
means that the joint pdf of both arrays is the product of the separate density func-
tions. Since the conditional pdf of Zip does not depend on the values of the condition-

ing variables, the joint pdf remains a product of factors when the conditioning is
removed. The unconditioned vdf of S,2 will, of course, be different from the condi-
tional pdf of that array, but S12 and Zip are still independent without the condition-

ing, and it follows that T is unconditionally independent of S12.

If the Z array has a mean value Z, then this array is transformed and parti-
tioned, along with Z, and its component arrays are defined by Equation (A1-72). The
matrix S, defined by Equation (A1-83), is now a non-central complex Wishart matrix. It

can be transformed and partitioned as before, after which its components are
described by Equation (Al-84) above. S is still positive definite (with probability one),

and its inverse can also be transformed and partitioned according to Equation (A1-85).

The T array is defined as before, the subspace basis arrays are again introduced, and
the analysis up through Equation (A1-93) is valid without change.

When conditioned on the Z2 array, the covariance of Z, is still expressed by Equa-

tion (A1-82), but the conditional mean value, no longer zero, is given by Equa-

tion (Al-81). Equation (A1-94) still correctly describes the conditional covariance matrix

of Z1g, but the conditional mean of this array is now given by

EAZ1 I=Z + £1S2 (4Z2-)]I?'

Since
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Hi

Z' = (Z2 Z•)•a 0H=o.

we can write

E2 = Z ip (A1-97)

where

Zi M '1 12 E2_2 z4 (A1-98)

The conditional probability density function of Zip is still Gaussian. but the mean
value of this pdf depends on the conditioning variables through the basis array 1
which enters the conditional mean. This fact destroys the Wishart character of T
when the conditioning is removed. It also precludes the independence of T and S12.
since we can no longer infer independence from the vanishing of the conditional
covariance matrix, although Equation (AI-96) remains valid. In spite of these compli-
cations, the analysis just given is useful in connection with another property of the
Wishart matrices, to which we now turn.

We assume that Z is a complex Gaussian array, with a non-zero mean value,
which is partitioned into components Z, and Z2 , as discussed above. Let UM be a uni-
tary matrix of order M, partitioned as follows:

[M d, (AI-99)

where c is of dimension m x M. d is nx M, and m +n= M. Then, c and d form basis
arrays in complementary orthogonal subspaces of (Sm. We post-multiply the arrays Zi
and Z2 by the Hermitian transpose of Ug, and use its partitioning to define new
component arrays:

zZu UM [ZCH Z~dH] I X2 Y21 (AI-100)

We also replace the restriction J <, M by the stronger condition J < n.
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The transformed Z array is therefore partitioned into four components.

U 1Y (Al-101)

It is also useful to introduce the notation

ZUH [x Y , (Al-102)

so that

The covariance matrix of Z is given by Equation (Al-69). and I , covariance matrices
of the components X and Y are easily found to be

Cov(X) = G)® Im

Cov(Y) E C ln (Al-104)

The mean values of the component arrays X, and X2 are denoted by overbars, and we
assume that the means of Y, and Y2 are zero. Then. we can write

U[u 0 = 0 (Al-105)
X 2 0

This specialization is necessary for the results that follow, and it is also consistent
with the situation which arises in the general problem formulated in the main text.

Making use of Equation (Al-102), we can express the S matrix in the form

= ZZH = XXH + S, (Al-106)

where

SY YYH (Al-107)
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Since Y has zero mean and 3 < n, Sy is a (central) complex Wishart matrix whose dis-

tribution is CWj(nE). and whose inverse exists with probability one. The components
of S and its inverse, after transformation by Up, are given by Equations (AI-84) and

(Al-8S). We make analogous definitions for the components of Sy and its inverse, after
the same transformation:

YHY Y2Y[ Syl, SY12
uj syH ]- (Al-108)yUyj y2y 2 Sy Sy 22

and

Ui SY UIi 21 (l19
ýI 2

By our previous results, the j x j matrix

Ty (S I In- Y2H (Yy)2yly]yI

is a (central) complex Wishart matrix. We define

ay - (Y 2YH) Y2 . (Al-lb0)

which is the analog of a in the previous analysis, and which serves as a basis array in

the k-dimensional row space of Y2. We also introduce the array fy, analogous to P,
which is a basis array in the (n - k)-dimensional orthogonal complement of this row

space. It follows that

HCty ClyH = ik

py pH ik

and that

H H-0ayy + flyfy = In

Finally, in analogy to Equation (AI-93), we have
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Ty (Al-il)

where

HI J 6 (A1-112)

Y10 is a zero-mean complex Gaussian array, whose covariance matrix is

Cov(Y1 P) = (Z 11)-Y ®in-k . (Al-113)

This formula completes the characterization of Ty as a complex Wishart matrix by
showing that it has n - k complex degrees of freedom, and by exhibiting the covari-
ance matrix shared by the columns of the underlying Gaussian array Y18.

The matrix S. formed from the full Z array, is subject to a non-central complex
Wishart distribution. As noted above, we can still introduce the matrix

=T (S'ly1 = z H H - 1 Z~(~ Z]4 H (Al-114)

and the basis array a of the row space of Z2 :

-= (Z2Z2 2 Z2  (Al-115)

Then, we have

T Z1(IM - aHI)Z. (A1-116)

It will now be shown that T can be expressed in terms of Ty, in the form

T = ttH + Ty, (Al-117)

where 4 is a j x m array, independent of Ty, whose statistical characteristics will sub-

sequently be derived. Equation (AI-117) resembles Equation (Al-106), and t (like X) will
have a non-vanishing mean value which is dependent on the components of the orig-
Anal mean array Z.
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To establish this result, we must find a link between the subspace decompositions

described by ay and gy. which relate to the row space of Y2 , and that described by a,
our basis in the row space of Z2 . We define the array

#2- 0 fly IuM.- (AI-118)

in which the null array is of dimension (n - k) x m. We observe that the rows of #2 are
orthonormal:

P, 0 1' 0 fty~ I ] Ii y

Since fly is orthogonal to the row space of Y2 . the extended array [0 fly] is orthogonal
to the row space of [X2 Y2]. Post-multiplication by the unitary matrix UM produces
an array which is orthogonal to the row space of Z2:

ZpH= Z'u LI = [ X2 y2] j 0

-- H -- "2o H = o. (A1-119)
Yfy i~ 2Y Gyy 0

and this relation provides the link we seek. We do not expect, however, that 02 will
provide a basis for the full orthogonal complement of this row space.

The span of a is k-dimensional, while that of P2 is of dimension (n-k). These

spaces are orthogonal but they do not exhaust M M, and there is an m-dimensional
subspace left over which is orthogonal to the spans of both a and 012. Let P, be an

orthonormal basis array in this remaining subspace. so that we have

Ha rx = Ik

H16t f1 = Im

H
0292 ='n-k (A1-12O)

and

H a + 01H91 + P~ H. (A1-121)
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From the latter relation, together with Equation (A1-116), we obtain

T Z,(H# + H H

But

1 2 ZMU H = [X1 Y1I [PH
HY f YIP (Al-122)

in direct analogy to the derivation of Equation (A1-119), and, therefore,

T = HZH + y' yH = X X H + Ty (AI-123)

where

X, H (A1-124)

A similar formula, expressing Y1p directly in terms of Z,, is provided by Equa-
tion (A1-122).

We condition on the elements of the Z2 array, which includes the array Y2 ; thus,
all the subspaces and the basis arrays introduced in them are now fixed. Under this

conditioning, X10 and Ylp are complex Gaussian arrays, the latter with zero mean-
Using definition (A1-124) and Equation (A1-122), we evaluate the conditional covariance

matrices of these arrays:

I ) I ( #$ # H) * = ( r1 1 y1  e lm
Cov 2 (X1 ) = (Ell)-I I .

Cov2 (Ylf) = (E 1)-1' 0662 ') = (F"')-i @In.k

These results are consequences of Equation (A1-82). of course, and, as they do not
depend on the values of the conditioning variables, they remain valid when the con-
ditioning is removed. Thus, Equation (A1-113) (which expresses the unconditioned
covariance matrix of Y1,) is recovered, and we also have

Cov(XIO) = (E l)y- I)m (A1- 125)
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Since #I and 92 are basis arrays of orthogonal subspaces, we see that X1. and Yle are
conditionally uncorrelated:

CovZ(X1 f.Y1O) = (l)-, @(#Ai5 = 0 (Al-126)

This equation implies independence when the conditioning is removed, since the con-
ditional probability density function of Y1p (which has zero mean) does not depend in

any way on the values of the conditioning variables. Thus, Ty itself is independent of

It remains only to discuss the mean value of the array X1# and to identify the
array t to complete the proof of our assertion, expressed by Equation (Al-117). We

begin with the conditioning on Z2 in effect, and, from definition (Al-124), we obtain

E2 X19 = (E2 Z 1) f

Equation (Al-81), which is applicable to the present analysis, states that

E2 ZI ZI +i 12 E22(Z 2 -Z 2 )

Sin(c

-,6 (Z2Z2)"a~ 91 0,

we obtain

E2 X1 P =ý - E12 Y22 Z2 ) 91 ,(Al-127)

in direct analogy to our earlier discussion of the effects of a non-zero mean value on

the properties of Wishart matrices. Fbllowing that discussion another step, we make
the definition

XI - E12E22 X2 (Al-128)

From Equations (AI-I00), we deduce that

(I-E,- E 2  ?) UM = 0
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since the Y-components have zero means. Combining these resailts and recalling
Equation (A1-99), we obtain

E X = 0 UMf #1 = (AI-129)

The XI# array is of dimension jxrm. We let WVm be a unitary matrix, of order m,
which will be precisely defined later. This matrix will be a function of the condition-

ing variables, but it is constant under the conditioning. We also define t in terms of
W'M, as follows:

TH (Al-130)

Obviously, we have

T = tH + Ty (AI-131)

so that the form of this representation of T is not affected by the choice of Tm" t is
a Gaussian array under the conditioning, with the same covariance matrix as X10.

The conditional mean of t is, of course,

E2 4 = Xc 1 WM

Let us put

Sc I (AI-132)

and observe that t is a square matrix, of order m, since c and • are both of dimen-

sion m x M. We now evaluate

H H HS@= c•H• c

Making use of Equation (A1-121). we have

H= H
=ý c(IM -2 2 - aHa)

and, from definitions (AI-99) and (A1-118), it follows that
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H= 1m 0] U = 0 0 -.

We have therefore found that

HH H

-z(Z 2z!) 1 Z2c

The fact that cc H= I follows from the unitary character of UM. From Equa-
tion (Al-*C0), we now obtain

H H XXH+'Pk=IM - X2 ( 2X+ Y2y2HY
1 X2

[Im + XH(A3)

the last Etep being an application of Equation (At-5).

We define

Cm =Im + x(Y 2 Y2)-I X2 . (Al-134)

so that

H -I

and observe that Cm is a positive-definite matrix, which is constant under the condo-
tioning. It foliows that V is non-singular and that

(VI • • )-"2

is unitary. We now make the deferred choice

PA/ ..-= (* H)-,z V .(Al-135)

and we find that
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H -- V - C-1P ¢ m = ( V IP - C .

Finally, we obtain the desired form

E2• VW- = R, C- 0 x Al-136)

The conditioning variables survive only through the matrix Cm, whose statistical
character (when the conditioning is removed) we now investigate. Y2 is a zero-mean
complex Gaussian array, whose covariance matrix is

Cov(Y 2 ) = E220Ir, ,

in agreement with Equation (A1-79) Therefore,

S = Y YH (AI-137)

is a complex Wishart matrix, of order k, and with n complex degrees of freedom. In
the notation used earlier, its distribution is CWk(n, 22). The X2 array is also complex
Gaussian, independent of Y2, with mean and covariance arrays given by

EX 2 = X2

CoV(X 2 ) = E22 ® Im

We have shown that T can be expressed in the form given in Equation (Al-117),
where the t array is staListically independent of the complex Wishart matrix Ty. We

have also seen that 4 is conditionally Gaussian, with conditional mean value

E( I CM) = cw.(Al-138)

dnd with the unconditioned covariance matrix

Cov(Q) = (E1l1y-I limn (A1-139)

We can express these properties in a convenient way by making the definition

t,= 4 "1 n , (AI-140)

165



where

X CV(A1141)

Then. t. is a zero-mean complex Gaussian array, with covariance matrix

Cov(tn) = (Ell m ., (Al-142)

and the three quantities Ty, (n. and ýs are statistically independent The statistical
characterization of e, is provided by the definitions (Al-141). (Al-128). and (A1-134),
together with the properties just established for the complex Gaussian arrays X2 and
Y2.

The matrix Cm belongs to a family of complex random matrices which are gen-
eralizations of the 1 matrices introduced in Section 4. The generalization lies with the
fact that the X2 array has a non-zero mean. A special case of this generalized 1
mpatrix was discussed in Sections 5 and 6, in connection with the presence of "signal
mismatch," a feature introduced in Section 3. The 6 matrices are also discussed in
Appendix 3, where their relation to the complex multivariate F and Beta variables is
established.

As an application of these results, consider the ratio

IT _j IaH s~ al _ IsaHS•laI
S=ITyl 8 H :a Ia H(Sy+XX 1 al (AI-143)

This quantity has exactly the same form as one of the versions of the GLR test sta-
tistic, obtained in Section 2 and expressed by Equation (2-56). Using Equation (A1-131),
we can wlite

4(ITyl = 'II + ( T•j I (A1-144)

which is directly analogous to Equation (3-15) of Section 3. With the appropriate iden-
tifications of terms, we can therefore use the results obtained here to derive the sta-
tistical properties of the GLR test, starting from Equation (2-56) and leading to Equa-
tion (3-15), with "signal mismatch" included.
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APPENDIX 2

COMPLEX DISTRIBUTIONS RELATED TO THE GAUSSIAN

We introduce here the complex analogs of the chi-squared, F, and Beta distribu-

tions. In real-variable statistics these distributions are usually treated as a family,
based on their definitions in terms of real Gaussian vector variables. The complex dis-
tributions bear the same relationship to one or more complex Gaussian vectors of the
kind discussed in Appendix 1.

Let u be a complex Gaussian vector, of dimension n, with zero mean and covari-

ance matrix In. The components of this vector are independent, with "complex vari-
ance" unity;

Eju I = 1.

Each component represents a pair of independent real variables, both of which have
mean zero and variance one-half. The scalar

n

y- UH u = Tr(uu") - • u 12 (A2-1)
i-i

will be called a comple,, chi-squared random variable, with n complex degrees of free-
dom. This usage d'ifers from that of real-variable statistics, where 2y would be called
chi-squared, with 2n degrees of freedom.

The pdf of y is given by the familiar formula

fx(y-,n) = (n-1!eY,(A2-2)
(n-l)!•

The cumulative distribution function of y is I - Gn(y), where

n-i k
G,(y) = f,(y';n)dy' = e-y E . (A2-3)

J k=0 k

y
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This function, which appears elsewhere in the analysis, is the incomplete Gamma
function. 25

When the means of the underlying Gaussian vectors of any of these distributions

are zero, the corresponding distribution is called "central." The non- central complex
chi-squared variable is still defined by Equation (A2-1), but the mean vector of u is no
longer zero. The non-central complex chi-squared pdf depends on this mean only
through the scalar "non-centrality parameter"

n
E Euj = (Eu)HEu . (A2-4)
i=1

The corresponding pdf is

fX(y;n c) = ey-C (y/c)(n-1)/z In -1(2v) , (A2-5)

which is well known in radar detection theory. In this formula, In is the modified

Bessel function, and the series obtained from its definition,

n n!? Xk

n. 1n(2V• = __ = °F 1(n+1;x) , (AZ-6)
x/ k- (n +k)! k!xn/ k=0

is a hypergeometric function. Thus, Equation (A2-5) may be written in the form

fX(y.nic) = fX(y;n) e-c 0 F1 (n;cy) . (A2-7)

The cumulative non-central com ex chi-squared distribution is, of course, directly
related to the Marcum Q-function.

The ratio of two complex chi-squared variables obeys the complex F distribution.
Le.t u be a zero-mean complex Gaussian vector, as before, and let w be an independent

complex Gaussian vector, of dimension ni. The mean of w is also zero, and its covari-
ance matri:x is Im. The ratio
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n

u Lu l=_
x -- =i (A2-B)

j=1

will be called a complex central F random variable. We signify this by writing

x = xF(n.m) .

The symbol on the right is a generic designator. rather than a specific random vari-
able. The pdf of the complex central F variable follows easily from the standard for-

mula for the pdf of a ratio of random varitbles:

00

fp(x;n.m) fJ fX(xy;n) fx(y;m)ydy

0

(n + m -1) xn- (A2-9)
(n - 1)! (in - 1)! ixnm

The complex central Beta variable is closely related to the F variable. If u and w
have the same meanings as before, then

n

P =n i=___= 1 (A2-10)

i-I J,1 U u

will be called a complex central Beta random variable. We use the generic notation

p = xp(nm)

to signify this statistical character. From Equation (A2-10), we obviously have

xp(nm) = (A2-11)
I + xr(m, n)
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Observe the transposition of parameters in this relationship, which occurs because we
have retained some of the conventions31 of real-variable statistics in making these
definitions. The pdf of the complex central Beta is obtained from that of the complex
central F by a simple change of variable:

(n+m-1)' pn,(_~- AoZ
fp(p,.n,m) = (n---'(m- 1)! n (A212)

The cumulative complex central Beta distribution is defined as

p
Fp(p -,n. T) f jf (p'; n, m)dp' ,(A2-13)

0

and it is given by28

Fp(p;n.n)= ,0 r+m-1MI _ ~ - ~

rn-I
1 - fp(p;n+m-k,k+l)

rnI~n k=O

-1E fp(p;n-k;m+k+l). (A2-14)
M+n k=O

This result is easily verified by repeated partial integration, proceeding directly from

definition (A2-13).

The cumulative complex central F distribution is defined in a similar way:

FFXnm (A2-15)f Fx

0

In view of Equation (A2-11), we have

FF(x;nm) 1 - Fp(l/(l+x);m,n)
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from which we obtain the analog of Equation (A2-14):

___n_____ n -1' k
xn , -E ( n+m-i )x (A2-16)

Fp(x'n, m) + (lx)n+ml k=0 nn+k "

The non-central complex F variable is still defined by Equation (A2-8). but the
mean value vector of u is no longer zero. Being the ratio of a non-central complex
chi-squared variable to a central one, the non-central complex F distribution can
depend on the mean of u only through the non-centrality parameter c, defined in
Equation (A2-4). We use the generic notation

x = xF(n, m Ic)

for this random variable. Its pdf is evaluated from the integral

00

f F.(x;n,mlc) 1 ffx(xy;nlc)fx(y;m)ydy (A2-17)

0

by substituting the series (A2-6) in the non-central complex chi-squared density, and
performing the integration term by term. The resulting series is recognized as a
confluent hypergeometric function:

fF(x;n.mlc) = fF(x;n,m) e 11F7[n+m;n;cx/(I+x)] (A2-18)

The non-central complex Beta variable is defined by the generic relation

I
xnmi,-1xp(n~mlc)=x~~q~i m )=14 xF(m,n~c)

and its pdf follows directly from Fquation (A2-18) by means of a change of variable:

fis(p;nmlc) = fp(p;n,m) e-c 1F[n+m;m;c(1-p)]. (A2-19)

In order to make connection with the notation of real-variable statistics,3 1 we must
recall that the real dimensional parameters corresponding to n and m are 2n and
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2rn, respectively, and that the real non-centrality parameter is 2c because of our con-
vention for the variances of our complex Gaussian variables.

If the defining series for the confluent hypergeometric function25 is substituted
in Equation (A2-19), the non-central complex Beta pdf assumes the interesting form:

O k

fp(p;n,mlc) = e-c fp(p;nr-m+k) c-. (A2-20)

This distribution can also be expressed in finite form, by making use of some
well-known properties of the confluent hypergeometric function. First, the Kummer
transformation2526

1Fl(n:m;x) = ex IFI(n-n;m;-x) (A2-21)

is applied to Equation (A2-19), which results in a hypergeometric function whose first
parameter is a non-positive integer. Functions of this kind reduce to polynomials.
according to25,26

nF'(-n-m:x) L n! (mr-k)! (-x)k (A2-22)
k--0

provided n 2 0. Combining these facts, we obtain the result

fp(p;n~rnjc) = fep~n~m~e- -1 \k/ (Mk-1)'k k
k=0

= ecP ()(n+mr -l)) k fY (p;n;m+k) . (A2-23)

A similar expression can be derived for the non-central complex F distribution:

fp(x;nrmc) = fF(x;nm)e'C/(1+x) ( (mn) - .k (A2-24)
k17
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The cumulative non-central complex Beta distribution is defined by

p

Fp(p.n.mIc) f f ffi(p';n.mlc)dp' (A2-25)

0

We substitute Equation (A2-20) in the integral (A2-25) and use Equation (A2-14) to

evaluate the typical term:

m+k-n

Fp(p-. n.m -,-k) = n+m+k1 E (n+m .+k-1(b)
j=o J /

- i - l~( 1  P)mn+k z:(n+m+k 1)1- pI
= j+m+k pFl

Combining these reslts, we find

F,(p,n,m;c) = 1- e-'pn-l-p)m

00 I,..(I 
n- 1 i - ý

-Z knEj+m+k -pJ
k=O 1=0 k )

Reversing the order of summation, we again recognize the series as a confluent

hypergeometric function, and thus

Fp(p-.n,mjc) = 1 _ Pn- l(1 _P)rn z (n+m-1): ' LPV
n-0 (n-j--1)!(j+m P J

X e -C 1F[n+m;j+m+l;c(1-p)] .

The 'ummer transformation can be applied once more, and, with the help of Equa-

tions (A2-21) and (A2-22), we obtain

-oP n-I n- n1 n,+m-1) (cp)k I- ~~
Fp(p;n,mlc) = 1 - e p (-(l-p), E .j+m+k k i

j=1 k7O3
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The summation indices are now changed by introducing the sum j + k as a new index
in place of j. The new index is then called k, And the incomplete Gamma function
[Equation (A2-3)] is introduced. The result is

Fp(p:n.mrc) = I - pn-l(1-p)m ( k+m )( )k G 1(cp),(A-26)

k=-O

or, finally,

Fp(p;n.mjc) = 1 - n f•(p;n-k,m+k+1) Gk+l(cp). (A2-27)n+m Ef~~-~~~'G+(Pk=O

When c is zero the Gk functions are all equal to unity, hence Equation (A2-27) reduces
to Equation (A2-14).

The cumulative non-central complex F distribution:

X

FF(x;n,mic) f fF(x';nmlc)dx' (A2-28)

0

is obtained from that of the non-central complex Beta by the same procedure used in
the central case. We have

FF(x;n.mlc) = 1- F1[l/(1+x);m,nlc]

rn-I

n~ + E f4[1/(l+x);m-k,n+k+l]Gk+I j1 -n+m k=O

and, finally

FF(X;n,mlc) x (lxnml k=•O n•- -kG+( A-9

When c = 0, Equation (A2-29) reverts immediately to F'uation (A2-16). In Reference 5,

formulas (A2-20), (A2-23), and (A2-.29) are derived by a different technique, starting

directly from the Gaussian distribution.
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APPENDIX 3
INTEGRArION LEMMAS AND INTEGRAL REPRESENTATIONS

In this Appendix we discuss the properties of certain random matrices from a

different point of view than the one employed in the text. Some results obtained
already are re-derived, and some new ones (needed in the main analysis) are derived

here. The approach is based on a general technique of multiple integration, which is
applied to derive the multivariate generalizations of the complex F and Beta distribu-
tions. This technique also provides a very direct derivation of the Wishart pdf itself.

The analysis is confined to the "central" case, in which all the Gaussian arrays which

appear have mean values of zero Specific applications are made to the GLR test sta-
tistic, in the special case in which no signal components are present.

In Appendix 1 we discussed some properties of multiple integration in which the
variables of integrat on are the complex-valued elements of an array. This array is

generally rectangular in shape, and the volume element is called d(Z). The dimension-
ality of the underlying real space is twice the number of elements in Z, and integra-
tion is carried out with respect to the ordinary Euclidean measure in this space. The

fact that we describe the integration variables in terms of a complex array Z has no
impact on the character of integration in this case. The integration technique we

introduce here is based on another space, whose elements (points) are Hermitian
matrices of order J.

Let A and B be J x J Hermitian matrices, and let x and y be real numbers. Then,

the Hermitian matrix xA + yB is also a point in our space, which is therefore shown
to be a real vector space. We introduce an inner product in this space, as follows:

[A,B] - Tr(AB) . (A3-1)

It is easily verified that this definition satisfies the requirements of an inner product

in a real vector space. In particular, it is a symmetric function f A end B as a result

of an elementary property of the trace operator which we have frequently utilized.

The squared norm of a vector in the space is given by

a
IAl 12 [= A]= JA ,A2  (A3-2)

i..j=l

which is one of the several norms commonly used in connection with matrices.
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A Hermitian matrix of order J is described by j2 real numbers, hence the new
2

space is of dimension J . We can map its points onto a real space of J2 dimensions, as
follows. Let the real variables a ... aJ be equal to the diagonal elements of the Her-
mitian matrix A:

a, - A < j < J (A3-3)

and let

aj÷1 + iaj~p ,2Iz AU (A3-4)-

Continuing in this way, pairs of real variables are defined in terms of the remaining

complex elements of A which lie above the main diagonal. The reason the square root
of 2 is included in these definitions will become apparent shortly.

Let. A and B be Hermitian matrices, and let a and b stand f)r the real vectors, of

dimension J2, which correspond to them according to the mapping just defined:

A (-- a, B --* b.

Then, we can evaluate the inner product of A and B in terms of a and b, as follows-

J

i,j=l

J

- B + (A B * + AB.J)
j=1 I <i<j<J

J2

ajbj = (a,b). (A3-5)
.I=1

The last form is the conventional inner product in the real space which contains a
and b. We have shown that the mapping defined above preserves inner products. and
thus also norms, with our definitions of these quantities.

The mapping is now applied to sets of points in the two spaces, and then used to
define a measure, i.e, a definition of integration, in the space of Hermitian matrices.

The measure of a set in the latter space is defined to be proportional to the ordinary
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Euclidean measure of the corresponding set in the real space of dimension J2 . In the
latter space, the volume element of integration is given by

dV =- dalda2 ... dajz ,

and in the new space it will be taken to be

J
d(A)= H d(Akk) H d[Re(Ai.i)]d[Im(AJ )]. (A3-6)

k=1 1<_i<j<_J

We therefore have

dV = 2J(J-1)/2d(A)

and this relation establishes the proportionality constant between the two measures.
In the analysis to follow, we will limit all integrals in the new space to the subspace
of Hermitian matrices which are non-negative definite. This restriction will be indi-
cated by the use of the notation d0 (A) for the volume element of integration.

The two integration concepts are closely related, as shown by the following prop-
erty. Let Z be an array of variables, of dimension J x M. ..here J e, M. Then, if S is any
well-behaved function whose argument is a square matrix, the identity

9(ZZH)d(Z) Y ,JM f(S) IS I" d 0(S) (A3-7)

holds, so long as the integrals themselves exist, where

r j(K) = (l - }/2 fl r(K-j}) (A3-8)
j=0

This quantity, which is a generalization of the Gamma function, will appear fre-

quently in the following discussion, and we note that r1(K) = r(K).

The integration identity can be derived directly from geometric considerations,

and a detailed exposition of the theorem (for the case of real variables) may be found
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in Chapter 2 of Reference 10 which contains further references to the literature. We
give an inductive proof for the compl-zx case later in this Appendix, using only ele-
mentary matrix methods. These are, in fact, the same methods of projection and par-
titioning which are utilized repeatedly in the main body of this study. Before pro-
ceeding with this proof, we first show some of the consequences of Equation (A3-7),
beginning with a derivation of the Wishart pdf which is simpler than the conven-
tional procedure.

15

Let Z be a complex Gaussian array, of dimension J x (J + K), with mean value zero,
and with covariance matrix

Cov(Z) = IJ®IJ+K

where K Ž 0. Then, the expected value of an arbitrary function of the product

T =_ ZZH

can be evaluated as the integral

E Y(T) = J(J K)J (zH) e-lr(ZZ") d(Z) (A3-9)

taken over the pdf of Z. The latter is a special case of Equation (A1-68) of Appendix 1,
with the mean value replaced by zero. Applying Equation (A3-7) to this integral, we

obtain

E5(T) =(S) ISIX e--K(S) d°(S)

It follows immediately that the joint pdf of the elements of T is the complex Wishart

density

fw(T;J,KII) = I(J a+K) ITIK e-Tr('T) (A3-10)
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This notation (which is not standard) is chosen to exhibit the complex Wishart pdf as
a direct generalization of the complex chi-squared distribution. In the present case.
the matrix dimension is J and the Wishart density has J + K complex degrees of free-
dom. If Z has the more general covariance matrix

CoV(Z) = E®IJ+K ,

then Equation (A3-9) is replaced by

E f 5(ZZH) e-h(-zz) d(Z)E7YT) =J(J+K) I,+ IKf

_.,pplying Equation (A3-7) again, we obtain

E (T)= f Y(S) fw(S;J,KIE)d(S) ,

whey,!

I ]T IK e- (E T(A 1)

fw(T;J T-- e (A 1,• ra(J + K()[ I EJ+K

which is the general case of the complex Wishart density.

As another application of Equation (A3-7), we derive the Jacobian for the linear
trangsormation of variables

S =GS'G. (A31)

where S is a matrix of complex variables of integration, and the volume element is

defined by Equation (A3-6). The matrix G is, of course, non-singular. Any integral over
S can be expr".ssed as an integral over a J x J array Z of unconstrained complex vari-
ables, ts iollows:
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Y(S) do(S) = EJ1 ( ZZH) d(Z)

The validity of this representation is a special case of Equation (A3-7). Now let us
introduce the cl-ange of variables

Z =GZ' d(Z) =IGGHIJ d(Z'). (A3-13)

with Jacobian as snown. The latter is a special case of Equation (AI-66) of Appendix 1.
Substituting, and using Equation (A3-7) again, we obtain

Y'(S)do(S) = -(J) I G Gl J(GZHG)d(Z

f= ITG' f
= [GGH IJ f 9 (G SGH) d•((I).

It follows that the change of the volume element of integration associated with
transformation (A3-12) is given by

d0 (S) = IGGHJ d0(S) . (A3-14)

The validity of Equation (A3-7) depends on the postulated condition J<, M. If, how-
ever, Z is a J x M array with J > M, then ZH satisfies the requirements of the theorem.
We also have d(ZH) = d(Z), as a direct consequence of the definition (A1-63) of Appen-
dix 1. We therefore obtain the identity

T (Z"Z)d(Z) = 5)f (S) SI'"do(S). (A3-15)

In this case, of course, S is of order M.
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To prove the integration theorem [formula (A3-7)]. we first verify its validity for
the special case in which J= 1. A general proof will then be established by induction.
When J = 1, we write z instead of Z, where z is a row vector of M elements. Putting

zm = xm + iym, we have

M M

zzH - zI2 n n+ - r2  (A3-16)
m-i mr-I

The volume element of integration is, of course,

d(z) = dx!...dx~dy1 ... dym

and we now change to spherical coordinates in the real space of 2M dimensions. The
radial coordinate is r, defined in Equation (A3-16), and we write 0 2M for the solid angle
in this space. We also write dOaM for the differential of this solid angle. Then, we get

f .(zz H)d(z) = {f.P(r2)r2M-Idrdfl 2U

Hfor the integral of an arbitrary function of zz . The integrand depends only on r. and
we can therefore integrate over the solid angle, using the well-known formula

TM

2 (M-)'

Changing variables again, we let x = r2 , and then we have

-(zz d(z) 7= U(x)xM-I dx. (A3-17)

0

from definition (A3-8), we see that (M - 1)! = r1 (M), and we also note that x corresponds
to S which is a scalar in this case. Thus. Equation (A3-17) agrees with Equation (A3-7),
inicluding the restriction on the range of integration to non-negative values, for the
speciai case under consideration
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To prove the general case, we assume the validity of the integration theorem for
J < M, and show that it also holds when J is replaced by J + 1. We begin by writing

Z =[vI.

where W is a complex array of dimension J x M and v is a row vector of MA complex
components, and we study the integral

Y= f J(ZZH) d(Z) (A3-18)

We exclude from this integral all points for which the Z matrix is not of full rank. It

may be shown that the measure of the set of points so excluded is zero; hence, the
integral itself is not affected. Similarly, all integrals over the space of non-negative
definite Hermitian matrices may be replaced by the corresponding integrals over the
subset of positive-definite Hermitian matrices, again with no effect on the results. The
latter matrices form an op a, dense subset of the non-negative definites, and this
subset carries full measure, which is an equivalent statement of our assertion. Since
the full-rank restriction on Z implies t.he' ZZ H is always positive definite, it is suffi-
cient to prove the integration theorem under these two restrictions on the respective
ranges of integration.

The volume element of integration in Equation (A3-18) is simply d(Z) d(v)d(W),
and wc also have

ZZ H= Ivv(A 
-1)

Wv H WWNH •

The key to the proof is provided by the form of the determinant:

IZZHI = IWWXl [vVH_ vWH(WWHm)- WvHI , (A3-20)

which is evaluated by an application of Equation (AI-2) of Appendix I. The second fac-
tor on the right may be written

v [ IM- wH(ww)-J Iw] vH
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which shows that only the component of v which is orthogonal to the row space of W
enters the expression for this determinant. The fact that WWH is non-singular follows
directly from the non-singularity of ZZH itself.

Fbllowing the procedure first used in Section 2. we introduce the J x M array

a = (wwH)-112w, (A3-21)

which serves as a basis array in the J-dimensional row space of W. The properties

•aaI = lj

OtHa ---= wH(ww y)- W

W = (WWH)I/za

follow directly. Continuing ab in Section 2, we let P be an arbitrary basis array, of
dimension (M - J) x M, in the orthogonal complement of the row space of W. so that

H
fift = IM-_

H
16aH= 0

a Ha + fH 0 = IM

Then, a and fl together form a unitary matrix of order M:

a# I =
We apply this rn trix to v and partition the result:

vU Ivi v2 j. (A3-22)

The new components are given by
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1V = Va1 1

v H vP (A3o23)

Note that v, and v 2 are row vectors, of dimension J and M - J, respectively.

With these conventions established, we have

vWH = vaH (WWH)' 2 = v(WWH)1 ,

and the determinant of ZZn becomesHJ
IzzHI = IWWHI v[IM - WH(WWH)-W]vH

= WWHl V(IM - ala )vH = iww . (A3-24)

The argument of Y can now be written

H [ Y v (WWH),/2

ZZH= (WWH)1/2 v 1HWWH (A3-25)

where

I I Z + H (A3-28)

In the integral itself, the volurr.e element involves d(v) = d(vl)d(v2), since the Jacobian
associated with transformation (A3-22) is unity. Our integral is now expressed in a

Hform which depends on W only through the product WW , and we can therefore

invoke Equation (A3-7) to transform the W integral.

This allows us to write Equation (A3-18) as

.7 = M (ZZ 1 )"I S(IMJ do(S)d(v1 )d(v2 ) , (A3-27)
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where it is understood that

ZZ H = SI vH V S '

SV2v H SV]

The integrations over vi and v2 are unrestricted in Equation (A3-2n), but the integra-
tion over S is limited to positive-definite matrices. The determinant of ZZH is. of
course, given by

IZZHIIS I v2v2 (A3-28)

We now introduce a change of variables by the linear transformation

v, - uS-0 d(v,) = IS-IV d(u) , (A3-29)

with Jacobian as shown. This Jacobian is a special case of Equation (AI-66). The matrix

ZZH now assumes the form

ZZ i u (A3-30)zH = uH

and y is given by

H I+y = v 2v2 + us-u

Next, we define

x v2vz. (A3-31)

and note that our integral d,!pends on v2 only through x. Since v2 is a row vector, of
M - J components, we can apply Equation (A3-7) to the integcation over v 2 , which is of
the same kind as the spec'al case first evaluated as Equation (A3-17). When this is

carried out, together with tM change of variable from v, to u. we obtain
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Y= ( -T f-J q( ZZH)(ISl x)MJ1dxd(u)do(S)" (A3-32)
(M -j -1)' r'j(M) f'"

The integration over u is unrestricted, as was the integration over vi, but x is limited
to positive values by our application of Equation (A3-7). The matrix ZZH is still given
by Equation (A3-30), with the understanding that

y = x + uS- uH, (A3-33)

and its determinant [according to Equations (A3-28) and (A3-31)] is simply

IZZHI = SIx.

It may be verified directly that

7TJ (m-J-l)r(m) = rj+1(M)

and we therefore have

=IT(J+I)M I(ZZH) IZZH IM-J-1 dxd(u)do(S) (A3-34)

We make a final change of variable, replacing x by y. which is defined in Equa-

tion (A3-33). The only change in Equation (A3-34) is the replacement of dx by dy.
together with the restriction

y>us u-H

on the range of integration over y. But it is easily shown that this condition, together
with S > 0 (positive definiteness), is necessary and sufficient to ensure the positivity of
ZZ H. as defined by Equation (A3-30). This claim can, in fact, be verified by an applica-

H
tion of Equation (Al-9) to an arbitrary quadratic form in the matrix ZZ
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According to definition (A3-6), the volume element of integration in Equa-
tion (A3-34) can be expressed as

dyd(u)do(S) = do(T),

where T is a (J +1) x M-dimensional array of integration variables. Thus, we obtain the
final result

Y M Y(ZZH)d(Z) = ' J 9;(T)IT I"-J-ldo(T), (A3-35)

and this completes the proof.

Next we consider the multivariate generalization of the complex central F distri-
bution. Let V and W be independent Gaussian arrays, both of which have mean values
of zero. Their dimensions are implied by the covariance matrices

Cov(V) = Ij ElM

CoV(W) = IJ ®0JK

We wish to study the random array

.4(J,M,K) V HT 1'V (A3-36)

where

T r WWH (A3-37)

The notation is analogous to that used for the 6 array in Section 4, which is obvi-
ously given by

1(J, M,K) = IM + .(J,M,K).

As before, we assume that K • 0, so that T obeys the complex Wishart pdf. expressed
by Equation (A3-10).
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Again we consider the expected value of an arbitrary function of A, which may
be written

E S[(J.M. K)]f y(VHT 1V) fw(T;J.K1l) e-,r(VvH) d 0(T)d(V) (A3-38)

The double integral signifies integration over the complex Wishart pdf of T and the
complex Gaussian pdf of V, the latter having been explicitly introduced in Equa-
tion (A3-38). Holding the integration over T in abeyance, we make the change of vari-
able

V- T'Z , d(V) = ITIMd(Z).

with Jacobian as shown. This change of variable is exactly like the one given in !'qua-
tion (A3-13), and the notation is meant to signify the positive-definite square root of T
Thus, substituting for the complex Wishart pdf. we obtain

E Y .d(, M.K)]- I f y(zHz) I T I"+K e -Tr [(I, + ZZH) T] do(T)d(Z).
EY[•(JM.K) = rj(J+K)f

We now reverse the order of integration, and also make the change of variable

T - (I + zzH)-r/2 S (l1 + ZZH)-Y/2 .

The Jacobian Lhis transformation, according to Equation (A3-14), is

d0(T) 1Ij + ZZH -J d0 (S) ,

and, therefore,
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f I T I'AK e- Tr[('J + ZZ")T] oT

= Ilj + ZZH I(JM++K) f ISlU+K e T(S) d0(S)

The above integral is evaluated as the Wishart normalization factor [see Equa-
tion (A3-11)], and we obtain

ITIM+K Tr lI + Zz H)Td rF(J+M+K)

Se- L~ J do(T) = Ili + ZZH IJ+M+K'

According to Equation (A1-3) of Appendix 1,

IIj + ZZH I II z . (A3-39)

and, hence, we have
_ _ __ _ _ d(Z)

E.9[4(JM,K)] = r}(J+M + K) 5(ZHZ) H J++K. (A3-40)1m rj(JI+ K) im ZI

At this point, we postulate that J > M. Without this assumption, d is always rank
deficient and a discussion of its pdf, although possible, is more complicated. With this
assumption, Equation (A3-15) may be applied to integral (A3-40), and we obtain

E~[J,,K3 r(J+M+ K) ____A__- _

Er+[Kr(JM,(K)] = rj----) Y(A) IJ+M+K do(A), (A3-41)
rj~j + K) m~i) f 11 + Al JU

where A is a matrix of integration variables. It may be verified directly from defini-
tion (A3-8) that
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rj(J+M+K) qj -+ M+K)

r'(J+ K) - m(M + K)

and we may therefore write Equation (A3-41) in the form

E5[.4(J.M.K)] -r M+K rA) ) Aii+M d0A) (A3-42)

We introduce the definition

Bn(b,c) --- rn(b) , (A3-43)

where n, b, and c are all positive integers. This quantity is a generalization of the Beta

function, and we note that

B,(b,c) = r(b) r(c) = B(b,c) (A3-44)
r(b + c)

which is analogous to the reduction of the generlized Gamma function when its sub-

script equals unity. The multivariate complex Beta pdf is now introduced with the

definition

fB(A;M(J,K) ii, + AIJ+K (A3-45)

The parameter M specifies the matrix dimension of the complex Beta variable in this

distribution. When M=1, the pdf reduces to the scalar complex Beta pdf, already

defined by Equation (AZ-9) of Appendix 2:

1 A3I 2

f*(A;1,J,K) = B(JK) (I+ A)J+K - fF(A;J.K) (A3-46)
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In terms of the multivariate complex Beta pdf, integral (A3-42) can be expressed in

the form

E SrA(J M. K) f J;(A) f#(A;M.J,K+M)do(A)

A complex multivariate analog of the complex Beta random variable cen be
defined in terms of A, still under the assumption that J > M. It is simply the inverse of
the matrix 1:

R(J,M,K) r- 1(JM,K)- (IM +vHlT-Vl)-. (A3-47)

If A is a positive semi-definite matrix of order M, then R, defined by

R =- (IM + A)- I , (A3-48)

is clearly positive definite. In addition, the eigenvalues of R will lie in the range zero
to unity, hence IM - R will be positive semi-definite.

We solve Equatoion (A3-46) for A:

A = R- - IM (A3-49)

and consider the elements of A to be functions of the elements of R. Using the
well-known formula for t.he differential of the inverse of a matrix, we get

dA = d(R- 1 ) = -RZ-dRR-' , (A3-50)

where dA and dR are matrices of differentials. We view Equation (A3-49) as a change
of variables, and note that the relation expressed by Equation (A3-50) is of the same
form as the linear transformation (A3-12), but applied now to the differential arrays
dA and dR. Then, Equation (A3-14) provides the Jacobian for the change of variable,
and we can write

d0 (A) = iR- 2 M d0 (R) . (A3-51)

Finally, by expressing A in the form
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A = R- I (IM - R) ,

we can easily evaluate the required determinants in formula (A3-45) and supply the
Jecobian from Equatiun (A3-51). As a result, we can write the expected value of any
well-behaved function of R in the form

S-- E5;[I+.4(J,M,K)]-I - f Y(R)fe(R;M.K+M.J)do(R) , (A3-52)

where

fB(R;MK,J) B( J) I R-M IIR-M (A3-53)

is the complex multivariate Beta probability density function. The similarity to the

scalar pdf is apparent, and when M = 1 it is complete:

S 1 RK-I(1 - R)J'= f (R;K J) (A3-54)
f8 (R;I'K'J) B(K.J)

An identity is used in Section 5 which follows directly from the definition of the
complex multivariate Beta pdf. Multiplying both sides of Equation (A3-53) by the nth

power of the determinant of R, we have

IRIn fB(R;M,K,J) = BI(K,J) RIn- - Rý-M

BM(K +n, JBM(K,J) fB(R;M,K +n,J) , (A3-55)

and by direct evaluation we obtain
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BM(K + n,J) rM(K +n) rM(K+ J) M-I K+j-m
BM(KJ) - FM(K+n+J)IM(K) K+j+n-m

=-H (K+j)!(K-M+n9j)3)'

I (K-M+j) (K+n+j)! (A3-5C)j=0

Combining these results, we obtain the desired identity:

IRIn fB(R;M,K,J) = 171! (K- M+n+j)
j=O (K-M+j)!(K+n+j)! fB(R;MK+riJ) (A3-57)

In Section 4, the GLR test statistic was defined as

l(JMK) =- IM + VHT-lVI,

where V and T have the same meanings as defined here, assuming the absence of sig-
nal components in the original data array. No restriction on the relative magnitudes
of J and M is imposed at this point. If 9 is now an arbitrary function of a scalar
argument, we can write

E.•[i(J,MK)] = 5- 1 1f.1(,l + VHT-1VI) fw(T;J,KII) e-!r(vvH)dO(T)d(v)

which is a particular case of Equation (A3-38) above. By following the same analysis
we used to derive Equation (A3-40), and recalling also Equation (A3-39), we obtain the
two equivalent forms

E$[I(J,M,K)] = - '•J•M+K) (I + ZHZI) d(Z)
TJ M r,(j + K) jM +I zHz J+M+K

rj(J+M+K) ; Y(Ii zzHI) d(Z)
r Jj(J+K) fl1 + ZZH IJ+M+K (A3-58)
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If J >_ M, we can continue as before and apply Equation (A3-15), with the result

E'[1(JMK)j = f.:(11M + AI) f*(A;MJ.K+M)do(A) . (A3-59)

If, on the other hand, J <5 M, we continue with the second line of Equation (A3-58) and
apply the original integration identity (Equation (A3-7)] to obtain

E~([I(JMJK)+ M + K) f 9(1IJ + ISIM-

E ,(J + K)r'-(m) f ISI) + SSj+M+KdO(S)

Since

r,(i + K) r,(M)
=( +jM.; M +.Kr1 (J+M+K)

we obtain the analogous formula:

E[1(J.K) = (ilj + Al) f9 (A;J,M,J+K)d 0 (A) . (A3-60)

Equations (A3-59) and (A3-60) represent formal statements of the statistical char-
acter of the signal-free GLR test statistic, expressed in terms of the complex multi-
variate F distribution. Later in this Appendix, this formal representation will be
developed to produce the explicit characterization of the test statistic as a product of
scalar complex Beta random variables, in agreement with the results obtained in Sec-
tion 4. This exercise will also illustrate some useful techniques for carrying out
explicit integration in the space of Hermitian matrices.

The integral representation, Equation (A3-58), will now be used to prove an
important identity concerning members of the family of GLR test statistics, again in
the signal-free case. Suppose that V is partitioned as follows.

V [ V1 v2 1
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where the dimens3,n of V1 is Jx Mi, V2 is Jx M2 in dimension, and Mi + M2 M. Then, we
can write

H -1 IT +VVHI(J, MK) = IIm +VHT-VI = ITI

and we also have

vvH= V VH + V VH

These expressions permit us to make the factorization

IT+V V H +V 2V H IT-+ vHA
I(J,M,K) = H 2TI

IT+ VVH ITI

Recalling the definition of T [Equation (A3-37)], we note that

T+VV H W Iw vIJ[ W VIH

which is another complex Wishart matrix, of the same dimension J, but with J + K + MI
degrees of freedom. Thus, we can write

IT+V VH'+V V HI

IT + v H I I 1Mv + V2 (T V1V )-V 2 1 = I(JM 2 .K+Ml) (A3-61)

and also

IT + V~i~
I = II +VHT-IVI! = 1(JM 1 ,K)

ITI 1m) 1 , K)(A3-62)ITI 1 1

The notation on the right sides of these equations has been introduced as a way of
indicating the statistical character of the quantities involved.

We have shown that

I(J,M,K) = (J,M,K+MI) 1(J,M 1 ,K) , (A3-63)

195



and we now wish to prove that the factors on the right are statistically independent.
Equation (A3-63) is therefore analogous to the representation of the GLR statistic as a
product. of independent factors, as given by Equation (4-31) of Section 4. By choosing

M,= 1, and then iterating this identity, we can obtain from Equation (A3-63) the rep-
resentation

M-I
I(J.M.K)= H l(J,l.K+m) , (A3-64)

m-0

which is directly analogous to Equation (4-32). The factors in this product are inde-

pendent, and from this representation we can again obtain the double-product form.
Equation (4-36).

To prove the independence of the factors in Equation (A3-63). we let 9 be an
arbitrary function of two scalar arguments and consider the expectation value

EY(la.lb)

where

ia -- (J'M2'K+M1)

Ib -(JM 1,K) . (A3-65)

This notation is adopted for brevity, and the variables on the right sides of these def-
initions are given explicitly in Equations (A3-61) and (A3-62). respectively. Since V, and
V2 are independent complex Gaussian arrays, we can write

E•(tS.Tb) = u I jf 'Q.'b) fw(T;J.KII) e-•r(VIV +VV 2) d0(T)d(VI)d(V2) . (A3-66)

The proof is carried out by means of a sequence of linear transformations,
applied to the variables of integration. The first transformation, together with its
Jacobian, is given by

V2 = (T -# VIvIH)t Za , d(V2 ) = IT+V 1VHI'hd(Z.)•

!n terms of Za. we have [recalling Equation (A3-61)]
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la=IM HZ HI-II�+zazI = Ili + zaz*

while 'b is unaffected. We carry out this transformation, and also substitute for the

complex Wishart pdf in Equation (A3-66), with the result

E5(1&,.b) = ItJJA P(+K) fffSq(la,lb)IT IK IT+HVV'IM2

x e -(T+V÷VV)(IJ+ZZZ•)do(T)d(Vl)d(Za) (A3-67)

Next, we carry out the simultaneous transformations

V1  (I +Z7- Z V1

T -(I 3 +Z 8Z)- (ITj + zz)-

The corresponding Jacobians are expressed by the equations

d(V1 ) = lIJ + zaz-M F d(

d0 (T) =II j+ZaZHI-' d0 ().

and we note that 1b is unchanged in form:

+ Hij--1VII

1b = I'M, + HV -11 1

We make the evaluations

Tr(T + V v,)(lIj + Z.Z) = T(ij±+ z.z,)" a ( +vv )(lj+ Z.ZI)
-r(T +(V TV1)

and
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KH _ 1-H1K ý-
ITI' IT+ VIV1IM1 = IIj + z -z " a M2 T T VV 1 M.

and substitute in the integrand of Equation (A3-67). with the result

+ J'fff •(8.Ib)ITIK IT + 1 M2
E (la 10 Tri rMj (J + K) ffY1. )T TVV

Se-Tr (T + VH) do(T)d(Vi)d(Za)
X e i* I -s) HJUK (A3-68)

llJ + ZaZa-

The last step of the proof is similar to our previous analysis of the pdf of the .4
matrix. We let

V1 = T Zb . d(V,) = ITIM d(Zb)

and note that now

S= 11MI + ZbZbl = 1J + ZbZl

and

I I I Ti I IlJ+ ZbZbI

With these changes of variable, integral (A3-68) becomes

E59(la,tb) =JM I J{ (la.l{Ib)iT IK+M e-"rf(IJ+Zb4)TJ
7Jr r.(J + K)ff

Ij, + ZbZbH i12
x +M+K do(T)d(Zb)d(Za) . (A3-69)

+b Z~aH
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In order to simplify the notation, we have dropped the tilde from the matrix of inte-
gration variables. The integration over T is carried out as before:

IT IK+M e-Tr[(10 +ZbZHb)T] do(T) - rI(J+M+K)

We are left with the double integral

j(J+M+K) ffl d(Za) d(Zb)
ET rj(J + K) JJ (a'b) HJ÷M+K ZHiJ+M2 +K

Il lj+ ZaZa 11J +Zb b

By an obvious factoring of the expression which precedes the integral in this formula,
we can write it in the form

E 51(1 1 sf Ij ( rJ+ M+K) d(Za)
a, ,b) = f ( a ,b) TrJM2 rj(J+ MI +K) 11 +Z H J+M+K

rj(J+ M1 + K) d(Zb) (A3-70)

iJM r(J+K) H
T lrj(J +K) [IJ+ZbZbH[+K

Comparison with Equation (A3-58) shows that the proof is complete, and that L and
Lb are indeed independent random variables.

In Section 4, under the assumption that no signal components are present in the

data array, it was shown that the inverse of the GLR test statistic can be expressed
as a product of independent random variables, each of which obeys a Beta distribu-

tion. This result will now be obtained independently, using the methods of this Appen-
dix, starting with one of the formal integral representations derived above. We assume

that J < M, in which case Equation (A3-60) will be our starting point. A similar deriva-

tion, proceeding from Equation (A3-59). would apply in the case where J3>_ M.

We begin by partitioning the A matrix, as follows:

u[ u) (A3-71)
u9 B
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where y is a scalar, and B is a square matrix of order J - 1. Since A is positive definite
over the range of integration, the new variables are subject to the restrictions

B>O

I Hy>uB- u

We have noted these conditions before, and we make the change of variable

y a x + uB- uh (A3-72)

to facilitate the application of this constraint. It is only necessary to require that
x > 0, and the integration over u is completely unconstrained. It is permissible, there-
fore, to put

do(A) = dxd(u)do(B)

in Equation (A3-60). We also compute

JAI = IBIx

and, dropping the subscripts on the identity matrices now. we have

I1 + Al =- I + BI[II + x +uB- uH-u(I + B)IuH] .

We define the matrix Q by means of the equation

Q-I E.- B-' _ (I +B)"I = B-'(I +B)-_1

from which ft follows that

Q = (I + B)B.

We introduce t:.e new variable v by means of the definition

U m vQvzxt• .

and recall that u is a row vector of J - 1 elements. It follows that
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d(u) = xJ- lQjd(v) = x B-IlBlI + BId(v)

and also that

1 + Al = I + B![1 + x(I + vvH)]. (A3-73)

Making the appropriate substitutions in Equation (A3-60). we obtain

EY[I(J.M.K)] = i( A

Bj(M.J4 K)Lf{f (I' I '+1!A I ) ,J-+M+K- I

M-B
X x H JýM+K do(B)dxd(v) (A3-74)

I[I+ x(l -i vvH)]JI +

The integration over x in this multiple integral is confined to positive values and, in
the argument of 9, it is understood that Equation (A3-73) is to be applied.

Next we replace x by a new variable p, by means of the definition

1 + x(1 + vv) P-

Obviously, we will have 0 < p < 1, and also

Idx! = (1 + vvHY-l dp/p2 1

We can therefore write

II+AI= I1+BIp-1

and make the evaluation

M -1 J'+K - I (1-P)u -
x dxd(v) (1 + ~ dpd(v)

[1 + x( + vvH)]J+M+K 
(1 + vvH)M
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An application of Equation (A3-17), together with the normalization integral of the
scalar complex F distribution [Equation (A2-9)], yields the evaluation

cc

d(v) 7 7 J-1 f 3 2 dt = TrJ- (M-J)'

(1+ vvH)M (J- )f (I+ 0 M (M-1)!
0

and, therefore, we have

E Y [I(J .M ,K ) ] - -I (-I JM ) I +' B, I BpM -J+I

( (M-J)!B M+J+K )JJ-) fI + B IJ+iA+K-1

X P J+K-I (I - p)M -' dp d0(B) .(A3-75)

Recalling the scalar complex Beta pdf [Equation (A2-12)], we can write

SJ-iK-I (1_)M] = (J+K-1)!(M-1)!

(J+MK-1)!f(pJ+K,M)

and it is easily verified that

(J+M+K-1I)tB'(MJ+K)

J -'(M-J)!(J+ K-I)!

We therefore find that Equation (A3-75) can be written

EY MK)' 1 f[F(11+B,- IBI MJ+
[=Bj-I(M'J+K-) f [ 'f 11 +BI -do(B)

0

X fe(p;J+K,M)dp ,

and, by iteration, it follows that
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=f J. f[(P'"Pj)-'] f(p"...pj)dp"...dpj (A3-76)

where

f(Pi...Pj) - f(p):K+j.M) (A3-77)

In the final step in this iteration, the scalar complex F distribution appears and is

easily transformed to an integral over the scalar complex Beta density, with the
result as stated above. Equation (A3-76) is equivalent to Equation (4-33) of Section 4,
and with this observation the proof is complete.
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APPENDIX 4

AN ALTERNATIVE DERIVATION OF THE GLR TEST

In this Appendix we provide an alternate derivation of the GLR test. which is
partcularly appropriate for the signal mode] described by Equation (1-4). We return to
Equation (2-25), as a starting point, and write it in the form

I -
Min F(b)

b

where a.' in Section 2,

F(b) = (Z-ebp)(Z-ebp)H

Recall the arrays e and f. introduced in that section, and also the unitary matrix

UN= le fi

We now introduce a decomposition cf the data array Z, by means of the defini-

tion

u Hz a IXA (41UN (A4-I)
N tXB

or. equivalently,

XA e " Z

XB fHz . (A4-2)

Tn terras of the components defined in Section 2, we note that

XA UL = IZA W A]

XBU H = [zB WB .j (A4-3)
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The new components are brought into the analysis by means of the definition

•(b) = - UF(b) UN,

and the observation that

Min IF(b)I = Mi IF (b)i
b b

Substituting for UN and F(b), we obtain

- - bp) (X, -bp)X

F(b) = - bp)(XA bp)H XBXH (A4-4)

X(X A H b ~ ]B (AB

The required determinant is evaluated using identity (AI-2):

IF(b); = IXBX3;I~)•

where

J(b) a (XA - bp)(XA - bp) - (XA - bp) XH(XBXH)- XB (XA - bp)H

H
Since XBXB satisfies a complex Wi'shart distribution of dimension N - J. with L
complex degrees of freedom, its inverse exists with probability one as a resul'. of our
assumption in Equation (1-9). We restrict the present analysis to the rase J'< N.

In terms of the matrix

R L - XI(XBX H 1 X, (A4-5)

we have

J(b) = (XA - bp) R(XA - bp)H

= bpRpHbH - bpRXA -H XARpHbH + XARXH (A4-6)
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Since •he dimension of XB is (N - J) x L we can compute the trace of R as follows:

Tr(R) = L - XH(XBXHY' XBI

L - Tr[(XBX )-I (XB)]

= L-t-J-N .

Since R is obviously idempotent, its eigenvalues are either zero or unity, and the trace
evaluation shows that N - J of them must vanish. Thus, R is a projection matrix and
singular, except in the special case J = N. However, the matrix pRp is positive definite
(with probability one), as will now be shown.

Flom Equations (A4-3) and the definition of UL. we have

XBPH = ZB

and also

XBXH = ZPZH + W WH
XBB - PB B B

It follows that

H H H+ N1 ,HI (A4-7)pRp = lM - ZHB(ZBZB+WB B) ZB)

and the existence of the inverse in this formula has already been noted. But the right
side of Equation (A4-7) is itself just. the inverse cf the matrix CM, defined by Equa-
tion (3-14), which we know to be positive definite, ard this completes the proof.

We can therefore define

b XARPH (pRpH)-I = XARpHCM ,(A4-8)

and complete the square in Equation (f.4-6). The resirt is

J(b) = (b-b) pRp" (bb)H + XARXH pRpH

The use of iaentity (2-30) then yields
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Min IJ(b)I = IJ(b),
b

provided only that

J(b) = XA[R- RpH(pRpH)Y' pR]XH

is a positive-definite matrix, as will be shown below. Since the numerator of the test
statistic is the determinant of F(O), we easily obtain the desired result

S= IJ(0>)I Q XARXA4

where

Q R - RpH(pRpH)- pR. (A4-10)

An efficient algorithm for carrying out this computation with actual data can be

devised, using the techniques which are described in Appendix 6.

It * nteresting to evaluat.e the performance of the test, as expressed in the form

just derived. We assume that the true signal parameter array is B and that the

covariance matrix of the columns of the data array is E. Taking the expected values

of both sides of Equations (A4-2), we obtain

E XA = bp

E X13 0.-

The array b. which appears in the first of these formulas, is given in terms of B by

Equation (2-23). These component arrays have independent columns, but they are, of
course, correlated with one another.

It is expedient to carry out the whitening operation at this point, rather than at

a later stage, as was the case in the analysis of Section 3. First, however, we eliminate
the correlation between XA and XB by writing the former array as the sum of its

conditional expectation given Xe (i.e., the linear predictor) and a "remainder" term
(the prediction error):
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XA = AB EBB8XB A

The remainder term is Gaussian and independent of XB. and it is characterized by the
relations

EXA = bp

Cov(XA) = (EAA)-I OIL

The R matrix is a projection onto the subspace orthogonal to the span of the the col-
umns of XB, and it is obvious from its definition that XBR=0. Therefore, we can sim-
ply replace XA by the remainder term in the numerator of the test statistic. Because
of the form of Q, the same is true of the denominator; hence, we have

IXA RXA (A4-11)

' "H
IXAQXA.

Whitened arrays can now be introduced, as follows:

xAO (EAA)I/2X

XBO (EBBY"-0XE . (A4-12)

These Gaussian arrays are independent and are characterized by the equations

EXAO = (EAA)V 2 bp

EXBO = 0

Cov(XAO) = J 0 IL

Cov(XBO) = 'N-J®'L (A4-13)

In terms of these quantities, we have
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SA0 R A
i A= H (A4-14)

IXAO Q XAO

since the determinants of the whitening matrices will cancel out. Moreover, the R
matrix is unchanged in form as a result of this transformation:

H H-

R k - XBo(XBoXHo) XBO (A4-15)

It still remains to be p-oved that the matrix whose determinant forms the denomi-
nator of the test statistic is positive definite.

At this point, we simplify the notation by dropping the tilde and the subscript 0.
Then, the test statistic is again given by the right side of Equation (A4-9), but the XA
and X1 arrays now have the properties given by Equations (A4-13). Tuirning to the R
matrix, we follow the pattern established in Section 3 by introducing the array

77 (xS X)- X8 , (A4-16)

assuming that the positive-definite square root of the matrix XBXH has been chosen.
The basic properties

H
7)77 = 'N-J

H H XHi-
77 7) = XB (XBXB) XB

xB = (XBXB)277

then follow is before. The 77 array forms a basis for the row space of XB. A basis
array 6 is chosen in the orthogonal complement of this subspace which, together with
77, forms a basis for (aL itself. We then have

H00H = IL+J-N

H
1977 = 0

77H77 + 0H8 = lL
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A unitary matrix is formed from these basis arrays, as follows

UL =r

and it is used to perform a rotation and partitioning of the array XA:

XA -L [= i "+2] (A4-17)

The new components are, of course, also given by the equations

+1 = XA eH

2 - X A 7 H 
8 "

The R matrix finds a simple expression in terms of these arrays, namely.

R = 'L - 7H 7 = eH e, (A4-18)

and we also have

Q = ON ps.

where

P = IL+JHN - pH(pSH I p H. (A4-19)

The GLR test statistic can now be written

1+1 + H I
1 = (A4-20)

1+1 P +11

Note that only the first of the two components of XA. introduced in Equation (A4-17).

has survived in this formula. Next, we define the array

H = P8H (A4-21)
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since this combination appears in the matrix P. which describes another projection:

P = IL+JN - /H (At H)-IY' .

The expected value of ,I1! can also be expressed in terms of p:

E *, (EAA lOb2

7b deal with the decomposition imposed by P. we define the basis array

(A4-22)

in direct analogy to previous derivations Then, we have

H

H = ]1

y = 1L (L 3') .

The y array forms a basis of the (L + J - N)-dimensional row space of A. and the
orthogonal complement of this space is given a basis array which we will call 6. Then,

H66 = IL+J-N-M

H
6 -y 0

YH7 + 6 = IL+J-N (A4-23)

Continuing in the usual way, we form the unitary matrix

UL+J- N 6 (A4-24)

and then decompose +I:

H2 (A4-25)
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Individually, these coniponents are given by the equations

+1 =Y ÷H

. 1 = ,H (A4-26)

Since the expected value of +I,' can be written

E÷'1 = (EAA) b( H)UH),

we compute

E•! = (EAA)" b(g H)I2

E0 2 = 0

Working back through the definitions, we find that

H H -1
,4AL = pRp = CM

and, consequently.

E (EAA)"2bC-0 V0, (A4-27)

The "signal array" V0S was defined in Equation (3-37) of Section 3.

from definition (A4-26) and the last of Equations (A4-23). we obtain

41H H + H
=1 t',1 1 + 2 'ýt2

and

P = 6H6

These results, in turn, lead to the simple form
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IV, H + Hi
= 1 V2 (A4-28)

H

Since *2 is a zero-mean Gaussian array, with covariance equal to the identity and
dimension J x (L + J - N - M), the matrix in the denominator obeys a Wishart distribu-
tion with sufficient degrees of freedom to assure its positivity. hence this property is
finally established.

The dimension of the array #! is J x M and its covariance matrix is the identity.
Since its mean is V0 s, it is statistically identical to V0 introduced in Section 3. In

H.addition, the matrix VA2'P2 is statistically identical to To of that section, hence we
write

"1P= VO

HV2'P2"2= To,

and obtain, for the GLR test statistic:

IVov H + To!I
1= 0 0  (A4-29)

IT0 l

From the determinant identity (AI-2), we see that this expression is identical to for-

mula (3-41) for the GLR test. hence the two approaches are entirely equivalent.
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APPENDIX 5

THE CONSTRAINT ON THE DIMENSIONAL PARAMETERS

The general decision problem discussed in the main body of this report is char-

acterized, in part, by the four dimensional parameters N, L, J, and M. The original data
array is N x L and the signal parameter array is J x M in dimension. We pointed out in
Section 1 that these parameters are constrained by the condition L Z N + M. if we are
to have a meaningful GLR test. The condition was used at several points in the analy-
sis. always to enr ire that some matrix was positive definite, and its sufficiency has
therefore been established. We claimed that the constraint is also necessary, and that
property is proved here This fact is of importance only because it affects the applica-
bility of the model itself.

As shown in Section 2. the GLR test statistic is

Min F(b)
b

where

F(b) (eb - Zp)(eb - Zp)H + S
F~Zb)

S=- Zq • H
s q

The notation is that of Sections 2 and 3. We now assume that L< N + M and show that

b can be chosen to make F(b) singular, in which case the GLR test statistic will not

exist. The proof will be probabilistic, and it will actually be shown that an array b can

b2 found with probablity one We introduce the "whitened" arrays

Zqo -0 Zq

e 0 Z-E-2e (A5-1)

and consider the matrix
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Fo(b) _ (e0b - Zp)(eob -- Z)O)' + So (A5-2)

where

So Zq0Z~ (A5-3)

Since

FO(b) = E0 F(b) E0

it will suffice to show that Fo(b) can be made singular by an appropriate choice of b.

Since the N x N matrix So is composed of L - M dyads, formed from the columns

of Zqo, it will be rank deficient under our assumption. For a given data array Z, let v

be a vector in the null space of S0 . so that

v HS0 v = 0. (A5-4)

We must now find an array b. for which

vH F(b)v = 0 , (A5-5)

in order to show that F0 (b) is singular. Obviously, Equations (A5-4) and (A5-5) together

imply that

" H (e 0b-ZPO) = 0

or,

"vH e0 b = vH zP0 (A5-6)

We must show that these equations can be solved for the b array, with probability

one.

We uan express the Jx M array b in the form

b =[b .,bM],
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where each bm is a J vector. We can also write

v H Zp0 = [4..M. ]

where the tm are simply scalars. Finaliy, we note that v0 e0 is a row vector of J ele-
ments. Equations (A5-6) can therefore be written

vHe0bm = ým , I < m < M. (A5-7)

If v ie 0 has at least one non-vanishing component, then the b array can be chosen (in
many ways) to make F0 (b) singular. The procedure fails only if v is orthogonal to
every column of eO, and this must be true for every v in the null space of S0 . Equiv-
alently, each column of e0 must be orthogonal to the null space of S0 . There is noth-
ing special about the columns of e0 , and we now propose to show that for any fixed
unit vector in (ZN, say A, the probability that A is orthogonal to the null space of So is
zero, and with this our proof will be completed.

Let P0 be a projection matrix which projects onto the column space of ZqO. Then,
IN - P0 projects onto the null space of S0 , and for A to be orthogonal to this null space
we must have

A H(IN - Po) A = 0

or,

u 1 - AH PoA = 0.

The projector P0 is constructed directly from Zqo, as follows:

Po = Zqo (ZqZqo) 1 Zq0  (A5-8)

As a result of our whitening. the array Zqo is Gaussian, with zero mean, and with
independent elements. It is also circular, which in this case means that the real and
imaginary parts of its elements are all independent. Then,

V= ZH

is a Gaussian array, with identical properties; hence,
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VVH = ZqHZqo

obeys a complex Wishart distribution, of dimension L - M, with N complex degrees of
freedom. Therefore, the inverse indicated in Equation (A5-8) exists with probability
one.

In terms of V, we have

U 1 - A HVH(VVH)-VA . (AS-9)

The unit vector A defines a subspace of eN and we introduce a basis array, say D, in
its orthogonal complement. Then.

U0 -= [A D!

is a unitary matrix, and we write

VUo = [V1 v2 ]1

where

V1 = VA

V2  VD.

We also have

vvH = V VH + V2 VH.

The array V2 is just like V, except that its dimension is (L - M) x (N - 1). Since, by our
assumption,

N-1 >L-M

the Wishart matrix V2 V2 is also positive definite with probability one. We can now

express u in the form
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u - V (Y V~ + V V HyI V1

-- [i -1-1 (v2 v2 v (A5-10)

where the Woodbury identity [Equation (AI-5)] has been uLilized.

The form found above for the random variable u is exacdy like the inverse of
the test statistic in the absence of signals, for the special case M= 1 discussed in Sec-
tion 4. It was shown there that this random variable is subject to a Beta distribution;
hence, u assumes the value zero (or any other discrete value) with probability zero,
and this compleLes our proof.

219



APPENDIX 6
NUMERICAL COMPUTATION OF THE FALSE ALARM PROBABI.LITY

In Section 4 it was shown that the GLR test statistic can be expressec as a prod-
uct of independent random variables, in the case when no signal compoIents are
present. The probability distribution function of this product provides the PFA of the
test as a function of the threshold. The product representation derived in Section 4 is

J M

1/1 = H H xo(K - j+m-1.1) , (A6-1)
j=1 M=1

where xp(n,l) is subject to the Beta distribution:

n-1fp(x;n,1) = nx

It is understood that the factors in Equation (A6-1) are all independent, and the nota-
tion signifies the statistical character of each factor.

We introduce the logarithm of the GLR test statistic:

N =_ log l ,

and the generating function:

4(z)--- Elz = Eezx (A6-2)

which will be evaluated later. $(iu) is the characteristic function of the random vari-
able X. and the pdf of X is therefore

f(x) f e- { iu UN4(iu) du

lao

= f e- t(z)dz . (A6-3)
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If No = log 1s, the PFA of the test will be

PFA = Prob( >__ 10) f f(X)d . (A6-4)

X-0

We substitute Equation (A6-3) into Equation (A6-4) and shift the contour of integra-
tion over z to the right of the imaginary axis by a small amount IA. This permits an

interchange of the order of integration and the evaluation

PFA=!~ ,f eXOz •d
-iOO*A.U

P F-- e " 1\ Z 4 (z ) --

-ion,"÷

aCO+A

I 
I 

(-+/5
= 2,r---i f 0 z

-i~o+'U

To evaluate 4(z), we first compute

In
,f xZ fe(x;n.1)dx = nnz

0

and then, from definition (A6-2), we obtain

J MI] M- K+j+m-1_
4(z) = H K+j+m-l-z

The poles of this function are all on the real axis between x =K+1 and x= K + J + M- 1.
The extreme poles are simple, but the others have varying multiplicities, and this

makes an evaluation by means of the residue series quite awkward. We note that 4(z)
is analytic over the entire z-plane, with the exception of the poles, and, in particular,
it is analytic in the strip

0 < x< K l I
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(where z = x + iy), hence AL may have any value in this range. Since

[tz] = 4(*

the integral in Equation (AG-5) over the portion of the contour in the lower half plane

Is the negative of the complex conjugate of the integral over the upper portion and,

therefore,

iOLU+'

PFA = Im I -0 Z (z) . (A6-7)

The contour for this integral may be deformed so that it passes to infinity anywhere
in the first quadrant, as long as the poles are avoided.

We now show that ji and the contour can be chosen in a way which makes the

integral converge rapidly, while the integrand remains positive and monotonicAlly

decreasing. By following this contour, the integral c.an be efficiently evaluated by

numerical integration. Our procedure follows closely the work of Helstrom, especially

the technique used in Reference 22.

We observe that the function x* ax is convex, for real positive values of a and x:

dx(x a r (loga - P +-12(x-I 1 a > 0.

dx L x x

Putting a=I/Io and taking the expected value of both 3ides of this equation, we

obtain

E[,:-1 2/b0)X] - [X -IIx '(x}] > 0 . (A6-8)
dx 1 dx2 -0•

For values of z on the real axis between zero and K + 1, the integrand of Equa-

tion (A6-7) is real and positive, and Equaticn (A6-8) shows that it is also convex.

The integrand has poles at the ends of this interval, and it must therefore have a

single minimum at some interior point. We choose this point for U, and discuss later
the procedure for finding it.. We also define the function

W) =_ log[ z10-loz0)}, (A629)
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so that Equation (A6-7) may be written

jco+,w

PFA Im exp[,l,(z)ldz. (A6-10)

AS

The derivative d',(x)/dx obviously vanishes at x= 14, hence d+(z)/dz= 0 at z-= 4 since
is an analytic function of z. Therefore, the real and imaginary parts of 4'. being solu-
tions of Laplace's equation, both exhibit saddle points at z = Ai. The imaginary part of

+ is zero on the real axis; hence, another contour on which lm(+) = 0 must cross the
real axis at x =-•. in a direction parallel to the imaginary axis. These contours, on
which the imaginary part of + is zero, are contours of steepest descent or ascent of

the real part of + which pass through its saddle point. We know that the real part
increases away from x = g on the real axis; therefore, the other contour, crossing the
axis of reals at right angles. is the one along which the real part of + descends most
rapidly from its value at z =/u

By choosing the portion of this contour which lies in the upper half-plane for our
integral, we are assured of rapid convergence. Since the integrand is real and mono-
tonically decreasing on the contour, we are also assured of numerical stability when
the integral is carried out numerically. Fbr large values of kzi. +(z) is dominated by the
term

+I(z) -> -zlogI 0 .
1zi-sO

In consequence, the contour lm(+) = 0 will eventually level off with zero slope. It will
therefore pass to infinity in the first quadrant of the complex plane and there is no

difficulty in deforming the path of the integral of Equation (A6-7) to follow it. In
order to show how an algorithm may be constructed along these lines, the remainder
of this Appendix is given over to a discussion of the following topics: (1) a procedure
for finding the saddle poin. (2) the behavior of the contour in its vicinity, (3) a proce-
dure for locating points on the contour for numerical integration, and (4) a stopping
rule, or truncation bound, for the integration.

We have shown that the integrand in Equation (A6-10) has a unique minimum on

the real axis between the origin and the first pole at x = K + 1. It follows that the first
derivative of + has a unique zero in this range, and it may be located by Newton's
method using the iteration.
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Xn+= n (x)

Substituting Equation (A6-6) into (A6-9), we obLain the explicit formula

J M -( K+j+rnlxKmr-1-)(A-)
4,(x) = - - logx + log +j+m-l ) (A6-11)

and the required derivatives are then given by

'(x) KX-x (A6-12)
0 K+j+In-1-

and

4,"(x) = - ,• • (~- lx2(A6-13)
X j=1 m=1 (K+jrm-1-x).

The technique works well in the present case, provided a good initial value is used for
x. One approach is to approximate the derivative [Equation (A6-12)) and equate it to
zero, as follows:

I + JM 0
- X•0 - X b -x = .

In this approximation,

b- K + (J-. M)/2

is the "average" value of K + j + m - 1. The appropriate solution of this quadratic is

J+1 b §MI]4al 2 -+ b -J 2+b (A6-14)
2• 2X° 2 :27Xo I T-o2
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and this value has been successfully used as a starting value for x in the Newton
iteration. When No is zero, or when it is small compared with b, the limiting value

bJM+l

should be used instead. If the PFA is to be computed for a series of values of XO, it is
a good idea to save the final value of x obtained in each case. and use it as a starting

point for the next value of X0 .

As a function of x, I(x) and its derivdtives are real, and the first derivative van-

ishes at the saddle point x = g. Since +(z) is an analytic function of z, its derivatives at

the saddle point are the same as those of t(x), and the expansion

Im +(z) = +"(AL)Im(z- t) 2 /2 + ' M (M)lm(z-h) 3 /6 +

is valid. From this expansion, we find the equation of the contour: Im+(z)=O, in the

immediate vicinity of the point z=p:

y+ + y2] + 0= O6 L

The solution y = 0 falls on the real axis through the saddle point, and the other solu-
tion is described by

X = At + -A- ) + ....

which approximates the equation of a parabola.

Equation (A6-13) shows that the second derivative of 4, is positive, but the third

derivative (evaluated at x =i) may have either sign. For large values of XO, which

correspond to small values of the PFA, the saddle point moves toward the pole at
x = K + 1, and the third derivative will be positive. Then, the contour curves to the

right as it leaves the saddle point, and (in the examples studied) it has a simple
shape, leveling off as x increases. For sufficiently small values of AO. the contour
curves initially to the left and then swings around to the right, leveling off again as
it passes to infinity in the first quadrant of the complex plane.
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The second derivative of +. evaluated at the saddle point, also controls the
behavior of the real part of + on the contour in the vicinity of z = j/. The shape of
this variation will also be parabolic, and its curvature can be used to establish an ini-
tial Step size A for the numerical evaluation of our integral, using a formula such as

A = constant x L -u (A6-15)

with a suitable value for the constant. When the second derivative of + is small, the
value

A = constant x (K+1)

may be used instead, again with a suitable value for the constant. In the latter case,
we are attempting to gauge the scale of the variation of the integrand by the dis-
tance from the origin to the first pole. When the final algorithm is applied, the step

size can be adjusted until the desired accuracy is attained.

With the saddle point located and a step size chosen, we can begin to find points
on the desired contour. The first point is obviously the saddle point itself, and the
starting value of a search for the second point is chosen at a distance A. in the posi-
tive Y directicn. A search for the contour is carried out in a direction parallel to the
real axis. In general, given two successive points ZN.1 and ZN on the contour, we com-
pute the angle ON according to

taneN Im (ZN - ZN_1) (A6-16)
Re(zN-zN-1)

This angle is the slope of the line joining these two points, and we project ahead a
distance A along this line to obtain the starting value, say w), of a search for ZN+1:

w Z - zN + A eigN. (A6-17)

Using Newton's method again, we drive the imaginary part of +(z) to zero along a line
at right angles to the first line, in other words along the line

W = w0 - iaeieN, (A6-18)
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where a is a real variable. The iteration begins with a = 0 and is terminated when the

change in a is sufficiently small.

To carry out this iteration, we require the derivative of the imaginary part of
÷,(z) along this new line, and to obtain it we use the fact that + is analytic. Thus, we

have

Im +(w) = d A (w) = lm [-ieN +'(w)]ddot

We define the real and imaginary parts of this derivative as follows:

÷(w) --- X(w) + i Y(w),

and the iteration can then be written

Im 4'(wn) (A6-19)
n+1 =- - - X(w l) cos 8N + Y(wn) sin ON)

In this formula wn is given by the right side of Equation (A6-18). with o replaced by
an. Finally, if we write wn = -n + ii7n, we obtain the pair of iteration equations:

n+i =4n + (an+l - an) sinON

7 =n+1 =1n - (a0n1 - an) COSON . (AG-20)

When the iteration is terminated, the final value of w becomes the next point on the

contour: ZN+r

If the contour is followed exactly, the integrand will remain real by definition. If

the contour is followed only approximately, a valid numerical approximation to the
integral can still be obtained but the imaginary part of the integrand must also be

taken into account, as in Helstrom's procedure. It is feasible, however, to continue the

iteration far enough to locate the contour with such precision that we can ignore the

imaginary part of the integrand, and this method has been chosen for our algorithm.
As a check, the correction terms due to the imaginary part of the integrand were
carried along in some examples, and they were found to contribute negligibly to the

result, being many orders of magnitude lower than the contributions of the real part.

In these examples, the iteration was stopped when the change in the imaginary part
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of *4' fell below 10"4 in magnitude. We also found that very few iterations were needed
to locate the contour in this way. A further advantage of this approach lies in the

fact that the real part of +4 changes only slightly during the search, hence the accu-

racy of the resulting value is enhanced.

It remains to derive a truncation bound, assuming that the integral (evaluated

by a simple rectangular or trapezoidal rule) is terminated at the point z' on the con-
t.-ir. Let R be the remainder after truncation. Instead of following the steepest

descent contour, we express the remainder as an integral along a path parallel to the

real axis. beginning at the point z':

00

R = Im GWz dz ,(A6-21)

Z'

where G(z) is the original integrand:

G(z)- exp[+(z)] = z'lio-z (z) (A6-22)

Along the steepest descent contour this integrand is real, and only the differential dz
is complex. Since that contour tends to level off for large 7, the effect of the imagi-

nary part, applied to dz, is to improve the convergence of the integral. On the
remainder portion, the differential is real and the integrand becomes complex. We put
z = z' + ( on the remainder contour, and write R in the form

00

R G(z')= IM ( G7 [ ( d.

0

Note that G(z') is real and that this is an exact expression for the remainder.

Substituting from Equation (A6-22), we can write

IM G~'+ ]= e'xOt H(4)G(z') J=e

where
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HQ -Im Z (A6-23)

The remainder can now be bounded as follows:

00

R < G I HQ)', d, (A6-24)

0

and we also have

H(4) 1 MI K~j+m-l-z'
(1 rn-i i K+j+m-1-z'-t

If we define

Xj,r = K+j+m-.1

and also put

z'=-= x,+ iy'

then we can wriLe

j M 1 X'-Xj.r+iY'

IH(WI • 1t+iY (A6-25)
j=1 rnl Xjm

In those factors for which

X'-xj.m 0>

we have
x_ - x +i ,
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This situation occurs for those factors corresponding to poles to the left of the stop-

ping point for truncation. On the other hand, when

X'-- xjm < 0

we obtain the bound

X'-Xj .r +iY' +x- + -Xjm

X - -x - _.__. _ _- x" Y ' t-+ x ' -Y 'y m ( A 6 -2 6 )

In this way, we compute the bound

IH(t): < Ho , (A6-27)

where H0 is a product of factors like those of Equation (A6-26). This bound is now
independent of ý and, when it is substituted in Equation (A6-24), the final result

R I(z) H(A6-28)

is obtained. The bound is easily computed as the numerical integration progresses,
and the latter is terminated when the bound falls below a preset value
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APPENDIX ?
COMPUTATIONAL ALGORITHMS

In Section 2. a Generalized Likelihood Ratio (GLR) test was derived in which detec-
tion is based on the comparison of a test statistic to a fixed threshold. The quantity

to be evaluated is reproduced here:

1IM + ZHSIZIP = H(A7-1)
]I .ZpPZp,

where

Zp = z-H (-rH)-V2

S = Z[Iu - 'H (TTH)-I T)]ZH (A7-2)

and

P- -S-- (a SSa) - S (A7-3)

The data array Z and the known signal arrays a and T were introduced in Section 1.
Here, we present an algorithm for the computation of the right side of Equa-
tion (A7-). This algorithm utilizes a standard technique of signal processing, namely
the construction of a unitary matrix which, multiplying a known array, converts it
into "triangular" form. More precisely, when the unitary matrix pre-multiplies the
(generally rectangular) known array, the resulting array has all zeros below the main
diagonal. When post-multiplying, the result has zeros above the main diagonal. Several

7.4techniques are available for constructing these unitary matrices. They are iterative

in nature, building the unitary matrix as a product of factors, each of which is, for

example, a Householder reflection matrix or a Givens rotation. We take Lhis construc-
tion for granted, without further discussion here.

We begin with the known array T and assume that UT is any unitary matrix
with the property that

-r = [P 0]
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where p is an M x M matrix. Since r has rank M, p will be non-singular. The procedure
described above will suffice for the construction of U,. but in this particular case it is
unimportant that p be triangular in form. Notice that the construction of U. cannot
be charged to the cost of computing the test statistic, since T is known and Ur can
be developed once and for all. We multiply the data array by U7 on the right, and
then partition the result, as follows:

zu T [z= z2 ] . (A7-4)

where Z1 is N x M and Z2 is N x (L - M) in dimension. From these definitions it follows
that

"T = UO O] 0 = P po H (A7-5)

and

zp= ZU U.r(TT)

- z1 Z2~ 110]1(PH)-V2

-ZIpH (PPHy1/2, (A7-6)

Since the matrix pH (pp H)-j 2 is unitary, it is easily shown that the GLR test is the
same as

IIM + ZI Z-11
SH (A7.7)

IM + ZH PZI1

From Equation (A7-4), we obtain

zzH = z1ZH + z2z2H

and from Equation (A7-6) we have
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z7H = 72z 1

These facts give us the result

S = ZzH- z z H z2 z (A7-8)

The component arrays Z, and Z2 are directly analogous to Z and Zq. and, in the spe-
cial case described by Equatioi (1-3), the former are identical to the latter.

Having found Z2 , we now generate a unitary matrix U2 which converts it to the
form

zZUZ IL2 3 , (A7-9)

where L2 itself is lower triai'• hlar. Then,

H
S = L2 L,

in aneiogy to the derivation of Equation (A7-5) Since S is non-sir.gular, the same is
true of L2 . and the numerator of Equation (A7-7) can thereforr be written ir. the
form

1I, -1 (L jZ1 )H(L-lZ 1 ). (A7-10)

Using the definition (A7-3), we have

P = (L2')p(ON P4) L2-1

where

P, = (L21a)[(L21a)H(L21I)]-) (LI a)H

These rcsults give us the expression
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I1M + (LýiH (LZI(A1

I'M + (•iZ1)"(IN - PN)(L21 ZI)i

for the GLR test statistic.

Next, we introduce the arrays V and At as solutions of the sets of equations

L2 V = ZI

L2 4 = a. (A7-12)

These equations are easily solved because of the triangular form of L2, they are just
like the "back solutions" which arise in conventional adaptive nulling algorithms. In
terms of the new quantities, we have

PN= ( - H (A7-13)

and

I =" (N V1 (A7-14)Jim + V (IN - PN)V

Now we find a unitary matrix U,1 which converts A, to the form

USN =t '

where v is an upper triangular matrix. Siihe I, like a, is N"xJ in dimension and of

rank J, the new array v will be J x J and non-singular. A simple calculation ncW shows
that

U UPNU I< 0]

hence we find
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U•(IN- PN)U = 1 (A7-15)

This treatment of projection matrices, such as PN, has been used as a means of
deriving an architecture for their implementation in hardware. Note that the right
side of Equation (A7-15) is simply zero in the special case J = N.

In the algorithm itself we find U and apply it to V, calling the result W:

U AV a W . (A7-16)

The matrix / is discarded when the development of U is complete. Obviously,

VHV = wHw.

and also

VH(IN-PN)V =WH 0 0 W.0 l.•_JI

The array W is then partitioned:

where WA is J x M and WB is (N-J)x M in dimension. Arrays W, V. and Z, all have the

dimension of Z P.

We substitute now, and obtain the form

+ -- Wl" w(A7-18)
11M + H

for the test. But we can write

IM + WH W = [WH IMf ]
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and then find a unitary matrix U.. which has the property

I [yn]

where Yn is upper triangular. Similarly, we choose Ud to make

Ud[JW]=[ jYd)

where Yd is also upper triangular. Arrays Yn and Yd are both of dimension M x M.
With these transformations, we obtain

H
S= . (A7-19)

I YdHYd I'

The determinants are now easy to evaluate and, for simplicity, we assume that Un

and Ud have been chosen so that the diagonal elements of Yn and Yd are rc-0 (dhis is

easily accomplished). If the diagonal elements of Yn are (a1 ..... aM) and those of Yd

are (b1,... ,bM), then

I N , (A7-20)

rn=11 m)

and the test can actually be carried out in the form

MŽ•2log 2! 1_ log Io

Note that all operations except the last involve linear operations on the data and sig-
nal arrays.

The same technique can be applied to the alternative form of the GLR test sta-

tistic, expressed by Equation (2-57). The components Z, and Z2 are formed, as
described above, and the matrix S is then evaluated using Equation (A7-8). Equa-
tion (2-57) is written in the form
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lo(Z2Zg' 2
IaH(zzH)-1I (A7-21)

and the unitary matrix U2 [defined by Equation (A7-9)] is found as before. Another
unitary matrix, say UP. is generated which will convert Z itself to lower triangular
form, according to

zu, IL, 0

Then, we have

I( o)H (L2Io)
)H 2 (A7-22)I(L1" 'a) (LI" 'a)!

and the next step is the introduction of new arrays g, and A-2 as the solutions of the
equations

L; Al=

L2 A= a.

These arrays are of dimension N x J. and ju2 is identical to ju, defined in Equa-
tion (A7-12).

The test statistic takes the simple form

IH
1 2 (A7-23)

H

in terms of these arrays. Finally, we form two J x J unitary matrices, which will again
be called Un and Ud, and which convert the A arrays into upper triangular form by
premultiplication:
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IY°
Un •12= 0

Ud~l Yd 1
Ud /'1= 0 "

With these transformations, the test statistic assumes the same form as Equa-
tion (A7-19), and the remainder of the analysis is unchanged.
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