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ABSTRACT

The problem of target detection and signal parameter estimation in a
background of unknown interference is studied, using a multidimen-
sional generalization of the signal models usually employed for radar,
sonar, and similar applications. The required techniques of multivariate
statistical enalysis are developed and extensively used throughout the
study, and the necessary mathematical background is provided in
Appendices. Target detection performance is shown to be governed by a
form of the Wilks' Lambda statistic, and a new method for its numeri-
cal evaluation is given which applies to the probability of faise alarm of
the detector. Signal parameter estimation is shown to be directly related
to known techniques of adaptive nulling, and several new results rele-
vant to adaptive nulling performance are obtained.




7.

TABLE OF CONTENTS

Abstract
INTRODUCTION AND PROBLEM FORMULATION
THE GENERALIZED LIKELIHOOD RATIO (GLR) TEST

STATISTICAL PROPERTIES OF THE GLR TEST
STATISTIC

THE PROBABILITY OF FALSE ALARM
THE ESTIMATION OF SIGNAL PARAMETERS

THE PROBABILITY OF DETECTION FOR THE
GLR TEST

A GENERALIZATION OF THE MODEL

APPENDIX 1. MATHEMATICAL BACKGROUND

APPENDIX 2. COMPLEX DISTRIBUTIONS RELATED TO

THE GAUSSIAN

APPENDIX 3. INTEGRATION LEMMAS AND INTEGRAL

REPRESENTATIONS

APPENDIX 4. AN ALTERNATIVE DERIVATION OF THE

GLR TEST

APPENDIX 5. THE CONSTRAINT ON THE DIMENSIONAL
PARAMETERS

it

31

47

95

119

133

167

175

205

215




APPENDIX 6. NUMERICAL COMPUTATION OF THE FALSE
ALARM PROBABILITY 221

APPENDIX 7. COMPUTATIONAL ALGORITHMS 233

REFERENCES 241




1. INTRODUCTION AND PROBLEM FORMULATION

The basic physical model which motivates this study corresponds to an array of
sensors of some kind, positioned in an arbitrary way in space, and providing inputs to
a processor whose nature is the subject of the analysis. One “sample” is a set of cut-
puts from this array, arranged as a vector. These samples may come directly from
the elements of the array, or they may be the outputs from a beamforming network
of some kind. We use complex variables to represent the data since we are concerned
with signals which modulate a carrier. Then the real and imeginary parts of a com-
plex quantity represent the in-phase and quadrature components of such a signal.
The modifications required to deal with real data are generally straightforward.

The basic data set upon which a processor will operate is a collection of sample
vectors, arranged as the columns of a rectangular data array. We do not wish to
specify the physical arrangements in greater detail because the mathematical model
itself is applicable to many diverse systems which may use adaptive processing of
array outputs in the radar, optical, and acoustical fields, and so on. Indeed, the ele-
ments of the sample vectors could easily have a significance other than the direct
outputs of some set of sensors. However, we wish to draw ettention to certain basic
assumptions made in our model which, in certain cases, will limit its relevance.

We model the data array as a set of Gaussian random variables, and the covari-
ance structure of the modei is used to characterize the ‘“noise’” component of the
deta, including both system noise and any random external interference. On the other
hand, “signals” are considered to be more structured contributions to the input, and
these are modeled by making appropriate assumptions about the mean values of the
elements of the data array. The emphasis here is on the detection of these signals
and the estimation of their parameters, and the most natural applications are to
radar or active sonar, where coherent processing is possible due to the known form of
the signals. In this study. a general linear model is used to represent signals.

Our strongest assumption concerning the covariance structure is a postulate of
stationarity: the sample vectors are assumed to be statistically independent and to
share a common covariance matrix. If the samples correspond to successive times,
then this is stationarity in the usual sense. However, the concept can be applied in
other ways. For example, in the radar case the samples may correspond to successive
range bins; but the data mey already have been subjected to some form of processing
embracing a larger interval of time, such as Fourier transformation (Doppler process-
ing) of the array outputs before the adaptive phase of the process in which we are
interested.




Another strong assumption is that the covariance matrix of the sample vectors
is completely unknown. The advantage of this assumption is that it makes the math-
ematics more tractable, and also leads to a decision rule for which the probability of
false alarm is independent of the actual covariance structure of the interference. This
is a highly desirable feature, much stronger than the usual constant-false-alarme-rate
(CFAR) property in which the false ala-m rate is independent of the level of the noise.
The disadvantage of our model in this respect is that it includes no constraint on the
structure of the covariance matrix, other than the obvious one of positivity. This
generality results in a restriction on the signal parametrization to assure a meaning-
ful decision rule, a point discussed more fully in Appendix 5. We now proceed to a
detailed description of the model.

Let Z be a complex Nx L data array whose elemenis are modeled as circular
complex Gaussian random variables. The columns of 2 (i.e., the sample vectors) are
assumed to be independent and to share the covariance matrix L. This is expressed
by the formula

Cov() = oI . (1-1)

where @ stands for the Kronecker product, and I; is the LxL identity matrix. This
notation is defined in Appendix 1, where several basic properties of random arrays
needed in this analysis are derived. The more general problem, in which the matrix I
is replaced by a given positive definite matrix in Equation (1-1), is easily transformed
into the model used here by post-multiplication of the data array by a suitable
"whitening" matrix.

The mean of Z is assumed to have the form
EZ = oBT, (1-2)

where o (NxJ) is a given array, B (JxM) is an array of signal amplitude parameters,
and T (MxL) is also a given array. The fixed arrays ¢ and T describe the assumed sig-
nal structure, as will be illustrated by examples. It is further postulated that the
rank of o is J<N, while that of 7 is M< L. The mathematical setting we have just
described is a generalization to complex random variables of a formulation often used
in multivariate statistics to model quite different kinds of problems.

The basic task is to decide between two hypotheses concerning this statistical
model: Hy. in which B=0 and I is unknown; and H,, in which both B and T are
unknown. An unknown B matrix is completely arbitrary, but the covariance matrix




must be positive definite, a property we denote by £ > 0. The decision will be based on
the Generalized Likelihood Ratio (GLR) principle.l and a GLR tesl is derived below. An
estimate of the signal paramncter array B is also of considerable interest, and the
Maximum Likelihood (ML) estimator of B is automatically obtained in the derivation
of the test statistic.

As noted earlier, the GLR test has the CFAR property in that its probability of
false alarm (PFA) is completely independent of the actual covariance matrix of the
data. Under the null hypothesis, the GLR test turns out to be a complex version of
Wilks’ A-statistic,2 which is well known in the literature of multivariate statistical
analysis. The PFA for this test will be evaluated by a technique of numerical integra-
tion in the complex plane. Compiete results for the probability of detection (PD) are
obtained only in special cases, but certain general properties of the PD will be estab-
lished in Section 6.

The signal model introduced above allows considerable flexibility. The simplest
case corresponds to J=1 and M=1, in which the signal array is represented as a single
dyadic product. The 7 array becomes a column vector of N elements, and 7 is then a
row vector of L elements. A specific example of this case, in which ¢ is a general vec-
tor and

is discussed in References 3, 4, and 5. In this specialization, o may represent a steering
vector, as that concept is usualiy applied for adaptive arrays, and the model allows
signal contributions in only one sample vector. In this special case, it is often convens-
ient to normalize the ¢ and 7 vectors to unity, which amounts to a simple redefini-
tion of the parameter B.

A dual version, featuring a general T vector and a o vector of the form

o = {1.0, .0,

is treated in Reference 6, on the basis of a totally different physical model. Although
these special cases are really different versions of the same problem, and can be
transformed into one another by a coordinate change of the kind discussed below,
their analyses take rather different forms when they are carried out in the original
coordinates.




In the general model, the o array controls the distribution of signal contributions
among the rows of the data array, while T controls their appearance among the col-
umns. If the components of the sample vectors represent the outputs from the sen-
sors of an array, then o will relate to the spatial character of the signals. Similarly, if
the sample vectors themselves correspond to successive instants of time (snapshots),
then 7 will describe the temporal aspects of the signals.

Two other cases, which are natural duals of one another, are direct generaliza-
tions of the examples giver. above. In the first, o is an arbitrary fixed array which
satisfies the rank constraint mentioned earlier and 7 is taken to be

7= [Iy 0}, (1-3)

where Iy, is the MxM identity, and the zero array here is Mx(L-M) in dimension.
With this model signals appear in the first M columns only, and each of these is rep-
resented as 8 different linear combination of the columns of 0. These latter columns
determine a J-dimensional subspace of the N-dimensional complex vector space aV.
This represents a generalization of the ordinary notion of an array steering vector. An
example of such a model for signals is provided by multipath, which commonly
occurs in seismic, acoustic, and "over the horizon" radar applicaticns. For our model
to be to be directly applicable, however, the multipath characteristics associated with
a given principal signal component must be predictable, except for a set of comnplex
amplitude factors. Another example is one in which the signal spatial structure is
totally unknown, which corresponds to the special case J=N.

In the dual version, ¢ is taken to have the form

1]

o= 0}

(1-4)

and 7 is arbitrary (but full-rank), sz that signels are described as row vectors, con-
fined to the first J rows of Z. These row signals are independent linear combinations
of the rows of T which determine an M-dimensional subspace of the L-dimensional
complex vector space ¢ The characteristic feature of the general problem is the
restriction of signals to subspaces in both the row and column directions, and the key
to its analysis is the use of mathematical techniques which are adapted to this geo-
metrical structure.




By changing coordinates, the general problem can be put in a '‘canonical form,”
which provides further insight into the postulated signal structure. We note first that
the data array Z can be simultaneously pre- and post-multiplied by unitary matrices
without changing the form of the problem. We write

Z, = Wyiw,, (1-5)

where Wy and W are unitary matrices whose dimensions are indicated by their sub-
scripts. The new array is characterized by the properties

Cov(z,) = WyEIWH ol (1-6)
[see Appendix 1, Equation (A1-44)] and

Since the matrix T is unknown and the unitary transformations are reversible, the
new matrix

C w owH
y = Wy I Wy

can be taken as the unknown covariance matrix of the columns of the new data
array Z,, instead of L hence, the only real effect of this change of coordinates is on
the signal components, as expressed by the mean of Z,.

. : Y/
Now we introduce the singular value decompositions’ of o and 7:

D
g = XIIOO]XZ

=YD, 0}Y,.

where D, and D, are diagonal matrices of dimension JxJ and M x M, respectively, and
the arrays X|, )(2 Y,. and Y, are unitary. If we choose Wy = )(1, W, = Yg and then set

we obtain the desired canonical form for the signal matrix:




|
st o= 2 0], -8)

The new signal parameters now appear only in the upper left-hand corner of the data
array, uniting the dual forms of the problem into one. In this formulation, the logic
of our restrictions on the ranks of the original 0 and 7 arrays can be seen, since rank
deficiencies in these arrays would leac to zero singular values in D, or D_. As a con-
sequence, some of the signal parameters in the original B array would be redundant.
The canonical form of the problem will not be used as a basis for analysis. It seems
preferable to cerive the decision rule in the original coordinates, since they will retain
some physical meaning from the initial formulation of the problem. The canonical
form then appears as a special case. In some situations, of course, a change of coordi-~
nates may be quite useful, and examples of this will be provided in Section 2.

We mentioned above that a certain limitation must be applied to the signal
model in order to derive a GLR test. This takes the form of an inequality relating
three of the dimensional parameters of the problem, namely:

L>M+N. 1-9)

If this inequality is not satisfied, then the GLR procedure does not lead to a meaning-
ful test statistic. In effect, there are too many free parameters in the model, and the
likelihood function under the H; hypothesis can be made infinite. The point at which
this occurs will be ncted in passing, where the sufficiency of our condition will be evi-
dent. A proof of its necessity is given in Appendix 5.

In the decision problem formulated above, the null hypothesis (Hy) represents the
complete absence of signal components in the data array. Following the example of
multivariate statistics, a more general null hypothesis can be introduced in which a
homogerieous linear constraint on the sighal parameter array B replaces the original
Hp. This constraint takes the form

aBy = 0, (1-10)

where a and 7 are fixed arrays of dimension rxJ and Mxt, respectively. The more
general decision p-oblem will be treated in Section 7, where the physical significance
of this model wil’ be discussed. Here, we mention only that it represents the presence

of “nuisance signals,” in addition to the desired signals in the data. These nuisance




signals may be present under either hypothesis, but the desired signals are either
present or totally absent. A decision rule will be found in this case whose PFA retains
the CFAR property and is also completely insensitive to the presence or absenc:z of
these nuisance signals.

We have seen that the o array determines a J-dimensional subspace of ¢ which
contains el! permissible signal vectors. If eV is decomnposed into a subspace A and its
orthogonal complemen', where A contains this Jedimensional 'signal subspace.” then
the covariance matrix ¥ will automatically be partitioned into four components. Par-
titionings ot this kind play a prominent role in our analysis. Suppose it is now
assumed that the off-diagonal blocks of the partitioned covariance matrix vanish,
thus adding some structure to the original interference model. This means that the
interference in the subspace A is independent of that in its orthogonal complement,
while the diagonal blocks of the covariance matrix are still considered to be unknown.
In this model, the components of the data vectors which lie outside the subspace A
play no role in signal detection or signal parameter estimation, and a GLR test for
this problem disregards them completely. it is usually advantageous to reduce the
dimensionality of the dala model, if possible, and this kind of supplementary knowl-
edge of the covariance structure will facilitate such a reduction. This is one way in
which our model can be extenced to allow some structure in the covariance of the
interference.

The model can be generalized in other ways as weli. For example, the arrays o
end 7 may contain "internal” parameters which are also frez under the H; hypothe-
sis. To deal with these, we first obtain the GLR test statistic for fixed 0 and 7, and
then proceed to maximize it over the internal parameters. If an internal parameter
takes on only discrete values, then es’‘mation of this parameter is equivalent to car-
rying out e multipie~hypothesis test. Some examples of these generalizations will be
mentioned briefly later, but discussion of them will be limited to the character of the
GLR test itself.

The specia! case J=N, with ¢ =1y and a =1y, represents a ccmplex version of the
classical multivariate linear regression problem, which is thoroughly treated in sev-
eral textbooks 891¢ (The same .:ame is often given to the special case in which y=1;,)
In the literature, the regression problem is frequently discussed in terms of a data
array which is the transpose of ours, so that its rows arc independent instead of its
columns. Thie analog of ous general problem in terms of ieal variables also appears in
the sta.istical literature!** under o.her names, such as the generalized mullivariate

analysis of variance (GMANOVA). In statistics, the interest is usualiy centered on the
null hypothesis, which corresponds to the PFA in cur context. The detection problem,




described in terms of complex variables, has recently been studied by Khatri and
Reo.!3M The explicit results we have obtained concerning detection probability and
the statistical character of the signal parameter estimates are specific to the class of
problems wc are modeling here, and many of these are new.

Our study is organized as follows. In Section 2, the GLR test itself is obtained, and
the test statistic is exprcssed in several different forms. The basic statistical character
of the test statistic is derived in Section 3, and the probability of false alarm is dis-
cussed in Section 4. In Section S, the probability density function of the estimator of
the signal amplitude parameter array is treated, and the probability of detection of
the GLR test is discussed in Section 8. In these two sections, complete results are
obtained only in the special cases J=1, any M, and M=1, any J. Certain properties of
the solution of the general vroblem are also obtained. In Section 7, the generalization
mentioned above is analyzed, with the result that this problem is reduced to the
original one by means of straightforward transformations which eliminate the
redundant data.

The Appendices are of two kinds: the first three contain mathematical results of
a background nature, all used freely in the main portion of the text. The other
Appendices contain special topics, separated out for readability. In Appendix 1, a col-
lection of known results concerning matrices and random arrays is assembled.
Perusal of this Appendix is recommended, since it contains a number of identities and
lemmas indispensable to an understanding of the analysis. Appendix 2 is a collection
of formulas for distributions related to the Gaussian in complex form. The corre-
sponding real distributions are well known; some of the forimulas derived here are
less frequently seen. More background material is included in Appendix 3. The latter
results relate mainly to integral propercies of multivariate complex distributions, and
they are less essential to the main development than are those of Appendix 1.

In Appendix 4, an alternate derivation of the GLR test is presented. The resulting
Lest statistic is of a different form than those obtained in Section 2, but it is shown
in this Appendix that it is statisticaily completely equivalent to the others. In Appen-
dix 5, a proof of the necessity of the condition expressed in Equation (1-9) is provided.
The probability of false alarm for the GLR test is evaluated explicitly in Section 4
only for certain special cases. In Appendix 6, a procedure is described by which
numerical evaluation of this probabpility for arbitrary values of the parameters can
be carried out. Finally, in Appendix 7, computational algorithms applicable to the GLR
test in either of two forms are presented.




2. THE GENERALIZED LIFKELIHOOD RATIO (GLR) TEST

This section contains a derivation of the GLR test for the original problem
described in Section 1, in which the null hypothesis corresponds to a mean of zero for
the data array. Background material on the complex multivariate Gaussian probabil-
ity density function will be found in Appendix 1.

Under the null hypothesis, the joint probability density function (pdf) of the ele-
ments of the data array is given by

, 1 -r(s7izzM
{(Z:L) = ——- e . (2-1)
0 ﬂM‘}L‘IL

where Tr stands for trace, the superscript H represents Hermitian transpose, and the
bars surrounding £ denote its determinant. According to the model described in Sec-
tion 1, the pdf under hypothesis H, is

-1 H
fl(Z;E.B) — NI}IElL e-'IY[E (Z-OBT)(Z“UBT) ] ) (2-2)
n

Each of these density functions must be maximized over the unknown covariance
matrix Z, and, for the Hjy hypothesis, we obtain the ML estimator®

1,8 .
[22. (2-3)

The square array 728 is subject to the complex Wishar! distribution, with dimension
N and L “complex” degrees of freedom. A discussion of complex Wishart matrices and
some of their properties is given in Appendix 1. A derivation of the complex Wishart
distribution itself will be found in Appendix 3. By the aszumption expressed in Equa-
tion (1-9), we are assured that this matrix is positive definite with probability one.
Substituting in Equation (2-1), we obtain

t(2:80) = Lem™ gl | (2-4)

The analogous ML estimator of £ under H, is, of course,




£(8) = [(2-0B7)Z-0BT), (2-5)

which is a function of B. The final estimator of the covariance matrix under the H,
hypothesis will be obtained when B is replaced by its estimator, which must still be
derived. The formula analogous to Equation (2-4)} is, of course,

~ N « ’L
1,(Z.Z(B).B] = [(em) " IZ(B)] ~ . (2-6)
The GLR test statistic is, by definition,
Max f,(Z.Z.B)  Max ,[ZZ,(B).B]
B B

— = = = : (2-7)
ng 15(Z:T) 1o(Z:Zp)

A test using this statistic is evidently equivalent to a test based on

I,

{ = —
Min!Z,!
B

which is the L*" root of the GLR statistic, after substitution from Equations (2-4) and
(2-6). Combining results, we obtain

H
{ = lZZ ' = (2’8)
Mén (Z-0BT)}Z-0BT)"|

and H, is accepted if ¢ > ¢,

We now introduce some tools which will allow us to manipulate the various
arrays in a manner directly related to certain subspace projections associated with
the given signal arrays, 0 and 7. Beginning with 7, we note that the MxM array rrH
is positive definite, since T itself has rank M. Therefore, we can introduce a square-root
array

('r'rH)V2 >0,

10



the notation indicating that a positive-definite square root has been choser. Square
roots of positive-definite matrices are used frequently in the ensuing work. An equiv-
alent procedure would be to represent such matrices in terms of Cholesky factors. It
should be emphasized that these factorizations always occur in intermediate stages of
the analysis, and that none of the results will depend on which choice which has been
made.

Using the above definition, we introduce the array
p=(rrhyVr. (2-9)

If M=1, p reduces to a unit vector in the direction of the row vector 7. In general, the
following properties follow directly from the definition:

PPH = Iy
pip = ri(rsiyls
T = ('r‘rH)w pP. (2-10)

The first of these equations shows that the rows of p are orthonormal, and the right
side of the second equation (which is idempotent and Hermitian) is a standard form
for a projection matrix'® onto the subspace of ¢! which is spanned by the rows of =.
This is the M-dimensional row space of 7, and the rows of p form a basis in it. The
last equation is the analog of the representation of a vector as the product of its
norm and an appropriate unit vector. When M=L, 7 is invertible, p is unitary. and the
last of Equations (2-10) is a polar decomposition of 7. It is characteristic of our
approach that basis arrays for subspaces are used directly, rather than the projection
operators themselves, to carry out the analysis.

The subspace of ¢’ which is orthogonal to the space spanned by p is of dirnension
L-M, and we can introduce an orthonormal set of L—M row vectors to serve as a
basis for it in many ways Let q be an (L - M)x L array whose rows form such a besis.
The relations

aq"

Iy

gp" = 0 (2-11)




express these properties, and p and q together will form a unitary matrix of dimen-
sion LxL:

P
= U, . -
[q] L (2-12)

The unitary property of U; contains the orthonormality rules already given, and also
the relation

p'p + qlq =1, . (2-13)

which expresses the fact that the rews of p and q together span et

If we multiply Z by 1, on the right and make use of Equation (2-13). we obtain
the decomposition

Z=12,p+2,9= [z, zq][:l. (2-14)

where the “‘components’” of Z are defined by the equations

z H

p=1pP

H
Zq .

Zq (2-15)

Note that Z, has dimension NxM, while Z, is an Nx (L- M) array. This decomposition
may be introduced in an equivalent way by writing

zuf =z [P ") = (2, 2,] . (2-16)

which shows that the components of Z are formed by first rolating the coordinates
in ¢* (by means of the unitary transformation) and then partitioning it into two
subspaces.

The complex veclor space ¢V is also decomposed, based on the structure of the o
array. Since ¢ has rank J, we can introduce the positive-definite square-root matrix

(0?o)? >0,

12




and the corresponding array

e= ooy, (2-17)
The properties

H

e e = IJ
eell = o(oHa).l oM
o= e(oBo)”? (2-18)

then follow directly from the definitions. The e array forms a basis for the
J-dimensional subspace of e spanned by the columns of ¢ (the column space of 0).

Tke second of Equations (2-18) contains a projection matrix which projects onto this
column space.

Next, we introduce a basis in the (N - J)-dimensional subspace orthogonal to the
span of e. These new vectors will form the columns of an array of dimension
Nx (N - J) which will be called {, and which satisfies the orthonormality relations

H

f'f= lN*J

fle = 0. (2-19)

The unit arrays e and f together form another unitary matrix, this time of dimen-
sion Nx N, as follows

[e f] = UN . (2.20)

and the analog of Equation (2-13) is then

ee + t1H = Iy - (2-21)

Using this apparatus, we can express the signal model in terms of e and p, writ-
ing

EZ = 0BT = ebp. (R-22)

13




where b is defined by
b= (o"g)ZB(rrH)2 . (2-23)

We now work with b as the array of unknown signal amplitude parameters, returning
to B only at the end of the derivation. In terms of the new quantities, Equation (2-5)
can be written

£(b) = | (z-ebp)(z-ebp)” (2-24)
and Equation (2-8) is the same as

A AN
[ = 122 ] . (2-25)
Mgn I(Z-ebp)(Z -ebp)|

The denominator of this equation is now written
Min |F(b)|
b
where F(b) is given by

F(b) = (Z-ebp)(Z -ebp)®

= ebble - ebz;‘ - ZpreH + 274 (2-28)

In the second line we have used the new definitions and also the first of Equa-
tions (2-10). It follows directly from Equation (2-14) thal

H _ H H .
227 = 2,2, + 2,2, . (2-27)

and, therefore, we can write
F(b) = (eb-2,)eb-2,)" + 5, (2-28)

in which we have introduced the new quantity

14




H
S = 2,2 . (2-29)

Like ZZH. the S array is subject to a complex Wishart distribution of dimension N, but
this time with L - M complex degrees of freedom, in accordance with the dimensional-
ity of Zq. S is positive definite (with probability one) as a consequence of Equa-
tion (1+9), and is therefore an invertible matrix.

Returning to the minimization problem, we note the following fact:

Min |A, + uPAjul = 1A, (2-30)

u

which is valid when A, and A, are positive-definite imatrices (not necessarily of the
same dimension) and u (in general rectangular) is an arbitrary array. To prove this
result, we introduce positive-definite square roots of A; and A, and define

w = A;QuA;w )
Then

H

Ay + uP A u) = (AL - whwl,

and the minimization can be carried out over w instead of u. But

Min |l + whwl =1, (2-31)
w
because wHw, being positive semidefinite, has non-negative eigenvalues. It follows that

the determinant in Equation (2-31) is a product of eigenvalues, all of which are
greater than or equal to unity. A unique minimum is therefore achieved for w=0,
which corresponds to u=0 in the original notation.

In order to apply this result, we make use of an elementary determinant identity
(Equation (A1-2) of Appendix 1] to write

[F(b)l = ISI1J(b): .

where J(b) is given by

15




o) = Iy + (eb-2,)"s 7 (eb-2) . (2-32)

It is clear that the second term on the right side of this expression for J(b) is positive
semi-definite, hence J(b) itself is positive definite for any array b. Multiplying out the
terms of Equation (2-32). we obtain

JB) = Iy + befsTleb - blefsT'z, - Zis7leb + zps'z, .  (2-33)
Since S> 0 and e has full rank, it follows that
eflsle>0.
This allows us to define the array
b=("s7ley M5z, (2-34)

and, using this definition, we can “complete the square” with respect to b in Equa-
tion (2-33). The result is the formula

JB) = 1y + 25872, - B (eMsTle)b + (b-b)(ePs7le)(b-D) .
We have noted that J(b) is always positive definite; hence, in particular,
J(b)> 0.

Thus, we can apply Equation (2-30) to the determinant of J(b), since the conditions for
its validity are satisfied. The result is

Min ((B)l = 11y + Z557'2, - b (es7"e)b]. (2-35)
b

The ML estimator of b is therefore given by Equation (2-34), and the final estima-
tor of covariance under hypothesis H, is given by

£ = 1[s+(z,-eb)z,-eb) ] (2-36)

16




It is an interesting fact that this estimator can be substituted for S in Equa-
tion (2-34). and the result is still a valid representation of the amplitude parameter
array estimator. To see this, we first observe that

2 o _(Hg-1_yv1 _Heg-t
Zp—-eb—Zp e(e'S'e) " e'S Z,.

from which it follows that
Ho-1 =~
e'S (Zp—eb) = 0. (2-37)

Next, we use the generalized Woodbury identity,7 which is derived as Equation (A1-5)
. in Appendix 1, to write

&yl -1_go- = T\H o ~\1! ~\H o
(LE)! = s7l-s 1(zp—.=.-b)[1M+ (Z,-eb)'s 1(zp - eb)] (Zp—eb)H st (2-38)
Using the Hermitian transpose of Equation (2-37), we see from Equation {2-38) that
(Lil)—l e = S-le .
When this equivalence is used 1n Equation (2-34), the result is
~ a1 -t ~ -
b=("E)'e) ME)'z,. (2-39)

which is the desired form.

Returning to the derivation of the test statisiic, we substitute from Equa-
tion (2-34) to obtain

He-ls _ TH, He 1 \8 _ oH
ZPS Zp b'(e"S e)b—ZpPZp.

P=sSt-s'e(e'steylells?, (2-40)

Combining these results and substituting in Equation (2-35), we obtain the desired
minimization




Min [F(b)| = |S| Min J(®)| = IS|jIy + ZHPZ,| . (2-41)
b b

The numerator of Equation (2-25) can be developed in the form
H, _ H _ ( He-1
IZZ7| = |ZpZp + S| = [S[ily + AR ZPI.
and then, finally, the GLR test statistic is obtained as a ratio of determinants:

Ho-1
[ = My + ZPHS Z| . (2-42)
[Ty + ZPPZpl

In the special case described by Equation (1-3), where the signal contributions are
confined to the first M columns of the data array, the decomposition of Z into the
components Zp and 2, is simply a separation of columns into two groups, and for-
mula (2-42) has a natural interpretation in this case. In Appendix 4 a derivation of
the GLR test is carried out, by a variation of the technique used here, which leads to
a result of quite different form than Equation (2-42), although completely equivalent
to it. This other form is naturally suited to the dual special case, described by Equa-
tion (1-4), in which signals are confined to the first J rows cf the data array.

Working back through the definitions, we obtain the relations

Zp =z (‘1’?”)”sz

s = zqq2% = z[1, - H( M)yt 2t (2-43)
and

P=5'!-5s"'o(cste)ylots?. (2-44)

With their help, the test statistic can be expressed directly in terms of quantities
which appear in the original formulation of the problem. In particular, none of the
arrays introduced as bases in the various subspaces appears in the final result. For-
mula (2-42) is a direct generalization of the GLR test obtained for the special case
treated in References 3 and 4.




To facilitate comparison with these previously obtained results, the GLR test can
be recast in a different form. If we make the definitions

D=1+ Zns7'z,
G = ol'sleo
A= a“s“zp, (2-45)

and also make use of Equation (2-44), we can write Equation (2-42) as

. o

= . (2-486)
D - alg lai

Since D is positive definite, we can multiply both numerator and denominator by
D 2. both on the right and on the left, and thus convert the test statistic to the
form

L= —
Iy = m
where 7} is given by

n= DY:AlG laDV2

If M=1 7 is a scalar, and the test statistic is simply

Moreover,

- 1 1 Hea-1
AHgla zhsla(o"sla) eMsT 2,
D N Ho-1
1+ ZPS Zp

in this case.
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On the other hand, if J=1 (and M is unrestricted), then G is a scalar and we can
apply identity (A1-3) of Appendix 1 to obtain

IIM—T”:l—n'v

where

H-1 Hea-15 -1 pH -1
= ADp 1aH o S Zp(lM + 2,8 Zp) 2,8 o
= & = )

oisle
1f J=1and M=1, then 1 and 7' coincide and the test becomes

o571z )? ot
(e"ste) 1+ ZgsT'z) b

(2-47)
which is the form obtained in Reference 3.
For general values of J and M, the A array introduced above can be expressed as
A= osizpt = whzph,
where

w

slg

Post-multiplication of the data array by pH corresponds to ordinary coherent inte-
gration of the elements of Z, in the row direction, using a set of matched filters
determined by the T array. Similarly, pre-multiplication by wh corresponds to adap-
tive whitening and coherent integration in the column direction, by means of a
“weight array” w, formed from the signal steering array” o and the S matrix.
Except for a constant factor, the matrix S is a sample covariance matrix based on
the signal-free vectors which comprise the array Zq. We introduce the notation
L-M)y's=Z

q (2-48)

for this estimator, indicating that it is formed from the Zq component alone.
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The ML estimator of the signal amplitude array B is recovered by the use of
Equetions (2-23), (2-34), and (2-43). The result is

B= (aHS'IU)'1 UHS—I‘Z-r}'l('r-rﬂ)'1 ) (2-49)

This expression represents a direct generalization of a stardard algorithm used for
adaptive nulling. To illustrate this more explicitly, consider the case in which the 7
array has the simple form expressed by Equation (1-3). This mode.s a situation in
which Zp consists of the first M columns of the data array, representing the data
vectors which may ccntein signals, while the others constitute the Z, array. We can
then write Equation (2-49) in the form

B = (aH i&lo)'l ot E;‘zp .
which expresses the columns of the B estimator array as matrix products involving a
“weight array' and the columns ci Z,. In this interpretation, the columns of the B
estimator array represen: Lhe outputs of a generalized adaptive nulling processor
whose inputs are the sample vectors which form the columns of Zp. 1t J=1, the
weight array reduces to a weight vector, and the correspondence with the standard
adaptive nulling technique, based on sample matrix inversion, is complete. In Sec-
tion 5, the joint probability density of the elements of the B estimator array (which is
a row vector in this case) will be obtained, and ' he relation to adaptive nulling will be
pursued further.

For the special case: J= N, the matrix ¢ is square and, by hypothesis, it has full
rank. From Equations (2-18) we see that the array e is unitary under this assumption,
and our for.aulas will simplify accordingly. In particular, the matrix P will vanish in
this case, Jeaving only the numerator in Equation (2-42) for the GLR test. In addition,
the estimator of the amplitude array, given by Equation (2-49), will assume the sim-
ple form

B = U~1ZTH(T‘TH)_] ,

when J=N. As noted in Section 1, the complex version of the multivariate linear
regression problem (without the generalized null hypothesis) is characterized by o=1y;
hence, our results are easily specialized to this problem.




In an extension of our model, of the type mentioned in Section 1, T is allowed o
contain a discrete internal parameter. In other words, 7 is actually one of several
given T arrays, and the problem is to decide which of these arrays best describes the
signal, if signal is actually deemed to be present. One can evaluate the GLR test statis-
tic for each 7, and if the largest of these exceeds a threshold for signal detection, then
use it to decide which signal was received.

A simple example, in which M=1, would arise if the sample vectors corresponded
to regular instants of time and the paramectrized 7 arrays, each a row vector,
described different possibie temporal sequences, such as those corresponding to the
Doppler phase varietions of a moving radar target. One could test for one value of the
Doppier parameter at a time, using the remaining part of the data array, described
by Z for noise estimation via the matnx S. As noted earlier, the GLR test involves
post-multxpllcatnon of the data array by p and p is just a normalized version of the
7 vector in this case; hence, this represents coherent integration in the ordinary
sense.

The formation of a conventional “Doppler filter bank,” based on L time samples,
is equivalent to post-multiplication of the original data array by a suitable unitary
matrix. The new T vectors will then be unit vectors, each conteining a single compo-
nent equal to unity, and the rest all zero. Each of the multiple hypotheses in this
case amounts to placing the signal in a different column of Z. This is an example of a
situation in which a change of coordinates, mentioned in Section 1, is a ratural thing
to do.

Added insight into the significance of the GLR test statistic and the associated ML
signal pa:-ameter estimator is gained by considering the simpler version of our probe-
lem in which the covariance matrix £ is known. The hypotheses concerning the signal
componerits remain the same. From Equations (2-1) and (2-2), together with Equa-
tions (2-22) and (2-26), it follows that the logarithm of the likelihood ratio for this
probiem is given by

AB) = = Triz” [F(b) - FO
= -Tr[s(eb-2,)ev -2, - £7'2,2]
= - Tr{(eb- 2,02 (eb-2,) - 2927'2,] . (2-50)
We define
by = s eyt lz, . (2-51)
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using the subscript to indicate that T is known, and complete the square in
Equation (2-50). The result is

Ap) = —Tr((b-bp) "= e)(b-bg) - Bh (T e) by .
which is clearly maximized by the choice
b=bg.
thus establishing the ML estimator of b. This is, of course, the classical solution,

expressed here in terms of the component Zp. Formula (2-34) is a direct
generalization of this result.

For the non-adaptive test statistic itself, we have

A

Max A(b) = Tr(bE ez le) by . (2-52)

or

A

TizpLlo(e s oY sz ) (2-53)

These formulas will be developed further in Sections 3 and 5, and the relationship to
the GLR test statistic for thie general problem will be elucidated.

We close this section with the derivation of some alternative expressions for the
GLR test statistic which exhibit the roles of the subspace projections in a rather nice
way. To obtain the first of these forms, we apply identity {(A1-2) of Appendix 1,

IGIID - ARG 'al = IDjIG - AD"!AM|, (2-54)
to Equation (2-46), with the result

|Gl
Ic - AD ‘Al

{ =

Eliminating the new definitions, we have




[ = IaHS'laI

Hio-1 -1 H -1 -1 ,Hg-1 .
la [S™" - 8772, (0y + 2,87°Z,) " 2,8 ]o|

(2-55)

Applying the generalized Woodbury identity [Equation (A1-5)] to the denominator of
Equation (2-55), we obtain the desired result:

/= lot s 1o o lef's e (2-56)
T H Hy1_, | _H Hy-1 N
o7 (S + Z,Z;) "ol e (S + 2,2;) el
Equivalent versioric of this test statistic are:
_1eM(zgzd) el jotzet - z 2l o
T HiooHyv1 H o oHy-1 ' (2-57)
lo(Z27) "o lo"(ZZ7) "o .

Note that the second form above malies use of a sample covariance matrix based on
the full data array Z.

Equation (2-57) is a generalization of a formula stated by Brillinger.n For the
case J=1, in which o is a column vector, Equation (2-57) may be interpreted as the
ratio of maximume-likelihood (Capon) spectral estimates,'® in the direction of o, using
either all the data in the Z array or only its projection onto the orthogonal comple-
ment of the row space of 7.

The simple form which the GLR test assumes when J=N is easily reproduced
from Equation (2-56). Since o is then square and non-singular, its determinant may
be factored out of the numerator and the denominator of this ratio, with the result

H
_ IS + ZPZP!

Ho-1
L= —gr = I+ 258770 (2-58)

Equation (2-54) has been applied to obtain the final form, which is the same as that
to which Equation (2-42) reduces when J=N. If t'.: eigenvalues of the matrix Z::S”ZP
are called A, then, obviously,

M
Iy + 25572, = Hl A+A,) . (2-59)
ms=
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If M> N, some of these eigenvalues will vanish since the corresponding matrix will not
have full rank. but Equation (2-59) will remain valid.

A generalization of our basic problem will be mentioned briefly here, since Equa-
tion (2-57) is especially suitable to its analysis and a result very similar to Equa-
tion (2-59) can be obtained. In this model, everything is the same as already postu-
Jated, but the o array is now ailowed to be an arbitrary full- rank array of dimension
NxJ. In the original model, the signals are drawn from the given J-dimensional sub-
space of ¢" which is determined by the o array. In the generalization, the signals are
drawn from any subspace of dimension J. The structure imposed by 7, which controls
the distribution of signals among the columns of the data array, is not changed.

A likelihood-ratio test for the new problem is evidently obtained by maximizing
the statistic expressed by Equation (2-57) over the o array, since the likelihood ratio
itself is directly related to ¢ Suppose that A, and A, are positive-definite matrices of
order N. Then, it can be shown that

lo A,a|

J
Max H (2-60)
o |o Azoy  j=1

where the maximization is carried out over all full-rank NxJ arrays o, and the My
are the eigenvalues of the matrix A \Az) ordered from largest to least:

For application to Equation (2-57), this matrix product is
Hy-1 5ol _ o1 Hy _ . -1, oH
(2gZq) 227 =S (s +ZPZP) = iy+ S 77,

But the matrices S''Z ZH and ZpS ]Z share the same non-zero eigenvalues and, con-
sequently, the product of the eige Jlues of Iy + sz Zp is the same as the product of
the eigenvalues of 1 + ZHS'IZ A proof of this result, and also of Equation (2-80), will
be found in Appendix 1. The GLR test statistic for the generalized problem therefore
takes the form

IUH(Z Z") of A
Max T‘“— -7_](1+m. (2-81)
o o (ZZ j




If J2M in the generalized model, the test cr1cides with that obtained for the

special case of the original problem in which ! understand this feature, it is
useful to imagine the special form of the 7 a: :bed by formula (1-3), in which
signals are confined to the first M columns c. a array. For M=1, the two mod-

els are equivalent ways of allowing the signal in ¢ . first column to be arbitrary. and
the equality of the tests is obvious. For M>1, the models coincide only if the freedom
conferred by the dimensionality of the subspace ¢’ (in the generalized problem) is
sufficient to overcome the fact that the signals from the first M columns must lie in
the same J-dimensional subspace.

Equation (2-57) was a convenient starting point for the problem generalization
just discussed, because al' the dependence of the test statistic on the o array appears
in a simple and explicit way in this formula. An analogous expression, in which all
the T-dependence is exhibited in the same simple way, also can be obtained. This form
will not contain the matrix S explicitly, since the formation of that matrix carries
with it an implicit dependence on T through the p and q arrays.

We begin with Equation (2-42), and rewrite it in the form
H -1
_ (Ty + ZPPZP) il
Hg-1 -1
[(1y + PARS ZP) |

(2-62)

where P is the matrix defined in Equation (2-40). We use the generalized Woodbury
identity, Equation (A1-5), to evaluate the matrix in the denominator:

Ha-1, 1 H Hy-1
(g + 25877 2,)" = Iy - 25(S + 2,27 ' 2, .
We make the definition
S, = S+ 2,25 = 22", (2-83)

thereby giving a name to a matrix which has already entered our previous form for
the test statistic. S, is proportional to the sample ~ovariance matrix based on all the
data vectors which comprise the Z array. We make use of the first of Equations (2-10),
together with the new definition, and write

(y + 2hs7'2,)" = 1y - 2582, = p(l;, - Hsilz)pt .




We can therefore write the test statistic in the form

H -1
] (1 + ZpPZp) | |
Ip(1, - 2Ms;'2)p"|

(2-64)

The denominator now has the desired structure, with all the p-dependence in the
outer factors of a matrix product. The numerator, however, requires a little coercion.
We introduce some temporary notation to simplify the writing, as follows:

G= e s le
F=el S;lZp
W=, -20s]'z, (2-65)

Next, we use the Woodbury formula again, this time to express the inverse of S in
terms of S_:

-1 _ _ Hyl _ o-1 -1 -1,H g-1 .
st = (s, - zz)y' = s+ stz wilzgs (2-88)

To evaluate the numerator of Equation (2-64), we require the following results,
which are direct consequences of Equation (2-66) and the new definitions:

e'ste=G+ FPWIFH

Ho-1
eSZp

F+ FWl(,-w-=- Fw!, (2-67)
We have already seen that
oHo-1 : Ho-1oHy1 _ -1
IM+ZPS Zp=(1M—ZpS+ Zp) = W .

Combining all these results, and recelling definition (2-40), we obtain

Iy + 28PZ, = W - wIFR G+ FWIIFRY PR

(w + Figlry?!,




again with the help of the indispensable Woodbury identity. We now substitute from
definitions (2-65) and write

W+ FUGTIF = 1y - 2QZ, = p(1, - Z¥Q2)p"
where
Q= s;' - s]'e(es]ley st . (2-68)

The new matrix Q is closely analogous to P, but Q involves S, where P has S itself.
Finally, we obtain the desired form

b, - z"Q2)pY v - Q)
‘= Ho-1y H, Ha-1oy _H, (2-69)
Ip(ly - 278, )p7 | Ir(iy ~ 27S.'2) 77|

Fromn definition (2-63). we see that
L, - 2Ms)'z = 1, - Mty

is a projection matrix. In fact, it projects onto the orthogonal complement of the row
space of the data array Z. For fixed p, the denominator of Equation (2-69) is positive
with probability one. since its inverse is the numerator of Equation (2-42). The latter
is finite (with probabilily one), so long as our basic constraint L>N+ M is satisfied. For
f!ixed data, however, we cannot generalize our GLR test by letting T be arbitrary (as
we were able to generalize it earlier by letting o be an arbitrary array), since the
rows of T could always be chosen from the row space of Z, thus making the denomi-
nator of Equation (2-69) vanish. This is another example of a statistical mode! which
provides too much freedom in the parameters to sustain a meaningful decision rule.

With suitable constraints on 7, Equation (2-69) could be made the basis of & gen-
eralization of our basic GLR test, but this topic will not be pursued further here. This
equation does, however, provide us with a useful property of the basic GLR test, which
may be mentioned at this point. Suppose that 7 can be expressed in the form
T=T WL where 7, is another MxL array of rank M, and where ¥W_ is a unitary
matrix of order L If this representation for T is substituted in Equation (2-89), the
equation will have the same form as before, but with 7 replaced by T,, and with Z
replaced by Z,;=2U. This replacement for Z also may be made in the formula for S,
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without changing that matrix. Since Q depends on Z only through S_, we see that the
simultaneous replacement of 7 by 7, and Z by Z, leaves the test statistic unaltered.
When Z is considered as a random array, the post-rnultiplication by W; does not
change its covariance, as we can see from Equations (1-5) and (1-6) of Section 1. The
mean value of Z is altered, of course, as shown by Equation (1-7). The effect is simply
to replace 7 by 7W =7, in the formula for the mean. We conclude that the perform-
ance of the GLR test, as a detection criterion, is unchanged if the T array is
post-multiplied by any unitary matrix. In particular, T can be converted to a form in
which all but the first M columns are identically zero, by means of a suitable unitary
transformation. We will encounter this invariance property again in Section 6.

In Section 3, the performance of the GLR test will be studied starting from Equa-
tion: (2-42). An algorithm for the efficient computation of this expression is presented
in Appendix 7. This is a “square-root” algorithm which uses standard signal process-
ing techniques applied to the data arrays themselves, and it avoids the computation
and inversion of the sample covariance matrices. In Appendix 1, we show that the
same performance results can be derived directly from Equation (2-56), and a
square-root algorithm for the computation of the GLR test statistic in this form also
can be devised This algorithm is also discussed in Appendix 7.




3. STATISTICAL PROPERTIES OF THE GLR TEST STATISTIC

We turn now to the statistical properties of the test statistic, given by Equa-
tion (2-42). Recall the arrays e and f, defined in Fquations (2-17) and (2-19), with their
properties as derived in Section 2. Together they form a unitary matrix Uy

[Equ~lion (2-20)]. which we now use to decompose both Z, and Z_ into further coms-
ponents. We define

H
UnZ, = [H P| = ‘ , (3-1)
P 2] Zp
and
H
H e Z ] wA
UnZ, = = 3-2
N4q [fHqu [WB (3-2)

in analogy to Equation (2-16), so that

Zp

q = €Wa + f¥Wg. (3-3)

eZ, + fig

Z

We have now resolved the data array Z into four components:

Zy, W,

ugzup =
iy Wg

(3-4)

eHZpH eHZqH]
fHZpH 1‘HZqH
where U is the unitary matrix defined in Equation (2-12). The A-components of the

new arrays have J rows, and the B-components consist of the remaining (N ~ J) rows.

We also define

H SAA SAB

Spa Sgs

(3-5)

efse eHSf]
tHse fHst

and its inverse
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Mo ghh gAB elsle es 1t
UNS UN = BA BB = . (3'6)
s s tHsle fHglg

The AA-portions of these arrays are (xJ) in dimension, and the BB-parts are also
square, of dimension (N - J). The transformed S array may also be expressed in terms
of the W-components, as follows:

H H
WaWa W, ¥p

URSUy = (3-7)

H H
WgW, Wg¥Wg

We irtroduce a ¢ » .ar notation for the components of the actual covariance matrix
after transformeation by Uy:

]
H 2AA z:AB
UNZUy = : (3-8)

Zpa ZpB
together with an analogous terminology for its inverse:
. pAA £AB

EBA EBB

In terms of the new components, we have
AA oAB
s"" S A
He-19 _ (oH oH A
282y = (24 2] BA GEB lZB] '
and, using Equation (A1-9) of Appendix 1, we obtain

zis'z, = YUSMY + 25Spa7, (3-10)

where
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Y = Z,-S,5Sp8 25 - (3-11)
Using these results. the numerator of the test statistic [Equation (2-42)] becomes
I, + Zisshzg + Yis*y].

From the definition of P [Equation (2-40)] we see that Pe=0 and e""P=0. Then,
using the first of Equations (3-3), it follows that

H H ,H
ZoPZ, = Zg 1 Pf2Zp. (3-12)

Moreover, with the help of Equations (A1-8) of Appendix 1 and Equation (3-6), we find
that

and, consequently, the GLR test statistic can be written

;e ZHepizg + YHSMy!

ly + Zh Spe Zs!

This expression obviously depends on the subspace decompositions which have been
introduced, but it is invariant to any changes in the actual bases defined in them.

According to Equation (3-6), we have
and we also find that

H-1 AA AB
efs7lz) = sty + %025

These results allow us to evaluate the ML estimator of the signal amplitude array
[Equation (2-34)] in terms of quantities introduced in this section. Using Equa-
tion (A1-8) again, we obtain




o)
I

z, + (SMy1stBz,

Z,-SapSppZs = Y . (3-13)

We now define the quarntities

Cy=ly+ ZhSeaZs
- V2
V=Y
T = (shy?, (3-14)

which allow us to express the test in the desired form:

Iy +YAT Y|
B ICyl

= 1, + VTV, (3-15)

This quantity is a complex analog of the so-called Wilks' Lambda statistic, which
arises in many applications of the multivariate analysis of variance. For the case of
real variables, a test statistic analogous to Equation (3-15) is known.z'9 Jt should be
noted that the definition of V depends on the particular way in which Cy was fac-
tored to form a square-root matrix. The matrix Cy could also have been represented
in terms of Cholesky factors, and an equation identical to Equation (3-15) obtained,
with an appropriate V array. This freedom of choice cannot affect the statistical
character of the GLR test statistic, and it is actually a useful feature in some cases.

The point is taken up again in Section 6.

It is interesting to compare the form of this GLR test with the simpler result
found in Section 2 for the non-adaptive problem (i.e. the case of known I). With the
notation introduced here, we can express the non-adaptive ML estimator of b
[Equation (2-51)] in the form

~

by = (A1 (z*hz, + =*Pzp)

-1
Zy, ~ ZasZBlp -




The second line of this equation expresses the estimator as the difference between Z,
and its conditional expectation given Zg. The latter term is the predictable portion of
the random noise part of Z,, and the estimator can be viewed as the prediction error.
This makes sense as an estimator, since the expected value of Z, is the true value of
b (see below). Conditional expectations and linear prediction are discussed in Appen-
dix 1. Formula (3-13) shows that the estimator in the adaptive case (unknown I) has
the same form as Equation (3-16), but with T replaced by an estimator of covariance,
namely the one defined in Equation (2-48).

In the non-adaptive problem, the GLR test statistic is given by Equation (2-52),
which may be restated as

-

A= Tr[bEctb, ] (3-17)

The trace operation describes non-coherent integration over the columns of B}:- and
these, in turn, depend only on Z, and Zg, the components of Zp, The Zq component of
the data array is not used at all in the test, since, in the non-adaptive case, it con-
tains no information of use for the detection problem.

As noted in Appendix 1, the matrix £A% is the inverse of the covariance matrix
shared by the independent columns of 82- inasmuch as they may be interpreted as
prediction errors. Thus, each term of the trace on the right side of Equation (3-17)
itself represents a form of non-coherent integration (following a suitable whitening
operation) over the J components of each column of the estimator. This is a logical
way of detecting the presence of a signal specified only as a vector in a subspace of
dimension greater than unity. The formation of Sz itself is an application of coherent
integration, which takes account of the structure of the actual signals that determine
the subspace. This may be seen by referring to the original definition [Equation (2-51))
of this estimator. which depends on the data array through the term

frlz, = Noyofisly .
The array 0“2‘12], which appears on the right side of this formula may be inter-
preted as comprising the outputs of a set of colored-noise matched filters, which are
matched to the columns of the signal array ¢ and applied to the columns of Zp.
These, in turn, are formed by coherent integration along the rows of Z.

In the adaptive problern, the columns of the ML signal parameter estimator b are
correlated, because they all use the same estimator of covariance. It will be shown




below that this correlation is described by the matrix Cy, and it is removed in the
formation of the GLR tesl statistic by the transition from the Y array to V. Except
for a constant factor, the matrix T of this statistic is just like the inverse of EM. but
using the estimated covariance matrix instead of the known one. Thus, tke general
GLR test is built with structures quite similar to those which appear in its
non-adap.ive analog. The final form, however, appears to be quite different. since it
involves a determinant instead of a trace. This distinction disappears when we con-
sider the limiting process by which the adaptive problem tends toward the
non-adaptive one, namely the unbounded growth of L — M. This is the number of data
array columns in excess of M, the dimensionality of the signal-defining T arrey.

Without attempting to be precise, we can say that the covariance estimator given
in Equation (2-48) will tend to the true covariance in this limit, and write

S » (L-M)Z.

The inverse of S therefore beccr..es smaller as L increases. In the limit, Cj; becomes
the identity matrix, as the second term in its definition {see Equation (3-14)] becornes
vanishingly small. Hence, in this limit, the correlation tetween the columns of b disap-
pears. Then

and also
-1 AA 1 AA
T =8 M z
so that
JH -1 AA T

In this form, the GLR test statistic is the determinant of the sum of the identity
matrix and a “small” term, so that we obtain

1

T~

HEAA le

T}‘[B?EAAB):] =1+ m .

1
L+ ITh




Thus, heuristically at least, the GLR test for the adaptive problem goes over into that
for the non-adaptive case in the appropriate limiting situation.

Fromi this discussion, it follows that the simpler decision rule
™(VET V) > Constant ,

should perform well for large values of L. The analog of this detector with real vari-
ables is known as the lawley-Hotelling test.!?

Until now, the data array has been considered as a given set of complex num-
bers, while the parameters characterizing the statistical model, namely B and I, have
been treated as variables for the derivation of the GLR test. To evaluate the perform-
ance of the test, these parameters must be considered fixed and given, while the ele=-
ments of the data array are considered to be random variabies. The remainder of this
section is devoted to establishing the stetistical properties of the test statistic.

Suppose that the true signal parameter array is B and that the actual covari-
ance matrix of the columns of Z is . Then.

EZ = 0BT = ebp, (3-18)
and

Cov(@) = T ol . (3-19)
The mean value of the transformed data array will be

Ho oo [€ H H, 'O
EUNZU] = H ebp |p q | ol (3-20)

and its covariance, using formula (Al-44) of Appenaix 1, will be

Cov(UpzU) = (UREUy) 01, .

Comparing Equation (3-20) with Equation (3-4), we see that the expected value of Z,
is just b, while the other three components of the transformed array have zero mean.
The columns of the transformed array are still independent, and they now share the
covr.riance matrix which has been expressed in component form in Equation (3-8).




Note that the situation corresponding to the “true” parameters, as described by

Equations (3-18) and (3-19) above, coincides exactly with the model postulated in Equa-

. tions (1-1) and (1-2) of Section 1. We refer to this as the ‘‘matched"” situation. It is

| interesting to consider the effect of various departures from this matched condition

i on the performance of the GLR test. At the end of this section we introduce a partic-

ular form of “mismatch” which proves to be amenable to analysis, and take up its
implications in Sections 5 and 6.

To proceed, we first fix the arrays Zg and Wg. and we refer to this conditioning
by using the subscript B. Referring again to Appendix 1 for details, we have the fol-
lowing conditional expectations:

EgZy = b + Z,pTppZs . (3-21)
and

EgWx = ZapZop Wp - (3-22)
Frorn Equation (3-7), we see that

Y=12,-wW,wiszlz,
hence, Y is a Gaussian array under the conditioning, with conditionai expecta..on

EY = b+ ZypZabZs - TyoTobWpWESah2p
But wa’g = Sgg: therefore,

EgY = b. (3-23)
Finally. using Equations (3-14), we obtain

EgV = bCy* . (3-24)

We note that the matrix Cy depends only on quantities fixed under the conditioning,
and it may therefore be treated as a constant as long as the conditioning holds.
Therefore, V itself is conditionally a Gaussian random array.
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Since the columns of the transformed data array are all independent, the condi-
tioning variables only affect their own columns. It follows that the conditional covari-
ance of any of the columns of Z, or W, is given by

AA\-1 -1
(Z°7) " = Zpp - TopZppTps -

using a standard property of Gaussian random variables, reviewed in Appendix 1. We
can therefore describe the conditional covariance properties of Z, and W, together by
the statement

AAy-1
Covg([z, W,)) = (*M) el . (3-25)
To evaluate the covariance properties of Y and V, it is convenient to write

]
Y=12,-W,Q= (z,w,]]| Y

where Q is defined by
Q= WiSpplp . (3-28)
Then, using Equation (A1-44) of Appendix 1, we have
Covg(Y) = (Z*") o (1, +Q"Q)" .
But it is easily verified that
QtQ = ZpSph2p .
and, thus, Y has the covariance meatrix
Covp(y) = (£*M)'ecy, . (3-27)

Since Y is actually the ML estimator of the signal parameter array b, Equation (3-27)
expresses the conditional correlation between the columns of this estimator which
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was mentioned earlier. A fuvller discussion, including the effect of removing the condi-
ticning for this estimator, is given in Section 5.

Recalling the definition of V, and using the same covariance identity, we find that
the columns of V are independent under the conditioning:

Covg(V) = (£**) el . (3-28)
It is useful to write V as the sum of two parts:
Ve V_+ V| (3-29)
where
V, = bG* . (3-30)

Then V., which we may call the "“noise component,” is a complex Gaussian array,
with zero mean and covariance z.ven by Equation (3-28), independent of the condi-
tioning variables which appear only in the “signal compcnent” V.

Turning now to the T array, we recall that T is the inverse of s* and that the
matrix

SAA SAB _

Sga Sgs

1
e

is a complex Wishart matrix, of order N, with L— M complex degrees of freedcm. The
unconditioned means of W, and Wy are zero, and from Equaticns (3-2) and (A: 44) we
obtain the unconditioned covariance

Cov<[3"‘]> = (U:EUN)@)IL_M .

B

The partitioned form of the transformed £ matrix is given by Equation (3-8}

Some of the properties of Wishart matrices are discussed in Appendix 1, where it
is proved that a matrix such as T. which is the inverse of a diagonal block of a parti-
tioned cornplex Wishart matrix, is also a complex Wishart matrix of an appropriate




order and with a reduced number of complex degrees of freedom. In the case of T, the
dimension is J and the number of complex degrees of freedom is L+J—N-M. From
the results of Appendix 1 it also follows that T is independent of S,p. These facts are
established in Appendix 1 first under conditioning on the B components, but ihe
probability density function of T does not depend on the values of the conditioning
variables. Therefore, the complex Wishart character of T, as well as its independence of
Sap- remains true when the conditioning is removed By the same argument, T is
proved to be unconditionally independent of SABSBB because the second factor of this
product is constant under the conditioning. Since T is formed from W, and Wg, it is
clearly independent of the components Z, and Zg. Thus, T is unconditionally indepen-
dent of Y, as defined by Equation (3-11), and also of Cy and V, defined in Equa-
tions (3-14). T can be expressed in terms of a Gaussian array, say W, of dimens:on
Jx(L+J—N-—M), as follows:

T=wwh. (3-31)

The mean of W is zero, and its covariance is

CoviW) = (") el nom - (3-32)

a property established in Appendix 1.

The last step in the statistical characterization of the test statistic is a
“whitening” operation. With the conditioning on the B-components still in effect, we
define the new arrays

Vo (EAA)W v

TO (EAA)W T (EAA)I/Z | (3-33)

1}

using the subscript zero to indicate the whitening. The matrix Ty is also a complex
Wishart matrix, and it can be expressed in terms of a new zero-mean complex Gauss-
ian array W, (unrelated to W, and Wp).

To = Wo¥g - (3-34)

These new arrays have identity matrices for their covariances.
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Covp(Wo) = ;@145 N-u - (3-35)

Thus, all the elements of these arrays are conditionaliy independent. The whitened
array Vg is made up of the components

Vo = Vos * Von - (3-36)

where V, is a complex Gaussian array, with zero mean and covariance equal to the
identity, and where

Vo = (Z)V2b0y” (3-37)

The columns of the conditioning arrays Zg and Wg share the covariance matrix
Zgp- The marginal probability density functions of these arrays are direct analogs of '
Equation (A1-79) of Appendix 1. These arrays are now also whitened, with the intro-
duction of the new quantities

Zgo = (Tpa) 2

(Zga)* Wg . (3-38)

¥8o
The whitened arrays have zero means; their covariance matrices are given by

Cov(Zgy) = Ix_;©Iy

Cov(Wgg) = In_yj®I .y - (3-39)

The whitening matrix cancels out in the formation of Cy. which has the same
structure in terms of Zg, and Wg:

Cu = Iy + Zao (WaoWpo) ' Zgo - {3-40)

Finally, the test statistic also retains its form when expressed in terms of the whit-
ened arrays V, and W

L= 0y +VE T Vg (3-41)
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and this is the form which is analyzed in later sections. We note that the original
covariance matrix T survives only in the “signal” array V,,. The conditioning vari-

ables Zg, and Wy, are also confined to that component. entering through its depen-
dence on the Cy array.

We can therefore state that Vo and W, are (unconditionally) independent com-
plex Gaussian arrays, with zero means and covariance matrices given by the right
sides of Equations (3-35), and that T, is subject to a complex Wishart distribution of
dimension J, with L +J — N - M complex degrees of freedom. T is expressed in terms of
W, by Equation (3-34). From this point forward, unless explicitly stated otherwise,
when we say that a matrix is complex Wishart we mean that it has a form corre-
sponding to Equation (3-31), and that the covariance matrix of the underlying Gauss-
ian array is a Kronecker product of identity matrices.

The test statistic is expressed by Equation (3-41) and V, is given by Equa-
tion (3-36). Moreover, V,, is independent of Vg, and W, To compute the probability of
detection (PD) one can, in principle, begin by conditioning on Vo, itself, determine the
conditional PD, and remove the conditioning at the end. The statistical character of
Vs is required, of course, and this is discussed in Section 5 . For the probability of
false alarm (PFA), however, V,, vanishes and our statistical analysis is formally com-
plete. The statistical properties of the test can depend only on the dimensional
parameters of the problem (in t*ie absence of signal), hence, the GLR test is a CFAR
decision rule. A more explicit slatistical characterization will be obtained in Section 4.

The possibility of “mismatch’” was mentioned earlier, and we introduce an
example of it here. The departure from the modeled situation relates only to the sig-
nal component; hence, it will have no effect on the discussion of false alarm probabil-
ity in the next section. We suppose that the true mean of the data array is not given
by Equation (3-18), but instead has the more general form

EZ=Dr=dp. (3-42)
The case of a completely arbitrary mean velue of Z is certainly interesting but its

analysis appears to present considerable difficullies. With the new model, Equa-
tion (3-20) is replaced by

eulzufl =

H b, O
e
o] ap 1 - |20 (3-43)
f by O

where
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b, = efd

Hd

bg

d

D(rTH)V% . (3-44)

According to Equation (3-43), the components W, and Wy retain their zero means, but
now

EZ, = b,
and
EZ; - bg.
In the analv sis of the matched problem, we began by conditioning on the E com;

ponents Zp ar.u Wg Forinula (3-22) remains valid for the conditional mean of W, but
Equation (3-21} inust now ce replaced by

EgZy = by + T.pZpp (g ~ bp) . (3-45)

This is a direct aralog of Equation (A1-81} in Appendix 1. The conditional meen of Y is
evaluated as before, but now with the result

EgY = b, — Z,5Zz8 bg - (3-46)
The conditional covariance of Y is still correctly expressed by Equation (3-27), with Cy

as defined by Equation (3-14). The effect of the non-vanishing mean value of Zg which
enters this definition will be feit when the conditioning is removed later.

After the transition to whitened arrays, Equation (3-37) becomes
-1 -
Vos = (Z*)¥*(by - Z4pZpp bp) Ci” - (3-47)

Expression (3-40), which defines Cy in terms of these whitened arrays, remains cor-
rect, but now

EZgy = (Zpg) ™ by . (3-48)
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These results will be utilized in Sections 5 and 6, where the effects of this kind of
mismatch are studied in terms of signal parameter estimation and probability of
detection.




4. THE PROBABILITY OF FALSE ALARM

The fundamental problem of performance analysis is the computation of the
probability of accepting hypothesis H; by means of the GLR test: {2{, The general
case is discussed in Seclion 6. We devote this section to the evaluation of the prob-
ability of false alarm (PFA), i.e, the probability of accepting H; when B=0. We simplify
the notation of Section 3 by dropping the subscript 0 which was used to indicate the
whitening of various arrays. The GLR test statistic, given by Equation (3-41), again
assumes the form

(=1 + VT v, (4-1)
where
T = wwH (4-2)

The arrays V and W are Gaussian, independent of one another, and they both
have mean value zero. We introduce the new parameter

K=L-N-M, (4-3)

and recall that K >0 by the constraint first expressed as Equation (1-9). The dimension
of VisJxM, Wis Jx{+K) and the covariances of these arrays are given by

Cov(V) = 1; @1,
Cov(¥W) = Iy©l;, ¢ . (4-4)
The PFA will depend only on J, M, and K, and not on the actual covariance matrix I

hence, the GLR test has the CFAR property. The only change when signals are added
will be the addition of a non-zero mean value for V.

Using Equation (A1-2), the test statistic can also be expressed in the form

IT + Vv

{ = 'I-—'— . (4-5)
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The inverse of { is the complex analog of Wilks' Lambda staxtistic,a'9 which often
arises in multivariate statistical analysis. It is usual in that context to test for the
validity of Hy against H;, as we have defined the hypotheses, which accounts for the
inversion of the test statistic. We note that T is a complex Wishart matrix and is
non-singular (with probability one), but that vt is non-singular only when M >J.

It is useful to consider some special cases, ana we begin with the simplest,
namely J=1, with arbitrary M and non-negative K. Then, V and W are row vectors and
T is a scalar:

K+1

= wwt = Z Iw

where the w; are the elements of W. Thus, T is a complex chi-squared variable, with
K +1 complex degrees of freedom. This terminology is introduced in Appendix 2, where
a discussion of the complex chi-squared and other related distributions will be found.

Using Equation (4-5), the test statistic takes the form

H
l=1+¥,¥—, (4-8)

and VVH is also a complex chi-squared variable:
H M
= 2 1vf
i=1

with M complex degrees of freedorn. The ratio of complex chi-squared variables which
appears in Equation (4-6) is subject to a complex central F distribution, but we prefer
to express the test statistic in the form

K+1
2 ij|2
1i= — d _ = xg(K+1,M) . (4-7)

YoAwf o+ Y v
j=1 i=1
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In this formula, the notation x ﬁ(n.m) is used in a generic sense to denote a random
variable which obeys the complex central Beta distribution, whose probability density

function (pdf) is given by Equation (A2-12) of Appendix 2. The PFA, defined by the
equation

PFA = Prob(l > ) = Prob[x4(K+1,M)< 1/4] . (4-8)

is just the cumulative of the complex central Beta distribution, also presented in
Appendix 2. Substituting the appropriate parameter values in Equation (A2-14), we
obtain

M-1

1 M+K m
P = e Y (MK -0 (4-9)
lo m=0

With the further specialization M =1, this formula reproduces the simple result found
in Reference 3:

PFA = —— = —— . (4-10)
The other special case we wish to discuss is the dual version in which M=1,J is
arbitrary J, and K is non-negative. V is now a column vector, and
=1+ ViTly
The T matrix is of order J and satisfies a complex Wishart distribution with J+K
complex degrees of freedom. T is expressed in terms of a zero-mean Gaussian array in
Equation (4-2). The covariance matrix of this array is the identity, as stated in Equa-

tion (4-4). As noted in the previous section, these properties of the underlying Gauss-
ian array will be tacitly assumed for Wishart matrices in the following.

We define the unit vector
g = v(viEyy©2

and write

=1+ (VEV) (it 1) . (4-11)
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Obviously, the quantity
H ! 2
VAV = 37 vy

i=1

is a complex chi-squared variable, with J complex degrees of freedom.

The unit vector g may be considered to form the basis for a one-dimensional
subspace of G". and thus, according to the general property of Wishart matrices estab-
lished in Appendix 1, the inverse of gHT'lg is also subject to a complex Wishart distri-
bution. This latter Wishart matrix is simply a complex chi-squared variable in the
present case, since its dimension is unity. This dimension is smaller than that of T by
J =1, hence the complex chi-squared variable has K+1 complex degrees of freedom,
according to the rule derived in Appendix 1. It is therefore statistically equivalent to
the sum

K+1

(T lgt = Y lelz .
j=1

where the w; are complex Gaussian variables of zero mean and unit variance. These

properties are independent of the conditioning variables, hence they remain true
without the conditioning which is now removed. Then, Equation (4-11) can be written

-

lViIZ

-
I
—

L=1+ — (4-12)
. ijle
j=1
where the v, are independent of the Wi In other words,
1/t = x,,(K+1,J) . (4-13)
For the special case M= 1, we have therefore found:
1 S a4k -
~ L -1\ -
PFA = o ( j ) (o-1) | (4-14)

o =0




This expression is in agreement with the corresponding result given in Reference 5.

We return to the general case and introduce a generic nctation for the random
matrix which appears in Equation (4-1):

€(I.MK) = I, + VIT 'V (4-15)

The GLI test statistic itself is given a more specific notation, indicating the dimen-
sional parameters to which it relates:

(I M.K) = 1€(J,M,K): = '"6(J M, L~N-M)]. (4-18)

It is useful to study soine of the properties of these quantities, under the assumption
that V and W are independert. zero-mean Gaussian arrays, with covariances given by
Equation (4-4). By its very structure, the 8 matrix is always positive definite, and,
when M= 1, it reduces to a scalar. In the latter case, according to Equation (4-13),

((J.1LK) = 1/xg(K=1,J) . (4 17)
Similarly, when J=1, Equation (4-7) yields
{(1.MK) = 1/xg(K+1,M) . (4-18)

Equalities such as these are meant to indicate statistical identity. i.e., the equality of
the probabilily density functions of the random variables which enter the equation.
These two results constitute a particular example of a general duality property which
will be derived later. We also note that the matrix Cy, defined by Equation (3-40), is of
the same form, namely,

Cy = B(N-J M.L+J-N-M) = 8(N-J M, J+X) . (4-19)

+his matrix plays a central role in the analysis of performance under hypothesis H;.

Let us introduce a decomposition of the vector space ¢’ into a subcpace of
dimension J; and its orthogonal complement, vhose dimension will be J,=J-J,. The
arrays V and W are partitioned as follows:
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V- W,
va.

W= 1 (4-20)
[ W5 ] '

and we have
4 H VH

w,W WW, Ty Ty

T = " Wil = . (4-21)
WaWy WoWs Ty To

We recall that T is a complex Wishart matrix of dimension J, with J+ K degrees of
freedom, and that the covariance of W is given by Equation (4-4).

We also define

T! = Y
w2l 22 | (4-22)
and then substitute:
™ 2], v
vty = [vB vl NS (4-23)
™ 1% 1 1V2
Making use of identity (A1-8) of Appendix 1, we obtain
Hmp-t -1y \H i -1 Hm-1

By adding the identity matrix to Equation (4-24), we can express $(JMK) in the
form of a product:

B(J.M.K) = (Iy + VET A vo) 2 (1 + UM 97 ) (1, 4 VE TR V), (4-25)




V= (V; = T2 Taz Vo) (Iy + Va Tza Vo) V2 (4-26)

and

g= (T =T, - T)aTos Tay - (4-27)

The arrays V, and W, are Gaussian, independent of one another, and have mean val-
ues zero. Their covariances are given by

COV(VZ) = ]JZ ®IM

Cov(wa) = IJ.‘,@IJ«»K )
We can therefore write

Iy + Ve Tos Vo = €(J5.M.J,+K) (4-28)

indicating thereby the statistical character of this matrix as an example of the fam-
ily defined by Equation (4-15). It is directly analogous to the matrix Cy of the previ-
ous section.

We again recall the analysis of Section 3, which may be applied directly to the
study of ¥ and Y. These quantities correspond to V and T of that section. Conditioning
on V, and Wy, it follows that V is a zero-mean Gaussian array with covariance

COV(v) = IJlQIM '

and that ¥ and J are independent. According to a property of complex Wishart
matrices, established in Appendix 1, it follows that 7 is a complex Wishart matrix, of
dimension J,, and with J, + K complex degrees of freedom. Thus, 7 may be expressed in
the form

g = wwh,

where ¥ is a zero-mean Gaussian array, with covariance
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COV(W) = IJ,QIJl*K .

All these statements are valid under the conditioning, but they do not involve the
conditioning variables. In particular, the pdf of 7 does not depend on these variables.
Hence, these statements remain true without the conditioning, which we now remove.
We have therefore shown that

1, +vP 97y = e, M.K) . (4-29)

again using this notation to identify the statistical character of this matrix. In addi-
tion, since the statistica! properties of this array do not depend on the conditioning
variables, it follows that the matrices expressed by Equations (4-28) and (4-29) are
themselves independent.

From thesc results, we obtain the basic rnatrix factorization identity

8(J.M.K) = [6(J,.M.J,+K)]V* 8(J,. M,K)[8(J,.M,J,+K)]¥Z , (4-30)
and, frorn it, the recursion relation

{JMK) = ((J-J; M. J,+K) {(J; MK) . (4-31)
The factors on the right are independent, and the recursion holds for any J,<J.
Choosing J, =1 and iterating, we obtain a representation in terms of independent fac~
tors:

I-3
(@K = JTeaMK+j) (4-32)

=0

The factors on the right side of this equation correspond to the special case J=1
which we have already studied. Thus, using Equation (4-18), we have

e

/60 MK) = [ xg(K+i.M) . (4-33)
)=1
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The inverse of Lhe test statistic is therefore the product of a set of independent com-
plex central Beta variables. In the case of real data, Wilks' Lambda statistic is expres-
sible as a product of independent real central Beia variables, with a sequence of
parameters increasing in half-integral steps. Equation (4-33), which refers to the com-
plex version of Wilks' statistic, is a direct analog. (See also Reference 20, where this
result and the compiex analogs of a number of other statistical theorems concerning
real Gaussian variables are stated.)

We have also shown that
{(1,M.X) = {(M.1.K) , (4-34)

by our discussion of the two special cases at the start of this section. As a special case
of Equation (4-33), we have

M
1/¢M.1K) = [] xg(K+m.1),

m=1

which, together with Equations (4-18) and (4-34), yields the following identity amony
complex central Beta variables.

M
xg(K+1.M) = [ ] xg(K+m,1) . (4-35)

m=1

The factors on the right are, of course, independent, and this identity can easily be
verified by other means. Combining these results, we obtain the desired
representation of the GLR test statistic as a double product of JM independent factors:

J M
160 MK) = [] [T xg(K+j+m-1,1). (4-36)

j=1 m=1

The notation indicates the statistical character of each factor, their independence
being understood. From this expression, it is clear that J and M may be interchanged
without change to the PFA, provided only that K remains the same. This generalizes
the duality noted earlier in this section.
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Equation (4-36) provides a formally complete statistical characterization of the
GLR test statistic under the null hypothesis. Except in the special cases already evalu-
ated it is, however, of limited utilit asa’ - .or numerical evaluation. This is par-
ticularly true in radar applications, whe  FA values as small as 10°® commonly
occur. Similar difficulties are encountered i1 the evaluation of the real Wilks' statis-
tic?! The double-product representation is, on the other hand. well suited tc evalua-
tion by the technique of numerical integration in the complex plane, following a con-
tour of steepest descent. This procedure has been developed and successfully applied
to a number of detection probability evaluations by Helst.rorn,22 building on earlier
work by Rice.2® The analytical techniques involved in this procedure are quite unre-
lated to those used elsewhere in this study, and the entire topic is relegated to
Appendix 6.

At this point it is useful to derive a result that will be needed in the next Sec-
tion. We return to the definition of the ¢ matrix and apply a unitary transformation
to both sides, writing

Mg M KU = 1+ o8 T e, (4-37)
where

é=VU,
and U is an arbitrary unitary rnatrix of order M. Since ¢ is statistically indistingui-

shable from V, the joint pdf of the elements of ¢\, ,K,M) must also be invariant to
the transformation expressed by Equation (4-37). it then follows that

E¢" = E(UHgU)" = UNES U, (4-38)

for any positive or negative integer n. Since Equation (4-38) holds for all unitary
matrices, E6” must be a multiple of the identity matrix.

We are particularly interested in the first moment of ¢, and we make the defini-
tion

E€(J.MK) = u( MK, . (4-39)

Taking «he trace of both sides of this equation, we have




u(I M.K) = MTETr 6(J.M.K)

1+M TET (T vy (4-40)
But T and V are independent, and

EvVvH = M1,
according to Equation (A1-42). The dependence on M therefore disappears, and

(I MK) =1+ ETr(T).

If we take the trace of both sides of the factorization formula [Equation (4-30)) and
recall the independence of the factors, we obtain the recursion

u(I M.K) = p(J-J, M, J,;+K) u(J{,M.K) .
This is just like Equation (4-31). and by iteration we find
J-1
p@ MK) = [] (1. MK+j). (4-41)

j=0

When J=1, Equation (4-40) yields

:levi’z

_ -1
WIMK) =1+ M'E| —

2 |le2

j=1

As noted earlier, the ratio of complex chi-squared variables which enters here is sub-
ject to the complex F distribution [Equation (A2-9) of Appendix 2], and the required
expectation value is just M/K. Thus,

(1M K) = KTH . (4-42)

57




from which we obtain

J-1 .
pMK) = [T B =gk, (4-43)
j=0 K+)
and
E€(.M.K) = (1+J/K)ly . (4-44)

This is the result we need later, and we note that the evaluation has also yielded the
expected value of the trace of the inverse of a complex Wishart matrix, of dimension
J and with J+ K complex degrees of freedom:

ET(T}) = J/K. (4-45)

It is worth noting that, by a completely analogous argument, the following result
may be obtained:

S
M+K+J

E[ed. MK ={1 1, . (4-486)




5. THE ESTIMATION OF SIGNAL PARAMETERS

We begin this section by returning to the non-adaptive version of the problem
and complete the analysis of its performance, both in terms of signal parameter esti-
mation and detection probability. This exercise provides useful background for the
adaptive version, and also serves to introduce some relevant notation. We recall that
only the component Z, of the data array enters the results in this case, since the
covariance matrix T is assumed to be known.

The non-adaptive signal parameter array estimator, derived in Section 2, is
Sz = (ef'z ey eHE_IZp . (5-1)

In Section 3 [Equation (3-16)), it was expressed in terms of the A and B components of
Zp. as follows:

- . oa-l
by = 2, - Z,pTlpelp -

This estimator is completely characterized as a Gaussian array, whose mean and
covariance are

Cov(bg) = (Z**) ' o1, . (5-2)
The first of these equations, which states that the estimator is unbiased, follows from

Equation (3-20). The second equation is a direct analog of Equation (A1-82) of Appen-
dix 1, since the estimator has the form of a prediction error.

A whitened estimator may be defined as follows:

Its expected value is

Ebgy = (£**)”b = b, . (5-4)




which we will call the whitened true signal parameter array. The covariance of this
whitened estimator is

COV(S}:O) = IJ ®IM ' (5.5)

and its pdf is equal to

- . £ S H
f(bm) = ﬁ e '“‘(bm bO)(bN bo) . (5‘6)
T

The components of the whitened estimator array are independent, and all have vari-
ance unity.

The non-adaptive decision rule, given by Equation (3-17), assumes the simple form
= tH £
A= ﬁ(bmbzo) 2 Const ,
in terms of the whitened signal parameter estimator. The test statistic is thus equal
to the sum of the squared magnitudes of the elements of this matrix. Statistically, A

is a non-central complex chi-squared random variable, with JM complex degrees of
freedom, according to the usage introduced in Appendix 2.

The "non-centrality” parameter of this distribution is

ag = Tr(bhbg) . (5-7)

We call this quantity the non-adaptive signal-to-noise ratio. To express it in terms of
the original variables of the problem, we write

bab, = bz = e len
and note that
eb = aB-rpH = aB(-r'rH)w :

Then, we have

bib, = (172 Bl £ 1 oB (77, (5-8)




and, finally,

ap = Tr{(cB7)" £7! (¢BT)] . (5-9)

In the special case M=1, +7H is a scalar, the squared norm of the T vector. As noted in

Section 1. this vector can be normalized to unity by a redefinition of the B array. If
this is done, we will have

ap = biby = Bio"z leB.

Moreover, if J=1, then B itself is a scalar, and the signal-to-noise ratio reduces to the
familiar form

ap = |BF felo.

In radar terms, the test statistic is a non-coherent integrator of JM complex
samples, and its pdf is the non-central complex chi-squared distribution, which is dis~

cussed in Appendix 2. The detection probability is given by the Marcum Q-function:24
o0
Py = Prob(A >Ap) = fe'%‘* (M/2o) M- W21 (2y/ApA)dA . (5-10)
A0

The corresponding probability of false alarm is

where

m-1 g
Gmi=e” ) L (6-12)
k=0 )
is the incomplete Gamma function, introduced in Appendix 2.

We return to the adaptive problem and recall that the adaplive parameter array
estimator, found in Section 2, has the forn:
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b= (flsle)’ efis iz, (5-13)
which is just like Equation (5-1), with S replacing £. The matrix S, of course, is {L - M)
times the ML estimator of £, based on the Zq component of the data array alcne, as
expressed by Equation (2-48) of Section 2. The proportionality constant will cancel out
in the above expression for the amplitude parameter estimator. This estimator was
later shown to be identical to the array Y, introduced in Section 3 [see Equa-
tion (3-13)} Under conditioning on the B components of the data array, we found that
this array is Gaussian, with conditional mean and covariance matrices given by
Equations (3-23) and (3-27), respectively:

Egb = b

Covg(b) = (£**) ' oCy, .

]

We introduce the whitened estimator
b, = (S b, (5-14)
as in the non-adaptive case. Its conditional mean is
Egby = by . (5-15)
and the corresponding conditional covariance matrix is
Covg(by) = ,© C . (5-16)

The b, array is the whitened signal parameter array defined in Equation (5-4), and
the matrix Cy (defined in Section J3) is

Cy =y + Zhsplzy . (5-17)

In accordance with the usage begun in Section 4, we have dropped the subscript zern
(which indicated whitening) on the B arrays in this definition. In the notation of Sec-
tion 4, we have

Cy = B(N=-J M J+K), (5-18)




as noted there It will be recalled that K=L-N-M. The conditional mean of our
estimator is independent of the conditioning variables, hence it remains an unbiased
estimator (like its non-adaptive counterpart) when the conditioning is removed:

~

Eby = by - (5-19)

The unconditioned covariance matrix may be evaluated from the equation
Cov(by) = I;®(ECy)" .

obtained by taking the expected value of both sides of Equation (5-16). The required
expected value of Cy was found in Section 4, and Equation (4-44) [together with
Equation (5-18) above] yields

COV(EO) = ‘JTR— IJ®1M . (5'20)

The removal of the conditioning has left us with uncorrelated columns for the
parameter array estimator, but it is no longer Gaussian; hence, we cannot infer inde-
pendence, as in the non-adaptive case. The relation between iaz covariance matrices
in these cases is interesting. We have

Cov(go) = %—}% Cov(Bm) ,

and the factor which connects them is generally greater thz.a unily.

K+N __L-M
J+K L+J

Equality is attained when J=N, as we should expect, because in this special case the e
array is unitary, and definitions (2-34) and (2-51) tell us that the estimators coincide
in this case:

J=N: b=bg=eZ . (5-21)
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At the end of Section 3 we introduced a particular form of “mismatch,” in
which the signal component present in the actual data differs from the model on
which the GLR detector and parameter estimator are based. In this model, the mean
value of the data array is the form

EZ =Dt =dp. (5-22)
where D and d are NxM arrays, and 7 and p have their usual meanings. The true
parameter array now has a component b, which is in the subspace defined by the

signal model, and a component by in its orthogonal complement. These arrays, origi-
nally defined by Equations (3-44), are given by

by=e'd., bg=1d. (5-23)

In order tc assess the effects of this mismatch on parameter estimation, we
introduce whitenea versions of these signal components, as follows:

-1 \
bpo = (hhy” (by ~ZapLpa s’
bgo = (Zp)™* by - (5-24)
These definitions are motivated by Equations (3-47) and (3-48) of Section 3, » o
become
-1/2
Vos = bao Cy (5-25)

and, again dropping the zero subscript on Zg,
EZB = bBO . (5'26)

Recalling Equations (3-9) and (3-44) of Section 3, together with Equation (A1-8) of
Appendix 1, it can be seen that

hence, we may writ: the first of Equations (5-24) in the form

by = (E**)V2elsd . (5-27)




The conditional mean of the whitened parameter array estiraator is
Egby = by . (5-28)

which follows directly from Equation (3-46). Since this result does not depend on the
values of the conditioning variables, Equation (5-28) expresses the unconditioned
mean value array as well. The mean value of the original (unwhitened) estimator
array is therefore given by

~

Eb= () Eby = (£**) Vb, . (5-29)
Using Equation (5-27), together with the definition of £, we obtain
Eb= (" le)y ez la. (5-30)

By way of comparison, we can evaluate the expected value of the non-adaptive
parameter array estimator directly from Equation (5-1), using the fact that

.z dppH= d.

P

We obtain

~

E by

(eHzley? Mo EZ, = (eHZ'if:)'1 eleld, (5-31)

which expresses the remarkable fact that the adaptive and non-adaptive parameter
array estimators have the same expected values, even when the sigrals are not
matched to the model in our original formuiation.

Equation (5-16), which expresses the conditional covariance of the parameter esti-
mator, is still valid in the presence of mismatch, whose effects will become apparent
only when the conditioning is removed. To evaluate +he expected value of C,, we
recall that Zg and Wg are .ndependent, and that their covariance matrices are

Cov(Wg)
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H

it follows that Spg is a complex Wishart matrix, of order N—~J. with L -M complex
degrees of freedom. Fbllowing the convention established near the end of Secticn 3, it
is understood that the covariance matrix of the underlying Gaussian array of the
Wishart matrix is the identity. In the present case, this is expressed by Equa-
tion (5-32). Using Equation (4-45), we evaluate the mean of the trace of its inverse:

4y _ __ N=J _ _ N-J
ETr(Sgs) = [3yoN-M = J+K -

It is clear from the complex Wishart pdf, Equation (A3-10) of Appendix C, that the
expected value o] any power of Sgg is proportional to the identity matrix. The argu-
ment is the same as that used in Section 4 to establish Equation (4-38), and we con-
clude that

1

-1
ESgs = 77k N-v-

We can now evaluate the required expeclation of both sides of Equation (5-16)
when mismatch is present. First, we condition on Zg in Equation (5-17). and then
average over this array, to obtain

1 H

But,
E(z825) = (EZ)" (EZp) + E(Zg - EZp)" (Zg - EZp) (5-33)

and EZg is given by Equation (5-26) above. The second term on the right of Equa-
tion (5-33) is evaluated as a special case of Equation (A1-42) of Appendix 1. In view of
the covariance matrix, given in Equation (5-32), the result is

E(Zg - EZg)"(Z5 - EZg) = (N-J) Iy .

Combining these facts, we have the properties
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]

Cov{bo) T+ K IJ®[(K+N)IM + bgobao] , (5-34)

which characterize the parameter estimator in the mismatched case. The estimator
attemnpts to produce the component of the actual signal array which lies in the mod-
eled subspace, and its performance is degraded by the effect of the orthogonal com-
ponent of the signal array which increases its variance.

1t is interesting to note that

H H _ “1, \H «AA -1 H -1 -
baobao + Ppobpo = (by-ErxpZppbp) L (by—ZapZpabp) + bp Ipg Op

H . H A
b, b I ,
[y 5] | gBA ¢BB lbs}

by application of Equation (A1-9). Moreover, we can write definitions (3-44) in the form

b
‘ A] - wd, (5-35)
by

where Uy is tae unitary matrix defined by Equation (2-20). Then, recalling defini-
tion (3-9), we obtain

bHib,o + bhobgy = dRZld = (=7 DR e p (V2 (5-36)

la the matched case we have D=0B, and Equation (5-36) then passes over into
bgbo, as expressed by Equation (5-8) above. We return now to the matched problem,
and its postulates are to be assumed throughout the ensuing discussion, except where
the contrary is explicitly noted.

Before discussing the pdf of the amplitude parameter estimator, we recall the
definition of the general € matrix [Equation (4-15)) and introduce the notation % for
its inverse:
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£(J.M.K)

8. MKY! = (1, +ViTtv)?

I, - VE(T +vviyly (5-37)
As in the definition of the € matrices, ® is often used as a ‘‘generic” designator for a

random quantity, not always a specific example. In the atove definition, V is a
zero-mean complex Gaussian array of dimension Jx M, with covariance

Cov(V) = LyoI,, . (5-38)

and T is a complex Wishart matrix of order J, with J+ K complex degrees of freedom.
By analogy with Cy, we will write

Ry = Cy! = R(N-J.M.J+K) . (5-39)

The general ® matrix is a complex multivariate generalization of the complex
central Beta random variable, and the joint pdf of its elements is derived in Appen-
dix 3. We use the notation fg for the probability density function of an X matrix, and
dy(R) for the corresponding volume element. This pdf depends only on the dimen-
sional parameters J, M, and K, and, when M=1, it reduces to the ordinary scalar com-
plex Beta pdf (see Appendix 3 for details). The volume element is specific to positive-
2efinite matrices, and it is the sarne as the volume element for the complex Wishart
pdf. The notation is defined in Appendix 3. If $ is & function of the random matrix X,
then we can evaluate its expected value by integrating over the appropriate pdf:

E$[R(J.M.K)] = fé(R) fo(R:M,K+M,J)dy(R) . (5-40)

In the special cases to be discusscd later, this Beta matrix will reduce to a complex
scalar Beta variable, and the integration will be a simple, one-dimensional integral
vver the complex (scalar) Bete density.

The & matrices have some interesting properties, two of which will be established
here and used presently. Let Uy be a unitary matrix of order M, which is partitioned
as follows:
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e 1]

We assume that r is Mlx M, s is M;x M, and that the sum of M; and M; is M. The V
array is also partitioned, using Uy

H
VUy = [V; Vo]
where

VrH

n

Vi

V, = vst (5-41)

The new components are complex Gaussian arrays with zero means, and with
covariances

Cov(V,) = | @IM:

Cov(V,) = 1 ®IM2 : (5-42)
We note that

vyt o vivl vVl (5-43)
and consider the matrix

sRIMK)sH = sst - vt ovviyly, (5-44)

From the unitary character of Uy, we have

H
s = )
s le

Then, using Equation (5-43), we can write




. sSE(J.M,K)sH

Ty, = VB (T+V,Vi+v,vEytv,

H - -1
[y, + V5 (T+V, Vi) o]0

The complex Wishart matrix T can be expressed in terms of & zero-mean complex
Gaussian array ¥

T=ww,
where

Cov(W) = I;®0I, -
it follows that

wH
H
vl

H
T+V,Vi' = [w V]

is also a complex Wishart matrix, of order J, and with J+ K + M, complex degrees of
freedom. Since the covariance of the V, component is given in Equation (5-42), we
have therefore shown that

sRUMK)s® = R My K+M,) . (5-45)

Recall that s is M;xM in dimension, and that M;=M - M,. In this equation, as in others
which relate generic random variables, the equality sign refers to statistical identity,
or equality of the corresponding probability density functions.

The second property concerns the determinant of an & matrix, which has the
form of the inverse of the GLR test statistic in the signal-free case, as discussed in
Section 4:

IRIMK)N =1/ . MK) . (5-48)

As shown in Appendix 3, by a simple factoring of the determinants,

LI M.K) = ¢J, My K+M,) I M,.K) . (5-47)




This is Equation (A3-63) of Appendix 3, where it is further established that the twe
factors on the right side of this equation are statistically independent. The same
applies, obviously, to their inverses, and we can therefore write the determinant of a
general X matrix as a product of independent factors:

R MK) = R My, K+ M) |R(J. M. K)| . (5-48)

We resume our discussion of the parameter array estimator, in its whitened
form, and define the estimation error array:

1]

We exclude the special case J=N, because in this situation the adaptive estimator
coincides with the non-adaptive one, as we have already noted. There are no B com-
ponents when J=N, the C); matrix reduces to the identity, and the pdf of the estima-
tion error [see Equation (5-6)] takes the simple form

_ H
() = qpe Y (5-50)
™
in this case.

In general, the expected value of ¢ is zero, and its conditional covariance is given
by the right side of Equation (5-16). In terms of Ry, we may write it as

Covg(¢) = ;@ (Ry')" .

and then the conditional pdf of ¢ becomes

H
1(¢IRy) = —‘llﬁ |RMHE-“(R“‘ 2 (5-51)
r

This form of the multivariate Gaussian distribution is a special case of Equa-
tion (A1-62) of Appendix 1, and we have indicated the conditioning variables as the
components of Ry itself, since it is only through them that the B components sur-
vive. The unconditioned pdf of ¢ can therefore be expressed as the integral over the
appropriate density of Ry,
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1(¢) = n——}—ufer’e‘“(R‘"f) fp(R:M.J+M+K,N-J)dy(R) . (5-52)

This is, of course, the pdf of the whitened parameter estimator array. and it can
depend only on the dimensional parameters of our model.

It is also clear that {(¢) depends on the estimation error only through the prod-
uct f"t. In fact, it can depend only on the non-zero eigenvalues of this matrix, and
these, of course, are the squares of the singular values of ¢ itself. To prove this asser-
tion, we express 5“5 in terms of its eigenvalues A, as follows:

e = uaul

where U is unitary, of order M, and
A = Diag[A....Ay].
In the conditional pdf we have
Tr(Ry £7¢) = Tr(uiRy uA),
and, of course,
IRyl = [u"R, Ul .
From its definition, we see that R is statistically indistinguishable from uHRuy, since

the latter is expressibie as an ® matrix in terms of VU, which is statjstically identical
to V. Thus, the pdf of ¢ depends on ¢ only through A.

If signal mismatch is present, the ¢ array is defined by the equation
f = 80 - EBO = Bo - bAo . (5‘53)
so that it still has zero mean. In addition, Ry is now a perticular example of the

non-central generalization of the ® matrix. R is the inverse of C,, defined in Equa-
tion (5-17). and the non-centrality arises from the non-vanishing mean of the Zg
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array, which is now given by Equation (5-26). The effect of mismatch on the pdf of
the estimator will be discussed later, in connection with a special case in which Ry
reduces to a non-central complex (scalar) Beta variable.

If J> M, the matrix fo will have full rank, except for a set of measure zero in
the ordinary Euclidean sense represented by the volume element d(¢). Equation (5-52)
provides a convenient starting point for the study of the unconditioned pdf of ¢ in
this situation. On the other hand, if J<M the product ff" will have full rank, in the
sense described above, and an alternative form of the conditional pdf of ¢ can then be
obtained. This form will be more convenient because it will involve an ® matrix of
lower order. To obtain this form, we introduce the array

i

s = (e3¢, (5-54)

which has the familiar properties

ssh = Iy
shs = ¢M(eey e
¢ = (e6)s (5-55)

The orthonormal rows of s form a basis in the row space of ¢ The orthogonal
complement of this space, which has dimension M -, is given a basis array r which,
together with s, forms a unitary matrix:

1]

in the standard way. Expressing £ in terms of s, we have

Tr(Ry ¢M¢) = Tr(sRys" ¢¢") (5-56)

and the first property of the ® matrices, derived above, may be applied. In the pres-
ent applicalion, M; =J and M; =M - J; therefore,

sRys? = sR(N-J,M,J+K)s? = R(N-J,J M+K) . (5-57)
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Comparing this form with Equation (5-39), we note that J and M have been inter-

changed in the second and third arguments of the £ matrices here. We make the
definitions

R, = R(N-J,J. M+K)

Rg .‘R(N’TJ,M -3,1+K) . (5-58)

to simplify the writing. Thus,

SRMSH = Ra
IRy! = IRz 11Rgl, (5-59)
and
- H -
((¢IRa.Rg) = = IRpl IR, [ e M (RattD) (5-60)
™

Since the factors on the right side of the second of Equations (5-58) are indepen-
dent, we can average over Rg to obtain a form of the pdf which is conditioned only
on R,. Using Equation (4-36), we have

IRgl = 1/((N-J,M~J,J+K)
N-J M-J
= H xﬂ(J+K+j+m—1.l).
J=1 m=]

All the complex Beta variables in this double product are independent, and it is easily
shown from the complex central Beta density [Equation (A2-12)] that

Elxgn.))] ~ B

When applied to our problem, we get




z

¥ JrK+j+m-1

2QJ+K+j+m-1

3]
n

=1 m=1

—

N1 MK +j) @I+ K +j)!

j=0 I+K+i)I+M+K+j) -

(5-81)

This evaluation has given us the following expression for the conditional pdf of
the estimation error, valid when the indicated inequality is satisfied:

. - ¥ ~Tr (R, ¢€") -
J<M:  f(¢IRy) = nmmaﬁe . (5-62)
and the corresponding 1:nconditioned pdf of ¢ is then
—
f(¢) = T—j—M f|R;Je"’“R“ V15(R:J.J+ M+K.N=J)dg(R) . (5-63)
It is established in Appendix 3 [see Equation (A3-57)} that

K+i(K-M+n+j)!
(K-M+j)(K+n+j)

J-1
IR f(R:M.K.J) = [] tp(R:M,K+n,J) (5-64)
j=0

which holds for negative values of n, so long as K~M +n is non-negative. When this
identity is applied to our example, we obtain

¥ 15(R:J.I+M+K,N=J) = [RM 15(R;J,204 K, N=J) ,

and, consequently, Equation (5-63) can be written in the form

1(¢) = %JIRI“ e T (REE™) B(R1J.214 K, N-J)do(R) . (5-65)
m




We have obtained this result under the assumption that J<M. However, it is also
true when J=M, in which case it may be seen that Equations (5-52) and (5-65) differ
only in the argument of the trace operator, which appears in the exponential factor.
But when J and M are equal, ¢ is square and invertible (except for a set of zero mea-
sure) in the sense referred to earlier. It follows from Equations (5-55) that the array s,
now square, is unitary. We have already seen that such a unitary transformation
may be applied to an R matrix with no effect on its statistical properties, and Equa-
tion (5-56) tells us that interchanging the order of the factors ¢ and sH in the argu-
ment of the trace is equivalent to subjecting Ry to such a unitary transformation.
The determinant of Ry is also unaltered by this unitary transformation, as we have
observed already. Equation (5-65) is therefore obtained directly, without the need to
factor the R matrix explicitly, and this completes the proof of our assertion.

The analysis which has led us to Equations (5-52) and (5-85) made use of an
intermediate stage of conditioning (on the B components of the data array) which
was originally introduced in Section 3. This method is particularly appropriate for the
analysis of the GLR test statistic itself. However, another technique can be employed
to obtain a formula for the conditional pdf of the estimation error array. This
approach leads directly to Equation (6-65), but without the restriction on the relative
values of J and M, and it is presented here as an interesting alternative.

We start from Equation (5-13), as before, and write it in the form

b= (efs7le)y! sz, = Wiz, (5-66)

where w is a “weight array,” given by
w=ste(eflsley? . (5-87)

This array is of dimension Nx J, and it has the property that

We recall that

_ H
Zp-Zp .

and that the mean and covariance of the original data array are
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EZ = ebp
Cov(Z) = Lol . (5-68)
Zp is a complex Gaussian array, of course, with mean and covariance given by
EZp = eb

Cnv(Zp)

]

Toly . (5-69)

The covariance has been evaluated using Equation (Al1-44) of Appendix 1.

In the new technique, we condition on the Zq array instead of the R components,
and we indicate this by a subscript q. Since

H
< =

the S matrix and the weight array w are fixed under this conditioning. The form of
Equation (5-66) makes this a natural step in the analysis of the statistical properties
of the estimator of the b array. Under the new conditioning, this estimator is obvi-
ously a complex Gaussian array, with conditioned mean and covariance given by

Eqs = w“EZp = wleb =1
COVq(B) = CbG)IM .

where

Cp = wH2w

Il

(s ey efstrsle (efsle)? . (5-70)
The conditional pdf of the estimator array is therefore

R IR
f(b) = __JMl e m[c; (b~ b)(b-b)] (5-71)
|

[ Cy
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The conditioning variables survive only in the matrix C,, whose statistical prop-
erties we now examine. The first step is a whitening transformation, in which we
introduce the array

Z,= V8 Z, . (5-72)
Like Zq. this is a complex Gaussian array with zero mean, but with covariance matrix
Cov(Zg) = Iy@I _y .
We also introduced the whitened version of the S matrix:
So = ZoZd . (5-73)

which obeys a complex Wishart distribution, and which, like S, is inertible with prob-
ability one. '

Let ey be a whitened version of the e array:

e = £ % . (5-74)

This array is no longer a basis array, and its column space is different from that of
the original e (or ) array. In terms of e, we have

efsle = ef Ssleg .
and

C, = (e Sg'ep)! el s;2e, (ef Soleg) (5-75)
From the definition of e we make the evaluation

egeo = ellgle = ghA .

which is a positive-definite matrix of order J. We can establish a basis array in the
column space of e; by the standerd prccedure, introducing the array




e, = eqlgey)™ = e (TH) V2. (5-76)

This development parallels the introduction of e itself from the original array o, and
we obtain the following identities directly:

H, _
ee =l
H H 1 _H
ee; = ey(egey) €
e = & (T (5-77)

Continuing the analogy. we let f; be a basis array in the orthogonal complement
of the column space of e,, and form the unitary matrix

UN = [e, fl] . (5-78)

We use this matrix to transform and partition the Z, array:

H

e, Z 'x. ]
u;!zo=[:{° E[A , (5-79)
11y Zo XpJ
the matrix Sy
I an TaB X XY X,Xp
ulls,uy = = | TATA TATB (5-80)
XgXh X x"]
Isa BB | pXa XpXp
and its inverse:
P,AA s
Hea-1
lyBA JBB

According to the third of Equations (5-7’7), we have
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eg Saleo = (T2 erl S(;le1 (zAhy |
and
-2 -
eh S;7ey = (E*M)V2 ef's52e (A2 .
Then, substituting in Equatio1. (5-75), we obtain
Cp = (T ¢y (M), (5-82)
where

Co

Hea-1 -1 Hea- - -3
(e; Sg &) e S(-Jzel (e;*l Solel) : (5-83)

We make use of Equation (5-8?) to express C, in terms of the new partitioned compo-
nents:

CO - (yAA)—l (yAAyAA + yABJBA) (yAA)-l

IJ + (yAA)'I yAB"fBA (yAA)-l )
In view of the identities contained in Equation (A1-8), this expression is equivalent to
Co=1y+ Sap ’BB VA

The statistizal properties of Cy do not depend on the true covariance matrix Z. In
fact, they cai: “epend only on the dimensional parameters of tiic problem. We will
uerive these properties sherlly, but first we wish to express the conditional pdf, Equa-
tion (5-71), in terms of Cjy. From Equation (5-82), it follows directly that

-1
ICy| = 1CoI IE* (5-84)
and

[c(B- b)b- b)) = Il {E* ) (b- v)(b- b) (2*4)] . (5-85)

on, o
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(A" (b-b) = by-by = £ . (5-86)
according to definitions (5-4) and (5-14), hence we can obtain the conditional pdf of

the ¢ array itself. We can view Equation (5-86) as a change of the variables of integra-
tion, and use Equation (A1-66) of Appendix 1 to find the appropriate Jacobian:

d(b) = =24 M a(e) .

Combining these results, we get

o 1 -m(cyle”
1(8) = nJM{CO!Me (Co ¢t”) | (5-87)

Returning to the C, array, we define
T = pg = XpXp . (5-88)

which is a complex Wishart matrix of order N —J, since Xg is a zero-mean complex
Gaussian array, whose covariance matrix is easily found to be

Cov(Xg) = In_y @I _y - (5-88)
B N-J L-M

From this property it follows that T has L-M=N+K complex degrees of freedom. We
also define

v = 'yAB(yBB)-Vz . (5‘90)
which has dimension Jx (N ~J), and then we can write
Co= 1, + v1T iyl

U is a function of the arrays X, and Xg which are, of course, complex Gaussian
arrays with zero means. The covariance matrix of X, is




We write # in the form

v

X,Q .

where

Q= Xg (338)-w . (5-91)

If we condition on the elements of Xg, Q will be a constant array and ¥ will be condi-
tionally Gaussian, with zero mean and conditional covariance matrix

Covg(V) = | o(Q"Q)°,

using Equation (A1-44) of Appendix 1. The subscript B is intended to indicate condi-
tioning on Xg. But

Q"Q = (#p) ™ XpXp (Ypp)™* = Iny . (5-92)
hence,

Covg(V) = @Iy _; - (5-93)
The ¥ array has been shown to be conditionally Gaussian, with a mean array and a

covariance matrix which do not depnd on the conditioning variables. Hence, I has
the same statistical properties without the conditioning, and this is now removed.

Finally, we replace U by its Hermitian transpose, making the definition

v, (5-94)
Then, V is a zero-mean complex Gaussian array, with covariance matrix
COV(V) = IN -J @ IJ ' (5‘95)

and C, can be written

Co=1, + VATV,
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This is clearly a random € matrix, of the kind defined in Section 4. Its parameters are
determined from the definitions of that section, together with Equations (5-88), (5-89),
and (5-95). Since (N+ K)~(N -J)=J + K, we obtain

Co = B(N-J.J.J+K) . (5-96)

The inverse of C;, which we call R, is an ® matrix:

R, = Co' = R(N-J.J.J+K) . (5-97)

The conditional pdf of ¢ is therefore given by
- = L g M -Tr(R &M .
f(¢) = 1(¢IR,) = ﬂJMIR,. e T (5-98)

and the unconditioned pdf is therefore
H
(¢) = —%,fm!_“c'““‘“ ) 5(R:J.20+ K, N-J}dg(R) . (5-99)
™

This is identical to Equaticn (5-65), but it is valid for all values of J and M which are
permissible in the general formulation of Section 1.

Using thre apparatus of Appendix 3, it is possible (when J> M) to integrate out the
extraneous variables in Equation (5-51) in order to obtain a formula for the condi-
tional pdf of the elements of f"t itself, which is positive definite under this assump-
tion. A similar formula can be derived [from Equation (5-98)) for the conditional pdf
of the elements of $£H. which is positive definite when J< M. To give expressior to
these conditional densities, we define the matrices

A= g

A = eé-H ) (b’lb»))
The conditional pdf of A then assumes the form

JaM: gAIRy) = —— 1Al MR, e RN (5-101)

Ty(@ "




and that of A' becomes
. . _ 1 M-J -Tr(R,A)
J<M: A'lR)) = —/—=|A R, [ e LA 5-102
gNIR,) = iy A0 1R, M (6-102)

The associated volume elements are dg(A) and dyA’), respectively. As noted earlier, this
is the same volume element used in connection with the Wishart pdf. The normaliza-
tion factor I',(m) is defined in Appendix 3 [Equation (A3-8)]; it is a multivariate gen-
eralization of the Gamma function. The unconditioned densities of A and A’ are
expressed as the following integrals:

-M
I>M: g(A) = I?:(J) flnﬁe'“““) f5(R:M.J+M+K,N-J)dy(R)

M-
[A]

J<M: g(A') = T5(0)

IRMe ™(RA) 1 (R:J,2J+K.N=J)dy(R) . (5-103)

To get explicit results for the unconditional pdf of the estimation error array, we
must specialize to either of the cases: J=1, M arbitrary, or M=1, J arbitrary. We note
that the original parameter array B has rank unity in these situations, and we antic-
ipate that only in these special cases will we find explicit results for the probability of
detection.

We consider the case M=1 first, and recall that J must be less than N, but is oth-
erwise arbitrary. In this specialization of the signal model, 7 becomes a row vector
vhich distributes the signal among the columns of the data array Z with known rel-
ative amplitudes. If Z is post-multiplied by . suitable unitary matrix, 7 can be con-
verted into a vector all of whose components are zero except the first. The value of
this first component can then be factored from r, and incorporated into a redefined
B array. The general problern with M=1 is thus equivalent tc the special choice

T = {1,0,...,0} .

In this model, the signal is confined to the first column of Z, which becomes synony-
mous with Z defined in Section 2. The remaining components comprnse the Zq array.
The signal ltself is any vector in a given J-dimensional subspace of i . and B is & col-
umn vector of dimension J. These specific transformations have been mentioned only
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to illuminate the special case at hand; in the following discussion, we do not assume
that they have been made.

When M=1, the & matrix of definition (5-37) becomes a scalar. The relation
expressed by Equation (5-46) is then simply

R(J.1,K) = 1/¢J 1.X) . (5-104)

We can therefore make use of Equation (4-17) of Section 4 to obtain the statistical
character of Ry, in this case:

Ry = R(N-J.1.J+K) = 1/{(N-J,1,J+K)

Xo(J+K+1.N=J) . (5-105)
8

The same result can be obtained by specialization of the complex multivariate Beta
distribution. given by Equation (A3-53), which becomes a complex scalar Beta variable
as indicated in Equation (A3-54). From Equation (5-52) we now obtain the uncondi-
tioned pdf of £ as the integral:

i
H
(¢) = %Jp’e"" Cfg(pid+K+1,N-J)dp . (5-106)
mw
0

The complex central Beta pdf which enters this formula is defined in Equation (A2-12).
Note that N -J is positive, so there will be no difficulty at the upper limit of this
integral.

The estimation error is a J vector in this case, and A= fﬂf is a scalar, the square
of its norm. According to Equation (5-106), the pdf of ¢ is a spherically symmetric
function in @, depending only on A. By setting M=1 in the first of Equations (5-103),
we obtain the pdf of A directly:

g(A) = (f

1

J-1

_1)!pre'pA fﬁ(p;J+K+1,N—J)dp . (5-107)
0

Alternatively, one can introduce spherical coordinates in the 2J-dimensional real space
corresponding to ¢’. and then integrate out the angle variables in Equation (5-106).
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The result is a function of radial distance only, and the quantity A is the square of
this radius. The procedure just described is exactly that to which the integration the-
orem, used in the derivation of Equation (5-101), reduces when M=1. It is also the
starting point for our inductive proof of the theorem in Appendix 3.

The integration indicated in Equation (5-107) leads to a confluent hsyzpergeometric
function ?® We introduce it here by means of an integral r'epresent,ation:2 6

1
fe‘”‘ fg(p:n.m)dp = ,Fy(n;n+m:x),
0

which is valid when n and m are positive integers. More relevant to our needs is the
formula obtained when the variable of integration is changed from p to 1~ p:

1
fe"”‘ f5(pim.,n)dp = e™™ ,Fy(nin+m:x) . (5-108)
0

The effect of the change of variable on the complex Beta density function is to inter-
change its parameters, an obvious consequence of its definition. The process we have
just carried out is equivalent to Kummer's first transformation of the confluent
hypergeometric function, Equation (A2-21) of Appendix 2.

Another property of the complex Beta pdf is

n+m-1)'(n+k-1)
n-1):nm+m+k-1)

P fg(pin.m) = fg(p:n+k.m), (5-109)

which is easily verified from thz definition of this function. This formula holds for
negative integral k as well, a3 long as n + K is positive, and it represents a special case
of Equation (5-64).

Returning to integral (5-107), we apgly Equation (5-109) to obtain

(K+N)!'(QI+K)!
(J+K)'(J+K-+N)!

Pl 1g(pid+K+1,N=1J) = f5(p:RI+K+1,N=J)

and then make use of Equation (5-108). The result is
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_ (K+N)IRI+K) At
g(A) = O+K)0+K+N) @-1)

e ® F(N-J;J+K+N+1;4) . (5-110)

The normalization of this pdf can be verified by using the formula

r K -x _ , _ k!in+m-1)(m-k-2)!
fx e " Fy(n;n+m;x)dx = m-1)'h+m-Kk-2)! '
0

which holds when m + k > 2, and which follows from resilts already obtained.

If the first argument of a confluent hypergeometric function is -k, where k is a
non-negative integer, then the function is expressible as a polynomial of order k. The
general case is given as Equation (A2-22) of Appendix 2, and, in particular,

JFi(0im;x) = 1. (5-111)
If we formally put J=N in Equation (5-110) and use this result, we obtain

N-1
gla) = (r?—l)!‘:’-A '

which is the correct answer. It follows directly from Equation (5-50), with M=1, when
the integration theorem of Appendix 3 is applied to convert it to a density function
for A.

When M=1 and J is less than N, exact results can be obtained for the mismatch
problem described earlier. (There can be no mismatch problem when J=N!) As noted
earlier, the expected value of the parameter estimator is altered by the mismatch. ¢
always refers to the difference between the estimator and its mean, as given by
Equation (5-53). The quant'ty b,, is expressed by Equation (5-27) and, in the present
instance, the d array is an N vector.

We recall the definition of C), and note that

C,=1+ 28 SppZp.
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where Zg is now a column vector, of dimension N--J, and Sgg is a complex Wishart
matrix of order N-J, with L- M=K +N complex degrees of freedom. We have noted
the effect of signal mismatch on the expected value of the parameter array estima-
tor and on the mean value of Zg, given by Equations (5-28) and (5-26).

The method of analysis used to deal with the case M=1 in Section 4 may be
applied directly to the study of C, and its inverse K,. We write Zg as the product of its
norm and a unit vector, condition on Zg, and then make use of the property of com-
plex Wishart matrices established in Appendix 1. As a result, we may write

N-J
Z |V=.|2
i=1
J+K+1
ij‘z
j=1

75 Spn Zp = (5-112)

where the v; and w; are independent circular complex Gauvssian variables, all with
variance unity. The w; have zero means, but the v, which are the components of Zp,
have non-zero expected values, as noted above. Thus, the ratio expressed by for-
mula (5-112) is subject to a complex non-central F distribution, with non-centrality
parameter

c = (E2p)™(EZg) = bhybgo - (5-113)
It follows that R, is the corresponding complex non-central Beta variable:

Ry = —1—— = x(J+K+1.N-J[c). (5-114)

1+ 28 Spp 25

This notation is defined in Appendix 2, and the pdf of the complex non-central Beta is
given by Equation (A2-23). Thus, the generalization of Equation (5-106) is

1
H
1(¢) = -13 pre'pe ¢ fa(p;d+K+1,N-Jc)dp . (5-115)
0

m

Similarly, the generalization of Equation (5-107), the pdf of the squared norm of ¢, is




1

I-1

g(A) = (f-l)! J‘p"e'pA tg(piJ+K+1,N-Jlc)dp . (5-116)
0

In the present case, we have

J+K+1

_ _ _ .-cp J+K+1 M
fpid+K+1.N~J|c) = e k;( k )(K+N+k)!

x K tg(piI+K+1,N=J+K) . (5-117)

The required integrations are carried out by the same methods used before. The
exponential factor which occurs in the above formula combines with those already

present in the integrands of Equations (5-115) and (5-116). In the latter case, the resuit
is

_ (K+N)'RI+K)! ,5-1 _-A-c
eld) = gyaeRy A ©

& pek+1 oK
& . ‘ | )
g k;, ( k >(J+K+N+k)! FN-J+k,J+K+N+k+1;A+c) . (5-118)

When ¢ vanishes, this expression reduces to Equation (5-110).

The covariance of ¢ in the general mismatched case is given by Equation (5-34).
Putting M=1 in this expression and using definition (5-113), we obtain

1

COV({) = m IJ ®(K+N+C). (5'119)

Since A= fo, we can apply Equation (A1-42) to compute

_J

EA = J+K

(K+N+c) . (5-120)

It can be verified directiy that this result is consistent with the pdf of A, as expressed
by Equation (5-116). There is, however, a much simpler route in which we start from
Equation (5-116) and write
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o0

! EA= f (Ji)!

4]

pl e P 1(piJ+K+1,N-J[c)dpdA .

O

The order of integration is now reversed, which gives us
1
EA = pr'lfﬁ(p;J-t K+1,N-J|c)dp . .
0

Next, we make use of the infinite series representation for the non-central com-
plex Beia pdf, given by Equation (A2-20) of Appendix 2, which gives us the form:

1
bind k

EA=Je ) i_' fp“fﬂ(p;J+K+1.N-J+k)dp. (5-121)
k=0 -

0

From Equation (5-109), we obtain

K+N+k

1y - _
p 1g(pid+K+1,N J+k) 1T K

fo(p:J+K.N-J+k) .

and, when this result is substituted in Equation (5-121), the integrals all evaluate to
unity due to the normalization of the Beta densities. The result is therefore

bt k
EA=Je® ) & Kjf}z“k = J:K(K+N+c), (5-122)
k=0

which agrees with Equation (5-120).

The other special case mentioned earlier corresponds to J=1, with arbitrary M. We
exclude the case M=J=1, which is covered by our previous analysis. We also return to
the matched version of the problem, the analysis of which cannot so eesily be
extended to mismalched signals in this instance.

A particular example of the special case now under study is described by a o
array, now an N vector, all of whose components vanish except the first, which is




unity. laus form can be attained by pre-multiplication by a suitable unitary matrix.
Signals are now confined to the first row of the data array Z, whose signal component
is an arbitrary row vector in an M-dimensional subspace of @ the row space of T. As
before, we do not assurae that a transformation to this special form has been carried
out.

The estimation error is now a row vector, of dimension M, and its conditional pdf
can be obtained from Eque..on (5-98) by putting J=1. This pdf is a spherically sym-
metric function in 6", hence it depends only on the squcrzd norm of ¢. We could
obtain the unconditioned pdf of this latter quantity (previously called A’) from the
second of Equations (5-103) by integrating over the conditioning R matrix, which is
now a scalar complex Beta variable. However, we prefer to derive the unconditioned
pdf of ¢ itself in this case, because of its relevance to the adaptive nulling problem
mentioned in S ction 2.

Substituting J=1 in Equation (5-98), we observe that the quantity R, which
enters there is a scalar in the present case. Using Equation (5-104) and Equation (4-17)
once again, we obtain its explicit representation as a complex Beta variable:

R,

)}

R(N-1,1,K+1) = 1/{(N-1,1,K+1)

N

xg(K+2," 1) . (5-123)

The unconditioned pdf of ¢ is the integral of the conditional pdf over the density
function of the Beta variable:

1

1(¢) = J(T%)M e‘P“H fg(p:K+2,N-1)dp . (5-124)
0

This result also follows directly from Equation (5-99), of course, when the
specialization to J=1 is carried out [see Equation (A3-54) of Appendix 3).

Although the special case M=1 was originally excluded to assure the validity of
Equation (5-62). the result when we set M equal to unity in Equation (5-124) is correct,
as may be seen from Equation (5-106) (with J=1), together with the fact that ¢ is a
scalar in this case.

The integral in Equation (5-124) can be evaluated as another confluent hypergeo-
metric function, but it is much more useful to view it as the expected vaiue of a
conditional pdf of the row vector ¢. Under conditioning by the Beta variable p, this




pdf is Gaussian, and the elements of ¢ are conditionally independent with zero means
and variances equal to p'l. The pdf of the whitened signal parameter estimator itself
is thus given by

t,(bg) = Jf o(Bglp) fg(p:K+2,N=1)dp , (5-125)
0

where
- M i vy _nH
e = (£ erstimsotiol (5120
It we make the definition

o2 = (P - L (5-127)

Then, the joint pdf of the elements of this estimator is
1
f(b) = jf(glp) fo(p:K+2.N~1)dp . (5-128)
0

where

P nlh n_wy\H /.2
1(blo) = \7) p(b-b)(b-b)"/oy (5-129)

Since J=1, we can acsunie that the o vector is normalized to vnity with no loss
of generality, in which case ¢ and e are identical. Moreover, let vs now consider the
special form of the T array described by Equation (1-3), in which sinals appear in the




first M columns of the data array. Then, b and B are identical [see Equation (2-23)),
and we have the same situation for which the connection with adaptive nulling was
first discussed in Section 2. Equations (5-128) and (5-129) then describe the joint pdf of
the M outputs of an adaptive nulling system which applies weights based on the Z,
array to the data vectors which comprise Zp.

The marginal pdf of the m'™ element of this output vector can be obtained by
integrating out the other components under the integral sign in Equation (5-128). The
result is an integral of the product of the same complex Beta density and a univari-
ate complex Gaussian pdf. This conditional pdf describes a complex Gaussian variable
with mean value b, (the m'P component of b) and variance equal to 012, divided by
p- A “concitional signal-to-noise ratio” can be defined for this variable, in the usual
way, as the ratio of squared mean to variance. It is given by

SNR, =

T
o I 3
M

which reproduces the well-known result of Reed, Mallett, and Brennan,27 in which the
Beta variabi> plays the role of a loss factor.

Quite apart from the delection problem which has been the focus of our atten-
tion in this study, one can use these formulas to analyze the performance of various
algorithms for processing the output sequence of such an adaptive nulling system.
The procedure is first to use the conditional pdf (which describes simple, independent
Gaussian variables) and later average over the complex Beta pdf according to Equa-
tion (5-128). It has been tacitly assumec that the adaptive weights based on the Z,
array are not changed as they are applied to the sample vectors of Z,. In practice,
such weights are often "frozen" in this way for a brief interval of time, after which
new weights, based on a new array like Z,, are found and applied to a new block of
data vectors. If the "new” Z  and 2, arrays are independent of all the "old"” vectors,
then the new adaptively nulled outputs are statistically just like those of the first
blcck and independent of them. In our model, the true covariance matrix is the same
for all the sample vectors in the data array, which now constitutes only one of many
such blocks of data. If we allow this covariance matrix (always unknown) to be differ-
ent from block to block, the only effect on the adaptively nulled outputs will be a
changing value of o, from block to block. This extension of our original model begins
to accommodate the nonestationarity typical of situations ordinarily met in practical
applications.




6. THE PROBABILITY OF DETECTION FOR THE GLR TEST

We proceed now to a discussion of the probability of detection (PD) of the GLR
test, beginning with the same special cases for which the pdf of the amplitude array
estimator was analyzed in Section 5. The general method will be to formulate the
conditional PD, given the B components of the data array, and then to remove the
conditioning by averaging over these components. As noted at the end of Section 3,
the conditioning variables survive only through the matrix Cy. which enters the
“signal component” V,. of the V array. For the special cases to be considered first,
we can build on the analysis of Section 4, making suitable modifications to account
for the presence of signals, in order to derive the conditional probabilities of detection.
As we have already seen, when J=N the Cy, matrix reduces to the identity and there
are no conditioning variables. This case is relatively simple, and it will be therefore be
considered separately.

Let M=1 and J be less than N, but otherwise arbitrary. In Section 4, the following
expression was obtained for the test statistic:

€
>
)

(6-1)

T
=

j

L SN
"
—

The v, are the components of the original V array, which is a J vector in this case.
The argument which led to this formula remains valid when V contains a signal
component, but the numerator of the fraction here is now a non-central complex
chi-squared variable under the conditioning. In Section 3, we wrote V as the sum of a
“signal component” and a “noise component.” After whitening, this representation
took the form of Equation (3-36):

V=VOS+VOn

The subscript zero has been dropped from V itself, but retained on the components.

The noise component has zero mean and, in the present special case, the signal
component is
_ -1z _ 172 .

Vos = boCi% = boRY® . (6-2)

S
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In these expressions b is the whitened signal parameter array (a J vector) and R, is
a scalar, given by Equation (5-105). It follows that

H H
VOSVOS = b0 bO Rl

is the non-centrality parameter of the complex chi-squared variable in the numera-
tor of Equation (B-1). We write

p=R = xﬁ(J+K+1,N—J). (6-3)
and also make the definition
a= agp, (6-4)

where a; is again the non-adaptive signal-to-noise ratio (SNR). This quantity was
expressed in terms of the airays in which the detection problem was originally for-
mulated by means of Equation (5-8), which takes the form

ag = bhby = 7 (eB)H 7! (0B) . (6-5)

in the present case Since M=1, oB is an N vector, while 77" and ag are scalars. The
new quantity “a’ will play the role of a SNR for the conditional detection problem,
and p will act as a “loss factor.” When J=N, the same reasrning is valic. except that
a=a, Hence, this special case can be recovered by replacing p by unity in the follow-
ing analysis.

Under the conditioning, the inverse of the test statistic is a complex Beta varie
able, but now it is a non-central one, and we may write

1/t = xg(K+1.Jla) (6-8)

which reduces to Equation (4-13) when a vanishes. The conditional detection probabil-
ity is a curnulative non-central complex Beta distribution, and we can make use of
Equation (A2-26) of Appendix 2 to write it in the form




]

Probg (¢ > ¢{g) Fﬁ(l/lo;K+l.Jlaop)

(4-1) &
e Lleora($E) e
0

k=0

Considering again the case J=N, we see that Equation (6-7), with p replaced by unity,
provides the final detection probability for the GLR test in that specialization.

In general, we must still average over p, which gives us the formula

(-1 & ap
PD =1 - R kz <J k)(to 1) Hk”( o ) (6-8)
where
1
Hy(y) = EG,(yp) = ka(yp) fg(p:d+K+1,N-J)dp . (6-9)
0

Substituting for the incomplete Gamma function [Equation (5-12)] and using Equa-
tion (5-109), we obtain

k-1 m

Hi(y) = ZO y;, Je"" P 1g(pid+K+1.N=-J)dp
m:
0

e ¥ 1g(pid+K+m+1,N-J)dp . (8-10)

L K+N)!I(+K+m)'y J!
U+K)'(K+N+m)' m!
0

From Equation (5-108), we obtain the final result

m
KiN+m)! F JFi(N-J:K+N+m+1.y) . (8-11)

Hk(}’) =

K+N)' ., X3 0+kK '
(J+K§)_.'.eyz U+K+m)




Once again, the formula derived for J<N gives the correct answer when J=N. As can
be seen from Equation (5-111), the confluent hypergeometric function in Equation (6-11)
is simply unity in this case, hence Hy reduces to G,.

Equations (6-8) and (B-11) provide a complete solution for the protability of detec-
tion of the GLR test in the special case when M=1. These formulas depend only on the
non-adaptive SNR, the detection threshold, and the dimensional parameters of the
problem. The threshold, in turn, is related to the probability of false alarm, which is
given by the cumulative complex central Beta distribution:

J-1
1 J+K Kk
PFA = Fg(1/L:K+1.J) = 5K kzo( ’ )(lo-l) , (6-12)
0 -

which ctherwise depends only on the same dimensional parameters. This is the result
previously obtained in Section 4. When a, vanishes, the H, functions of Equation (6-8)
a'l reduce to unity, and that equation becomes identical to Equation (6-12), as is easily
verified.

These equations are the basis of the numerical analysis and results of Refer-
ence 4, in which the performance of the GLR test (in this specific case) is compared
with that of a conventional non-adaptive test for the same problem, but assuming
that the covariance is known. It may be seen from Equation (6-11) that the function
H, depends on k only through the upper limit of the summation, hence these func-
tions can be computed recursively. The confluent hypergeometric functions are well
behaved, since the second argument always exceeds the first as they occur in this
formula. The terms of their series are positive, and they decrease faster than those of
exp(y). The error caused by truncation of these series is easily bounded by the tail of
the series for this exponential. The bound becomes tighter as one progresses along in
the series. Once these functions are obtained, the remainder of the computc.tion of PD,
from Equation (6-8), is quite straightforward.

From Equation (6-12), we can evaluate the derivative;

J-
_@+K)y (-0 1
-1 K! lé"'K‘*l

d . & . -
d_lOPFA = (02 fﬁ(l/lo.K+l.J) =

which may be used to carry out an iterative solution for threshold in terms of PFA,
by the Newton-Raphson technique. The threshcld that is obtained by approximating




Equation (6-12) by its first term has been successfully used as a starting point for
this procedure.

As long as M=1, we can evaluate the detection performance in the case of signal
mismatch, paralleling our discussion of the estimation error, from which many of the
results we need can be obtained. The signal component of the V array, given by Equa-
tion (5-25), becomes

_ v o_ V2
Vos = PaoCy = DyoRy

in the present case. Thus, the non-centrality parameter of the numerator of Equa-
tion (6-1) is changed to

8 = VbVos = baobaoRy = bigbagp .
The non-adaptive SNR of the matched case is now replaced by the scalar

biobao = (by — TxpTapba)” =" (b, — £,5Z5pbg) -
According to Equation (5-27), this quantity can also be written

bib,e = diz e (efz7le)? ez la (6-13)
The “loss factor” p is now a non-central complex Beta variable, given by Equa-
tion (5-114). The pdf of p is now fg(p:J+K+1,N-Jlc), given explicitly by Equa-

tion (5-117), and the appropriate non-centrality parameter for this distribution is
expressed by Equation (5-113):

_ . H
¢ = bgybgo

The sum of these non-centrality parameters was evaluated in Equation (5-36).
which is a scalar in the present case. We define

a, = trh DAz 7D = ﬁ[(DT)”z"(DT)] . (6-14)
and then Equation (5-36) becomes

bhobao + bpobso = & - (6-15)
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Had we modeled our problem differently, so that signal arrays of the form DT were
expected, then a; would play the role of the non-adaptive SNR. In fact, it would be the
actual non-adaptive SNR for a processor designed to anticipate such signals. For this
reason, a, may be called the “available SNR" associated with this signal and interfer-
ence environment.

Since the non-centrality parameters are non-negative, we can make the defini-
tions

b:!obAo a, cos®8
bgobBo =c= alsinze : (6-16)
and then © characterizes the degree of mismatch in a simple way. Thus,

a= alcosaﬁp ,

and the detection probability becomes

(‘o“l)J X (J+K) k a,cos° @
PD =1 - IS0 [C7EER Vil : NN (s el I (6-17)
lf,’K k§) J+k/\0 k+1 s
where
1
Hy(y) = ~]‘Gk(yp) fglpid+K+1,N-J|c)dp . (6-18)
0

Substituting for the complex Beta density, we obtain

J+K+1

(J+K+1) (K+N)!

Hy(y) = i J(K+N+j)©

=0

1
x fe’m Gk(yp)fﬁ(p;.HK+1,N—~J+j)dp .
0




These integrals have the same form as those evaluated before, since the exponential
factor combines with a similar one contained in the G, function. When these integra-
tions are carried out, and the order of summation reversed, we obtain the generaliza-
tion of Equation (6-11):

_ (K+l\‘. e V-C @+K+m)! y
Hy(y) = Z (K+N+m)' m!

J+K+1) (K+N+m)!' . C
XZ(:)< i )(———K+N+m+j)!clFl(N—J+J'K+N+m+J+1'y+C)' (6-19)

When c vanishes, or © =0, this formula reduces directly to Equation (6-11). The PFA for
the mismatched case is, of course, unchanged and is given by Equation (6-12).

Numerical evaluation of the PD from Equation (6-19) presents no new difficulties,
relative to the use of Equation (6-11). The problem of the detection of mismatched sig-
nals using the GLR decision rule has been discussed for the special case J=M=1 in
Reference 5 where numerical results are presented. together with an interpretative
analysis cf the behavior of this detector. The parameter © plays a central role in that
analysis.

The other special case considered in connection with the estimation error is
characterized by J=1 and arbitrary M. We exclude the case J=N by requiring N to
exceed the value unity. The form taken by the test statistic was found in Section 4.
Equation (4-6) may be written

iwf
,F

(=14+ (6-20)

7<

+

—e
—

which is analogous to Equation (6-1). The v, are the components of the V array, which
is now a row vector of M elements. The denominator here is a complex central
chi-squared variable, just as before, and the numerator is again a non-central come
plex chi-squared variable. In the present case, the (scalar) non-centrality parameter of
this variable is

= (EV{EW .




The general expression for the signal component, Equation (3-37), takes the form
EV = Vg, = boCyt? = bRy (6-21)
in terms of the whitened signal array, which is also a row vector in this case. Thus,
a = byRyby . (6-22)
We define the row vector
t = (bgbh) V2 by .

which is always possible unless by itself is identically zero. We expressly exclude this
case, since we are dealing here with the probability of detection. It follows that

by = (bgbh) V2t

and

(il =
Then,

a = bobh tRtH = agp . (8-23)
where

ap = boby = Tr(bhby) = ¢z g (Br)(BN)H (6-24)

is again the non-adaptive SNR, and
= H o
p = tRyt . (8-25)
Using identity (5-45), applied to the present situation, we obtain

p = R(N-LMK=Dt" = R(N-11.K+M) = xo(K+M+1.N=1).  (6-26)
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The identification of this one-dimensional ® matrix with a complex central Beta vari-
able is exactly the samne as in the study of the estimation error in Section 5.

The remainder of the evaluation is a direct parallel to the previous special case,
but without mismatch. The test statistic. Equation (6-20), is the inverse of a
non-central complex Beta variable, and the conditional probability of detection is
given by

Probg (¢ > ¢5)

Fp(l/‘o.K‘*’l,Mlaop)

(=" & /Man K 8y P
= 1= > (M_Fk)(zo D G| 2 |- (6-27)
0 k=0

Note that this formula is the same as Equation (6-7), but with J and M interchanged
and K held constant. Similarly, the probability of false alarm is given by

M-

PFA = %%K Z (M )(to 1)¥ (6-28)

k=0

This is formula (4-9) of Section 4, and it is also the limiting form of Equation (6-27)
when the SNR tends to zero.

The unconditional PD is therefore

(¢ ) a
PD=1- -2 Z (:‘d’;ﬁ)(zo—n“ Hwl 72 ) - (8-29)
lo k=0 0
where
1
H(y) = ka(yp) fﬁ(p:K+M+1,N—l)dp
0
_ KHN+M-1)! . kv'] (K+M+m)  y"

b L Fy(N-1K+N+M+m:y) (6-30)

K+M)! & K+N+M+m-1)!




Recalling the definition of K, it is seen that Equation (6-30) takes a somewhat simpler
form in terms of the original parameter L:

Hy(y) = ((1l: ]fj)) Y Z (Lz:”l‘)),' Lo F(N-LiL+miy) .

If we put N=1 formally in this expression, and use Equation (5-111) again, we see that
the H, functions reduce to the corresponding G, functions, and the PD formula
reverts to the conditional PD expression, which we have seen to be correct whenever
J=N.

The behavior of the GLR test in the special cases just discussed can be
interpreted in a simple way in terms of familiar radar concepts. If we express the
decision threshold in the form

=1+ p, (6-31)

then for M=1 (and J<N) the decision rule based on the test statistic of Equation (6-1)
can be written as

Linf

x
Jx

W e (6-32)

v
—.
L}

In this criterion, the v; and w; are mutually independent complex Gaussian variables
of variance unity. The w j have zero means, and

J
ZIEV”Z = a= aygp .
i=1

Equation (8-32) may be interpreted as the detection criterion of a conventional
CFAR detector, based on K+1=L— N samples of “noise,” and using non-coherent inte-
gration of J samples of “signal plus noise.” The effective SNR for this equivalent
detector is the product of a; and the loss factor p, which appears in the place of a
more conventional random target fluctuation variable, as these fluctutation models
are frequently used in radar analysis. Unlike the conventional models, our loss factor
is always less than or equal to unity. Due to this effect, the average value of the
effective SNR is reduced and is given by
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Recalling the definition of K, it is seen that Equation (6-30) takes a somewhat simpler
form in terms of the original parameter L:

Hi(y) = (L_;))', I Z ((Lfn*_"l‘)): L R (N-1LL+m:y) .

If we put N=1 formally in this expression, and use Equation (5-111) again, we see that
the H, functions reduce to the corresponding G, functions, and the PD formula

reverts to the conditional PD expression, which we have seen to be correct whenever
J=N.

The behavior of the GLR test in the special cases just discussed can be
interpreted in a simple way in terms of familiar radar concepts. If we express the
decision threshold in the form

=1+ u, (6-31)

then for M=1 (and J< N) the decision rule based on the test statistic of Equation (6-1)
can be written as

S
3+

J
v 2w ) iwy (6-32)
1=1

-
]
—

In this criterion, the v; and w; are mutually independent complex Gaussian variables
of variance unity. The v have zero means, and

J
ZIEvilz= a=agp.

i=1

Equation (6-32) may be interpreted as the detection criterion of a conventional
CFAR detector, based on K+1=L - N samples of “noise,” and using non-coherent inte-
gration of J samples of ‘'signal plus noise.’” The effective SNR for this equivalent
detector is the product of ay and the loss factor p, which appears in the place of a
more conventional random target fluctuation variable, as these fluctutation models
are frequently used in radar analysis. Unlike the conventional models, our loss factor
is always less than or equal to unity. Due to this effect, the average value of the
effective SNR is reduced end is given by




Ea = agEp

The mean value of a complex Beta variable is easily derived fromn the complex Beta
pdf [Equation (A2-12) of Appendix 2J:

n
L+m '

EXﬁ(n.m) =

and in the present case, which is characterized by Equation (6-3), we obtain

J+K~+1 L+J-N
Ea =80 ;oxoq = 0 —+—L—— . (6-33)

There is, of course, no loss when J=N and p is replaced by unity.

Formulas (6-7) and (6-12) are well known in connection with the performance of
conventional CFAR radar detectors. The loss factor is, of course, directly associated
with adaptive detection and its inevitable covariance estimation. It is easy to insert a
target fluctuation model, such as one of the Swerling models, into the analysis at this
point. The procedure is to replace ag by uag in the formula for the conditional detec-
tion probauility. The new factor u is a random variable, independent of everything
else, and subject to a pdf which represents the desired target fluctuation model. (In
effect, every element of the true signal parameter array has been multiplied by the
square root of u) In the Swerling models. u is a complex chi-squared variable, and the
number of its complex degrees of freedom can be related to J, the dimensionality of
the signal subspace, so as to achieve the desired effect in the model. This is analogous
to choosing the number of degrees of freedom in relation to the number of pulses
which are subjected to non-coherent integration in the ordinary application of the
fluctuation models.

To compute the probability of detection using one of the Swerling models, it is
best to average first over the target fluctuation parameter, since this will usually
lead to a simpler formula than Equation (6-7) for the conditional PD. A collection of
such detection formulas, for various fluctuation models, may be found in Refer-
ence 28. The resulting expression is then averaged over the complex Beta pdf to
obtain the final result. The probability of false alarm is, of course, unaffected by the
addition of a target fluctuation model

The other special case studied ea.lier can be interpreted in an analogous fashion,
and a target fluctuation factor can be added to the model. Our starting point will be




Equation (6-20), which describes the performance of an equivalent CFAR detector
based on K -1 samples of “noise” and M samples of “signal plus noise." The effective
SNR has the same form as before, namely the product of a, and a loss factor p,
whose statistical characterization is expressed by Equation (6-26). The average SNR is
now given by

K+ M-+1 L+1-N

Ea=argousN T % T -

In terms of L, this is the same as Equation (6-33), with J=1. Target fluctuation can be
added to the formulation exactly as before, and now the number of complex degrees
of freedom of the variable u must be related to M. In the special cezse described by
Equation (1-3), so often invoked here for illustrative purposes, M is just the number of
sample vectors for which sig:ial components may be present, and the correspondence
with ordinary non-coherent integration is quite precise.

In Section 3 we discussed the transition from the adaptive test to the
non-adaptive one in a heuristic way. Now, with explicit formulas before us, we can
sharpen that discussion, at least for those special cases for which we have obtained
explicit results. We consider caly the first of the special cases, namely M=1, since the
other can be obtained by a trivial interchange of parameters. If we put

The expected value of the right side of this equa‘ion is just A, and its variance will
tend to zero as K is allowed to increase indefinitely. The test will then correspond to a
non-adaptive decision rule which takes the form of non-coherent integration of J
samples of “signal plus noise.” Making the same substitution in Zquation (6-12), and
letting K tend to infinily, we obtain




K‘l'l k=’o K+1
I-1 2k
.Y 0

which is the standard result for the PFA of such a test, and it agrees with Equa-
tion (5-11), when the substitution M=1 is made.

When K tends to infinity, the pdf of the loss factor becomes more and more con-
centrated near the value p=1 Formula (6-9) suggests that we should have

Hk()') K :)w Gk()’)

in this case, ar.d this is confirmed by an analysis of Equation (6-11) as K goes to infin-
ity. The detection probability can thus be obtained from Equation (6-7) by replacing p
by unity and substituting for u. The result is

@+¥) X Ik an(K+1)
0
PD -1 - (l*———) §<J+k><l‘\+l> Gk+1<k+l+7\o>'

Passing to the limit on K, the final result may be written

=) J+k

. -A o 0
Lim PD e 02:0 G+ i: Cxn(@o)

K-+

1
—

k

2A
Gy(Xo) + e-x"kz; I(g‘ [1 —Gk_J+1(ao)] .

This is a well-knm.vno'9 series representation for the Marcum Q-function, and it is in
agreement with our earlier result for the non-adaptive problem, Equation (5-10). again
with M=1 1t follows that the performance of the GLR test will tend to that of a
non-adapt.vz decisinn rule as K tends to infinity. This is the same limit, of course, in
whicti 12 sample covariance matrix tends to the true covariance.
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In the general case, the evaluation of the probability of detection presents formi-
dable difficulties. It is not evaluated explicitly here, but som: general properties of the
exact solution will be derived. We will then review the analysis of Section 4, taking
account of the presence of signal components in the data. This exercise will illustrate
the difficulties of the gereral problem, and will also provide the basis for a proof of
another useful property of the exact probability of detection.

To deal with this generalization eflcctively, some new notation is required. As
before, let T be a complex Wishart matrix of order J, with J+ K complex degrees of
freedom. This matrix can be expressed in the form T= WWH where W is a complex
Gaussian array with zero mean. We also let V be a complex Gaussian array of dimen-
sion Jx M, independent of W, whose mean value is given by a constant array A, and
whose covariance matrix is the identity. The complete set of definitions is:

EV

N

A, Cov(V) = I @1,

EW

0. Cov(W) = oI, ¢ . (6-34)
We now introduce the “non-central’” ¢ matrix, extending the notation used earlier:
8(J M. KIA) = 1+ VAT v (6-35)
Continuing the analogy, we define
R(J.M.K|A) = 8(J,M . K|A)! (6-38)
and

{(J.M.K|A) = {8(J .M K|A)| . (8-37)

The matrix A can actually be a function of aifferent random quantitias, as long
as these are completely independent of the random variables which appear in the
definition of the € matrix. A is then the conditional mean value of V, with these
“different” random quantities held fixed. More precisely, we can say that V—-A is a
zero-mean complex Gaussian array, whose covariance is the identity matrix given
above for the covariance of V itself. This extension of t} : significance of the notation
is needed in the discussion of the GLR test in the general case.




The first property we wish to establish is a generalization of the duality between
the parameters J and M, observed first in connection with the PFA, and noted again
in the study of the two special cases of the present section. To establish this property,
we assume that J is less than M and note that VV! will then be positive definite
(with probability one). We fix the arrays V and T, and introduce the array

&= (VWHyvey (8-38)
The properties
eeh = 1,
v = (vvh2e

follow directly. Now let 7 be a complex Wishart matrix, of order M, with M + K complex
degrees of freedom. Like T, the new matrix can be expressed in terms of a complex
Gaussian array with zero mean. According to the property established in Appendix 1,
the matrix

is also complex Wishart, of orc .. J, and with J+ K compiex degrees of freedom. 1t is
statistically identical to T. hence we can write.

1, + VAT v = 1, v vieg ety

The factors in this determinant may be permuted cyclically, as shown in Appendix |,
so that

i

y+ VAT 'V = 1+ 69 e vvh

1t

I+ (Vv gt gB(v vy < v iviL
Finally, if we define

p=vH, (6-39)
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we obtain the form:
g+ VET 7 = i+ v gy,

where now U is MxJ and 7 is of order M.

This is the desired duality property, and it may be expressed by the relation
(. M,K[A) = (M. J.KIAP) (6-40)

As in other similar situations, the equality here refers to statistical identity, or equal-
ity of the corresponding distribution functions. The form of the result itself shows
that it is valid regardless of the relationship between J and M. The symmetry between
J and M will be lost when this identity is applied to the conditional detection prob-
ability and the conditioning is subsequently removed, as we have seen in the two spe-
cial cases already worked out.

The non-central ¥ matrices exhibit another feature, which will lead us to a useful
general property of the unconditioned probability of detection. Let U; and Uy be
arbitrary unitary matrices, whose orders are indicated by their subscripts, and let

V = Ul vuj

T=ufry. (8-41)
It follows that

-+ VAT IV = 1, + VRT LY (6-42)
and also that

EV = ulauy =X, (6-43)

The unitary transformation has no effect on the statistical character of the T matrix,
and the transformed V array is still complex Gaussian, with the same covariance
matrix as V itself. Only its mean value is changed, according to Equation (6-43). This
yields another statistical equivalence, expressed by the relation

(J.M.KIA) = ((J.M,K|A) (€-44)




We now introduce the singular value decomposition of the A array, writing

where U; and U, are unitary matrices of orders J and M, respectively, and A, is a
diagonal array. The diagonal elements of A, are the singular values of A, ordered in
an arbitrary way. If we identify U; and Uy with the unitary matrices of Equa-
tions (6-41). we see that

(I M.K|A) = ((J.MKIA) | (6-46)

in the sense of statistical equivalence. Thus, the probability distribution function of
the random variable {(J M ,K|A) depends only on the singular values of the A array.
It is, in fact, a symmetric function of these numbers, since they may be permuted
arbitrarily by a transformation of the kind described by Equations (6+41). The sin%‘\lxlar
values of A are, in turn. the non-negative square roots of the eigenvalues of AA™. (If
J> M, this matrix will be rank-deficient, and it will have J - M zero eigenvalues, in
addition to the squares of the singular values of A) In any case, we can say that the
statistical properties of ((J,M,KjA) depend only on these eigenvalues. In particular,
we can write

Prob [{(J.M.K|A) 24,) = ®(J.M.K:ly;aAP) (6-47)
where $(J M,K x,X) is a real-valued function of the scalar parameters J, M, K, and

x, and of the square JxJ matrix X. & depends only on the eigenvalues of X, hence it is
unaffected if X undergoes a similarity transformation:

x - uy;xult.
Now let us apply these results to the GLR test statistic, by identifying A with the
signal component of the V array, V,,. first defined in Equation (3-37). Then we will
have

_ - 2
A= Vo = byRy .

where b, is the whitened true signal amplitude parameter array, and Ry is statisti-
cally described in Equation (5-39) as a central ® matrix:
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Ry = R(N-J M, J+K),
which is completely independent of Vo, =V-A and T. With this substitution for A,

Equation (6-47) expresses the conditional probability of detection of the GLR test. The
unconditioned PD is obtained, formally, by averaging over the & matrix:

PD = f¢(J.M.x;zo;boRb§) fg(R:M,J+M+K,N-J)dyR) , (6-48)

where {g is the pdf of the multivariate Beta matrix. This integral is an example of a
general type discussed in Appendix 3 [see Equation (A3-52))].

We now introduce the singular value decomposition of by
bo = UJBUM ' (6'49)

where u; and uy are unitary, and g is a diagonal JxM array, whose diagonal ele-
ments are the singular values of by In terms of 8, we have

by RbS = u,Buy,Ruli g7 ull .
We can now make a change of variables in the integral, defining the new matrix
R' — H
= UM -R UM . (6'50)
The Jacobian of this transformation is unity [it is a special case of Equation (A3-14) of
Appendix 3], and it also leaves the pdf of the matrix R unchanged, a fact we used

repeatedly in Section 5. Finally, the function ¢ is unaffected by the application of the
similarity transformation described by u;, and we conclude that

PD = f¢(J,M.K;to;ﬂRﬁH) (5(R:M.J+M+ K, N-J)dy(R) . (6-51)
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This shows that the final probability of detection depends only on the singular values
of by the whitened signal parameter array. The b, array depends, in turn, on the
true covariance matrix £ and the true signal parameter array b (or the original
array B). The singular values of by are the non-negative square roots of the eigen-
values of the matrix bobo which we have encountered already in Equation (5-8) of
Section 5. We may call it the "signal-to-noise-ratio matrix,” and we recall that the
non-adaptive SNR is its trace. According to Equation (5-8), the SNR matrix depends on
T only through the product r7H, and it is therefore unchanged if T is post-multiplied
by any unitary matrix of order L This fact confirms the invariance property of the
GLR detection probability already observed at the end of Section 2. In the two special
cases for which we have obtained complete performance results, the SNR matrix has
rank unity. The extension of our results to cases for which this matrix has higher
rank remains an interesting challenge.

In Section 4 we derived a formula which expresses the test statistic as a product
of two factors which proved to be statistically independent of one another. This fac-
torization was then iterated, to obtain a double-product representation which pro-
vides the basis for ithe evaluation of the PFA in the general case. When signal compo-
nents are present, the factorization is still valid, but the factors are no longer
independent, and the conditional detection probability (conditioned on Ry,) cannot be
obtained by the methods used for the evaluation of the PFA. The factorization is use-
ful, however, for the proof of a monotonicity property of the exact solution which will
now be derived.

Follownng closely the analysis of Section 4, we introduce a subspace of the vector
space ¢’ by separating all column vectors into two components of dimension J, and
Jo. where J; +J5=J. We write

v
1] \ A =
AP

which extends Equations (4-20) to include the mean value array A, introduced in
Equation (68-34). Components of the T matrix and its inverse are introduced, using
definitions (4-21) and (4-22), and then Equations (4-23) and (4-24) are still valid. We
can write

Ay

N . (6-52)

Iy + Ve Toa Vy = B(Jp. M.J +K|Ap) . (6-53)




applying our new notation to the problem, and this equation replaces Equation (4-28)
as a statement of the statistical character of the quantity on the left side. As before,
we put

<
[

= (V-T2 Toa Vo) (Iy + Vg Toa Vo) V% . (6-54)

and

g = (T)y!, (8-55)

and then we have
(I MKIA) =+ VAT v = g+ vHgtyy, + vETol v, (6-56)

If we condition on the 2-components, and recall that we are dealing with whit-
ened quantities in the present case, we can compute

EoV = oy = A (I + VA Tz V)%, (8-57)

since T12=w1w§, and W, has zero mean. Stretching the notation slightly, we can
express the statistical character of the left side of Equation (6-56) by writing

(I M KIA) = {(J;. M. K|dy) I M, 3, +K|Ap) - (8-58)

Because 4, depends on the 2-comporents of V and W, the factors in this expression
are not independent, and this fact is the main impediment to the derivation of an
explicit formula for the conditional probability of detection. Of course, if we had such
an expression, we would then be faced with the evaluation of the integral in Equa-
tion (6-48)'

To obtain the monotonicity property referred to above, we specialize our factori-
zation to the case J;=1, so that A, becomes a row vector of M components. Condi-
tioned on the 2-components, 4, is fixed, and we can write

Prob, [ ¢(1.M.K|4,) > u} = &(1,M.K;u:G), (6-50)

where u is a constant, and G is given by
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Al = A+ VTV Al (6-60)

G
When J, =1, we have
{(1M Kld)) = 1/xg(K+1,M|G) (6-61)

which is a direct generalization of Equation (4-18) of Section 4. The extension to a
non-central Beta variable made here is very much like the extension discussed in
detail in Section 5, in connection with the mismatched signal problem. Reference may
be made to Equations (5-112) and (5-114) for details of that discussion. Finally, using
the notation of Appendix 2, we can write

$(1.M.K;u.G) = Fﬁ(l/u:K+1,M|G) ) (6-62)

From the explicit form of the cumulative complex non-central Beta distribution,
given by Equation (A2-27) of Appendix 2, it may be seen that the right side of Equa-
tion (6-62) is an increasing function of G (we will use the term “increasing” here as
shorthand for “monotone non-decreasing”).

Now we let
_ b b

W = = : (6-63)
I+ vE T v, U2 M +KIA)

which makes u a function of the 2-components. Then, in view of Equation (6-58), we
can express the right side of Equation (6-47) in the form of an expectation value over
the 2-component variables implicit in . and G:

®(J,M.K; {; AAP) = E&(J M, K;u:G) . (8-84)

We have seen that this probability depends only on the singular values of A. We can
therefore assume that A is already in diagonal form, since this can be accomplished
by the transformation indicated in Equation (6-45). Now suppose the two unitary
matrices which appear in that equation are fixed, and that one of the singular values
is allowed to vary, all the others being held constant. Since the order of the singular
values was, in any case, immaterial, we can take the variable one to be the first entry
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in the diagonal form of A. When we apply the factorization described above, with J 1=1
the row vector A, will then have all zero entries except the first, which we may call
a

A =[a,0..0].
Then G, defined by Equation (6-60), will take the form
G = (a)°[10...0) (1 +VETA v,y 10,0 .

This matrix product is necessarily positive, hence, the left side of Equation (6-62) is an
increasing function of a,. This property is preserved when the expectation indicated in
Equation (6-64) is carried out. We have therefore shown that the left side of that
equation is an increasing function of a; which was an arbitrary singular value of A.

Let A and B be two JxM arrays which have identical singular values except for
one, say a and b. Then, if a< b, we will have ‘

$(J. M. K. {y:AA™) < $(J.M.K; (y:BBY) | (6-65)

since A and B can be put into diagonal form, with a and b as the first entries in the
respective diagonals, and the result proved above can then be applied. More generally,
let the ordered singular values of A and B be related as follows:

g, <b, 1<i<Min(J,M). (6-68)

Then, Equation (6-65) is again correct since the singular values can be increased one
by one, changing from the A values to those of B, and the corresponding probability is
always increasing. Inequality (6-66) defines an ordering of JxM arrays, and, in terms
of this ordering. the probability function on the left side of Equation (6-65) is an
increasing function of the A array.

Let b, and bb be two whitened signel parameter arrays, and suppose that

in the sense of the ordering defined above. Let the singular value decompositions of
these arrays be given by the equations

b0=UJﬁUM. b'0=u:‘7u’M.
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and let us assume that in both cases the singular values are ordered. say from the
largest to the least. Then. according to the ordering of the arrays. we have

B, <7 . 1<i<Min(J,M).

From our previous discussion, it follows that we can replace the original signal
parameter arrays by the diagonal arrays f and v in the expressions for the uncondi-
tioned probability of detection for these two cases. This probability is given by Equa-
tion (6-51) for by, and by the same formula (with ¥ replacing f) for the other case.
The two probabilities are therefore expressible as integrals of appropriate conditional
probabilities over the same complex multivariate Beta distribution.

The condltlonal probabilities depend, in turn, on the eigenvalues of the matrices
ﬁRB and 7R7 Let v stand for the smaller of the parameters J and M. Then, the v
largest eigenvalues of these JxJ matrices coincide with the v largest eigenvalues of
the respective M x M matrices, X and Y, which are defined by the equations

X = RWﬁHBRVZ. Y = Rw‘yH'wa.

If v=1J, then the eigenvalues of these new matrices will be augmented by one or more
zero values. The difference

Y-X = R*(y"y - g"g)R"

is clearly a non-negative definite matrix. In Appendix 1, by an application of the Cou-
rant-Fisher theorem, it is shown that the ordered eigenvalues of X are less than or
equal to their counterparts in the hst of ordered eigenvalues of Y. We may conclude
that the ordered eigenvalues of ﬁRﬁ are less than or equal to their counterparts in
the list of ordered eigenvalues of 7R7 From this relation it follows that the uncon-
ditioned probability of detection for the signal parameter array b, is less than or
equal to that corresponding to the other parameter array b'o Thus, the probability of
detection is an increasing function of the singular values of the whntened signal
parameter array, or, equivalently, of the eigenvalues of the SNR matrix bobo. and this
is the monotonicity property we set out to establish.




7. A GENERALIZATION OF THE MODEL

In Section 1 we mentioned a generalization of the basic model of the hypothesis
testing problem. The null hypothesis, which previously corresponded to the complete
absence of signal components, is replaced by the hypothesis that a particular compo-
nent of the signal parameter array is zero, the rest being arbitrary. More precisely,
this model takes the form

Hy: aBy = 0

H, : B is arbitrary . (7-1)

The fixed arrays a (rxJ) and y (Mxt) determine the component of the B array whose
presence or absence constitutes the purpose of the test. We postulate that the rank of
a is r<J, while that of ¥ is t< M, and anticipate that these arrays will determine sub-
spaces in ¢’ and 6¥, respectively.

The significance of the model is illustrated by the specific example

a= [0 Ir]

0

.
[ I

in which a and y provide direct decompositions of ¢’ and ¢¥. In accordance with
these decompositions. we may partition B as follows:

B11 BlZ

By By

Then, the test becomes a decision on whether or not By, is zero, while the other three
components of B may have any values on either hypothesis. These latter components
may be considered to describe “nuisance signals.” while B,, describes the “desired
signal” component which may be present in the data array.

To specialize further, suppose that both Equations (1-3) and (1-4) hold, so that the
signal structure itself corresponds Lo the “canonical form" discussed in Section 1. As
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shown by Equation (1-8), the signal components are then confined to the upper left
corner of the data array, and the first M-t of these columns contain only nuisance
signals. The remaining t columns which are allowed to contain signals are further
divided into two subspaces (corresponding to B> and Bj;). of which one contains
desired signals and the other only more nuisance components.

The task of the decision rule in the general case is to detect the desired signais in
the presence of the others, against a background of unknown noise and interference.
A GLR test will now be derived which accomplishes this goal anda which turns out to
have very similar structure to the test studied in the earlier sections of this study. In
particular, this test will have the same extended CFAR property as the former one,
and, in addition, its performance will not be influenced by the presence of nuisance
signal components.

We begin by expressing the null hypothesis in terms of the “normalized” signal
parameter array b, defined in Equation (2-23), writing

aBy = abc , (7-2)
where

a= a(UHU)'l’2

c = (TTH)_VZ')/ . (7-3)

To set up the subspace projections, we introduce the basis arrays

H )-1/2 a

1l

a, = (aa

clcHe)yV? (7-4)

[}

C2
in the usual way, and note that the null hypothesis now corresponds to the condition

asbc, = 0. (7-5)

The relations




azay = I,

a= (aaH)waz
H
Cacz = 1y
H
! c= o c)”?

follow directly, and we work with a; and ¢, from here on, instead of with a and c.

The row space of a, is an r-dimensional subspace of QIJ. and we introduce an
orthonormal basis a, for its complemertary subspace. (This nomenclature, which uses
the subscript 2 for the subspaces representing desired signals, is arbitrary, but proves
convenient in the later analysis.) Similerly, let ¢; be an array of basis vectors in the
space complementary to ti.€ column space of ¢,, so that

H _
Hey =1
€€ = M-t
H H _
C)Cp + Cplp = Iy .
Finallv we introduce unitary matrices

'a,

UJ = [ ' UM = {Cl Cz] (7‘6)
az
in analogy to the matrices
o = : o
N = [ e T LL = [
q

which we will also need.




As before, the data array is first decomposed using Uy

H -
zuy; = [z, Z,) .

where

Zp

ZpH

Z quH.

q (7-7)

The Zp component is further decomposed by means of U,
ZpUy = [Zpl Zp2] '
where

Z

H
p! Zp ¢

Z

H
p2 Zp Co . (7'8)

Together, a threefold decomposition of clis produced, based on the unitary matrix

H
d
Up = 01 Up = fezp (7-9)
L-M
: Q9
When epplied to the data array, this decomposition gives us the equution
200 = |2, Zpe 2Zq ) (7-10)
L pl “p2 qQ )}

In a similar way, U, and Uy are combined ‘o form a threefold decornposition of eV

GN = UN = [el €s { ] . (7'11)




where

e = ea;{
€ = eag . (7-12)

The derivation of the GLR test begins, as in Section 2, with the maximization of
the probability density functions over the unknown covariance matrix. The test sta-
tistic can then be expressed in the form

Min | F(b)!
_ _Ho
Min |F(b)} '
Hl

where F(b) is still given by
F(b) = (Z - ebp)(Z ~ evp) .
Jnder H, the array b is unconstrained. while under Hg it is subject to the linear con-

straint (7-5). We begin with the null hypothesis and introduce some notation in order
to accommodate the constraint. Consider the matrix product

[albcl a,bc,
UybUy = l

e oy

(7-13)

azbcl azbcz i

by which B, 4,, and 4, are defined. The zero component is the result of the constraint,
as expressed by Equation (7-5;. We use the new parameters to express b in the form

6, g
b= L’Sl | o ] Uu = (Sci1 + a:{ﬁc? , (7-14)
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and, of course,

uj

B H
0 1 F

The J—r)xt array B is the analog of B, in the special example described above,
while 8, which is of dimension Jx(M - t), represents the components analogous to both

By; and B;,. The minimization required under H, is the same as an unconstrained
minimization over 4 and S.

To bring the new arrays into play, we separate F(b) into terms corresponding to
the decomposition of €% by writing

F(b) = (Z - ebp) Ul T, (2 - ebp)!

(Zpy — €bey)(Zp, - ebcl)H + (Zpa — €bcy)Zps - ebca)H + S,

where, as in Section 2,

- H
S =242, -

Using the representation (7-14), we have
be, = 6
H

bc, = 8,6 . (7-15)

and, therefore,

F(b)

(Zgy ~ €8)Zyy — e8) + Zp — €B)Zy2 — &8) + S . (7-16)

We make the definition

S8 = @y - )2z — &) + S (7-17)

and proceed to carry out the minimization over 8. This follows precisely the proce-
dure of Section 2. with a result analogous to Equation (2-41):




Min [F()] = SO y-, + 25 P 2y (7-18)

where
P =St - §e(MSle)? S (7-19)

This quantity appears to depend upon g, but it is actually independent of that array;
hence, the right side of Equation (7-18) will depend on g only through the first of the

two factors. In analogy to Equation (2-12), only the component
51 = (MS10y?
is non-vanishing, and the evaluation
151 = MZ2, + )1
shows the claimed independence of §. It follows that

MHin [FB) = |y, + Zslﬁzpﬂ M}n IS(B)l .
0

The minimization over 5 is the same problem over again, and we can immedi-
ately write
Min [S(8) = 111l + Z5p 2,0
where I is defined by

(7-20)

: n=s’!- S'lel(ei'{S']el)'1 e:{ s

Combining our results, we obtain

Min [F()] = IS}ily. + Zh B2yl + 2502,

0




The minimization of F(b) under H, has, of course, been carried »... in Section 2,

but it is useful to derive the result again, in a slightly different w » ~h parallels
the analysis just given. Specifically, we represent b in terms of tv ays, as fol-
lows:

b=26ch+ gch (7-22)

These arrays are unconstrained, and their role is to allow the minimization to be car-
ried out in two steps, as was done under Hj The new expression for F(b) is the same
as Equation (7-16), but with the array e, replaced by e itself. The final result is then

Min [FO) = STl + 2B 2yl + 2L P2yl

1

where P is the same array which appeared in Section 2:

Pz=st- s eellsteyt st (7-23)
The two versions of the minimization under H, yield the equation

ly + ZaPZl = Iy + Zy P20l + 205 PZ,0 (7-24)

which can also be verified directly as an identity involving determinants.

The GLR test statistic now assumes the form

Il ZpTIZp|

” . (7-25)
“l + ZPZPZP2|

which corresponds to Equation (2-42). We note that the component Zpl has dropped
out of the test completely. In the case of the special example described at the begin-
ning of this section, the first M —t columns of the data array would be discarded in
forming the GLR test statistic. The remaining data array components, Zp2 and Zq. are
partitioned as follows:




[ ZN wN

[l
zx
N
h
~
>
ct
zZ:
N
Hl
=
>

(7-28)
ip Wg

The subscript N refers to the “nuisance” components, while the A and B pcrtions are
directly analogous to the corresponding components employed in Section 3. In analogy
to Equation (3-5), the S matrix is also expressed in component form:

Sxn Sna Sne
~H _
Sex Spa Sgs

By repeating the analysis of Section 3, using appropriate partitionings of this §
matrix, we obtain the evaluations

,H Ho-1
Zp2P25 = ZgSppip
and

-
Spa S

H _ I H . H ] AA AB
2o Zpp = 127, g |

2]

Again, using Equation (A1-9) of Appendix 1, we have

Sga Sps

H _ Hao-i He-l .
where Y and T are given by

Y

_1 .
2y, - SpgSgs’s

T

-1
Saa = Sap Sep Spa - (7-29)




Substituting these results, we find that

I, + ZhSaa2g + YHT Y|
l = .

Iy + 25 Sp 2l

By introducing the definitions

Co= 1+ Z5SpZp

V= YCY, (7-30)
we obtain the final result

(=11, + ViT v, (7-31)
all in direct correspondence with the analysis of the original model of the hypothesis
testing problem. We note that the components Zy and Wy have also dropped oul of

the test, so that in the special example mentioned earlier, the first J —r rows of the
data array would also be discarded.

The performance of the GLR test in the more general context of the present sec-
tion is exactly the same as in the original problem, when the appropriate parameter
correspondences are made. To establish these correspondences, we retrace the steps
through the various transformations which have been made, evaluating their statis-
tical consequences. The quantities B (or b) and £ now represent the actual values of
these arrays, hence the expected value of the original data array is

EZ = ebp .
Recalling the definition (7-9), we have
~H
EZU[ = eb|c; ¢, 0] .
and, therefore, in view of Equation (7-10), the component Zq has zero mean, while

EZ,, = ebcy | (7-32)

Similarly, from the original covariance property
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Cov(?) = el
and Equation (A1-42) of Appendix 1. we obtain the results
Cov(Zq) = Lol _y-

In addition, the components Z, and Z, are independent.
The components W, and W obviously have zero mean, and from definitions (7-11)
and (7-12), together with Equation (7-32), we obtain
a, |
EURZ, = |ap ]| be
N €p2 2 2
0

and, consequently,
EZ, = a,bc,

EZg=0.

i

The only component of the actual signal parameter array which can have any effect
on the GLR test is ajbc,, which is just the component whose presence is being tested.
The fact that nuisance signals enter into the hypotheses has the conisequence that, in
general, only a portion of any signal of the criginal postulated form oBr will contrib-
ute to the decision to accept H;.

In analogy to Equation (7-27), we introduce the components of the transformed
true covariance array:

Zyn Zxa Ews

£ =T0Rcly = | Tax Zan Enp | - (7-33)

Zpn ZBa BB

It follows that




Cov(ﬁs sz) =3 el
If we introduce the notations

wA
Wg

=
l

+

for the surviving components of Zp2 and Zq. we can write

azbc, 0
EZ. = , Ew_ =
=[5 e o)
and

i
EAA Z::’\IB EAA EAB

Cov(Zc) = l el . Cov(wc) = ol _y -
| £Ba LeB Ipa Ipp

Next, we define the components of the inverse matrix:

1
EAA ZAB

= (7‘34)
2BA }:BB

EAA 2AB

Zpa Lgs

to complete the parallel with the original problem. Note that the components defined
on the right side of Equation (7-34) are not partitions of the inverse of the full £
matrix.

Finally, a whitened array is defined:
Vo = (EMEV = vo + Vg, (7-35)

in which the “signal component” is given ty
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Vo = (Z**)¥asbe, €1V (7-36)

Note that the dimension of V; is rxt. The whitlened T array in the present case obeys
a complex Wishart distribution of dimension r (and with L+J - N - M complex degrees
of freedom) as it did in the original problem.

The rest of the analysis is identical to that of Section 3, whose results apply
directly to the present case with the replacements

b -+ a,bc,

J - r

M - t

L - L+t-M

N - N+r-1J. (7-37)

With these correspondences, the results obtained in Sections 4, 5, and 6 are also
directly applicable.
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APPENDIX 1
MATHEMATICAL BACKGROUND

Several groups of related mathematical results, most of them well known, are
collected here for reference; they are used freely in the text.

A. LEMMAS INVOLVING PARTITIONED MATRICES

Partitioned matrices occur frequently in the analysis, and we beg:n with a deri-
vation of some indispensible identities. If A and D are square non-singular matrices,
where A is of order K and B is of order L, then the partitioned array whose blocks are
A, B, C, and D can be factored in two ways, as follows:

A B
C D

Ik, 0] [a o] [ 1 A"B]
ca”t 1, | lo p-caB) L O I

-1 - - .
Ix BD - ! 1 0
_ { K A-BD'C © -Kl l (A1-1)
0 I, ] (o DJ {DC I
As a direct consequence, we obtain the useful determinant identity
A Bl - -
' i = |A|ID-ca”'B| = |D||A-BD c] . (A1-2)
C D]
The special case
[1+BCi = |[1+CB; (A1-3)

is frequently applied in the text.

By inverting the factors in Equation (Al-1), which is a straightforward process,
and then multiplying out the results, we obtain the standard inversicn formulas




B

[A B]-l A+ a7 'B(D-caA"'By'ca! -AT'B(D-cA'B)!

L —~(D-ca™'By'ca? (D-ca'By!

(a-BD ') —(a~-BD"'¢c)y'BD™!
= : (A1-4)
| D 'c(a-BD"'c)' D '+D'c(a-BD'C)y'BD! |

Further, by comparing these expressions, we obtain the generalized Woodbury7 for-
mula

(A-BD'cy! = a”'+a'B(D-ca!B)lcA™! . (A1-5)

Another useful identity may be obtained, using the first of Equations (A1-1), as follows:

(U V]

A B
C D

X - - -
[ Y] = U+VCA ™ HAX +A7'BY) + V(D-CcA 'B)Y . (A1-6)
L
We often use the notation

| My, My, w12
v = , M ' = 2 2 , (A1-7)
Mz Mg M M

as a convenient way of identifying the blocks of a partitioned matrix and its inverse.
By applying Equation (Al-4) to M and also to its inverse, we obtain the relations

1 -1 -1
MY = (Mu‘Mlezsz)
Ml-lx _ M“—MIZ(MZZ)"MZ’
- 2 -
(MY M2 = MMz
MM, = ~MPE(MZ)! (A1-8)

and so on. A special case of Equation (A1-6) is frequently encountered:




3 - U - i - -
(UM vH M ‘[ vl = (U= MpMaaV)F MY (U= MpMaav) + VEMZIV | (A1-9)

in which we have also made use of some of the relations expressed in Equation (A1-8).

B. MATRIX LEMMAS INVOLVING EIGENVALUES

Suppose the product AB...YZ of some number of arrays is square, although
some or all of the factors may be rectangular. Then ZAB...Y is also square, and gen-
erally of a different order than the original matrix, as is every other product formed
by cyclic permutation. Suppose the original product has a non-zero eigenvalue A.
There will then be a normalized eigenvector ¢ which satisfies the eigenvalue equation

AB..YZY = Ay .

Since Ay is not zero, the vector Z94 cannot vanish.

Multiplying on the left by Z, we obtain
ZAB..YZY = A2y,

which shows that A is also an eigenvalue of ZAB...Y. Thus, A is an eigenvalue of
every cyclic permutation of the original product. Many (perhaps all) of these products
will be rank-deficient, with null eigenvalues supplementing the shared non-vanishing
ones. We may say that these products are ‘“‘eigenvalue-equivalent’ matrices, since
every non-val .shing eigenvalue of one of them is an eigenvalue of every other.

The sum of all the non-zero eigenvalues of each of these products is the same,
which is consistent with the equality of their traces. If we add the appropriate iden-
tity matrix to each cyclic product and form the determinants of the resulting sums,
then all these determinants will be equal, a fact which also follows from Equa-
tion (A1-3).

We consider the maximization problem posed in Section 2. We are given a pair of
positive-definite malrices A; and A, of order N, and we are to evaluate

IoHAlo '
(A1-10)

y = Max m .
o o A0




the maximization being carried out over all fullerank arrays o of dimension NxJ. We
introduce the positive-definite square root of A, and define

1= Azwo ) (A1-11)
Then,
luPBu!
y = Max DU (A1-12)
u  |utu

the maximization being over all Nx.J arrays u, of rank J, where
B = ay%a A" (A1-13)

The matrix u u is positive definite, as a result of our rank assumption; hence, we
, can introduce the array

po=u@uyve, (A1-14)
which satisfies the relation

phu =15, (A1-15)
Since

u = ,U,(U.Hu)w .
we have

luHBul = Iunul |pHBui .

y = Max |u"Bui.
M

subject 2o the validity of Equation (A1-15), now viewed as a constraint.




If the eigenvalues of the positive-definite matrix B are called X\, placed in
decreasing (or non-increasing) order from A, through Ay, then

Y= ALoAy . (A1-17)

as will be proved below. By the cyclic permutation lemma, the A are also the eigen-
values of Al(Az)'l. and this is the property which was used in Section 2.

To prove the asserlion made above, lel the eigenvectors of B be vy, properly
orthogonalized in case of the degeneracy of any of the eigenvalues, and also normal-
ized. If we take for u the array whose columns are the first J of these eifenvectors,

the constraint will automatically be satisfied and the result claimed for the
maximum will be attained.

Now suppose that u is an array which satisfies Equation (A1-15), and such that
PBut> AL (A1-18)
We define
M= u'Bu. (A1-19)

and note that M is a positive-definite matrix of order J. Let its ordered eigenvalues be
H“m. and let U; be a unitary matrix which diagonalizes M, placing the eigenvalues in
decreasing order, according to

UMU; = Diag[ ;... i) .

or

MBy = Diag{ sy.....445] .

vhere




Since the u's and the A's are positive and similarly ordered, we must have
My > Ay (A1-22)

for at least one value of k between unity and J. Fixing this value of k, we form an
array 7), of dimension Nx k, which consists of the first k columns of v. Then,

'r)HMn = Diag[ py..... 44y ) . (A1-23)
and, since 1J; is unitary,
Ho _

Let S be the subspace of ¢” for which the columns of n form a basis, and let 8 be
an arbitrary vector in S. Then,

x(@) = ® ::39 m=1k (A1-25)
Y10y
m=1

where the @, are the coefiicients of @ in the basis defined by 7

k
®=Z®mnm.

m=1

Equation (A1-25) follows directly from the properties of 7, as expressed by Equa-
tions (A1-23) and (A1-24). trom Equation (A1-25), we conclude that

Min x® = > Ay . (A1-26)
-]

because the n . are positive and in decreasing order. But Equation (A1-28) contradicts
the Courant-Fisher ’.heorem,30 according to which




H

MaxMine:Ie
S ©8tS 00

= uk ' (A1'27)

the maximization being carried out over all subspaces of dimension k, and this com-
pletes the proof.

In Section 6 of the text, another relationship between eigenvalues was used which
is a direct consequence of the Courant-Fisher theorem itself. Suppose that A and B
are Hermitian matrices, of order N, and that the difference B — A is non-negative defi-
nite. We can write A< B to indicate the ordering of these matrices. If the ordered
eigenvalues of A and B are a, and b,, respectively, then it follows that a, <b, for all
k from 1 to N.

To prove this claim, we let w be any N vector and observe that
wHAw < wHBw .

This inequality is fuily equivalent to the statement that B — A is non-negative definite.
If S, is any k-dimensional subspace of 6", then we can certainly say that

wHAw wHBw

Min < Min H
weES, Wow weS, w'w

But, according to the Courant-Fisher theorem, we have

H H
. W Bw . W Bw
Min < Max Min HB
wES, W Ww S, weS, w'w

=bk'

where the Max is taken over all k-dimensional subspaces of 6" . Thus,

H
. W_Aw
Min HA <bg .
weSy, wow

and the desired result follows immediately:

Hy
A% < b, . (A1-28)

W
ay = Max Min —— <

Sy WS, w'w




C. THE KRONECKER PRODUCT

In the main text, we dealt with collections of random variables which are
arranged as rectangular arrays. Such a collection may also be viewed as a vector, by
mapping the pair of indices of the array into a single index in some definite way. The
covariance matrix of a rectangular array of random variables will be an array which
is characterized hy a pair of double indices, and the use of this mapping will allow us
to establish a consistent notation for such matrices and their products with vectors.

Let Z be an array with components Z, ;, and let the single index a correspond to
the pair (i.j). according to some one-to-one meapping such as lexigraphical ordering.
Then, the Z array can be written as a vector, as follows:

z.=2; . ae (i), (A1-29)
We use a lowercase symbol to indicate the vector which corresponds to an array

identified by the same letter in uppercase. The inner produvct of a pair of such vectors
can then be expressed in terms of the original ariays, according to the evaluation '

xMy = ) x5 vq = ); X;;Yiy = ™(x"Y) . (A1-30)
a J

The notation is extended in a natural way to matrices whose rows and columns are
each designated by index pairs. An element of such a matrix rnay be written in the
form A(;).(k1y OF. €quivalently, as

Bg8 = AGj)i(x) ¢

a e (i) . B> (k)

A general bilinear form in this notation is evaluated as follov's:

H . 3 y*
xMay = z; Xo8aYg = Z % Xiy Akl Yia - (A1-31)
a, W) ,

If the elements of such an array can be expressed as products of the elements of
two other arrays, indexed in the ordinary way, according to the rule




Awi)kd) = Bik Cj1 - (A1-32)
then A is called the Kronecker product of B and C, and we write

A =BoeC. (A1-33)
If BisJxK and C is MxN, then A is JMxKN in dimension. The algebraic properties of

the Kronecker product, as an operator, follow easily from its definition. In particular,
we note that

(B@C)H = BlecH
Tr(BeC) Tr(B) Tr(C)
(B,2C,)(B,®C,) = (B,By)®o(C,Cy) . (A1-34)

Il

and, if B and C are square and non-singular,
(BecC)! = Blec™!. (A1-35)

If the square matrices B and C are of orders J and M, respectively, then the Kronecker
product is square and of order JM. Its determinant is given by

IBoC| = [BM|c . (A1-36)

Finally, if A has the form of Equation (A1-33), the general bilinear form
[Equation (A1-31)] becomes

xtay = r(x*BYC), (A1-37)

and, as a special case, we nbtain the multiplication rule

(ay)y = (BYC),; . a > (i.j). (A1-38)




D. RANDOM ARRAYS

Consider a complex random array Z, of dimension Jx M. For simplicity of writing,
we assume that the mean value of Z is zero, since we are interested primarily in its
covariance properties here. Since Z is a doubly indexed set of random variables, its
covariance matrix is autornatically of the doubly indexed type, and we make the def-
inition:

[Cov(Z)](i.j);(k',) = E Zi.jZ;‘l . (A1-39)
If this covariance has the form

EZ,;Z) = By Cjy - (A1-40)
then we have

Cov(Z) = BecC*® . (A1-41)

In this case, B is square and of order J, while C (also square) will be of order M. The
paradigm for this choice of ordering of the indices is the array ZiJ: b-lc], where b and
c are independent random vectors whose covariance matrices are B and C, respec-
tively. The full covariance matrix is, of course, Hermitian, and it can always be
arranged that the factors B and C are individually Hermitian. Then, the identities

Ezz% = BTrC

EzHz

CTrB (A1-42)

follow directly from the definition. More generally, if X and Y are complex random
arrays whose means are zero and whose elements satisfy the equation

[ ) ]
EXijYki = DixEjy .
then we write

Cov(X,Y) = D®E® . (A1-43)

142




Now suppose that U and V are fixed arrays, and that the product

Z = UZV

makes sense dimensionally. If the covariance of Z satisfies Equation (A1-41), it follows
that

cov(z') = WBLMewicv) . (A1-44)
More generally, if X and Y satisfy Equation (A1-43) and if

X = UXV

Y = U, YV
where U, Uy. V,.and Vy are fixed arrays, then we have

Cov(X'Y') = (UXDU;*)@(vﬁsvy)’ . (A1-45)

E. COMPLEX GAUSSIAN VECTORS

In the above discussion, and also throughout the main text, we encounter collec-
tions of complex random variables. In order to fix our ideas and our notation about
such collections, especially about arrays of Gaussian random variables, we review here
some of the basic facts concerning them. beginning with complex Gaussian vectors.
Lel z be a column vector of dimension J, whose elements are complex Gaussian ran-
<. .1 variables with zero means. Then, the joint probability density function of z takes
the general form

Hp-t
f(z) = =~ e*T 2, (A1-48)
Ty

where ' is a complex positive-definite matrix. With the definition z, = x) +iy, for
each of the elements of z, the volume element associated with this pdf is written

d(z) = dx,...dx;dy,...dy; . (A1-47)




The statistical significance of definition (A1-46) will follow from its expression in terms
of the real component random variables themselves. To derive this form, we consider
the one-to-one correspondence between z and the real vector u, of dimension 2J,
defined by

z = [zl.....zJ]T « us=s [xl....,xJ,yl....,yJ]T
Let ¢ be a complex matrix, of order J, and let

z' = bz . (A1-48)
Then, if the real vector cotresponding to z' is called u', a linear relationship

u = Fu (A1-49)

will hold for a suitable reul muatrix F. We separate ¢ into real and imaginary parts,
making the definition

where ¢p and ¢, are real matrices <t order J. Then, app!;ing our definitions, we find
that F is expressible in block iorm, as follows:

[ e -

F =
| &

(A1-51)

This equation establishes a mapping between complex matrices of a given order
and real matrices of twice that order. Under this mapping, the product ,%, corre-
sponds to FF,, the inverse ¢! correponds to F!, and so on. If ¢ is Hermitian, then F
is symmetric, since ¢y is symmetric and ¢, is skew-symmetric in this case. It is also
easily verified that

2Héz = uFu . (A1-52)

Obviously, each vector z has the same quadratic norm as its real counterpart u.
Finally, by elementary row and column operations, we evaluate the determinant




hi . .
¥l = [ &y -9, _ [ errie -epidg
| ¥ ¢y ¢ 4
[ @ +id 0
= | R = oo (A1-53)
I

If Equation (A1-48) is viewed as a linear transformation of variables, applied to a mul-
tiple integral over the volume element of Equation (A1-47), then Equation (A1-53) pro-
vides an evaluation of its Jacobian.

Returning to the Gaussian pdf, we put I' =g +il'; and make the definition

g -0
I Tg

M= ] (A1-54)

Thus, I' is associated with 24, according to the mapping just discussed, and r! corre-
sponds to 1/2 4}, Then, froin Equation (A1-52) we obtain

2irl; = %uTM'lu .

Since T is Hermitian, Equation (A1-53) yields
IT| = |24 = 2/ |u*

Substituting in Equation (A1-46), we find the desired form

1 I LA
fluy= ———— e 2 .
@m) | a1V

(A1-55)

This represents a conventional Gaussian pdf for a real vector u with zero mean value
and with covariance matrix

M = Euu' . (A1-58)

If we put




u= | } (A1-57)
y 1]
where
T 1) _ T
x = [x.....x;] . y = [y,....7;7 . (A1-58)

then we can write

“ Exx' ExyT
nyT Eny '

Comparison with Equation (A1-54) shows us that

Exx = Eyy =

and

T _Exy =

Thus, the real variables corresponding to a set of complex Gaussian variables have a
special covariance structure, expressed by the above equations. These relations, in
turn, give us the basic covariance properties of the complex rendom vector itself:

Ezz" = E(xx'r + ny) + iE(yxT - xyT)
and
Ezz! = E‘(xxT - ny) + iE(yxT + xyT) =0. (A1-60)

Equation (A1-60) expresses the ‘“circular symmetry property,” which is a necessary

and sufficient condition for the validity of the complex Gaussian probability density




itself. For a complex scalar random variable, the joint pdf of the real and imaginary
parts exhibits circular symmetry in the x-y plane.

F. COMPLEX GAUSSIAN ARRAYS

Now let us identify z with a JxM-dimensional array of random variables Z,
according to the correspondence (A1-29). We assume that the mean value of Z is not
zero, but is given by an array Z, and that the associated vector z has a corresponding
mean value. The circularity condition will then be expressed by the relation

E(Z—Z)j_j(z —Z)k,l =0, (A1-61)

and the covariance matrix of Z will be given, in general, by an expression analogous
to definition (A1-39). The Gaussian joint pdf of Z will be a direct generalization of
Equation (A1-46).

We now assume that the covariance of Z has the special form given in Equa-
tion (A1-41), and we associate the covariance matrix T of the vector variable with the
Kronecker product matrix B ® C* of the Z array. The determinant of this matrix is
equal to the right side of Equation (A1-36), since C is Hermitian, and we make use of
Equation (A1-35) for its inverse. Equation (A1-37) is then used to evaluate the exponent
of the Gaussian distribution, completing the transition from the vector form of Equa-
tion (A1-46) to the desired expression in terms of the Z array itself. The resulting joint
pdf of the elements of Z is

1 -[B'@-Z)c ! 2-2)M)
(2) = ——— ¢ . (A1-82)
M BM|cP

The corresponding volume element is written

M
d(z) = [T 1 dlRe(z,;))dlIm(z;,)] . (A1-63)
j=1 m=1

which generalizes Equation (A1-47).

Consider the linear transformation

Z = F1G , (A1-684)




where F and G are square matrices of appropriate orders. Then, according to Equa-
tion (A1-38), this is the same as

Z = az, (A1-65)
where z corresponds to Z, z' corresponds to Z', and a corresponds to the Kronecker

product matrix F © cT. Identifying Equation (A1-65) with transformation (A1-48), we
conclude that the Jacobian of transformation (A1-64) is given by

laa"| = |FFMeGTG"| .

Finally, the change of volume element corresponding to this transformation can be
expressed in the form

dz’) = IFFY ™ 1c6M? a(z) . (A1-66)

As an example, suppose that 7 is a Gaussian array, subject to the pdf given by
Equation (A1-62), and consider the “whitening” transformation

7= BY?zCcV%. (A1-67)

Inverting this relation, we see that the volume elements are related according to the
equation

dz) = 1IBM|cl az’) .

In terms of the expected value of the new randorm array,

Z,

EZ = BV*ZCV?,
the joint pdf of Z' is

« Fypye FnH
()= L e MEDED] (A1-88)
n

This pdf is, of course, cousistent with the new covariance matrix

Cov(Z') = ly®l .




G. THE MULTIVARIATE CONDITIONAL GAUSSIAN DISTRIBUTION

Let Z be a Gaussian array, of dimension JxM, with expected value Z and covari-
ance given by

Cov(Z) = Zoly . (A1-69)

This special case, in which the columns of Z are independent and share a common
covariance matrix Z, forms the setting for the entire analysis given in the main body
of this study. It is also the usual setting for discussions of multivariate Gaussian sta-
tistics in the large literature of that subject. The covariance matrix T is, of course, a
JxJ positive-definite matrix, and, with these assumptions, the joint pdf of Z assumes
the form

- 7 F\H
K(2Z) = 1 -w(e2-2xz-2))

(A1-70)
7TJM|E|M
Let U; be a unitary matrix. of order J, which is partitioned as follows:
Uy=[a b}, (A1-71)

where a has dimension Jxj, b is Jxk, and j+ k=J. Then, a and b are basis arrays in
orthogonal subspaces of ¢’. We apply this matrix to Z, viewing the resull as a rotation,
followed by a partitioning of the Z array. In analogy to the many similar transforma-
tions used in the main text, we write this operation in the form

Z, Hs a”i] _ [71]
, UTZ = = | _ , A1-72
22] ! [b"z Z ( )

aHZ

H
vhz =
! pHz

where Z; has dimension jxM and Z, is kxM. As indicated by this equation, the mean
value array Z is also subjected to this rotation and partitioning. The same transfor-
mation is applied to both the rows and columns of the covariance matrix Z:

H H Ly T
Ya a'rb 11 “12
vizy, = | ° = . (A1-73)
bHzb bHIb T Tz
and also to its inverse:
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sz la aflz™lp

bir~la bl lb

ety = (Ulizuyy? = [ (A1-74)

Ell 212
221 222

These equations serve to define the components of £ and its inverse relative to the
pair of subspaces determined by a and b.

We now apply identity (A1-9) to obtain the formula

Il 212
bt

z-2Mz ' (2-7) {(Zl—zl)ﬂ (22"22)H} lEZl 722

Zl_z—l
Z,-2,

YHEY + (2,- %) 222 (2,-Z,) . (A1-75)

where

Y= 2-Z - B2 (22-2p) - (A1-76)
We also note, using Equation (A1-8), that

B = (S~ B By) (A1-77)

Next, by taking the trace of Equation (A1-75), we obtain

[zNz-2)2Z-2)] = rE" YY) + T[22 -2,)(2,- )" .
From this result, we obtain the formula

1(2) d(7) = 1,(2,12,) 12(Z;) d(Z;) d(Z5) . (A1-78)

where

o1 (22T (-5 .
f = A1-79




- _ 1o vl _5 _5 \H
0(2,122) = = L. e (- T T2 2) (- 220322l (a1-g0)
Ly ~ Iy Loz Iyl

The volume elements which appear in Equation (A1-78) are all of the kind defined by
Equation (A1-63), and the Jacobian of the original unitary transformation is, of course,
unity. Identity (A1-2) has been used to factor the determinant of L, and the condi-
tional mean of Z, which appears in Equation (A1-80) is given by

Zp = E(41Z,) = Z; + £33 (2,-2,) . (A1-81)

The corresponding conditior.al covariance of Z, is

Cov(z)1Z,) = (Y 1oy, . (A1-82)

These formulas are straightforward generalizations of standard results for Gauss-
ian vectors, expressing the pdf of Z as the product of the conditional pdf of Z, (given
Zp) and the rnarginal pdf of Z,. The conditional expectation given by Equation (A1-81)
is, of course, the least-squares predictor of Z, (given Z;), and Y [defined in Equa-
tion (A1-76)] is the corresponding prediction error. The conditional expectation of Y is
zero, and its conditional covariance matrix is the same as that of Z,.

H. SOME PROPERTIES OF COMPLEX WISHART MATRICES

We return to the untransformed Gaussian array Z and assume that its mean
value is zero. The object of our discussion is the JxJ matrix

s=z2z1. (A1-83)

We also make the assumption that J< M, in which case S is a complex Wishart matrix
of random variables. In accordance with the dimension of the Z array, we say that S
is of order J, with M complex degrees of freedom. The notation CW,(M,I) is often used
te describe the distribution of S. In addition to the dimensional parameters, it indi-
cates the covariance matrix shared by the columns of the original Gaussian array
from which S is formed. Whenever Wishart matrices are discussed. it should be under-
stood that the actual covariance matrix of the underlying Z array has the form
expressed by Equation (A1-68).
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A derivation of the Wishart distribution function is given in Appendix 3. We note
here thal S is positive definite with probability one, according to this distribution. The
S matrix we have defined here is a ‘central” <omplex Wishart matrix, because the
mean value of the underlying Gaussian array is zero. If this Gaussian array has a
non-zero mean value, the corresponding S matrix is subject to a non-central Wishart
distribution. The latter distribution is not explicitly discussed in this study, but some
of the consequences of a non-vanishing mean value for the underlying Gaussian
array are derived later on.

We recall the transformation of Z described by Equation (A1-72) and apply it to
the rows and columns of S. The result is a partitioning of S itself, according to the
equation

H H
2,2, 2122] Sy Sy

; H } = ) (A:-84)
27 257, Sz S22

ullsuy, =

The diagonal blocks in this partitioned matrix are square: S,, is of order j and S,, is
of order k, according to the delinitions used previously. The transformation is also
applied to the inverse of S, and we write

oo sll 312
ulsly, = . (A1-85)
l 521 322

We will now show that the matrix
Te (Sll)—l
is a complex Wishart matrix, of order j, with M~k complex degrees of freedom. In
addition, we will show that T is independent of the matrix block S;,. These properties

are indispensable to the analysis carried out in the main text. Making use of Equa-
tions (A1-8), we can write

-1
T = )1 —S512522 Sy

H,- H '1 H
' Zl(lm‘zz(ézzz) ZZ)ZI :




Recall that Z, is an array of dimension jxM, and note that a projection matrix
appears in the second line of the expression for T. This matrix is very similar to the
one which occurs in Equation (2-43) of Section 2, and we deal with it in much the
same way.

First, an array analogous to p is introduced:

a = (2,22, . (A1-87)

which is possible because zzzg is a complex Wishart matrix of dimension k, with M
complex degrees of freedom. Since M exceeds k, this matrix is positive definite (with
probability one); hence, it has a positive-definite square-root matrix. The properties

H

aa’ = I
oMo = (7,25 2,
Z, = (2,20)% a (A1-88)

follow directly from the definition of a. The projection matrix oo thus defines a
subspace o/ dimension k of ¢ which is, in fact, the row space o! Z,. Now, correspond=
ing to the q array of Section 2, we introduce an array £, which provides a basis in
the orthogonal cemplement of this subspace. This array has the properties

88" = 1y,
aﬂH = 0
oo + Mg =1 . (A1-89)

Thea two sets of basis vectors form a unitary matrix, in anaiogy to Equation (2-12):

;] = u, . (A1-90)

lNnelly, we decompose the array Z, into further components, according to the
definition




Z,uy = (2, 2] . (A1-91)

where
2in = ZlaH
H
Zg= 7,8 . (A1-92)
Using this apparatus, we find that T has the form
T=28"82 = 2,7} . (A1-93)

We now condition on the elements the Z, array so that the subspaces, as well as
the bases introduced in them, beccme fixed. For brevity of notztion, we will use the
subscript “2" to indicate this conditioning. The conditional covariance of Z; (given Z,)
is expressed by Equation (A1-82), and a straightforward evaluation [using Equa-
tion (A1-44)] now gives us the conditional covariance matrix

Cova(2i) = (BN @(BB™) = (2 @1y, . (A1-94)

Thus, 2,5 is a zero-mean complex Gaussian array with independent columns, when
conditioned on Z, As the conditioning variables themselves do not appear in any way
in this statistical Qharacterization. we have shown that Zlﬁ is a zero-mean complex
Caussian array, whose covariance is given by the right side of Equation (A1-94) when
the conditioning is removed. Thus, T is a complex Wishart matrix of dimension j. The
number of degrees of freedom of this distribution is M — k, which is the dimensionality
of the subspace onto which ﬁBH projects. Since j=J —k, we can say that the number
of degrees of freedom of T is smaller than that of S by the same amount that its
dimension is less than that of S. Taking cognizance of the covariance properties of

Z,5. we may say that T has the distribution CW ,(M-k.):,,-}:wz;zz,).

The array Z,, also has independent columns, and the two components of 2, are
conditionally independent. To show this, we restore the conditioning on Z, and use
Equation (A1-45) to make the evaluation

Cova(Zya.2i) = (F1) ' @(ap™)* = 0. (A1-95)




Since

Zi = 223 (223 ) = S (223"

we can write
H
Siz = Za(2225)"* .
from which it follows that
COVZ(SIZ'ZIp) = 0. (AI'QS)

Under the conditioning. S,, and Z,4 are zero-mean Gaussian arrays, and the vanishing
of this covariance matrix implies that they are independent as well. Independence
means that the joint pdf of both arrays is the product of the separate density func-
tions. Since the conditional pdf of Z,; dces not depend on the values of the condition-
ing variables, the joint pdf remains a product of factors when the conditioning is
removed. The unconditioned pdf of S;, will, of course, be different from the condi-
tional pdf of that array. but S;; and Z;4 are still independent without the condition-
ing, and it follows that T is unconditionally independent of S;,.

If the Z array has a mean value Z, then this array is trensformed and parti-
tioned, along with Z, and its component arrays are defined by Equation (A1-72). The
matrix S, defined by Equation (A1-83), is now a non-central complex Wishart matrix. it
can be transformed and partitioned as before, after which its components are
described by Equation (A1-84) above. S is still positive definite (with probability one),
and its inverse can also be transformed and partitioned according to Equation (A1-85).
The T array is defined as before, the subspace basis arrays are again introduced, and
the analysis up through Equation (A1-93) is valid without change.

When conditioned on the 2, array, the covariance of Z, is stiil expressed by Equa-
tion (A1-82), but the conditional mean value, no longer zero, is given by Equa-
tion (A1-81). Equation (A1-94) still correctly describes the conditional covariance matrix
of Zyp, but the conditional mean of this array is now given by

= 10 5 3] H
EoZyp = [21 + Ipp 222(22'7'2)]3 :

Since
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2,8 = (2,22 apt = 0,

we can write

Ep2i5 = 18" . (A1-97)

where

o~

The conditional probability density function of Z,4 is still Gaussian, but the mean
value of this pdf depends on the conditioning variables through the basis array
which enters the conditional mean. This fact destroys the Wishart character of T
when the conditioning is removed. It also precludes the independence of T and S,,.
since we can no longer infer independence from the vanishing of the conditional
covariance matrix, although Equation (A1-96) remains valid. In spite of these compli-
cations, the analysis just given is useful in connection with another property of the
Wishart matrices, to which we now turn.

We assume that Z is a complex Gaussian array, with a non-zero mean value,
which is partitioned into components Z, and Z,, as discussed above. Let Uy be a uni-
tary matrix of order M, partitioned as follows:

Uy = l;l - (A1-89)

where ¢ is of dimension mxM, d is nxM, and m+n=M. Then, ¢ and d form basis
arrays in complementary orthogonal subspaces of a¥. we post-multiply the arrays Z,
and Z, by the Hermitian transpose of Uy, and use its partitioning to define new
component arrays:

"
0

z,Ul [z,c” ZldH] (X, v,

H
2, Uy

n

lchH szH] (X, Ya) - (A1-100)

We also replace the restriction J<M by the stronger condition J< n.
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The transformed Z array is therefore partitioned into four components:

X Y
ullzul = |70 ) (A1-101)
X Y
It is also useful to introduce the notation
zuli= [X Y], (A1-102)
so that
X Y
ulix = [ ‘], ujly = [ 1]. (A1-103)
X2 Yz

The covariance matrix of Z is given by Equation (A1-69). and {!'= covariance matrices
of the components X and Y are easily found to be

Cov(X) = T ol
Cov(Y) = Lel, . (A1-104)

The mean values of the component arrays X; and X, are denoted by overbars, and we
assume that the means of Y, and Y, are zero. Then, we can write

AV

%X 0
i . (A1-105)
X, 0

This specialization is necessary for the results that foliow, and it is also consistent
with the situation which arises in the general problem formulated in the main text.

Making use of Equation (A1-102), we can express the S matrix in the form
s=zz2"=xxP+s,, (A1-108)

where

Sy = YY!. (A1-107)




Since Y has zero mean and J<n, Sy is a (central) complex Wishart matrix whose dis-
tribution is CW;(n,L). and whose inverse exists with probability one. The components
of S and its inverse, after transformation by U, are given by Equations (A1-84) and
(A1-85). We make analogous definitions for the components of Sy and its inverse, after
the same transformation:

H H
Y)Yy YYe Sy, Sy
ulls v, = W=l (A1-108)
YZYI Y2Y2 sYz] SY&
and
roll ol2
S S
H -1 Y °Y
ultsily, = . (A1-109)
J Y Sil 352
By our previous results, the jx ) matrix
Ty = (Sy)' = Yl[ln - Yg(Yng)Qle]Y;‘
is a (central) complex Wishart matrix. We define
ay = (YoY3)2 Y, . (A1-110)

which is the analog of a in the previous analysis, and which serves as a basis array in
the k-dimensional row space of Y,. We also introduce the array gy, analogous to 8,
which is a basis array in the (n - k)-dimensional orthogonal complement of this row
space. It follows that

H
ay ay

By BY

and that

H H —
ayay + By By = 1, .

Finally, in analogy to Equation (A1-93), we have




Ty = Yyg¥pg . (A1-111)
where

Yig= Y, By - (A1-112)
Y 4 is a zero-mean complex Gaussian array, whose covariance matrix is

Cov(Yyg) = (M) 1ol . (A1-113)
This formula completes the characterization of Ty as a complex Wishart matrix by

showing that it has n -~k complex degrees of freedom, and by exhibiting the covari-
ance matrix shared by the columns of the underlying Gaussian array Yig

The matrix S, formed from the full Z array, is subject to a non-central complex
Wishart distribution. As noted above, we can still introduce the matrix

T= (S =gy - Bz (A1-114)
and the basis array a of the row space of Z,:
a = (220 2, (A1-115)
Then, we have
T =2,(Iy - ala)zi . (A1-116)
It will now be shown that T can be expressed in terms of Ty, in the form
T =&+ Ty, (A1-117)

where ¢ is a8 jxm array, independent of Ty, whose statistical characteristics will sub-
sequently be derived. Equation (A1-117) resembles Equation (A1-106), and ¢ (like X) will
have a non-vanishing mean value which is dependent on the components of the orig-
:nal mean array Z.
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To establish this result, we must find a link between the subspace decompositions
described by ay and By. which relate to the row space of Y,, and that described by «,
our basis in the row space of Z,. We define the array

B2= [0 Byl Uy. (A1-118)

in which the null array is of dimensicn (n — k) xm. We observe that the rows of B, are
orthonormal:

0 H
= ByfBy=1__.,.
ﬁ$] YFY n-k

5252 = [0 By)

Since By is orthogonal to the row space of Y,, the extended array [0 By] is orthogonal
to the row space of {X; Y,} Post-multiplication by the unitary matrix Uy produces
an array which is orthogonal to the row space of Z,:

0 0
H H
ZyBy = Zp Uy H] = [X; Yol { H
By By
= Y,B8Y = (Y,Y5) aypy = 0, (A1-119)

and this relation provides the link we seek. We do not expect, however, that g, will
provide a basis for the full orthogonal complement of this row space.

The span of a is k-dimensional, while that of £, is of dimension (n - k). These
spaces are orthogonal but they do not exhaust e¥ , and there is an m-dimensional
subspace left over which is orthogonal to the spans of both a and g,. Let g, be an
orthonormal basis array in this remaining subspace, so that we have

arxH = I

£ 5{1 = In

BoBE = Iy . (A1-120)
and

ofla + glig, + BEB, = 1y, . (A1-121)
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From the latter relation, together with Equation (A1-116), we obtain

T = Zl(pflﬁl + 5362)21{ :

But

2,8z = 2 Uy

g = ol | ]

Y, 8 = Yy (A1-122)

in direct analogy to the derivation of Equation (A1-119), and, therefore,

T = ZB BZ + YigYig = XgXig + Ty (A1-123)

where

Xip = 216, - (A1-124)

A similar formula, expressing Y,z directly in terms of Z,, is provided by Equa-
tion (A1-122).

We condition on the elements of the Z, array, which includes the array Y,; thus,
all the subspaces and the basis arrays introduced in them are now fixed. Under this
conditioning, X,z and Y,z are complex Gaussian arrays, the latter with zero mean.
Using definition (A1-124) and Equation (A1-122), we evaluate the conditional covariance
matrices of these arrays:

Cova(Xys) = (£  @(By8)" = (£ o1,

ll

Cova(Yyp) = (EV) ! @(8,83)" = (") el .

These results are consequences of Equation (A1-82), of course, and, as they do not
depend on the values of the conditioning variables, they remain valid when the con-
ditioning is removed. Thus, Equation (A1-113) (which expresses the unconditioned
covariance matrix of Y, B) is recovered, and we also have

Cov(Xyg) = (£ ol . (A1-125)
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Since B, and B, are basis arrays of orthogonal subspaces, we see that X,B and Y,z are
conditionally uncorrelated:

Cova(XipYys) = (2  @(888)" = 0. (A1-126)
This equation implies independence when the conditioning is removed, since the con-

ditional probability density function of Y,g (which has zero mean) does not depend in
any way on the values of the conditioning variables. Thus, Ty itself is independent of

Xip-
It remains only to discuss the mean value of the array Xm and to identify the

array ¢ to complete the proof of our assertion, expressed by Equation {A1-117). We
begin with the conditioning on Z, in effect, and, from definition (A1-124), we obtain

EpXyp = (Ep2y) By
Equation (A1-81), which is applicable to the present analysis, states that
ExZy = 2 + Typ%53(Zp=2p) -
Since
2,8, = (2,25)"afy = 0,
we obtain
ExXys = (7 - £2%222,) By . (A1-127)

in direct analogy to our earlier discussion of the effects of a non-zero mean value on
the properties of Wishart matrices. Fbllowing that discussion another step, we make
the definition

From Equations (A1-100), we deduce that

= 15 y yH




since the Y-components have zero means. Combining these res.lts and recalling
Equation (A1-99), we obtain

Ep Xy = (X, 0] Uuﬁf = X chy (A1-129)

The le array is of dimension jxm. We let %  be a unitary matrix, of order m,
which will be precisely defined later. This matrix will be a function of the condition-
ing variables, but it is constant under the conditioning. We also define ¢ in terms of
W, as follows:

€= XpWh (A1-130)
Obviously, we have
T= ¢+ Ty, (A1-131)

so that the form of this representation of T is not affected by the choice of W . £ is
a Gaussian array under the conditioning, with the same covariance matrix as X;g.
The conditional mean of ¢ is, of course,

Evd H
Ept = X cBwh .
Let us put
Y = cB;'l , (A1-132)

and observe that ¥ is a square matrix, of order m, since c and g, are both of dimen-
sion m x M. We now evaluate

H
vy = cpy By
Meking use of Equation (A1-121). we have

¥y = c(1y - BYB, - aMla)ct

and, from definitions (A1-99) and (A1-118), it follows that




cBy = (1, 0] UyBs = (1, 0]

We have therefore found that

vyh c(ly - oMo M

I, - cZh(Z28) 'z, M

The fact that ccH=1m follows from the unitary character of Uy, From Equa-
tion (A1-100), we now obtain

H

vyl = 1 - xB (xxB + voyl)! x,

!

- -1 '
[t + XY X, ] (A1-133)

the last clep being an application of Equation (Al-5).

We define
Crp = 1, + XB (YY) X, . (A1-134)
so that
H -
vyt = ¢l

and observe that C. is a positive-definite matrix, which is constant under the cond -
tioning It foliows that ¥ is non-singular and that

Cy = (yy''yVy
is unitary. We now make the deferred choice

W= (w9 y (A1-135)

and we [ind that
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VW = (WY = ot
Finaily, we obtain the desired form
Ep¢ = X,y Wh = X, C°. (A1-136)
The conditioning variables survive only through the matrix C,, whose statistical
character (when the conditioning is removed) we now investigate. Y, is a zero-mean
complex Gaussian array, whose covariance matrix is

COV(Y2) = 222®I" .

in agreement with Equation (A1-79). Therefore,
Sy, = Y,Y5 (A1-137)
Y22 2'2

is a complex Wishart matrix, of order k, and with n complex degrees of freedom. In
the notation used earlier, its distribution is CW,(n,Z,5) The X, array is also complex
Gaussian, independent of Y,, with mean and covariance arrays given by

EX, = X,

\

COV(Xz) 222®Im .

We have shown that T can be expressed in the form given in Equation (A1-117),

where the ¢ array is stalistically independent of the complex Wishart matrix Ty. We
have also seen that ¢ is conditionally Gaussian, with conditional mean value

E(¢IC,) = X, V%, (A1-138)
and with the unconditioned covariance matrix

Cov(é) = (2™ lo1 . (A1-139)
We can express these properties in a convenient way by making the definition

E =&+ £ (A1-140)
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where
£, = X007 (A1-141)

Then, ¢, is a zero-mean complex Gaussian array, with covariance matrix

Cov(¢,) = (2 @1 . (A1-142)

and the three quantities Ty, ¢,, and {; are statistically independent. The statistical
characterization of ¢, is provided by the definitions (A1-141). (A1-128), and (A1-134),
together with the properties just established for the complex Gaussian arrays X, and
Yz.

The matrix C,, belongs to a family of complex rand>»m matrices which are gen-
eralizations of the 8 matrices introduced in Section 4. The generalization lies with the
fact that the X, array has a non-zero mean. A special case of this generalized 8
matrix was discussed in Sections 5 and 6, in connection with the presence of ‘“signal
mismatch,” a feature introduced in Section 3. The € matrices are also discussed in
Appendix 3, where their relation to the complex multivariate F and Beta variables is
established.

As an application of these results, consider the ratio

He-t Ho-1
IT| la” Sy al _ la™ Sy  al
L= S Wi T R - (A1-143)
Y la”s "a]  Ja (S, +XX") " al

This quantity has exactly the same form as one of the versions of the GLR test sta-
tistic, obtained in Section 2 and expressed by Equation (2-56). Using Equation (A1-131),
we can write

IGQH + TY! Ha-1
{ = —‘m—— = II) + ¢ TY f‘ ) (A1'144)

which is directly analogous to Equation (3-15) of Section 3. With the appropriate iden-
tifications of terms, we can therefore use the results obtained here to derive the sta-
tistical properties of the GLR test, starting from Equation (2-56) and leading to Equa-
tion (3-15), with “signal mismatch” included.




APPENDIX 2
COMPLEX DISTRIBUTIONS RELATED TO THE GAUSSIAN

We introduce here the complex analogs of the chi-squared, F, and Beta distribu-
tions. In real-variable statistics these distributions are usually treated as a family,
based on their definitions in terms of real Gaussian vector variables. The complex dis-
tributions bear the saine relationship to one or more complex Gaussian vectors of the
kind discussed in Appendix 1.

Let u be a complex Gaussian vector, of dimension n, with zero mean and covari-
ance matrix I,. The components of this vector are independent, with “complex vari-
ance' unity;

Each component represents a pair of independent real variables, both of which have
mean zero and variance one-half. The scalar

n
y = ufu = Tty = Y 1y f (A2-1)
i=1

will be called a comple. chi-squared random variable, with n complex degrees of free-
dom. This usage difters from that of real-variable statistics, where 2y would be called
chi-squared, with 2n degrees of freedom.

The pdf of y is given by the familiar formula

n-1

{(y:n) = (_Et_l)!e-y : (AR-2)

The cumulative distribution function of y is 1 — G (y), where

oo

. n-1 k
G,ly) = J f,(y n)dy = e'ykzo }X(-; . (A2-3)
; =
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This function, which appears elsewhere in the analysis, is the incomplete Gamma
function 2

When the means of the underlying Gaussian vectors of any of these distributions
are zero, the corresponding distribution is called “central.” The non- central complex
chi-squared variable is still defined by Equation (A2-1), but the mean vector of u is no
longer zero. The non-central complex chi-squared pdf depends on this mean only
through the scalar “non-centrality parameter”

n
¢ = Z IEuf = (Eu)HEu . (A2-4)
i=1

The corresponding pdf is

f(y:nle) = e (y/ef* V21 _evey) . (A2-5)
which is well known in radar detection theory. In this formula, 1 is the modified

Bessel function, and the series obtained from its definition,

2w = Y s X - R, (A2-6)

is a hypergeometric function. Thus, Equation (42-5) may be written in the form

[o]

fx(y;nic) = fx(y;n)e' oFi(n;cy) . (A2-7)

The cumulative non-central comglex chi-squared distribution is, of course, directly
related to the Marcum Q-function.

The ratio of two complex chi-squared variables obeys the complex F distribution.
Let u be a zero-mean complex Gaussien vector, as before, and let w be an independent
complex Gaussian vector, of dimension m. The mean of w is also zero, and its covari-
ance matrix is 1. The ratio




t71-
£

c
=
)

(A2-8)

%
£
03
5]
H |

L)
[t}
—

will be called a complex central F random variable. We signify this by writing
x = xp(n.m) .

The symbol on the right is a generic designator, rather than a specific random vari-
able. The pdf of the complex central F vaiiable follows easily from the standard for-
mula for the pdf of a ratio of random variables:

oo

[ tytxyim t0yim) yay
0

n

fp(xln.m)

_ (n+m-1) X1
= (n~1)!(m—1)! (1+xs}n+m . (A2-9)

The complex central Beta variable is closely related to the F variable. If u and w
have the same meanings as before, then

i-: 'Uj’Z

i=1

= n m = H
IU~I2+ |w|2 1 + l”__‘.".’

p (A2-10)

will be called a complex central Beta random variable. We use the generic notation
p = xﬂ(nvm)

to signify this statistical character. From Equation {A2-10), we obviously have

1

X = o m)

(A2-11)
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Observe the transposition of parameters in this relationship, which occurs because we
have retained some of the conventions®' of real-variable statistics in making these
definitions. The pdf of the complex central Beta is obtained from that of the complex
central F by a simple change of variable:

tlpin.m) = BRI gt (g gyt (A2-12)

The cumulative complex central Beta distribution is defined as

P
Fﬂ(p;n.m) J.fp(p';n,m)dp' , (A2-13)
0

and it is given by‘26

+m-1 A n+m-1\/1-p\K
Fg(p:n,m) = p"*™" Z < )(_"pp)
k=0

m-1

= 5 k;o fg(pin+m-k k+1)
=1- m+n Z fopin-kim+k+1) . (A2-14)

This result is easily verified by repeated partial integration, proceeding directly from
definition (A2-13).

The cumulative complex central F distribution is defined in a similar way:

X

Fp(x;n,m) = ffp(x‘;n,m)dx' : (A2-15)
0

{n view of Equation (A2-11), we have

Fp(x:n,m) = 1 - Fﬁ(l/(l+x);m,n) .
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from which we obtain the analog of Equation (A2-14):

. L' + 1
Fe(xin.m) = — )mml ; (Prm )k (A2-16)

The non-central complex F variable is still defined by Equation (A2-8), but the
mean value vector of u is no longer zero. Being the ratio of a non-central complex
chi-squared variable to a central one, the non-central complex F distribution can

. depend on the mean of u only through the non-centrality parameter c, defined in
Equation (A2-4). We use the generic notation
x = xp(n,mijc)

for this random variable. Its pdf is evaluated from the integral

o0

fp(x;n,mic) = ffx(xy;n{c)fx(y:m)ydy . (A2-17)
0

by substituting the series (A2-6) in the non-central complex chi-squared density, and
performing the integration term by term. The resulting series is recognized as a
confluent hypergeometric function:

fr(x:n.mlc) = fp(x:n.m) e ° F[n+m;iniex/(1+x)] . (A2-18)
The non-central complex Beta variable is defined by the generic relation

1

xg(n,m|c) = T3 xp(moale)

and its pdf follows directly from Equation (A2-18) by means of a change of variable:

fﬂ(p;n,m[c) = fﬁ(p;n,m) e ¢ \Filn+m:m;:c(1-p)) . (A2-19)

In order to make connection with the notation of real-variable statistics> we must
recall that the real dimensional parameters corresponding to n and m are 2n and
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2m, respectively, and that the real non-centrality parameter is 2c because of our cone
vention for the variances of our complex Gaussian variables.

If the defining series for the confluent hypergeometric function® is substituted
in Equation (A2-19), the non-central complex Beta pdf assumes the interesting form:

-c - Ck
15(pin.mjc) = e kZE) fg(pin:m+k) < (A2-20)

This distribution can also be expressed in finite form, by making use of some
welleknown prozperties of the confluent hypergeometric function. First, the Kummer
transformation®°%®

JFi(n:m;x) = & |F,(m-n:m:-x) (A2-21)

is applied to Equation (A2-19), which results in a hypergeometric function whose first
parameter is a non-positive integer. Functions of this kind reduce to polynomials,
according to 526

o) = 3 D _(m-1) (%
1F1(-n-m-x)—k§;) -k (m+k-1 k' ' (A2-22)

provided n 2 0. Combining these facts, we obtain the result

f4(pin.milc)

tomme 3. (3) o Ty o=

[}

n
-¢cp n\ (h+m-1)! N )
¢ é(k)(n+m+k—1-)!c fg(pinim+k) . (A2-23)

A similar expression can be derived for the non-central complex F distribution:

fe(x:n,mjc) = fp(x;n.m)e"’/(“") i (m) (n—1)¢ ( £x )k . (A2-24)
k=0

k/(m+k-1)\1+x




The curnulative non-central complex Beta distribution is defined by

P
Fg(pin.mic) = ffp(p';n.mlc)dp' . (A2-25)
0

We substitute Equation (A2-20) in the integral (A2-25) and use Equation (A2-14) to
eveluate the typical term: .

k- .

. _ n+m+k—1m+ ! n+m+k-1\{1-p\)
Fp(p.n.m+k) =p Z . -

j=0 J P

1 k" n+m+k-1\[/1-p\
e S (reme k) (120))
p (1-p) j:zo  j+mek 5

Combining these results, we find

Folp.n.mic) = 1 - e "' (1-p)"
>< i ck(l‘—pt nz-:l (n+m4-k—1>(l-p)j
oy k! r jrm+k p '

Reversing the crder of summetion, we again recognize the series as a confluent
hypergeometric function, and thus

(n+m-1)! (1-p)j

n-1
. ) _ _ Ah-le,  am
Fglp:n.mic) = 1 - p" " (1-p) ;;; (n-j-1)!(j+m)!\ »

x ¢ ¢ Filn+m;j+m+1;c(1-p)] .

The Kummer transformation can be applied once more, and, with the help of Equa-
tions (A2-21) and (A2-22), we obtain

n-1 n-j-1 k i+k
) -1 _ p-CtP n-lc _m i n+m-1>(cp) <l-p>l
Fﬁ(p.n,m|c) 1~ e Hl-p) ;L:) k=0 (j+m+k k! p '
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The summation indices are now changed by introducing the sum j+k as a new index
in place of j. The new index is then called k, and the incomplete Gamma function
[Equation (A2-3)] is introduced. The result is

Fg(pin.mle) = 1 - " - Y (“;in,;l)(l-—p)k Gy+1(cp) .(AR-26)

k=0 P
or, finally,
n-1
Fg(pin.mlc) = 1 - g kzo fe(pin-k,m+k+1) Gy ,y(cp) . (A2-27)

When c is zero the G, functions are all equal to unity, hence Equation (A2~27) reduces
to Equation (A2-14).

The cumulative non-central complex f distribution:

X

Fr(x:n.mjc) = ffp(x';n,mlc)dx’ . (A2-28)
0

is obtained from that of the non-central complex Beta by the same procedure used in
the central case. We have

Fe(x;n.mlc) = 1 - Fp[l/(1+x);m,n|c]
1 = c
e Z:o fo[1/(1+x);m-k.,n+k+1] Gkﬂ(m) ,
and, finally
x" = n+rm-—1\ k c
Fe(x;n,mlc) = PR k;) ( K+n )x Gkﬂ(m). (A2-29)

When c=0, Equation (A2-29) reverts immediately to F>uation (A2-16). In Reference 5,
formules (A2-20), (A2-23), and (A2-29) are derived by a different technique, starting
directly from the Gaussian distribution.




APPENDIX 3
INTEGRATION LEMMAS AND INTEGRAL REPRESENTATIONS

In this Appendix we discuss the properties of certain random matrices from a
different point of view than the one employed in the text. Some results obtained
already are re-derived, and some new ones (needed in the main analysis) are derived
here. The approach is based on a general technique of multiple integration, which is
applied to derive the multivariate generalizations of the complex F and Beta distribu-
tions. This technique also provides a very direct derivation of the Wishart pdf itself.
The analysis is confined to the ‘‘central” case, in which all the Gaussian arrays which
appear have mean values of zero Specific applications are made to the GLR test sta-
tistic, in the special case in which no signal components are present.

In Appendix 1 we discussed some properties of multiple integration in which the
variables of integrat.on are the complex-valued elements of an array. This array is
generally rectangular in shage, and the volume element is called d(Z). The dimension-
ality of the underlying real space is twice the number of elements in Z, and integra-
tion is carried out with respect to the ordinary Euclidean measure in this space. The
fact that we describe the integration variables in terms of a complex array Z has no
impact on the character of integration in this case. The integration technique we
introduce here is based on another space, whose elements (points) are Hermitian
matrices of order J.

Let A and B be JxJ Hermitian matrices, and let x and y be real numbers. Then,
the Hermitian matrix xA + yB is also a point in our space, which is therefore shown
to be a real vector space. We introduce an inner product in this space, as follows:

[A.B] = Tr(AB). (A3-1)

It is easily verified that this definition satisfies the requirements of an inner product
in a real vector space. In particular, it is a symmetric function f A end B as a result
of an elementary property of the trace operator which we have frequently utilized.
The squared norm of a vector in the space is given by

J
IAI% = (a.a] = 2 Ia,f. (A3-2)
i.j=1

which is one of the several norms commonly used in connection with matrices.




A Hermitian matrix of order J is described by J2 real numbers, hence the new
space is of dimension J?. We can map its points onto a real space of J? dimensions, as
follows. Let the real variables a,...a; be equal to the diagonal elements of the Her-
mitian matrix A:

a; = Ay 1<j<, (A3-3)
and let
8y, *+ 1352 = V2A 2 . (A3-4)

Continuing in this way, pairs of real variables are defined in terms of the remaining
comglex elements of A which lie above the main diagonal. The reason the square root
of 2 is included in these definitions will become apparent shortly.

Let A and B be Hermitian matrices, and let a and b stand {>r the real vectors, of
dimension J%, which correspond to them according to the mapping just defined:

A e a, B« b.

Then, we can evaluale the inner product of A and B in terms of a and b, as follows'

J
[A.Bl = 3 A,B};

i, j=1

\ - °
= Z AyBiy + L (A;Bij + A;By)
=1 1gigjgld

]

32
Y ab; = (ab). (A3-5)
=1

The last form is the conventional inner product in the real space which contains a
and L. We have shown that the mapping defined above preserves inner products, and
thus also norms, with our definitions of these quantities.

The mapping is now applied to sets of points in the two spaces, and then used to
define a measure, ie, a definition of integration, in the space of Hermitian matrices.
The measure of a set in the latter space is defined to be proportional to the ordinary




Euclidean meesure of the corresponding set in the real space of dimension J% In the
latter space, the volume element of integration is given by

dV = da,da,...dajp ,

and in the new space it will be taken to be

J
d(a) = [Tda, ) T[] diRepldlima;)]. (A3-6)
k=1

1<igjgd
We therefore have
dv = 2%-D24.p)

and this relation establishes the proportionality constant between the two measures.
In the analysis to follow, we will limit all iniegrals in the new space to the subspace
of Hermitian matrices which are non-negative definite. This restriction will be indi-
cated by the use of the notation do(A) for the volume element of integration.

The two integration concepts are closely related, as shown by the following prop-
erty. Let Z be an array of variables, of dimension JxM, .here J<M. Then, if ¥ is any
well-behaved function whose argument is a square matrix, the identity

H _ o M-J .
fy(zz )d(z) = rJ(M)fg(s)'S’ d(S) (A3-7)

holds, so long as the integrals themselves exist, where

J-1
rk) = o2 nk-j) . (A3-8)
j=0

This quantity, which is a generalization of the Gamma function, will appear fre-
quently in the following discussion, and we note that I'y(K) = I'(K).

The integration idenlity can be derived directly from geometric considerations,
and a detailed exposition of the theorem (for the case of real variables) may be found




in Chapter 2 of Reference 10 which contains further references to the literature. We
give an inductive proof for the complzx case later in this Appendix, using only ele-
mentary matrix methods. These are, in fact, the same methods of projection and par-
titioning which are utilized repeatedly in the main body of this study. Before pro-
ceeding with tais proof, we first show some of the consequences of Ecuation (A3-7),
beginning with a derivation of the Wishart pdf which is simpler than the conven-
tional procedure.w

Let Z be a complex Gaussian array, of dimension Jx (J + K), with mean value zero,
and with covariance matrix

COV(Z) = IJ®IJ+K y
where K 2 0. Then, the expected value of an arbitrary function of the product

T = ZZH

can be evaluated as the irtegral

1 H, -Tr(zz"
EF(T) = #(z2 d(2) , A3-9

taken over the pdf of Z. The latter is a special case of Equation (A1-68) of Appendix 1,
with the mean value replaced by zero. Applying Equation (A3-7) to this integral, we
obtain ‘

EH(T) = r‘J(J1+K) fy(s)lsﬁ‘e"*(s) de(S) -

It follows immediately that Lthe joint pdf of the elements of T is the complex Wishart
density

14(T:J K|1) = ],_J(J1+K)|T|Ke"’*('f> . (A3-10)




This notation (which is not standard) is chosen to exhibit the complex Wishart pdf as
a direct generalization of the complex chi-squared distribution. In the present case,
the matrix dimension is J and the Wishart density has J+ K complex degrees of free-
dom. If Z has the more general covariance matrix

COV(Z) = E@IJ+K '

then Equation (A3-9) is replaced by
EF(T) = —— Pt —— fy(zz”)e'"‘”'lzzﬂ’ d(2)
T _I+K e 4K ’
n |z
~pplying Equation (A3-7) again, we obtain

EHT) = f:;-(s) 14(S:3.K|Z)dy(S) .

'ﬁ'her (&4

, 1 IT* i
fw(T:J.KIZ) = = e . A3-11
w ! TI+K) 5K (A3-11)

which is the general case of the complex Wishart density.

As another application of Equation (A3-7), we derivz the Jacobian for the linear
transgiormation of variables

s = GSal, (A3-12)

where S is a matrix of complex variables of integration, and the volume element is
defined by Equation (A3-8). The matrix G is, of course, non-singulsr. Any integral over
S can be expressed as an integral over a JxJ) array Z of unconstrained complex vari-
ables, as rollows:




r

3
f F(S)dy(S) = J(,z) f #z2") d(z) .

T

The validity of this representation is a special case of Equation (A3-7). Now let us
introduce the c!-ange of variables

Z=0GZ , d(z) = |[c6P a@). (A3-13)

with Jacobian as shown. The latter is a special case of Equation (A1-66) of Appendix 1.
Substituting, and using Equation (A3-7) again, we obtain

Ty o n N

—%—) |GGH lin(GZZHGH)d(Z)
J

r

f F(S)dy(S)

IGGHIJJS‘(chﬂ)d‘.@) .

It follows that the change of the volume element of integration associated with
transformation (A3-12) is given by

do(S) = 16617 ay(§) . (A3-14)

The validity of Equation (A3-7) depeads on the postulated condition J< M. If, how-
ever, Z is a JxM array with J2 M, then Z" satisfies the requirements of the theorem.
We also have d(ZH)=d(Z). as a direct consequence of the definition (A1-63) of Appen-
dix 1. We therefore obtain the identity

f #(Z12)d(2) = 17’%) f #(5)!sP M ay(S) . (A3-15)

In this case, of course, S is of order M.
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To prove the integration theorem [formula (A3-7)), we first verify its validity for
the special case in which J=1. A general proof will then be established by induction.
When J=1, we write z instead of Z, where z is a row vector of M elements. Putting
2 = Xm tiy,,. we have

M M
22" = z |z, 2 = Z (xi+ yﬁ) =r2. (A3-18)
me=] m=1
The volume element of integration is, of course,
d(z) = dx;...dxydy,...dyy .

and we now change to spherical coordinates in the real space of 2M dimensions. The
radial coordinate is r, defined in Equation (A3-16), and we write ), for the solid angle
in this space. We also write d(), for the differential of this solid angle. Then, we get

J-S‘(zzH)d(z) = ff $(r¥)r™ ldran,,

for the integral of an arbitrary function of 22" The integrand depends only on r, and
we can therefore integrate over the solid angle, using the well-known formula

M
=2 T _
O2u = 20y

Changing variables again, we let x= r2, and then we have

oo

f&'(zzH)d(z) = -L-d—"_iﬁ-!f.?(x)x“'ldx : (A3-17)
0

From definition (A3-8), we see that (M —1)!=T,(M), and we also note that x corresponds
to S which is a scalar in this case. Thus, Equation (A3-17) agrees with Equation (A3-7),
including the restriction on the range of integration to non-negative values, for the
special case under consideration.
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To prove the general case, we assume the validity of the integration theorem for
J<M, and show that it also holds when J is replaced by J+ 1. We begin by writing

3]

where W is a complex array of dimension JxM and v is a row vector of M complex
components, and we study the integral

$= fﬂ(ZZH)d(Z) (A3-18)

We exclude from this integral all points for which the Z matrix is not of full rank. It
may be shown that the measure of the set of points so excluded is zero; hence, the
integral itself is not affected. Similarly, all integrals over the space of non-negative.
definite Hermitian matrices may be replaced by the corresponding integrais over the
subset of positive-definite Hermitiar matrices, again with no effect on the results. The
latter matrices form an op 1, densc subset of the non-negative definites, and this
subset carries full measure, which is an equivalent statement of our assertion. Since
the full-rank restriction on Z implies the+ 22" is always positive definite, it is suffi-
cient to prove the integration theorem under these two restrictions on the respective
ranges of integration.

The volume element of integration in Equation (A3-18) is simply d(Z)=d(v)d(W),
and we also have

H v ywH
. = H H (A3-19)
Wy WWo
The key to the proof is provided by the form of the determinant:
1zzM) = jwwH) [vol - vwhowwHy ' woH) (A3-20)

which is evaluated by an application of Equation (A1-2) of Append:x 1. The second fac-
tor on the right may be written

v[L, - wHwwPylw]JH




which shows that only the component of v which is orthogonal to the row space of W
enters the expression for this determinant. The fact that wwH is non-singular follows
directly from the non-singularity of 2z itselt.

Following the procedure first used in Section 2, we introduce the JxM array
a = (W Ry (A3-21)

which serves as a basis array in the J-dimensional row space of W. The properties

aa'! = I

alla = wHwwHylw
w = (wwH)/2q

follow directly. Continuing as in Section 2, we let 8 be an arbitrary basis array, of
dimension (M —J)x M, in the orthogonal complement of the row space of W, so that

g™ = 1y,
gl = 0
ol + ﬁHﬁ = Iy .

Then, a and g together form a unitary matrix of order M:

AR

We apply this matrix to v and partition the result:

vUb = |v, vol - (A3-22)

The new components are given by




_ H
vV, = Va

v, = v . (A3-23)

Note that v, and v, are row vectors, of dimension J and M - J, respectively.

With these conventions established, we have
wH = vol (wwH)2 = v (wwHy2
and the determinant of ZZ! becomes
1zzH) = (wwHl v[1, - wH(wwHytw]oH
= WwH| v (1y - afa )V = jwwHj vl (A3-24)
The argument of ¥ can now be written

y vl(wwH)l/z

778 = [
|

(A3-25)
(wwH)l/zvi-l WWH
where
y = vlv? + vzvlz'l . (A3-28)

In the integral itself, the volurr.e element involves d(v) =d(v,)d(v,), since the Jacobian
associated with transformation (A3-22) is unity. Our integral is now expressed in a
form which depends on W only through the product wwH and we can therefore
invoke Equation (A3-7) to transform the W integral.

This allows us to write Equation (A3-18) as i

3

M H M-J
F:rm f S(ZZ )Isl do(S)d(Vl)d(Vz) , (A3'27)
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where it is understood that

vls"‘
728 - Y y .
S"ﬂvl S

The integrations over v, and v, are unrestricted in Equation (A3-27), but the integra-
tion over S is limited to positive-definite matrices. The determinant of 2zZ1 is, of
course, given by

1z28| = |S|vovl . (A3-28)
We now introduce a change of variables by the linear transformation
v, = usSV? . d(vy) = Is|™? d(u) , (A3-29)

with Jacobian as shown. This Jacobian is a special case of Equation (A1-66). The matrix
22" now assumes the form

y u
H ] . (A3-30)
S

and y is given by

y = vgvg + us™hul .
Next, we define
H .
X = Vpvy (A3'31)
and note that our integral depends on v, only through x. Since v; is a row vector, of
M -J components, we can apply Equation (A3-7) to the integration over v,, which is of

the same kind as the special case first evaluated as Equation (A3-17). When this is
carried out, together with the change of variable from v, to u, we obtain
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ﬂJM+M—J

¥ = (M-J-D)IT,(M)

F(2zM) (s x)™ " dxd(u)dy(S) . (A3-32)

The integration over u is unrestricted, as was the integration over v,, but x is limited
to positive values by our application of Equation (A3-7). The matrix 2zM is still given
by Equation (A3-30), with the understanding that

y = x + uS L (A3-33)
and its determinant [according to Equations (A3-28) and (A3-31)] is simply
1228 = IS|x .
It may be verified directly that
7’ (M=J=1)!T(M) = T, (M),
and we therefore have
1D [ (2222 Mt axd(u)ag(s) | (A3-34)

B wm

We make a final change of variable, replacing x by y, which is defined in Equa-
tion {(A3-33). The only change in Equation (A3-34) is tne replacement of dx by dy,
together with the restriction

y >us tuf

on the range of integration over y. But it is easily shown that this condition, together
with S> 0 (positive definiteness), is necessary and sufficient to ensure the positivity of
ZZH. as defined by Equation (A3-30). This claim can, in fact, be verified by an applica-
tion of Equation (A1-9) to an arbitrary quadratic form in the matrix ZZ".




According to definition (A3-6). the volume element of integration in Equa-
tion (A3-34) can be expressed as

dyd(u)dg(S) = d(T) .

where T is a (J + 1) x M-dimensional array of integration variables. Thus, we obtain the
final result

_ H _ UM M-J-1 _
5= f #(zzZMd(z) = r———M(M)fs(T)m do(T) . (A3-35)

and this completes the proof.

Next we consider the multivariate generalization of the complex central F distri-
bution. Let V and W be independent Gaussian arrays, both of which have mean values
of zero. Their dimensions are implied by the covariance matrices

COV(V) = lJ@IM

We wish to study the random array

£(J M.K) = viTly | (A3-36)

where
T= wwt (A3-37)

The notation is analogous to that used for the € array in Section 4, which is obvi-
ously given by

8(J. M, K) = I, + 4(J,M.K) .

As before, we assume that K> 0, so that T obeys the complex Wishart pdf, expressed
by Equation (A3-10).




Again we consider the expected value of an arbitrary function of 4, which may
be written

E #[«4(J,M.K)] = ﬁ ff FVHT W) 1 (T:3 K[ e ™V 4 (T)d(v) . (A3-38)

The double integral signifies integration over the complex Wishart pdf of T and the
complex Gaussian pdf of V, the latter having been explicitly introduced in Equa-
tion (A3-38). Holding the integration over T in abeyance, we make the change of vari-
able

v=T%2 ,  4&V)=|TMa@2).

with Jacobian as shown. This change of variable is exactly like the one given in i'qua-
tion (A3-13), and the notation is meant to signify the positive-definite square root of T.
Thus, substituting for the complex Wishart pdf. we obtain

MK = L [ | stz rM L0+ 227 g (myq(z)
B $ (4, M.K)] nJMFJ(J+K)ff( Z) T e (D)

We now reverse the order of integration, and also make the change of variable
T = (I, + 22 s (1 + 227)"2 .

The Jacobian - this transformation. according to Equation (A3-14), is

and, therefore,




H
JITIM+K -1, + 22%)1] dy(T)

= 11+ 220D [k e M) g (s)

The above integral is evaluated as the Wishart normalization factor [see Equa-
tion (A3-11)], and we obtain

Ry Hyp) r;(J+M+K
flﬂmxe i+ 297 g ) - i : J+M1K |
{1, + 227

According to Equaticn (A1-3) of Appendix 1,

11, + 228 = |1, + 2021 (A3-39)

and. hence, we have

I+ M+K) d(z
EF[40.MK)] = S—— | 5(2"2) }(, )MM( . (A3-40)
n " Iy (J+K) [y +Z27Z|

At this point, we postulate that J> M. Without this assumption, 4 is always rank
deficient and a discussion of its pdf, although possible, is more complicated. With this
assumption, Equation (A3-15) may be applied to integral (A3-40), and we obtain

' T;(J+M+K J-M
E[40.M.K)] = r‘,g”jl%)%ﬁz‘) () ﬁmdo(A), (A3-41)

where A is a matrix of integration variables. It may be verified directly from defini-
tion (A3-8) that
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FJ(J+M+K) _ "",\J+M+K)
rI+K) = Ty(M+K)

and we may therefore write Equation (A3-41) in the form

FyJ+M+K) i-M
n ) JS‘-.{A [A

MR Ty J 58 T e GolA) (A3-42)

EF[4(J.M.K)] = Toa
M

We introduce the definition

Fa(b) p(e)

Bn(b,c) = —P;m— .

(A3-43)

where n, b, and c are all positive integers. This quantity is a generalization of the Beta
function, and we note that

M(b)Mc) _

By(b.c) = Nb+c)

B(b.c) , (A3-44)

which is analogous to the reduction of the gener.lized Gamma function when its sub-
script equals unity. The multivariate complex Beta pdf is now introduced with the
definition

1 AP M
BM(J,K) II“+ AIJ+1( .

fo(AM, 1K) =

(A3-45)

The parameter M specifies the matrix dimension of the complex Beta variable in this
distribution. When M=1, the pdf reduces to the scalar complex Beta pdf, already
defined by Equation (A2-8) of Appendix 2:

) R
BU.K) (1 + a)K

f4(A:1.,K) = = 1(A:d.K) . (A3-48)




In terms of the multivariate complex Beta pdf, integral (A3-42) can be expressed in
the form

EF[«4(.M.K)] = f.?(A) £o(A;M.J,K+M)dg(A) .

A complex multivariate analog of the complex Beta random variable cen be
defined in terms of &, still under the assumption that J> M. It is simply the inverse of
the matrix ¢:

R(IMK) = 60.MK) = (1, + VT lV) (A3-47)

If A is a positive semi-definite matrix of order M, then R, defined by

R= (I, +A)y', (A3-48)

s clearly positive definite. In addition, the eigenvalues of R will lie in the range zero
to unity, hence Iy, - R will be positive semi-definite.

We solve Equation (A3-486) for A:

A=R"'-1,, (A3-49)

and consider the elements of A to be functions of the eiements of R. Using the
well-known formula for the differential of the inverse of a matrix, we get

dA = d(R™!) = -R"19RR?, (A3-50)

where dA and dR are matrices of differentials. We view Equation (A3-49) as a change
of variables, and note that the relation expressed by Equation (A3-50) is of the same
form as the linear transformation (A3-12), but applied now to the differential arrays
dA and dR. Then, Equation (A3-14) provides the Jacobian for the change of variable,
and we can write

do(A) = IRI™M dy(R) . (A3-51)

Finally, by expressing A in the form




A=R'I,-R),

we can easily evaluate the required determinants in formula (A3-45) and supply the
Jecobian from Equatiun (A3-51). As a result, we can write the expected value of any
well-behaved function of ® in the form

ES[2(J.M.K)] = E ${[1,+ 4. M, K)] '} = fs(R) f5(R:M,K+M.,J)do(R) . (A3-52)

where

fp(R:M.K.J) = Bu(;( 3 iR*™ 1, - R (A3-53)

is the complex multivariate Beta probability density function. The similarity to the
scalar pdf is apparent, and when M=1 it is complete:

fp(R1LKI) = gy RU-R' = o(RK.). (A3-54)

An identity is used in Section 5 which follows directly from the definition of the
complex multivariate Beta pdf. Multiplying both sides of Equation (A3-53) by the ntP
power of the determinant of R, we have

n . - 1 K+n-M _ -M
IR ((R:M.K.3) = g IRIT™ ™ 11y - RY
_ BuK+n.J) {(R:M.K+n,J A3-55
a BM(K.J) B( M, K+n, )v ( o= )

and by direct evaluation we obtain
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By(K+n,J) Ty(K+n)My(K+J) 4 ﬁ K+j-m
By(K.J) — Ty(K+n+J)Ty(K) _m=0j=0 K+j+n-m

K-M+j) (K+n+j)! - (A3-56)

_ ﬁ K+ (K=M+n+j)
=0 (
Combining these results, we obtain the desired identity:

(K+j) (K-M+n+j)
(K=M+j)(K+n+j)

J-1
IR f5(R:M.K.0) = [] fg(R:M.K+n,J) .  (A3-57)
j=0

In Section 4, the GLR test statistic was defined as
LI MK) = |1, +VET V],

where V and T have the same meanings as defined here, assuming the absence of sig-
nal components in the original data array. No restriction on the relative magnitudes
of J and M is imposed at this point. If ¥ is now an arbitrary function of a scalar
argument, we can write

ESLUMK)) = o ”501“ FVHT ) 1 (To0 K1) e VD g (1) d(v)
m

which is a particular case of Equation (A3-38) above. By following the same analysis
we used to derive Equation (A3-40), and recalling also Equation (A3-38), we obtain the
two equivalent forms

r(iJ+M+K) d(z
E$[((IMK)] = %r‘——” F(I1y + 2M2|) ;(4 )J+u+l<
I+ K) Iy +272]
r{(J+M+K) d(Z
- _jEA———Z F(I1, +ZZH|) (H)J+M+K ' (A3-58)
n T Ty(d+K) v |1, + 227




If J> M, we can continue as before and apply Equation (A3-15), with the result
ES‘[((J,M.K)] = f.ﬁ?(llM + AI) fo(A M. J.K+M)dy(A) . (A3-59)

If, on the other hand, J<M, we continue with the second line of Equation (A3-58) and
apply the original integration identity [Equation (A3-7)] to obtain

TU+M+K) M-

ES[((I.M.K)] = F TR M) $(11; +st) m dy(S) .

Since

T+ K)Ty(M)

= J
LU+MaK) - DuM.I+K)

we obtain the analogous formula:
ES‘[[(J.M,K)] = fﬁ(iIJ + Al) 14(A:J. M, J+K)dg(A) . (A3-60)

Equations (A3-59) and (A3-80) represent formal statements of the statistical char-
acter of the signal-free GLR test statistic, expressed in terms of the complex multi-
variate F distribution. Later in this Appendix, this formal representation will be
developed to produce the explicit characterization of the test statistic as a product of
scalar complex Beta random variables, in agreement with the results obtained in Sec-
tion 4. This exercise will also illustrate some useful techniques for carrying out
explicit integration. in the space of Hermitian matrices.

The integral representation, Equation (A3-58), will now be used to prove an
important identity concerning members of the family of GLR test statistics, again in
the signal-free case. Suppose that V is partitioned as follows:

v={v, V],




where the dimension of V, is JIxM,, V, is JxM, in dimension, and M, + M, =M. Then, we
can write

IT + vvHi

(IMK) = |1, +ViT V) = —F

and we also have
B _ H H
V7 = ViV + V,V5
These expressions permit us to make the factorization

H H, H
IT+V,Vy +VoVai [T+ V, V|

{(JM.K) =
IT+v,vH| ITl

Recalling the definition of T [Equation (A3-37)). we note that
T+VVE = [w v} [w v ",

which is another complex Wishart matrix, of the same dimension J, but with J+ K+M,
degrees of freedom. Thus, we can write

T+v,viLv vH .
| |Tl IVVHT 2 =y, + Va(T= V1)Vl = L Ma. K+ M) (A3-61)
+ViVy
and also
H
T+V,V -
! !Tll_ll = Iy, + VTVl = (. M K) - (A3-82)

The notation on the right sides of these equations has been introduced as a way of
indicating the statistical character of the quantities involved.

We have shown that

{(J.MK) = {(J. M, K+ M) (I M .K) . (A3-83)
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and we now wish to prove that the factors on the right are statistically independent.
Equation (A3-63) is therefore analogous to the representation of the GLR statistic as a
product. of independent factors, as given by Equation (4-31) of Section 4. By choosing
M;=1 and then iterating this identity, we can obtain from Equation (A3-83) the rep-
resentation

M-1
(3MK) = []¢@.1.K+m) . (A3-64)

m=0

which is directly analogous to Equation (4-32). The factors in this product are inde-
pendent, and from this representation we can again obtain the double-product form,
Equation (4-36).

To prove the independence of the factors in Equation (A3-63), we let § be an
arbitrary function of two scalar arguments and consider the expectation value

E 5‘((a ,tb) .
where

{

a

((J M5 K+ M)

This notation is adopted for brevity, and the variables on the right sides of these def-

initions are given explicitly in Equations (A3-61) and (A3-62), respectively. Since V, and
V, are independent complex Gaussian arrays, we can write

ES(lydy) = —1 fff $(t, 4y) 1y(T: K1) e TV +V2Y8) g (T)4(v,)d(V,) . (A3-66)
mw

The proof is carried out by means of a sequence of linear transformations,
applied to the variables of integration. The first transformation, together with its
Jacobian, is given by

Vo = (T4VViW%z, . d(Vp) = [T+ V, Vi d(z,) .

In terms of Z,, we have [recalling Equation (A3-61)]

196




la = Iy, +Z02,1 = 11 +2,2])

while {,, is unaffected. We carry out this transformation, and also substitute for the

comnplex Wishart pdf in Equation (A3-86), with the result

1 K H\N
E$(,.4) = ————fffs(z ATV + v,V M2
a'’b JMFJ(J+ ) a'’b 171

H H
x ¢ T THVVIL*ZZI g (T)a(V,)d(Z,) -
Next, we carry out the simultaneous transforinations
- Hy-12 3y
Vy= (I +2,2,)7°V,
T = (I,+2,207 2T (1, + 2,282 .
The corresponding Jacobians are expressed by the equations
d(v)) = I+ 2,20 ™™ a(V))
H-J ~
and we note that /, is unchanged in form:
tb = “M1+VF:F -IVII .

We make the evaluations

(T +V, Vi) (1, + 2,2 = (1, + 2,202 (T4 vV (1 + Z,20)

™ +V,7H)

(A3-87)




~ A

ITIIT+ v, VM2 = gy e 2,28 K Me [TROT L T UM

and substitute in the integrand of Equation (A3-67), with the result

= K HM
ES(,.L,) = JMFJ(J+K)fff5(‘ L) ITIK T + ¥,V Me

-'I\'(T + V. V") do(T)d(V )d(Z,)

(A3-88)

The last step of the proof is similar to our previous analysis of the pdf of the 4
matrix. We let

Vi=T%z, .  a¥)=1TMag,).
and note that now

and

~

T+ V) = [Tl +2,280

With these changes of variable, integral (A3-68) becomes

EF(¢,.,) = fffg(‘ 4p)ITE M e -Tr {(1;+ 2o 28) 7]

“‘r 1(J+K)

|IJ+4bZ Mz

HJ+M+K
“J + Laza '

do(T)d(Z,)d(Z,) . (A3-89)
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In order to simplify the notation, we have dropped the tilde from the matrix of inte-
gration variables. The integration over T is carried out as before:

) H rJ+M+K
f|T|K+Me Tr{(1; +2,2) 7] do(T) = J( HJ+M1]€ )

We are left with the double integral

F(J+M+K d(z d(Z
ES(ta.tp) = J( - ) ffy (ta ty) : 1:3+M+K (HbJ)+M +K -
M +K) {1 +Z,Z,1 Iy +2ZpZpi" 0

By an obvious factoring of the expression which precedes the integral in this formula,
we can write it in the form

I(J+M+K) d(z,)
EF(l,.4) = Hy(z dy) — 8
a a'"b nJMZ FJ(J+M1+K) IIJ+ZAZ:{|J+M+K

D+M+K)  d(Zy)

(A3-70)

Comparison with Equation (A3-58) shows that the proof is complete, and that {, and
(, are indeed independent random variables.

In Section 4, under the assumption that no signal components are present in the
data array, it was shown that the inverse of the GLR test statistic can be expressed
as a product of independent random variables, each of which obeys a Beta distribu-
tion. This result will now be obtained independently, using the methods of this Appen-
dix, starting with one of the formal integral representations derived above. We assume
that J< M, in which case Equation (A3-60) will be our starting point. A similar deriva-
tion, proceeding from Equation (A3-59), would apply in the case where J> M.

We begin by partitioning the A matrix, as follows:

Yy u

(A3-71)
uH B
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where y is a scalar, and B is a square matrix of order J—1. Since A is positive definite
over the range of integration, the new variables are subject to the restrictions

B>0

y>uB Lt
We have noted these conditions before, and we make the change of variable
-1 uH

y = x + uB (A3-72)

to facilitate the application of this constraint. It is only necessary to require that
x>0, and the integration over u is completely unconstrained. It is permissible, there-
fore, to put

dy(A) = dxd(u)dy(B)

in Equation (A3-60). We also compute
|A] = |B|x

and, dropping the subscripts on the identity matrices now, we have
i1+ Al =11+ Bl[l + X +uB—1uH—u(I + B)”uH] .

We define the matrix Q by means of the equation
Q'=8Bl-(0+B"' =Bt1+B)},

from which it follows that
Q=(1+B)B.

We introduce t..e new variable v by means of the definition

uE vax"2 .

and recall that u is a row vector of J -1 elements. It follows that
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du) = x*YQla(v) = x' BT + Bld(v)

and also that

1+ Al = |1+B![1+x(1+vv")]. (A3-73)

Making the appropriate substitutions in Equation (A3-60), we obtain

i lBIM -J+1
) EF[W(I.M.K)] = "jﬁfffﬂ”*'“') L Bkl
M1
x [l +x(1+ va)]JTM+K dg(B)dxd(v) . (A3-74)

The integration over x in this multiple integral is confined to positive values and, in
the argument of ¥, it is understood that Equation (A3+73) is to be applied.

Next we replace x by a new variable p, by means of the definition
1+ x(1+ va) = p'l .
Obviously, we will have 0< p <1, and also

dx!= (2 +vv') Ndp/p?]

We can therefore write

IT+al=1+B|p"
and make the evaluation

M-1 M-1

x J+K -1 (1

- p)

o

dxd(v) =

0a dpd(v) .
vv

[1+x(1+vv

H) ]J+M+K




An application of Equation (A3-17), together with the normalization integral of the
scalar complex F distribution [Equation (A2-9)], yields the evaluation

av)  _ _ g1 (M=)
f(1+vaM (J 2) f(l+€) " M-1)"

and, therefore, we have

. M=) ay _ IBMOM
ES[WM.K)] = (M—1)!B;(M.J+K) ff i1+ Blp ) + B

xp" K G- o) dpdy(B) - (A3-75)
Recalling the scalar complex Beta pdf [Equation (A2-12)], we can write

+K - - J K-I‘M—l"
K1 Ml I+ yM-1 {y(pd+K M) |

1~
(J+M+K-1)!

P

and it is easily verified that

(J+M+K-1)!'B,(M,J+K)

= B, ,(M.J+K-1) .
T M-I+ K -1)!

We therefore find that Equation (A3-75) can be written

] ] |B|M J+1
1 '= | —_————
ESUIM.K), B;_ (M. J+K—1)f[f I1+B )ll + pTH-K-1 do(B)]

xfg(p:d+K ,M)dp ,

and, by iteration, it follows that




EF( MK)] = f...fs[(pl...pJ)"] t(py...py)dpy...dpy (A3-76)

(¥

where

J
f(py...00) = [ ] fa(p;K+iM) | (A3-77)
i=1

In the final step in this iteration, the scalar complex F distribution appears and is
easily transformed to an integral over the scalar compiex Beta density, with the
result as stated above. Equation (A3-76) is equivalent to Equation (4-33) of Section 4,
and with this observation the proof is complete.




APPENDIX 4
AN ALTERNATIVE DERIVATION OF THE GLR TEST

In this Appendix we provide an alternate derivation of the GLR test, which is
particularly appropriate for the signal model described by Equation (1-4). We return to
Equation (2-25), as a starting point, and write it in the form

iz 2

- Min F(b)
b

where ac in Section 2,
F(b) = (Z——ebp)(Z—ebp)H .
Recall the arrays e and f. introduced in that section, and also the unitary matrix

We now introduce a decomposition c¢f the data array Z, by means of the defini-
tion

X
UE-Z = ! A (A4-1)
or, equivalently,
X, = ez

Xg= 112, (A4-2)

In terras of the components defined in Section 2, we note that

N

H :
XAUL = [Z4 W,)

H
Xply

(25 Wgi - (A4-3)




The new components are brought into the analysis by means of the definition
™ - 1H
and the observation that

Min |[F(b)] = Mir [F(d); .
b )

Substituting for Uy and F(b). we obtain

N X, - bp)(X, - bp)? (X, - bp)XH
F(o) = (¥, — pp){Xq — PP A : 81 (Ad-4)
Xp(X, = bp)" XpX5

The required determinant is evaluated using identity (A1-2):
= = H. |
[F(b)i = IXBXBI [J(o); .
where
Jv) = (X, - bp)(X, ~ bp)! - (X, - bp) X§ (XgXH) ! X5 (X, - bp)™ .

Since x,,x'; satisfies a complex Wishart distribution of dimension N-J, with L
comnplex degrees of freedom, its inverse exists with probability one as a resull of our
assumption in Equation (1-9). We restrict the present analysis to the case J<N.

In terims of the matrix
R=1_ - XB(XgXp)' Xy . (A4-5)
we have

J(o) = (X, ~ BP)R(X, — bp)"

]

bpRp o - bpRXY - x, RpHEH + X, RXE (A4-8)
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Since the dimension of Xg is (N - J)x L, we can compute the trace of R as follows:

T(R) = L - T[X§(Xpx5) ! Xp)

]

i

L - T[(XpXP)y ! (XgxH))

L+J=~N.

[}

Since R is obviously idempotent, its eigenvalues are either zero or unily, and the trace
evaluation shows that N -J of themn must vanish. Thus, R is a projection matrix and
singular, except in the special case J=N. However, the matrix pRpH is positive definite
(with probability one), as will now be shown.

From Equations (A4-3) and the definition of U, we have

H
Xpp = Ip

and also
XgXh = ZgZ§ + WpWp .
It follows that
pRp" = 1y - 25 (2525 + WpWR) ' 2y (A4-7)

and the existence of the inverse in this formula has already been noted. But the right
side of Equation (A4-7) is itself just the inverse cf the matrix Cy,, defined by Equa-
tion (3-14), which we know to be positive definite, ar'd this completes the proof.

We can therefore define
b= X,Rp" (pRP™)! = X, RpPCy . (A4-8)
and complete the square in Equation (£4-€). The result is
Jo) = w-b)pRpTd-B) + X, RXY - b pRpH B .

The use of iuentity (2-30) then yields
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wmmm=mah

provided only that
J(b) = X, [R - Rp"(pRp") ' pR} X}

is a positive-definite matrix, as will be shown below. Since the numerator of the test
statistic is the determinant of F(0), we easily obtain the desired result

LIS X, RX}
WbY x, qxHi

(A4-9)

where

Q= R - Rp(pRp")' pR . (A4-10)

An efficient algorithm for carrying out this computation with actual data can be
devised, using the techniques which are described in Appendix 8.

It nteresting to evaluate the performance of the test, as expressed in the form
just derived. We assume that the true signeal parameter array is B and that the
covariance matrix of the columns of the data array is £. Taking the expected values
of both sides of Equations (A4-2), we obtain

EX, = bp
The array b. which appears in the first of these formulas, is given in terms of B by

Equation (2-23). These component arrays have independent columns, but they are, of
course, correlated with one another.

It is expedient to carry out the whitening operation at this point, rather than at
a later stage, as was the case in the analysis of Section 3. First, however, we eliminate
the correlation between X, and Xg by writing the former array as the sum of its
conditional expectation given Xg (i.e. the linear predictor) and a “remainder” term
(the prediction error):




_1 ~
Xpo = Z,plppXg + X, .

The remainder term is Gaussian and independent of Xg. and it is characterized by the
relations

EiA = bp

cov(X,) = )y tel, .

The Ik matrix is a projection onto the subspace orthogonal to the span of the the col-
umns of Xg, and it is obvious from its definition that XgR=0. Therefore, we can sim-
ply replace X, by the remainder term in the numerator of the test statistic. Because
of the form of Q, the same is true of the denominator; hence, we have

. X\ RXA

X, Xk

Whitened arrays can now be introduced, as follows:

L

Xpo = ()X,

1l

These Gaussian arrays ar= independent and are characterized by the equations

EX,, = (£**)”bp

EXgy = O

i

COV(iAo) 1J®1L

In terms of these guantities, we heve




- 'i wR i.__:lQ' (A4-14)
X p0 QX3!

since the determinants of the whitening matrices will cancel out. Moreover, the R
matrix is unchanged in form as a result of this transformation:

R =1 - XH(XgoXHo) Xg, - (A4-15)

It still remains to be proved that the matrix whose determinant forms the denomi-
nator of the test statistic is positive definite.

At this point, we simplify the notation by dropping the tilde and the subscript O.
Then, the test statistic is again given by the right side of Equation (A4-9), but the X,
and Xy arrays now have the properties given by Equations (A4-13). Turning to the R
matrix, we follow the pattern established in Section 3 by introducing the array

n = (XgXB)y ¥ Xy . (A4-18)

assuming that the positive-definite square root of the matrix xBx‘g has been chosen.
The basic properties

nn = Iy
"7”"7 = XS(XBXE)'I Xp

= (Xng)wn

>
=]
|

then follow as before. The n array forms a basis for the row space of Xg. A basis
array 6 is chosen in the orthogonal complement of this subspace which, together with
7, forms a basis for ¢" itself. We then have

21
06" = l.5-n

OnH 0

nin+ oo =1
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A unitary matrix is formed from these basis arrays, as follows

6
n

f
uLEl

and it is used to perform a rotation and partitioning of the array X,:

XaUp = (¥, ¥, . (A4-17)

The new components are, of course, also given by the equations

I

¥, = X, 6%

Vo = X, nH .
The R matrix finds a simple expression in terms of these arrays, namely,
R=1 - 7%n= 06", (A4-18)
and we also have
Q=6"pPo,
where
P=1,n- 6p (petoph)y!pe™. (A4-19)

The GLR test statistic can now be written

¥y ¥

. (A4-20)
¥, PeH|

Note that only the first of the two components of X,. introduced in Equation (A4-17),
has survived in this formula. Next, we define the array

u = pBH . (A4-21)




since this combination appears in the matrix P, which describes another projection:
P= Iy - £ (u') '
The expected value of ¥, can also be expressed in terms of u:
E¥, = (Z*")bu .
To deal with the decomposition imposed by P, we define the basis array
y= (), (A4-22)

in direct analogy to previous derivations Then, we have

H

Yy =1y
Wy = M)y
Ry
po= (e My

The y array forms a basis of the (L+J-N)-dimensional row space of u, and the
orthogonal complement of this space is given a basis array which we will call 6. Then,

H
66" = I 4y-N-M
syt =0

Continuing in the usual way, we form the unitary matrix

¥

5 (Ad4-24)

Upes-n = t

and then decompose ¥,:

YU, ox = (¥ v (A4-25)




Individually, these coniponents are given by the equations

¥, = ¥, 7H

Yo = W8 (A4-26)

Since the expected value of ¥, can be written

E¥, = (") b(uu)y .

we compute

Eyy = (2*)%b(uu")

Ey, = 0.

Working back through the definitions, we find that
pu' = pRp" =
and, consequently,
Ey, = (Z*")*bCyl? = Vg, . (A4-27)

The “signal array” V,, was defined in Equation (3-37) of Section 3.
From definition (A4-26) and the last of Equations (A4-23), we obtain

H
V¥ = Y+ Y vh
and
p = &5

These results, in turn, lead to the simple form
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W+ ¥yl
¥z Y2

(A4-28)

Since ¥, is a zero-mean Gaussian array, with covariance equal to the identity and
dimension Jx(L+J ~ N - M), the matrix in the denominator obeys a Wishart distribu-
tion with sufficient degrees of freedorn to assure its positivity, hence this property is
finally established.

The dimension of the array ¥, is JxM and its covariance matrix is the identity.
Since its mean is Vg, it 1s statistically identical to V, introduced in Section 3. In
addition, the matrix W:«.’Vz is statistically identical to Ty of that section, hence we
write

Y= Vo

Va¥s = Tp .

and obtain, for the GLR test statistic:

) Vo VE + Tl

A4-29
™ ( )

From the determinant identity (A1-2), we see that this expression is identical to for-
mula (3-41) for the GLR test. hence the two approaches are entirely equivalent.
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APPENDIX §
THE CONSTRAINT ON THE DIMENSIONAL PARAMETERS

The general decision problem discussed in the main body of this report is char-
acterized, in part, by the four dimensional parameters N, L. J, and M. The original data
array is NxL and the signal parameter array is JxM in dimension. We pointed out in
Section 1 that these paramelers are constrained by the condition L2 N+ M, if we are
to have a meaningful GLR test. The condition was used at several points in the analy-
sis, always to ensire that some matrix was positive definite, and its sufficiency has
therefore been established. We claimed that the constraint is also necessary, and that
property is proved here This fact is of importance only because it affects the applica-
bility of the model itself.

As shown in Section 2, the GLR test statistic is

;- L2z
Mgn F(b) '

where
F(b) = (eb - Zp)(eb - ZP)H + S
- H
S=2.7, .
The notation is that of Sections 2 and 3. We now assume that L<N+M and show that
b can be chosen to make F(b) singular, in which case the GLR test statistic will not

exist. The proof will be probabilistic, and it will actually be shown that an array b can
bz found with probablity one. We introduce the "whitened” arrays

= V2
= -2
e = Ie, (A5-1)

and consider the matrix




R

Folb) = (egb — Zpo)legb - Zp0)" + Sp - (A5-2)
where

So = ZeoZep - (A5-3)
Since

Fob) = £¥° F(b) £V,

it will suffice to show that F(b) can be made singular by an appropriate choice of b.

Since the Nx N matrix S, is composed of L-M dyads, formed from the columns
of Zqo. it will be rank deficient under our assumption. For a given data array Z letv
be a vector in the null space of 3, so that

vsyv=0. (A5-4)
We must now find an array b, for which
viFb)v = 0, (A5-5)

in order to show that Fy(b) is singular. Obviously, Equations (A5-4) and (A5-5) together
imply that

or.

Vi egb = viiz (A5-6)

PO -

We must show that these equations can be solved for the b array, with probability
one.

We _an express the JxM array b in the form
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where each b, is a J vector. We can also write

V2 = (61 6],

where the ¢ are simply scalars. Finally, we note that vHeo is a row vector of J ele-
ments. Equations (A5-6) can therefore be written

vilegb,, = £ . 1<m<M. (A5-7)

If vHeo has at least one non-vanishing component, then the b array can be chosen (in
many ways) to make Fy(b) singular. The procedure fails only if v is orthogonal to
every column of ey, and this must be true for every v in the null space of S,. Equiv-
alently, each column of e; must be orthogona! to the null space of S, There is noth-
ing special about the columns of ey, and we now propose to show thet for any fixed
unit vector in ¢¥, say A, the probability that A is orthogonal to the null space of S is
zero, and with this our proof will be completed.

Let P, be a projection matrix which projects onto the column space of ZqO' Then,
Iy — Py projects onto the null space of Sj. and for A to be orthogonal to this null space
we must have

AM(y - Po)a =0,
or,
u=1- Afpja=0.
The projector P, is constructed directly from Zqo- as follows:
Po = Zqo (200 Ze0) ' Ztp - (A5-8)

As a result of our whitening the array Zg, is Gaussian, with zero mean, and with
independent elements. It is also circular, which in this case means that the real and
imaginary parts of its elements are all independent. Then,

- oH
V= Zyp

is a Gaussian array, with identical properties; hence,




H H
obeys a complex Wishart distribution, of dimension L-M, with N complex degrees of

freedom. Therefore, the inverse indicated in Equation (A5-8) exists with probability
one.

In terms of V, we have
u=1- alvi(vvi)ylys (A5-9)

The unit vector A defines a subspace of ¢" and we introduce a basis array, say D, in
its orthogonal complement. Then,

Up=[A D!
is @ unitary matrix, and we write
VUg = [V, Va] .

where

V, = VA

V= VD .

We also have

H H 3l

The array V, is just like V, except that its dimension is (L — M)x (N —1). Since, by our
assumption,

N-1>L-M.

the Wishart matrix VZVE{ is also positive definite with probability one. We can now
express u in the form




c
"

1= vEE, VR 4 v vty

- -1
[1+ viqvuvilytv]T (A5-10)

where the Woodbury identity [Equation (a1-5)] has been utilized.

The form found above for the randecm variable u is exac.ly like the inverse of
the test statistic in the absence of signals, for the special case M=1 discussed in Sec-
tion 4. It was shown there that this random variable is subject to a Beta distribution:
hence, u assumes the value zero (or any other discrete value) with probability zero,
and this comple.es our proof.
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APPENDIX 6
NUMERICAL COMPUTATION OF THE FALSE ALARM PROBABILITY

In Section 4 it was shown that the GLR test statistic can be expressec as a prod-
uct of independent random variables, in the case when no signal components are
present. The probability distribution function of this product provides the PFA of the
test as a function of the threshold. The product representation derived in Section 4 is

J M
=[] [T xg(k+j+m-1.1). (A8-1)
ji=1 m=1

where xp(n.l) 1s subject to the Beta distribution:

n-1

fﬁ(x;n,l) = nx

It is understood that the factors in Equation (A8-1) are all independent, and the nota-
tion signifies the statistical character of each factor.

We introduce the logarithm of the GLR test statistic:
A= logl,
and the generating function:
®(z) = E(* = Ee®* (AB-2)

which will be evaluated later. ¢(ju) is the characteristic function of the random vari-
able A, and the pd! of A is therefore

L=

() = - f e ™ &(iu) du

2on




If Ag=log {y. the PFA of the test will be

- -]

PFA = Prob({ 2 ¢y) = ff()\)d)\ ) (AB-4)
Ao

We substitute Equation (A6-3) into Equation (AB8-4) and shift the contour of integra-
tion over z to the right of the imaginary axis by a small amount u. This permits an
interchange of the order of integration and the evaluation

joo+pu
o _1_ -on _d_z
PFA = 5 f e ¥(z) 7
-loo+
jco+
L [zl i
sk f (o) 2 (A6-5)
“ioo+u

To evaluate ¢(z). we first compute

1
-2 , _ ._n
fx fe(xin.1)dx = el
0

and then, from definition (A6-2), we obtain

I M
) K+j+m-1 )
¥2) = ’1:1”11\:11 K+j+m-1-2 "~ (A8-8)

The poles of this function are all on the real axis between x=K+1 and x=K+J+M~1.

The extreme poles are simple, but the others have varying multiplicities, and this -
makes an evaluation by means of the residue series quite awkward. We note that &(2)

is analytic over the entire z-plane, with the exception of the poles, and, in particular,

it is analytic in the strip

D<x<K+1,
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(where z= x + iy), hence u may have any value in this range. Since
[¢)]" = &").

the integral in Equation (AG-5) over the portion of the contour in the lower half plane

is the negative of the complex conjugate of the integral over the upper portion and,
therefore,

loo+pu

PFA = 11m f (o2 o(2) 4 . (A6-7)
7

The contour for this integral may be deformed so that it passes to infinity anywhere
in the first quadrant, as long as the poles are avoided.

We now show that u and the contour can be chosen in a way which makes the
integral converge rapidly, while the integrand remains positive and monctonically
decreasing. By following this contour, the integral =an be efficiently evaluated by
numerical integration. Our procedure follows closely the work of Helstrom, especially
the technique used in Reference <2.

. . -1 x . s
We observe that the funciion x"a* is convex, for real positive values of a and x:

2
d “1xy _ [ 12 1 -1 x
d——xz(x a )—L(loga x) +x—2](x a’)20.

Putting a={(/{; and tuking the expected value of both 3ides of this equation, we
obtain

2 .
:TZE[;:'IU/ZO)”] = i‘—a[x’llo" $(x)] >0 . (A6-8)

For values of z on the reai axis between zero and K+1, the integrand of Equa-
tion (A6-7) is real and positive, and Equaticn (A6-8) shows that il is also convex.

The integrend has poles at the ends of this interval, and it must therefore have a
single minimum at some interior point. We choose this point for u. and discuss later
the prccedure for finding it. We also define the function

¥(z) = log[z'll({z ¥(z)] (A6-9)
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so that Equation (A6-7) may be written

oo+ u

PFA = %Im f exp[¥(z)]dz . (A8-10)
“

The derivative d¥(x)/dx obviously vanishes at x= g, hence d¥(z)/dz=0 at z= u since ¥
is an analytic function of 2. Therefore, the real anc imaginary parts of ¥, being solu-
tions of Laplace's equation, both exhibit saddle points at z= u. The imaginary part of
¥ is zero on the real axis; hence, another contour on which Im{¥)=0 must cross the
real axis at x= ., in a direction parallel to the imaginary axis. These contours, on
which the imaginary part of ¥ is zero, are contours of steepest descent or ascent of
the real part of ¥ which pass through its saddle point. We know that the real part
increases away from x= u on the real axis; therefore, the other contour, crossing the
axis of reals at right angles, is the one along which the real part of ¥ descends most
rapidly from its value at z=pu.

By choosing the portion of this contour which lies in the upper half-plane for our
integral, we are assured of rapid convergence. Since the integrand is real and mono-
tonically decreasing on the contour, we are also assured of numerical stability when
the integral is carried out numerically. For large values of |z|, ¥(z) is dominated by the
term

In consequence, the contour Im(¥) =0 will eventually level off with zero slope. 1t wili
therefore pass to infinity in the first quadrant of the complex plane and there is no
difficulty in deforming the path of the integral of Equation (A6-7) to follow it. In
order to show how an algorithm may be constructed along these lines, the remainder
of this Appendix is given over to a discussion of the following topics: (1) a procedure
for finding the saddle poin., (2) the behavior of the contour in its vicinity, (3) a proce-
dure for locating points on the contour for numerical integration, and (4) a stopping
rule, or truncation bound, for the integration.

We have shown that the integrand in Equation (A8-10) has a unique minimum on
the real axis between the origin and the first pole at x=K + 1. It follows that the first
derivative of ¥ has a unique zero in this range, and it may be located by Newton's
method using the iteration.
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\lf'(xn)
¥(x,) 4

n+1 = Xn

Substituting Equation (A6-6) into (A6-9), we oblain the explicit formula

I M
_ _ K+j+m-1
¥(x) = —Agx - logx +j=zlmz=l 1°g<K+j+m—l—x)'

and the required derivatives are then given by

, ) I M
V()= ~hg~ 5+ 2

j=1 m=1

1
K+j+m—-1-x "'
and

1
j=1 m=1 (K+j+m-1-x)°

. 1 J M
¥ (x) = 73 =
X =

(A6-11)

(A6-12)

(A6-13)

The technique works well in the present case, provided a good initial value is used for
x. One approach is to approximate the derivative [Equation (A6-12)] and equate it to

zero, as follows:

In this approximation,

b= K+ (J4+M)/2

is the "“average” value of K+ j+ m - 1. The appropriate solution of this quadratic is

27 2 Ao

2
o b e o MeIT b
2 2

(AB-14)



and this value has been successfully used as a starting value for x in the Newton
iteration. When A, is zero, or when it is small compared with b, the limiting value

b
JIM+1

X =

should be used instead. If the PFA is to be computed for a series of values of A, it is
a good idea to save the final value of x obtained in each case, and use it as a starting
point for the next value of A,

As a function of x, ¥(x) and its derivatives are real, and the first derivative van-
ishes at the saddle point x= u. Since ¥(z) is an analytic function of 2, its derivatives at
the saddle point are the same as those of ¥(x), and the expansion

Im¥(z) = v (wim(z~-w)?/2 + ¥ (Wimz-)3/6 + ..

is valid. From this expansion, we find the equation of the contour: Im¥(2)=0, in the
immediate vicinity of the point z=u:

y IV () (x-p) + ¥ (W{Bx-w? -y + . t=0.

The solution y =0 falls on the real axis through the saddle point, and the other solu-
tion is described by

P A

8Y ()

which approximates the equation of a parabola.

Equation (A6-13) shows that the second derivative of ¥ is positive, but the third
derivative (evaluated at x=u) may have either sign. For large values of A, which
correspond to small values of the PFA, the saddle point moves toward the pole at
x=K+1, and the third derivative will be positive. Then, the contour curves to the
right as it leaves the saddle point, and (in the examples studied) it has a simple
shape, leveling off as x increases. For sufficiently small values of A, the contour
curves initially to the left and then swings around to the right, leveling off again as
it passes to infinity in the first quadrant of the complex plane.




The second derivative of ¥, evaluated at the saddle point, also controls the
behavior of the real part of ¥ on the contour in the vicinity of z= . The shape of
this variation will also be parabolic, and its curvature can be used to establish an ini-
tial step size A for the numerical evaluation of our integral, using a formula such as

SN
A = constant x| ¥ (u)] . (AB-15)
with a suitable value for the constant. When the second derivative of ¥ is small, the
value

A = constant x (K+1)

may be used instead, again with a suitable value for the constant. In the latter case,
we are attempting to gauge the scale of the variation of the integrand by the dis-
tance from the origin to the first pole. When the final algorithm is applied, the step
size can be adjusted until the desired accuracy is attained.

With the saddle point located and a step size chiosen, we can begin to find points
on the desired contour. The first point is obviously the saddle point itself, and the
starting value of a search for the second point is chosen at a distance 4, in the posi-
tive Y cirecticn. A search for the contour is carried out in a direction parallel to the
real axis. In general. given two successive points zy_, and zy on the contour, we com-
pute the angle @) according to

Im (ZN -ZN_])

tan gy, = .
N7 Re(zy-2zy-y)

(AB-16)
This angle is the slope of the line joining these two points, and we project ahead a
distance A along this line to obtain the starting value, say w,, of a search for zy ,:

wo = zZy + I (AB-17)

Using Newton's method again, we drive the imaginary part of ¥(z) to zero along a line
at right angles to the first line, in other words along the line

6n

w = wy - iae

(A6-18)




where a is a real variable. The iteration begins with a=0 and is terminated when the
change in a is sufficiently small.

To carry out this iteration, we require the derivative of the imaginary part of
¥(2) along this new line, and to obtain it we use the fact that ¥ is analytic. Thus, we
have

% Im¥(w) = Im ad; ¥(w) = Im{~ie™N ¥(w)] .
We define the real and imaginary parts of this derivative as follows:
¥(w) = X(w) + iY(w),

and the iteration can then be written

Im ¥(w,)

e - X(w_)cosOy + Y(w,)sin6y (A6-19)

Cn+t

In this formula w is given by the right side of Equation (A6-18). with o replaced by
a,. Finally, if we write w_ =¢_ +in,, we obtain the pair of iteration equations:

bne1 = € 7 (an+1 - a,)sin 8y
Mp+t = Mn — (@pyy — &) cosby . (AB8-20)

When the iteration is terminated, the final value of w becomes the next point on the
contour: zy, ;.

If the contour is followed exactly, the integrand will remain real vy definition. If
the contour is followed only approximately, a valid numerical approximation to the
integral can still be obtained but the imaginary part of the integrand must also be
taken into account, as in Helstrom's procedure. It is feasible, however, to continue the
iteration far enough to locate the contour with such precision that we can ignore the
imaginary part of the integrand, and this method has been chosen for our algorithm.
As a check, the correction terms due to the imaginary part of the integrand were
carried along in some examples, and they were found to contribute negligibly to the
result, being many orders of magnitude lower than the contributions of the real part.
In these examples, the iteration was stopped when the change in the imaginary part




of ¥ fell below 10™* in magnitude. We also found that very few iterations were needed
to locate the contour in this way. A further edvantage of this approach lies in the
fact that the real part of ¥ changes only slightly during the search, hence the accu-
racy of the resulting value is enhanced.

It remains to derive a truncation bound. assuming that the integral (evaluated
by a simple rectangular or trapezoidal rule) is terminated at the point z' on the con-
taar. Let R be the remainder after truncation. Instead of following the steepest
descent contour, we express the remainder as an integral along a path parallel to the
real axis, beginning at the point 2"

R = -}; Im f G(z)dz . (A6-21)
p

where G(z) is the original integrand:

G(z) = exp[\l’(z)] = 2-1‘0-2 &(z) . (AB-22)

Along the steepest descent contour this integrand is real, and only the differential dz
is complex. Since that contour tends to level off for large 2, the effect of the imagi-
nary part. applied to dz, is to improve the convergence of the integral. On the
remainder portion, the differential is real and the integrand becomes complex. We put
z2=2'+¢ on the remainder contour, and write R in the form

R =

= N1

c(z')flm[céz(;f)]ds.
0

Note that G(z') is real and that this is an exact expression for the remainder.

Substituting from Equation (A6-22), we can write

lrl’l[(’;éi('z_—fyt‘)] = e‘)‘of H(f) !




H(¢) = lm[,—z’— oz’ 6)] .

The remainder can now be bounded as follows:

R< 26z )f “rot [H(¢)

and we also have

Heey < [] [ | Kixmo1-z

j=1 m=1 |K+]+m 1-2'-¢

If we define

Xm = K+)+m-1,
and also put

z=x + 1y,

then we can write

X' =X; o +iy’

'

X'~ X; +£+xy

J M
He) < 1 T1

j=1 m=1
In those factors for which
x-%x... >0,

Jm

we have
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(A6-23)

(AB-24)

(A8-25)




This situation occurs for those factors corresponding to poles to the left of the stop-
ping point for truncation. On the other hand, when

x'-Xj'm< 0 N

we obtain the bound

X +iv’ Ix'—x. |
__m1| <14 X7 Xm (A6-26)
Yy

x'—xj.m+iy' }
- y

X'=X;mté+iy’

In this way, we compute the bound
IH(¢): < Hg . (AB-27)

where H;, is a product of factors like those of Equation (A6-26). This bound is now
independent of ¢ and, when it is substituted in Equation (A6-24), the final result

R < 1g(z) 22 (A6-28)

is obtained. The bound is easily computed as the numerical integration progresses,
and the latter is terminated when the bound falls below a preset value.




APPENDIX 7
COMPUTATIONAL ALGORITHMS

In Section 2, a Generalized Likelihood Ratio (GLR) test was derived in which detec-
tion is based on the comparison of a test statistic to a fixed threshold. The quantity
to be evaluated is reproduced here:

Ho-1
) . I, + szs Z,| | (A71)
Ty + ZPPZP{
- where
Zp = ZTH(TTH)'VZ
s =zl - M (r-H)y! 7y (A7-2)
and
P=s!-sto(Msio)tofst. (A7-3)

The data array Z and the known signal arrays o and T were introduced in Section 1.
Here, we present an algorithm for the computation of the right side of Equa-
tion (A7-1). This algorithm utilizes a standard technique of signal processing, namely
the construction of a unitary matrix which, multiplying a known array, converts it
into “triangular” form. More precisely, when the unitary matrix pre-multiplies the
(generally rectangular) known array, the resulting array has all zeros below the main
diagonal When post-multiplying. the result has zeros above the main diagonal. Several

stechniques are available for constructing these unitary matrices.” They are iterative
in nature, building the unitary matrix as a product of factors, each of which is, for
example, a Householder reflection matrix or a Givens rotation. We take this construc-
tion for granted, without further discussion here.

. We begin with the known array 7 and assume that U, is any unitary matrix
with the property that

77U, = [p 0],
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where p is an M xM matrix. Since T has rank M, p will be non-singular. The procedure
described above will suffice for the construction of U_, but in this particular case it is
unimportant that p be triangular in form. Notice that the construction of U_ cannot
be charged to the cost of computing the test statistic, since 7 is known and U, can
be developed once and for all. We multiply the data array by U, on the right. and
then partition the result, as follows:

20, = {2, Z,] . (A7-4)

where Z; is NxM and Z; is Nx(L~M) in dimension. From these definitions it follows
that

"

H
b = TUTU}:‘TH =[p 0] l% ] ppH ' (A7-5)

and

2. = zu, UHH (7 )2

P
H
= 12 2] |° | (pp™V
= 2,0 (pp")” . (A7-6)

Since the matrix pH(ppH Y"2 is unitary, it is easily shown that the GLR test is the
same as

, Iy + Zys7 'z,

— (A7-7)
iy + Z, PZl

From Equation (A7-4), we obtain .

228 = 2,2 + 2,28

and from Equation (47-6) we have




These facts give us the result
LH
s=122" - 2,28 = 2,27 . (A7-8)

The component arrays Z, and Z, are directly analogous to Z, and Z, and, in the spe-
cial case described by Equatio. (1-3), the former are identical to the latter.

Having found Z,. we now generate a unitary matrix U, which converts it to the
form
Z,Up; = |L, 01, (A7-9)
where L, itself is lower triangular. Then,
s = L,LY,

in anelogy to the derivation of Equation (A7-5). Since S is non-sir.gular, the same is
true of L,. and the numerator of Equation (A7-7) can thereforr be written ir. the
form

Iy 4+ (Lo 2P (L3'2) (A7-10)
Using the definition (A7-3), we have
P = (L) (g - Py)Lst .
where
.. - - -1 -
Py = (Ly'o) (L3 o) (L3'0)) 7 (Lyto)

These results give us the expression
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1 Szt tz
[ = |M + (Lg 1) (1-'2 ])I (A7-ll)
Iy + (L3'2)" (1y - PY) (L5'2)

for the GLR tes: statistic.

Next, we introduce the arrays V and u as solutions of the sets of equations

LoV

Zy

Lou=o0. (A7-12)

These equations are easily solved because of the triangular form of L, they are just

like the “bark solutions” which arise in conventional adaptive nulling algorithms. In
terms of the new guantities, we have

Py = u(uu)tut (A7-13)
and

I, + VHv
I, + VA(ly - Py)Vi

y (A7-14)

Now we find a unitary matrix U, which converts x to the form

e 3]

where v is an upper triangular matrix. Since y, like ¢, is NxJ in dimension and of
rank J, the new array v will be JxJ and non-singular. A simple calculation ncw shows
that

i

J -

| o]
H _ J

.ience we find




0 o
U, (Iy - Py UL = [ } . (A7-15)

t 0 Inoy

This treatment of projection matrices, such as Py, has been used>? as a means of
deriving an architecture for their implementation in hardware. Note that the right
side of Equation (A7-15) is simply zero in the special case J=N.

In the algorithm itself we find U, and apply it to V, calling the result W:
U Vs W. (A7-18)

The matrix u is discarded when the development of U, is complete. Obviously,

vy = whw
and also
0 0
VH(1y - PV = WwH ‘w .
1 0 Iy
The array W is then partitioned:
“1
we | Al (A7-17)
¥g

where W, is JxM and Wg is (N-J)xM in dimension. Arrays W, V, and Z, all have the
dirnension of Z,,.

We substitute now, and obtain the form

I, + wHhw|

= ——, (A7-18)
Iy + Wg WBI

for the test. But we can wrile

Hy .
I, + Whw = [wH ]

Iy




and then find a unitary matrix U,. which has the property

W Y

n
NE
where Y, is upper triangular. Similarly, we choose U, to make
Yq
ol"

where Y, is also upper triangular. Arrays Y, and Y4 are both of dimension MxM.
With these transformations, we obtain

U

n

Iy

W
Ugl B

=

Iy

H
L2 Yl

. (A7-19)
1Yg Yql

The determinants are now easy to evaluate and, for simplicity, we assume that U,
and Uy have been chosen so that the diagonal elements of Y, and Y4 are res=) {this is
easily accomplished). If the diagonal elements of Y, are (a,.....ay) and those of Y,
are (by,....by). then

M
(=] (i“-)z , (A7-20)

m=1

and the test can actﬁally be carried out in the form

Note that all operations except the last involve linear operations on the data and sig-
nal arrays.

The same technique can be applied to the alternative form of the GLR test sta-
tistic, expressed by Equation (2-57). The components Z;, and Z, are formed, as
described above, and the matrix S is then evaluated using Equation (A7-8). Equa-
tion (2-57) is written in the form

238




1Pz, 28) o)
= TaTr , (A7-21)
e (Z27) "o

and the unitary matrix U, [defined by Equation (A7-9)] is found as before. Another
unitary matrix, say U,, is generated which will convert Z itself to lower triangular
form, according to
Zuy = (L, 0.
Then, we have
l (Lz'0) (iz' o)
Ly ') (Ly o),

(A7-22)

and the next step is the introduction of new arrays 4y and u, as the solutions of the
equations

of

L; 1y

g .

1t

Lz pe

These arrays are of dimension NxJ, and Ky is identical to u, defined in Equa-
tion (A7-12).

The test statistic takes the simple form

H
o wol

(A7-23)
H .
|F‘1 My

in terms of these arrays. Finally, we form two JxJ unitary matrices, which will again
be called U, and Uy, and which converl the u arrays into upper triangular form by
premultiplicaticon:




Y
Upnup = On
Yd
Udp'l = { 0

With these transformations, the test statistic assumes the same form as Equa-
tion (A7-19), and the remainder of the analysis is unchanged.
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