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ABSTRACT 

The analysis of Parts I and II of the report with this title has been 

extended in two directions. In the first case, the performance of an 

adaptive system with respect to signals arriving from directions other 

than the steering direction is evaluated. It is shown that these signals 
are rejected more strongly than would be suggested by the sidelobe lev- 

els of the adaptive patterns themselves. In the other case, the detection 

problem is generalized to include the detection of signals known only to 
lie in a subspace of the space of steering vectors. Again, performance is 
derived and the penalty associated with the greater uncertainty of the 
signal model is shown to be small. The analysis of Part I is essentially 

repeated here, both to keep this report self-contained and to present an 

alternative version of the basic derivations. 
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1. INTRODUCTION 

This study consists of two separate generalizations of an earlier analysis of an 

adaptive detection algorithm. The problem studied in Reference 1 is very general and 

easily described. A physical system, such as an antenna array, provides a discrete set 

of vector-valued data samples. The observation space is N dimensional, and a typical 

sample vector is called z. This system is plagued with interference, which is modeled 

as Gaussian noise with zero mean. The N x N covariance matrix of this Gaussian 

interference is completely unknown, and must be estimated from the data in some 

way. The problem is to detect the presence of a signal in one data sample, called the 

"primary" sample, under the assumption that K additional, independent, 
"secondary" samples are available which are signal-free. The same unknown covari- 
ance matrix is assumed to be shared by all these samples, and the signal which is 

sought is a vector of known direction (the "steering direction") in the observation 
space, but with an unknown complex amplitude. 

The chief difference between the problem thus formulated and the more familiar 

problem of interference rejection lies in the fact that we are seeking a decision rule 
for target presence, rather than a filter which will reduce the interference before the 

data are passed on for further processing and eventual detection. A decision 

algorithm was derived in Reference 1 by application of the maximum-likelihood prin- 
ciple, and it turns out that the conventional adapted weighting of the sample vector, 
usually associated with the nulling of interference, appears here as a preliminary step 
in the detection process. The complete algorithm provides a constant false alarm rate 

(CFAR) detector which is completely independent of the actual covariance matrix of 
the interference. The performance of this algorithm was also obtained in Reference 1, 

in terms of the probabilities of detection and false alarm, and numerical results were 

presented. 

In order to carry out effective detection with a single primary data vector, it is 

generally necessary that adequate coherent processing be applied to each of the ele- 

ments of these vectors before detection is attempted. For very large arrays, this of 

course implies a significant replication of the coherent portions of the processor. One 

example, which is currently under study, is a radar in which a conventional phased 
array antenna is used for transmission, and in which coherent (Doppler) processing is 

applied to each array element, or to a suitable set of subarray outputs, before appli- 

cation of the adaptive detection algorithm to the received signals. 



In the first of the generalizations included here, the performance of this same 

algorithm is obtained for the "mismatched" case of a signal which arrives from a 

direction different from that for which the system was steered. In general it is desir- 

able that such a signal be rejected, along with the interference, although its presence 

was not included in the formulation of the hypotheses for target detection. We have 

in mind a system which must search out a surveillance volume of some kind, and we 

want the system response to a given signal to fall off rapidly as we steer away from 
its direction. 

It is known that fully adapted arrays often have undesirable patterns in the 

sidelobes, especially if all their degrees of freedom are absorbed in the task of inter- 

ference rejection. This sidelobe response has been studied by Boroson in terms of the 

signal to noise ratio (SNR) developed on such a target by a conventional fully adapted 

array. Boroson's work generalizes the analysis of Reed, Mallett and Brennan on the 

SNR associated with a signal arriving from the hypothesized direction in a fully 

adapted array, and it appears from his analysis that sidelobe response can be con- 

trolled only by the use of a very large number of secondary samples for covariance 

estimation. 

The behavior of an adaptive detection system which uses the algorithm discussed 

above is quite different, and it turns out that the CFAR feature of this algorithm also 

causes the system response (as measured by its detection probability) to be much less 

sensitive to mismatched signals. In a sense, the component of a signal which is 

orthogonal to the steering vector (in the observation space) helps to raise the decision 
threshold, thereby reducing the probability of its detection. 

The analysis of performance for this seemingly minor variation of the problem 

actually entails considerable complication. It is presented in full in this study, which 
overlaps and extends the analysis of Reference 1. The present discussion is complete in 

itself, including some details which were not given in the earlier report. We would like 

to evaluate the performance of this decision rule in a more general mismatched situ- 

ation, especially one in which signal components of some kind are present in the sec- 

ondary data vectors as well. This remains a goal, and as yet only minor steps in that 

directon have been successfully taken. 

The second generalization included here is rather easier, although it is perhaps of 

less practical interest. The signal hypothesis itself is generalized, so that we are testing 

for the presence of a signal which is hypothesized only to lie in some definite sub- 

space of the observation space. The interference is modeled the same way as before, 

and the same input data are assumed to be available for decision. The examples 

which have so far come to mind are rather artificial, but in view of the generality of 



the model, and the fascination (for some) of the mathematics, this case has been 
included here. 

The decision rule turns out to be a kind of noncoherent integrator, which tests 

for signals in each of the basic directions of the subspace in turn, and combines the 

absolute squares of the results of these tests. If the subspace is, in fact, the entire 

space, then one is testing for the presence of a deterministic signal of arbitrary direc- 

tion and amplitude in the observation space, and also minimizing the response to 

interference of unknown character. Numerical results are given for the performance 

of this detector, as well as for the case of the mismatched signal discussed above. 

Section 2 provides some background for the mismatch problem, including a 

statement of Boroson's results. The performance analysis for the mismatched case 
occupies Sections 3, 4, and 5, and these are mathematically quite detailed. Sections 3 

and 4 cover the same ground as Reference 1, but with a slightly different emphasis 

which may make this derivation somewhat more direct. The analysis of the probabil- 

ity density function (PDF) of the so-called loss factor is given in Section 5, and this 
material is new. Section 5 also includes a derivation of the detection probability 

which uses the methods of contour integration, and this material supplements that 

of Reference 1 where the basic result was quoted without proof. 

A discussion of the results for a mismatched signal, with curves and few formu- 

las, appears in Section 6. 

Section 7 is devoted to the generalization of the signal model, building on some 

material from Section 5, and the results in this area are discussed in terms of per- 
formance curves in Section 8. The numerical analysis necessary to obtain real 

answers is treated rather briefly in the Appendix. 



2. PROBLEM FORMULATION AND BACKGROUND 

Consider an adaptive antenna system with N output channels. The channel 

inputs are connected to an arbitrary collection of array elements, subarrays, or 

beamformer networks. In the cases of subarrays and beamformers, the weightings 

used to produce these inputs remain constant during the processing period 

considered in this discussion. A single time sample of the antenna output is described 

by a vector z in a complex N dimensional space: 

Z =  [Zj,. . . ,zN]T , 

where the superscript T stands for matrix transpose. 

The possible antenna outputs due to individual sources, in the absence of any 

noise or interference, comprise a family of vectors which will be written in the form 

where b is a complex scalar amplitude and a is a directional, or source locational, 

parameter. These signal vectors are normalized to unity, as follows: 

tf *> =  1 , 

where the symbol | denotes Hermitian conjugate. The dimensionality of a depends 

upon the system being modeled. For example, for a simple linear array a would be 

one dimensional, while for a two-dimensional array focusing on near-field as well as 

far-field sources, it would be a three-dimensional parameter. 

The total interference, including the contribution of system noise, is assumed to 
be Gaussian with zero mean and with covariance matrix M, which is generally 

unknown. This covariance will be assumed to be constant over the adaptation and 

processing period of interest here. The matrix M will ultimately be estimated from 

the data itself, by making use of K additional samples of the antenna output vector, 

which we refer to as "secondary samples." Fbr the moment, however, we consider the 

matrix M to be known, and we refer to properties of the system evaluated with this 
known M as "asymptotic," since they correspond formally to the limit K -» °°. 



With known M, the optimum processor for the detection of the signal bsa for a 

given parameter value a, is, of course, the matched filter. This filter forms the scalar 
quantity 

where the weight vector is given by 

wa = kM"1sa. 

Here, k is an arbitrary constant and detection is based on the magnitude of f. The 

choice of k and the decision threshold is based on the required probability of false 

alarm (PFA). The signal to noise ratio (SNR) for this detector, when the desired signal 

is actually present with amplitude b, is given by the well known expression 

SNRaa = |bp(siM-lsa). (2"1) 

We use the term "noise" now to refer to the total of interference and system noise. 

If, however, the data vector z contains a signal with some other directional 

parameter value (such as 0) when the antenna is "steered" as above for the value a, 
then the resulting SNR will be 

SNRa.0 =   M m |b|2 felM'SX8 (2-2) 
(4M-1 sa) 

assuming the signal amplitude is again b. Since the inverse of M is positive definite, 

(A^^B) 

may be interpreted as an inner product of A and B. We can therefore write 

 ^V     s cose e* , (2-3) 

where 0 is a real angle in the range 0 < 0 < TT/2. 
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The SNR corresponding to our general "sidelobe signal" can now be expressed in 
the form 

SNRap = SNR^cos20 . (2"4) 

The factor SNR^, which represents the optimum SNR which would be attained if the 

antenna system was steered in the /S direction, is reduced by the second factor cos 9 

which therefore describes the asymptotic sidelobe response of the antenna when 

steered in the a direction. The actual gain of the antenna in the /S direction when 

steered for a is proportional to the quantity 

(wIwa) (4M_2sa)   ' 

and hence null values of SNRa/S correspond to actual nulls of this asymptotic antenna 
pattern. 

Another case of interest here corresponds to the use of a steering vector different 
from sa in order to detect a signal in the a direction. For example, we might use the 
weight vector 

w = kM_1q , 

where q is a vector obtained by multiplying sa by a real diagonal matrix whose ele- 

ments correspond to some chosen antenna taper. When the interference consists only 

of system noise (the quiescent case), the antenna pattern will then revert to the 

desired pattern, which corresponds to this taper. This technique is used to lower 

antenna sidelobes in interference-free regions, and is generally satisfactory if the sys- 

tem has sufficient degrees of freedom with respect to the interference actually pres- 

ent. The use of a tapered steering vector results in a SNR for an actual signal in the a 

direction which is given by 

SNRaacos20 , 

where in this case 



2 KslM^qf 
cos  0 = 

(stM-^MqtM-'q) ' 

The second factor now accounts for the performance loss which results from the 

deliberate departure from the matched filter weights. A sidelobe canceling system 

provides another example of this kind, since the signal components in the auxiliary 

channels are usually ignored, resulting in a slightly mismatched steering vector. 

Now suppose that the noise covariance matrix M is unknown and must be esti- 

mated from a set of K "secondary data samples" z(k). We assume that these samples 

are independent and statistically identical, sharing the unknown covariance matrix, 

and that they are all zero mean Gaussian vectors. In radar practice, these samples 

usually correspond to range bins other than the "primary" one in which detection is 

to be carried out. We assume now that the sample covariance matrix is used as an 

estimator of M, writing 

M=   iS. 

where 

K 

S = ^z(k)z(k)f . 
k=l 

The matrix S is subject to the Wishart probability density function. 

We now choose 

w« = s~ls« 

as an adapted weight vector, using the conventional steering vector sa. Fbr given val- 

ues of the secondary data vectors, we may consider the SNR which results when this 

weight vector is used with the primary sample z. If the latter actually contains a sig- 

nal corresponding to the /S direction, and if the actual interference covariance matrix 

is M, this SNR will be 

8 



SNR = |bf ^t = |bf     **S"V 

In analogy to Equation (2-4) we write 

SNR = SNRW pafi , (2-5) 

and we interpret the quantity 

Pa,p 
^S^MS^sJ^M^s^) 

(2-6) 

as a SNR "loss" relative to SNRg*, the maximum asymptotic SNR in the /? direction. If 
we were to put 

M^sp • v , 

we would have 

Kw'Mvf 
P<x.(i 

(wiMwa)(vfMv) 

which shows that this loss factor lies in the range [0,1], again by the use of the 
Schwarz inequality. It is not difficult to show that the value unity can actually be 

attained, for a realizable value of the sample covariance matrix. Therefore the SNR 
can actually be much larger, when M is being estimated, than the limiting value 

2 
PnR     iT*       COS    ®   • 

for signals arriving in the low sidelobe region of the asymptotic antenna pattern. 

Considered as a function of S, pap is a random variable - a direct generalization 

of the loss factor obtained by Reed, Mallett, and Brennan - to which it reduces when 

/5 = a. The probability density function (PDF) of pap can be explicitly obtained by a 

rather tedious computation, and the result can be found in Reference 2. In our nota- 

tion, Boroson's formula for this PDF can be expressed in the compact form 

9 



f(^0) = £(m)(cos20)L~%in20)%(p;L + l-m,NM + m) , (2"7) 
m=0 

where 0 is defined as before, using the actual covariance matrix and signal vectors; 

L =   K + l-N (2"8) 

and fp is the Beta PDF 

(n -1)! (m -1)! 
* f~.~ ~.\ (n + m-1)!       n-l/,       Nm-1 (2-9") 
fo(x;n,m) =   j£—IM/„    i\t 

x      U~x) ^       ' 

Boroson's parameter d corresponds to sec 0, in our notation, and his random variable 

p2 is equal to dp. Recall that N is the dimension of all data vectors and that K is the 
number of secondary samples. 

The case 0 = 0 corresponds to a perfect match (i.e., So = sa) and in this case the loss 

factor PDF reduces to 

f(p;0) =  f^(p;L + l,N-l) , 

which is exactly the result of Reed, Mallett, and Brennan. The other extreme, when 

0 = n/2, represents the case of a signal which is in a null of the asymptotic pattern, 
and in this situation we find the simple formula 

f(p;V2) = f^(p;l,N+L-l) =  K(l-p)K_1 . 

The mean value of p in this case is 

1 
Pa-P '    K + l ' 

which illustrates the slow decline (with increasing K) of the sidelobe SNR, even for a 

signal in a null of the asymptotic pattern. This behavior should be typical of signals 

in the low-sidelobe region of the asymptotic antenna pattern as a whole. In general, 

the PDF of the loss factor is intermediate between these extremes, and its mean value 

is given by the general formula 

10 



Pa,p =   KVI[I + (K + l-N)cos2©] 

which converges to the asymptotic value with increasing K. In addition, for large K 

the standard deviation of the loss factor varies inversely with K. It should be clear 

that the loss factor PDF applies equally well to the case of the mismatched steering 

vector q, since it is a function only of the angle 9 and the integer parameters N and 
K. 

11 



3. THE LIKELIHOOD RATIO TEST 

In Section 2 we discussed the SNR developed when a single sample of an antenna 

array output vector is processed, using a weight vector derived from an additional set 

of signal-free samples. In many applications, target detection will be based on the 

weighted outputs corresponding to a group of samples, such as the radar returns 

associated with a given range bin for an entire coherent train of pulses. The weight 

vector may be updated at intervals or remain unchanged throughout the coherent 

processing interval. If, however, the decision on target presence is based on a single 

output sample (but still using a weight vector derived from additional, secondary 
data), then a more complete analysis is possible. It is an interesting result of this 

analysis that such a system is much less vulnerable to signals in the sidelobe region 
than the SNR analysis alone suggests. 

In order to base target detection on a single adapted antenna sample, adequate 
coherent processing will need to have been carried out on the individual antenna 

channel outputs themselves. An example would be a radar in which Doppler process- 

ing is performed in every channel, followed by adaptive beamforming for each Dop- 
pler frequency. 

Instead of separating the problem into a covariance matrix estimation procedure, 

using the K secondary samples, followed by a matched filtering operation (i.e., adaptive 
beamforming) on the single primary sample, it can now be formulated as a decision 

problem using all K + 1 data samples. These samples are assumed to be independent 
Gaussian vectors, sharing a common, unknown covariance matrix M. The K secondar- 

ies are taken to be zero mean (signal-free) vectors, and the primary sample may or 

may not contain a signal, characterized by a steering vector such as bsa. A likelihood 
ratio (LR) decision rule appropriate to this problem was derived in Reference 1, and its 
performance in terms of probability of detection (PD) and PFA was evaluated for the 

case in which the primary vector actually contains the postulated signal with some 
complex amplitude b. In the present study, this analysis is generalized so that the 

steering vector and the actual signal component of the primary vector are arbitrary 

and may be different. The case of a deliberately mismatched steering vector is thus 

automatically included here, as well as the sidelobe response of the system when a 

conventional steering vector is used. 

In the notation of Section 2, the primary sample is z and the secondary samples 

are z(k), where 1 < k < K, and all these data samples are N dimensional complex vec- 

tors. The postulated signal vector will be called q. It is normalized to unity: (q*q) = l, 

13 



and it will be tacitly assumed that q is some permissible true signal vector such as sa, 

or a tapered version of such a vector. The LR decision rule, or criterion for target 
presence, is then 

I  > l0 

where lQ is a threshold parameter and I is given by 

1 + (zV^) 
I = 

to-u    tfs"1*' (3_1) 
1   +   (Z^^Z) 

^S-'q) 

As shown in Reference 1, I is the (K+l)s root of the maximized likelihood ratio for 
this problem. 

In this expression, S is again the sum 

s^zW^W1' (3"2) 

k=l 

The secondary data enter the decision rule only through S, which is K times the sam- 

ple covariance matrix of these secondaries. This structure is a consequence of the LR 
test formulation, and is not an a priori choice, as it was in the discussion of Sec- 

tion 2. We note also that the normalization of the steering vector q has no effect on 

the form of the LR test. 

It was shown in Reference 1 that the LR test is a true CFAR (constant false alarm 

rate) decision rule, whose performance in the absence of any signal components is 

totally independent of the actual covariance matrix M which describes the interfer- 
ence. We now seek to evaluate the PD of this test when the primary vector contains 

an arbitrary signal component, which we take to be 

Ez =  bp . (3-3) 

The vector p is also normalized to unity: (p' p) = 1, and b is a complex scalar amplitude. 

It is assumed that p is some permissible signal vector, such as s«, but the analysis 

depends only on p, q and the actual covariance matrix M. We also introduce the nota- 

tion 

14 



and 

A^ (q'M^q) 

A2 = (ptM-1p) (3-4) 

cosee* ^  (qtM"lp) 0-5) 
AqAp 

The relationship of these parameters to the asymptotic SNR values and sidelobe levels 
was discussed in Section 2. 

The performance analysis is facilitated by a sequence of changes of coordinates, 

first whitening and then rotating the vectors. Part of this analysis is identical to that 
given in Reference 1, but it will be presented here in full, both for completeness and 

to illustrate some variations in the method. First, a positive definite square root of 

the actual covariance matrix is chosen, and new, whitened coordinates are introduced 
as follows: 

z = M^z 

z(k) • M"v'z(k) ,      1 < k < K 

Then 

S • M~VSSM 
l/2Cw-l/2 

is K times the sample covariance matrix of the whitened secondaries: 

K 

s= Y,mm* 
k=l 

The covariance matrix of the whitened vectors is now the N x N identity, and the 

expected value of the whitened primary vector is 

Ez = bM_1/2p . 

We note that 

15 



|Ezf = |bpA* . 

and also that 

A" = (qfq) . 

where 

q =  M^q 

is the whitened steering vector. 

By direct substitution it is easily verified that the likelihood ratio is unchanged 

in form: 

__UjztS"1z) 

, + (s.s-4) - BM (3"6) 

(q'S-'q) 

Since this expression is independent of the normalization of the steering vector, we 

can replace q by the unit vector e, which is defined by 

-i- 
The next step is another change of coordinates, by means of a unitary transfor- 

mation U, chosen so that the unit vector e is transformed into the basis vector e: 

e = Ue = [1,0,....0]T . 

To simplify the writing, the new data vectors are represented by the original symbols. 

This should not cause serious confusion, since we have no need to return to the data 

vectors in the original coordinates, and we require only a statistical characterization 

of the quantities entering the LR decision rule in order to evaluate its performance. 

Thus we write now 

16 



and 

z = Uz 

z(k) = Uz(k) 

K 

S = USUf = £z(k)z(k)T 

k=l 

Then the LR test itself is 

1 + (zV^) 
/  = 

•     , Kefs"1*)!2 ' (3"7) 

1 + (zV1^ -  Ke,     ,ZF 

(eV^e) 

The new data vectors are independent Gaussian variables, all sharing the identity 

matrix as a covariance, and the secondaries, of course, have zero mean. Only the 
expected value of the primary vector is affected by the unitary transformation, and 
we now have 

Ez = bUM_1/2p . 

The norm of this vector is unchanged by the unitary transformation, and we can 

therefore write 

Ez = bApf , 

where f is the unit vector: 

f ^   f UM^p . 
AP 

We now decompose f into a component parallel to e and an orthogonal remain- 

der. We compute the inner product of e and f, working back through the transforma- 

tions and using the various definitions introduced along the way: 

17 



(eff)=  f (e^M'^p) 

=    ±^tu"V2 (eTM-v'p) = J_rotu-^ 
ApAq 

(qTM"^p) 

-^(q^-'p) - cosSe^ 
ApAq 

The norm of the component of f which is orthogonal to e is, of course, sin 6, since 

[f - (eU)e$ [f - (eff)e] = l-cos20 = sin20 . 

Finally, we can express the desired decomposition in the form 

f = cos0e *e + sin0g 
(3-8) 

where g is a unit vector orthogonal to e. 

Next, we decompose all of the data vectors into two components: an A component 

consisting of the first element, and an (N-l) dimensional B component, consisting of 

the rest of the vector. Thus 

z = 

and 

z(k) = 
zA(k) 

zB(k) 
1< k< K 

The steering vector takes the simple form 

e = 
1 

0 

and the orthogonal component of f can be written 

18 



g 
0 

h 

where h is a unit vector in the (N-l) dimensional subspace. The expected value of the 

primary data vector can therefore be expressed as 

Ez = bAT 
cos0ell|P 

sin0h 
(3-9) 

The matrix S and its inverse, which we denote by P, are also decomposed: 

S = 
SAA   SAB 

SBA   SBB 

(3-10) 

and 

P = S~   = 
PAA  PAB 

PBA   PBB 

(3-11) 

Since these matrices are Hermitian, we note that the scalars SAA and PAA are real. Also, 

the matrices SBB and PBB are Hermitian, and 

SBA  =   SAB 

PBA  =   PAB • 

Using these definitions and properties, we can make the evaluation 

(z^^z) = (zTPz) 

=   ZAPAAZA  +   ZAPABZB +   ZBPBAZA +   ZBPBBZB 

=  (ZA +   PAAPABZ
B)* PAA(ZA +   PAAPABZB) 

+ Z
B(

P
BB ~ P

BA
P

AA
P

AB)
Z

B • 

19 



The Schur relations for partitioned matrices, applied to S ' and P   , tell us that 

P       - _p    q    q_1 (3-12) rAB ~       ^AA^AB^BB 

and also that 

P     _ p    P_1
P 91 (3»13) rBB        rBArAArAB -   ^BB • 

It follows that 

(z^^z) = (zBSBBzB) + PAA|zA - SABSBBzBf . (3"14) 

The Schur relations also give us an expression for PAA, which we denote by T: 

T =  p"l  — 9      _ 9    9~*9 (3-15) 1   -   rAA  ~   ^AA        ^AB^BB^BA 

We also introduce the notation 

y  -   ZA       bABbBBzB • 

which allows us to write 

(z's-'z)=(z^zB)+   if. (3"17» 

The other inner products which enter in the expression for the LR decision rule 

are easily evaluated: 

(eVle)=(etpe)= PAA = £ (3"18) 

and 

(eV1^ (etPz)=  PAAzA +  PABzB 

=   PAA(
Z

A  
+   PAA

P
AB

Z
B) 

=   T   " 

20 



Thus 

KeV'zf _   |yf 
(eV'e) T 

and we have shown that 

1 + (z^^z) 
KeV1^ 
(erS_1e) 

-    1   +    (ZgSggZg) (3-19) 

It should be pointed out that the expression for T given by the left side of Equa- 
tion (3-18) shows that T is K times the maximum likelihood estimator of the spectral 

density of the interference in the direction specified by the steering vector e. 

The results obtained above allow us to write the LR test in the interesting form 

I = 
1 + (zV^) 

1    +    (ZgSggZg) 
>    h (3-20) 

Finally, if we define 

tQ-l ,1/2 
[1 + (ZgSggZg)] 

and substitute in Equation (3-17), we obtain the basic factorization formula 

1  +   (Z^^Z) =   [1  +   (ZeSgeZg)] 1  + 
rf 

(3-21) 

(3-22) 

This relation also provides the final form for the LR test: 

I = 1 + 
(3-23) 

The statistical properties of T, y, and v introduced here are derived in the next 

section. It will then be found that the factorization given in Equation (3-22) has an 
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interesting interpretation which is fundamental to the evaluation of the performance 
of the likelihood ratio test. 
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4. PROBABILITY OF DETECTION OF THE LIKELIHOOD RATIO TEST 

In order to evaluate the statistical performance of our decision rule, we begin by 

fixing the B components of all the data vectors. The conditional probability densities 

of y, v, and T will be obtained first, and the conditional probability of detection of the 

LR test will then be derived. Finally, the conditioning will be removed, by averaging 

over the joint PDF of the variables zB and the zB(k). We remark at the outset that the 

conditional PDF of zB will reflect the presence of that component of the actual signal 

which is orthogonal (after whitening) to the steering vector, and it is this feature 

which distinguishes the present analysis from that of Reference 1. 

We begin with the quantity T, and substitute from the definition of S for the 

submatrices SAA, SAB, and SBA: 

T =   SAA  ~   SABSBBSBA 

K K 

= X>A(k)zA(k)* - JzA(k)zB(k)tsizB(m)zA(m)# . 
k=l k,m=l 

The K x K matrix 

Q(k,m) - z^S^zB(m) t4"1) 

is constant under the conditioning, and we also define the matrix 

R - IK - Q , (4-2) 

where IK is the K x K identity. T is a quadratic form in the secondary A components, 

corresponding to the matrix R: 

K 

T = ^   zA(k)R(k,m)zA(m)* . (4"3) 
k,m=l 

The matrices Q and R are Hermitian, and we can reduce this quadratic form to a 

sum of squares by diagonalizing R. Let W be a unitary matrix which accomplishes 

this, so that we may write 
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R = W#Wf , ^4"4^ 

where 31 is the diagonal matrix: 

X. = diag[rv r2>. . .,rK]  . 

The rk are, of course, the eigenvalues of R. 

When this representation is substituted for R, the quadratic form becomes 

K 

T = I>m Iw(m)f , (4-5) 
m=l 

and the new random variables are given by 

K 

w(m) =£zA(k)W(k,m). (4-6) 
k=l 

The zA(k) are independent complex Gaussian scalars, with zero mean and unit 

variance, and the w(k) have identical properties, under the conditioning, since they 

were obtained by means of a unitary transformation. 

It can easily be verified by direct substitution that Q is idempotent and that its 

trace equals N -1 (see Reference 1 for details). It follows that R is also idempotent and 

that its trace equals 

Tr[R] =   K +1 - N =  L . 

In this formula, L is the same parameter that was introduced in Equation (2-8). 

Thus L of the rk are equal to one, while the others vanish, and we can choose W 

so that the first L eigenvalues are unity. Then T is the simple sum 

T = t   W•f • (4_7) 

m=l 
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which is a Chi-squared random variable with 2L degrees of freedom. With our conven- 

tion, each complex random variable has unit variance, hence the conditional PDF of T 
is 

K)       (L-l)!6 

Since the actual values of the conditioning variables do not enter this formula for T, 

we see that Equation (4-8) gives the unconditioned PDF of T as well. This formula 

agrees with the known PDF of the maximum likelihood (Capon) spectral estimator. 

Turning now to y, we have 

y = Z
A      SAB

S
BB

Z
B 

K 

= ZA-EZAWZB^S^ZB. (4-9) 
k=l 

Since y is a linear combination of all the A components, it is a complex scalar Gauss- 

ian random variable under the conditioning. In terms of the quantities 

t.q:i7„ (4-10) q(k) •  zB(k)T Sge zB , 

we have 

y = zA-£q(k)zA(k). (4-H) 
k=l 

Since the secondaries have zero mean, the conditional expectation of y is just 

EBy =  EzA = bA cosQe1^ . 

The A components are also independent with unit variance, hence the conditional 

variance of y is given by 
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K 

EBly -EBy|2=  1 + £|q(k)|2 

k=l 

= 1 + (4SBBZB) • (4"12) 

The last step follows from direct substitution, using Equation (4-10). 

As a result of this last evaluation, the variable v defined by Equation (3-21) has a 

conditional variance of unity: 

EB|v - EBv|2 =  1 , 

and its conditional mean can be written 

EBv = bApCosQe1* [1 + (zBSBB z^^ . <4"13) 

At this point we introduce the SNR loss factor p, by means of 

1 

1 + (zBSBBzB) 
(4-14) 

and then we have the simple expression 

|EBv|2 = |bpA2pcos20 (4"15) 

for the signal energy contained in v, under the conditioning. 

It remains to be shown that y, and hence also v, is conditionally independent of 

T. We note that the zB(k), being K in number and of dimension N-l, must be linearly 
dependent (K must exceed N -1 in order to guarantee the non-singularity of the sam- 

ple covariance matrices). By direct substitution we see that 

K 

£zB(k)Q(k,m) = zB(m) , 
k=l 

and thus 
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K 

£zB(k)R(k,m) =  0 , 
k=l 

which provides the correct number of linear relations, since the rank of R is L From 
these relations it follows easily that 

K 

^Rfa.k^k)1 = o 
k=l 

and hence that 

K 

£R(m,k)q(k) = 0 . (4_16) 
k=l 

Equation (4-16) shows that the q(k) are the components of a K vector which is an 

eigenvector of R, corresponding to the null eigenvalue. We can always arrange things, 

by a suitable choice of W, so that this vector is proportional to the (L+l)st eigenvector 
of R, in other words, to the first of the eigenvectors corresponding to the eigenvalue 
zero. We have already evaluated the norm of this vector, in deriving Equation (4-12). 

The proof of the independence of v and T is completed by inverting Equation (4-6) to 

express the zA(k) in terms of the w(k), and substituting in Equation (4-11), with the 

result 

K 

y = ZA ~ E   q(k)W(k,m)*w(m) . 
k,m=l 

Recognizing that the columns of W are the eigenvectors of R, we finally obtain 

v - 7    _ r7ts-l     \V»W (4-17) 

which shows that y (and thus v) is conditionally independent of the first L of the w(k), 

and is therefore also conditionally independent of T. 

Returning to the LR decision rule, given by Equation (3-23), we see that / -1 has a 

simple characterization, when conditioned on the B components of the data vectors: 
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M2 (4-18) 
«      1 -    T   . 

where T is Chi-squared and v is Gaussian, independent of T, with unit variance and 

(conditional) mean given by Equation (4-13). The PDF of this ratio is a particular case 

of the non-central F distribution, with two degrees of freedom for the (non-central) 

numerator, and 2L degrees of freedom for the (central) denominator. Expressed in 

another way, the conditional PD of this test, which we denote by PD(B), is identical to 

the PD of a simple CFAR decision rule for a radar which uses one hit (i.e., no 

noncoherent integration) and a threshold based on L complex samples of noise. 

Although the non-central F distribution is well known, the simple form which 

its cumulative probability distribution function assumes when the numbers of 

degrees of freedom are both even is less familiar. If we define the parameter 

a= |bpA^cos20, <4"19) 

then we have 

|EBvf=«p. (4-20) 

The desired formula is derived in Section 5, and the result is 

The function G which enters this expression is the incomplete Gamma function: 

oo 

y 

k-l      m 

= e 
y E   ^ • (4-22) 

r^O   m! 
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The conditioning variables survive in Equation (4-21) only in the loss factor, p. 

The PDF of this loss factor will also be derived in Section 5, which allows us to com- 

plete the evaluation of the PD of the decision rule. Denoting the PDF of p simply by 
f(p), we obtain 

L 
PD=' - JE©* - lHV • (4"33) 

where 

1 

Hk(y)=  jGk(py)f(p)dp. (4-24) 

One of the forms of the PDF of the loss factor obtained in Section 5 yields the follow- 
ing formula for f(p): 

2    2        2        V* (JbfAWer 
f(p) = expHbrApSin^e] £  f^(p;K + 2-N,N-l + m) ^   .      (4-25) 

m=0 

The integrals defined by Equation (4-24) are evaluated in the Appendix, which con- 
tains an expression for the detection probability suitable for numerical computation. 

If the signal component of v is absent, then all dependence on the conditioning 
vanishes, hence we have already obtained the PFA of our test. Putting a = 0 and noting 

that Gk(0) = l, we obtain from Equation (4-21) the simple formula 

PFA -   \ . (4-26) 

It is noteworthy that the signal-to-noise parameter, a, will vanish in our problem 

if 0 = 7T/2. no matter how strong the actual signal may be. As characterized in Sec- 

tion 2, this is the case of a signal which falls in a null of the asymptotic adapted 

antenna pattern. Although the SNR itself (as defined in Section 2) can be large, our 

present result shows that the detection system responds as though this signal were 

entirely absent. 
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Returning to the factorization expressed by Equation (3-22), we observe that 

when a=0 the two factors on the right side become completely independent. We intro- 

duce the notation 

EQMQ- (zV'z), (4_27) 

and use it only in the case in which each of the data vectors has a covariance matrix 

equal to the identity. The first argument of E refers to the dimensionality of the vec- 

tors, and the second to the number of secondaries, so there will be K +1 independent 

Gaussian vectors in all. With this notation, we can write 

(4
S

BB
Z

B) = S(N-1,K) . 

Since v is a scalar, and since T/K can be interpreted as the one-dimensional sample 

covariance matrix of L "secondaries," we can even write 

(vl2 

Lj-  = E(1,K + 1-N) . 

In terms of these new random variables, the factorization given in Equa- 

tion (3-22), can be expressed in the form 

1 + E(N,K) = [1 + E(N-1,K)][1 + E(1,K + 1-N)] . (4-28) 

When the means of the data vectors are zero, the two factors in square brackets on 

the right side of this identity are independent, and Equation (4-28) expresses a basic 

statistical property of the family of random variables E(N,K). 

Iterating Equation (4-28), and using the identity itself with N = 2, it can be shown 

that 

1 + E(N,K) = [1 + E(N-2,K)][1 + E(2,K + 2-N)] . 

Continuing in this way, a more general factorization is obtained: 

1 + E(N,K) - [1 + E(M,K)] [1 + E(N-M.K-M)] (4-29) 
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for any M<N. This last expression will be derived directly in Section 7, in connection 

with a generalization of the initial detection problem. 
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5. STATISTICAL PROPERTIES OF THE LOSS FACTOR 

Consider a set of independent Gaussian vectors of dimension Jf, consisting of a 

primary vector z and a set of secondaries z(k), where 1 < k< K. The covariance matrix 

of each vector is the identity matrix 1^-, and the secondaries have zero mean. We 

assume that the primary vector has a signal component, given by 

Ez = yt, (5_1) 

where 7 is a complex amplitude and t is a unit vector in the Jf space. Next, let 

K 

S=  SzOcJzfr)* 
k=l 

and 

E(^,K) = (zfS_1z) . 

These quantities are just like those we have been discussing, but here we wish to ana- 

lyze the statistical properties of S(^V,K) and the related "loss factor," 

^v    '   '       1 + Y.{Jf,K) ' 

apart from the specific application in which they have arisen. The integer K will 

always represent the number of secondaries, which will not change, but Jf will be 
given different values in the several applications which are to be made of the results 

of this section. 

The loss factor of Section 4, defined by Equation (4-14), will be statistically identi- 

cal to p(N-l,K), if we identify z with the component zB of that section. The expected 

value of this primary component is given by Equation (3-9), and the identification of 

p with p(N-l,K) will then be complete if we assign to the complex amplitude 7 the 

value 

7 = bA  sin© (5-3) 

and associate the unit vector t with h. 
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If the signal component of the primary vector is absent, then £(^V,K) is the same 

as a quantity of this form discussed in Reference 1, where it was shown that in this 

case the corresponding loss factor is subject to the Beta distribution. In the general 
case we define 

i   |2 (5-4) c = \y\   , v       ' 

and we denote the PDF of p(JT,K) by f(p;jV,K,c), anticipating its independence of the 

unit vector t. Then, in the signal-free case, the known result is 

t(p;jr,K.O) = tp(p;K + l-JT,J) . (5-5) 

Our notation for the Beta distribution was given in Equation (2-9). 

One approach to the analysis of £(^V,K) would begin with a decomposition of all 

vectors into components parallel and orthogonal to the given unit vector t. A factori- 

zation just like that of Equation (4-28) would follow, and the PDF of E(JV-1,K) is 

already known. The other, statistically independent factor encountered in this method 

can be shown to have a simple non-central F distribution, and the desired formula 
for f(p;^",K,c) can then be obtained in a straightforward manner. We follow instead 

another route, which leads more directly to the objective, based on the suggestion of 

K. Forsythe   to condition first on the primary data vector z itself. 

With z fixed, we introduce a unit vector d in the direction of z, and write 

zMz'z^d, (5"6) 

and then we have 

E(^,K) = (ztz)(dtS"1d) . (5"7) 

Next we carry out a rotation of the secondary vectors, by means of some unitary 

transformation, which will leave S unchanged statistically but will rotate d into the 

basis vector 

e = [1,0,....0]T . 
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The inner product containing S on the right side of Equation (5-7) is identical to one 

studied in Section 3 and evaluated in Equation (3-18). It follows that 

W)K) =  fe£4 , (5"8) 

where T is a Chi-squared random variable. We have not introduced a new notation for 

the rotated primary vector, since only its norm, which is invariant to such a trans- 

formation, appears in Equation (5-8). 

The PDF of T is given by Equation (4-8), which we now write in the form 

where 

£ •   K + l-Jf . (5_9) 

The integer £ is directly analogous to L of the previous sections, but we use a sepa- 

rate symbol here, just as with Jf, to avoid confusion when the results are applied to 

different cases. 

As before, the statistical properties of T are independent of the values of the 

original conditioning variables, hence Equation (5-8) represents E(^V,K) as a ratio of 
independent random variables. The numerator is just the sum of the squares of Jf 

complex Gaussian variables, each of unit variance, hence its PDF is a non-central 

Chi-squared distribution. This latter PDF depends only on Jf and the sum of the 
squares of the expected values, which is the same as the squared norm 

(Ez)t(Ez) = \yf = c . 

We proceed with the analysis of the ratio of two Chi-squared random variables, 

making the definition 

Jf 

LKf 
A*.*) - -^— • <5-,0) 

1=1 
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and treating X and £ as independent variables. The zn and the Wj are all complex 
Gaussian vj 

numerator, 
Gaussian variables with unit variance; the Wj have zero mean, and we have, for the 

n=l 

Our results will then apply to S(JV,K) with the identification 

S(-V.K) =  X(^,K + 1-JV) . (5'U) 

They will also provide the statistical properties of the likelihood ratio test of Sec- 

tion 4, according to Equation (4-18), since we can put 

1 = 1 + x(l,K + l-N) 

and replace c by ap, in accordance with Equation (4-20). As noted, the PDF of the ratio 

x(X,£) is a special case of the non-central F distribution. The method to be used here, 

which results in an expression for the cumulative probability distribution function of 

this ratio in the form of a finite sum, was described in detail in Reference 6 which 

contains a number of similar computations. 

Let us write 

Px($;Jf,£) =  Prob[x(jr,tf)>£] , (5-12) 

so that the cumulative probability distribution function of the variable x(Jf,£) is 

1 - PX($;N,£). With x(rf,£) we associate the random variable y(Jftf): 

**•*>s mk*) • <5-13> 

so that, in analogy to Equation (5-11), we have 

p(^,K) = yC^,K + l-^) . (5-14) 

While x(Jf,£) ranges over all non-negative values, y(X,£) is confined to the interval 

between zero and one. The cumulative probability distribution function of y(rf,£) will 

be denoted by 
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Fy{r;JT,£) = Prob[y(^,tf)<r] = Prob[x(jV,tf) > —r] = Px(—;.*\.tf) • 

The PDF of y(N,£), which will give us the desired PDF of the loss factor, will then be 

ly{r;Jf,£) =  ^ Fy(r;^,tf) . 

If we let 

-l-fl^P-tfelw/. <5-'5) 

n=l 1=1 

then 

PX(Z;X,£) = Prob(t7>0) . 

If, further, we denote the characteristic function of r) by 

<t>(X) = Eeikv , 

the PDF of 77 will be 

£/*>.-"••«. 

and therefore 

oo oo 

P«fc;*\*) =   _L    fr   f^e-^dxldr,. (5-16) 

The contour of integration in the X plane can be moved an infinitesimal distance 

e below the real axis, without changing the value of the integral. This is so because, as 

will be seen shortly, the characteristic function is analytic in a finite band containing 
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the real axis. After this change, the order of integration may be reversed in Equa- 

tion (5-16), and the integral over T) carried out explicitly. Since the imaginary part of 

A is negative, we obtain the simple result 

<»-ie 

W>*>= gfe J*(x)f • (5_17) 

This basic technique has been used by a number of authors to obtain the cumulative 

probability distribution function of the ratio of two independent random variables. 

The characteristic functions of the two Chi-squared variables encountered in 77 

are well known, and the characteristic function of 77 is easily evaluated as the prod- 
uct 

c/(l-i\) , 
*(\) = e"c e 

(1-iX)^   (l + i|X)* 

This function has a pole of order £ at X = i/£, and an essential singularity at X=-i. It is 

analytic elsewhere, including, of course, a finite band containing the real axis. 

We substitute in Equation (5-17), complete the contour at infinity below the real 
axis (the integrand vanishes rapidly as |X| -»»), and change the sense of traversal of the 

contour to positive. This yields 

VJt.Jf.t) = -   J-e"c   ie'*-* f   . (5-18) 

The essential singularity is now shifted to the origin by the change of variable 

X = -i(l-t) , 

which results in the formula 

1 
PM-^.X) =   5^7e        °   e 

27Ti 

c/t dt^ 
# I*   ,   y      >4\* 

|t| = e 
(l-tn-'Q+^t) 
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Next, we replace t by 1/t, so that 

PM;jr,tf =  ^-e_c   (£   ect t^+^dt 
2m   J..    (t-Dfa+fH- |t|=1/£   (t-i)[d^)t-eF ' 

and the path of integration is now a large circle of radius 1/e. This contour is now 

shrunk and broken into two small circles: one encircling the simple pole at t = l, the 

other encircling the pole at 

L° "   l + £ • 

The residue at t = 1 is unity, as can be seen by inspection, and hence 

PX(C;JV ' dt •X) = i -   J-e"c    (£   ect  ^ 2m   , J.    a-t)f(i 

With a final change of variable, the remaining singularity is shifted to the origin in 

the new variable, u: 

t=   ^ 

and the integral becomes 

Wr.*) = i -   e~C/s+j i i  I e-vti+oCt+1^**-» _&_ (5.19) 
(1 + fl 2m J u* (1-u) 

Before proceeding with this derivation, we make the substitution 

t =   til (5-20) 
? r 

in Equation (5-19), in order to get the cumulative probability distribution function of 

the random variable y: 
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Fyd-;^,*) = 1 -  X   j   e-
cr(1-u)[l-r(l-u)] 

U=£ 
u*(l-u) 

The PDF of y is now obtained by differentiation under the integral sign: 

If:** - X.- 

x   ()   e c(l-r + ru)**"+*_1 + {X + £-\){\-r + Tvf+*~* 
du 

J u 
(5-21) 

It proves to be much simpler to develop f {r\Jf ,£) from this integral than to complete 

the evaluation of F (r; Jf, £) and then differentiate the result. 

Returning to Equation (5-19), we make the binomial expansion 

Jf+£ -1 

and substitute in the integral. Only for the terms with negative resultant powers of u 

are there poles in the integrand, and we have then 

PX(S;JT,# = 1 - 
-c/(l+{) 

(1+0 
JT+£-\ 

u=t 

du 
>- 

(1-u) 
(5-22) 

The contour integral 

is easily evaluated by expanding the factor (1-u) in the denominator: 
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0„(y) . .-, t _L  f .,. ft; 
k=l 

|U| = C 

= e"y 

n-l      k 

I   £ (5-23) 
k=0 

This expression is exactly the form of the incomplete Gamma function which was 

defined earlier [see Equation (4-22)]. We substitute in Equation (5-22) and, after a 

redefinition of the summation index, obtain the final result 

>*••** - • - ,-j^i J'j^VMi^ •     <5-24) 

As noted earlier, the detection probability of the LR test is a special case which 

corresponds to the parameter assignments 

Jf = 1 

£ =   K + l-N =  L 

c = ap . (5-25) 

According to Equations (4-18) and (3-23), the appropriate threshold is £ = iQ -1. When 
these substitutions are made, Equation (5-24) becomes identical to Equation (4-21), 

which completes our derivation of that result. 

It remains to obtain the PDF of the general loss factor, and hence we step back 
to Equation (5-21). Making a binomial expansion as before, we evaluate the integral 

2m      f 
e^O-r + ru)^*-1^ 

u 
|u| = e 
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The other term in Equation (5-21) involves the same integral, but with X replaced by 

*•* -1. When the results are combined we find 

Ur.JT.it) = -cr    £-\,.       \JT-1 e       r      (1 - r) 

* E 
m = 0 

y + l-l\(l-r)m + 1cm + 1 A    JJT+2-2\(l-r)mC 
Jf + m m; 

+ (.y + tf-1) 
jV + m-1 

m _m 

The summation in the second line of this equation can be written 

{Jf + £-\)\   y ( £ -1 

(/-I)!      £0\  m 

a\m + l   m + 1 /,     _\m   r 
-r)        c (1-r)    c 

(JT + m)! 
+ 

(£-1)!       ^n v '        m=0 
m -1/      \ m 

(^V + m-1)! 

a\m   m 
- r)    c 

{Jf + m -1)! 

The vanishing of the binomial coefficients (when the lower member is either negative 

or exceeds the upper member) controls the limits of summation, and with a standard 

binomial identity 

(rX^H:) (5-26) 

we obtain the result: 

m   m 
f irJf £)= e-crT*-iu_rf-i{Jf + £-\y.  y(X\ (l-r)mc 

m=0 

(5-27) 

This formula can be expressed in several interesting forms. In terms of the Beta 

distribution, we have 

m=0       '   v ' 

(5-28) 

Another useful form is 
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f irJf A = f (r£ X) e"cr Y ^!^~1)!  (l-r)mcm 

m = 0 

= fp{r;X,JO e'cr lFl[-£;X;-(l-r)c] , (5-29) 

where JFJ is the confluent hypergeometric function . In the present case, the series for 

this function is finite. 

An application of Kummer's first transformation (see Reference 7) yields the 
expression 

ty{r;Jf,£) =  fp(r;^,^)e"c  1F1[^ + ^;^;(1 - r)c] , (5-30) 

in which the r-dependence has been removed from the exponential. If the infinite 
series is now substituted for the hypergeometric function, this formula assumes the 
interesting form 

Ur.JT,*) = e"c £ tft;*.jr + m) £! . (5-31) 
m = 0 

The fact that this PDF is properly normalized is now evident by inspection, since each 

Beta PDF is so normalized. It is clear from either of these formulas that in the 

absence of a signal component we have simply 

iy{r;Jf,£) = tp(r;X,J0 , 

which is consistent with Equation (5-5), with £= K +1 - Jf. 

The mean value of the random variable y can be obtained from Equation (5-31), 

by using the formula 

I 

J fJxm.mJxdx =   — 
P n + m 

for the mean of the Beta distribution. This yields the series 
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Ey =  e-c V * c- 

for the expected value of y. Using the Kummer transformation again, this expression 
becomes 

Ey = ^r^iFi[i;^+^+i;-c], 

which can be expressed in the form 

X+lt-X /   _Nm 

Ey = *•—-fTr-i-i) 
c 

\ '     (~c) 
e  " \ ~^ m=0 

(5-32) 

When the signal component becomes large this PDF becomes more and more concen- 

trated toward small values, and the asymptotic value of its mean, as obtained from 

Equation (5-32), is simply 

Ey    ->    ^ . (5-33) 
C ->oo    c 

According to the correspondence established in Equation (5-14), the PDF of the 

general loss factor, p(^V,K), is given by 

f(p;^,K,c) =  fy(p;^,K + l-^) 

=  fp(p;K + l-tf.tf) e'cp  jF^-K-li-ATi-O-pJc] 

= e"c £ ffi(p;K + l-JT,JT + m)Z- . (5-34) 
m = 0 

The PDF of the loss factor which we require to complete the derivation of the per- 

formance of the LR decision rule is obtained by making the following parameter 

assignments in our result: 
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X =   N-l 

c = IbpApSin2© . (5-35) 

This loss factor was defined in Equation (4-14), and the signal component was given in 

Equation (3-9). When the parameters specified by Equation (5-35) are substituted in 

Equation (5-34), the formula quoted in Equation (4-25) is obtained. 
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MISMATCHED SIGNALS; NUMERICAL RESULTS 
AND DISCUSSION 

The problem formulated in Section 3 involves the detection of a signal hypoth- 

esized to have the direction of a unit vector q in the N dimensional observation space. 

The probability of detection was then sought for the mismatched case, in which the 

primary sample contains a signal of amplitude b with a direction corresponding to a 

different unit vector p. The covariance matrix of the noise, originally unknown, is 
assumed to be M. 

The quantity 

SNRpp= |bp(ptM-1p)= IbfAj;, (6-1) 

which we call the "available SNR" of this signal, represents the maximum SNR which 

could be attained if the noise covariance matrix were known a priori and if the sys- 

tem were steered for this signal direction. In fact, we are steering for q, and we are 

predominantly interested to know how rapidly the detection probability is reduced as 
the directions of p and q diverge. This will depend on the noise structure, represented 

by M, and also on the quality of our estimate of M, which is related to the number of 

secondary vectors K. 

What we have found from our analysis is that the available SNR is split into two 

components, as follows: 

SNRdet = SNRppCos2© (6-2) 

and 

SNRloss= SNRppSin2©, (6"3) 

where 0 is a measure of the separation of the p and q directions, relative to the 

matrix M: 

2„ _ I^M^p)!8 (6.4) 
cos e= - 

(qtM^qKp^1?) 
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This angle 0 is zero only if the p and q directions coincide (since M is non-singular), 

and the relation of 0 to the asymptotic adapted antenna gain was discussed in Sec- 
tion 2. 

The performance of our detection algorithm is identical to that of a simple CFAR 

detector which uses one sample for detection and L samples for threshold determina- 

tion (L=K + 1-N). The signal in the former sample has a signal to noise ratio equal to 

SNR = SNRdet p , (6-5) 

where p is a random loss factor lying between zero and unity in value. This is analo- 

gous to the fluctuating signal models often used in radar analysis, but the loss factor 

which enters here has a more complicated PDF, which we have denoted by 

f(p;N-l,K,SNRloss). 

Thus part of the available SNR plays the role of a conventional signal, while the 

remainder affects the PDF of the loss factor p. The result is the effective SNR given by 

Equation (6-5). 

Without mismatch, SNRloss = 0 and the PDF of p reduces to a simple Beta distri- 

bution. The effect of this loss factor, together with the threshold estimation feature 

which gives the algorithm its CFAR character, was discussed in detail in Reference 1. If 

the number of secondary samples is sufficient, say K=5N, then the total performance 
degradation in this case can be kept below 2 dB, relative to a system in which the 

noise background is perfectly known. 

Fbr mismatched signals, the effect of the component SNR^^ on the loss factor is 

to shift its PDF toward smaller values. Therefore, as 0 increases, the probability of 

detection will fall due to the combined effects of a smaller SNRdet as well as a greater 

loss due to the reduced values of p. As we have seen, the expected value of p is given 

by Equation (5-33), which can be written 

K + 2-N 
P "*     SNRloss   ' 

when SNRloss itself is large. The average value of the effective SNR therefore tends to a 

constant as the signal amplitude increases for a fixed value of 0: 

SNR = SNRdetp - (K + 2-N)cot20 (6"6) 
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as SNRpp tends to infinity. We also note that SNRdel = 0 when 0 = ix/Z, regardless of sig- 

nal amplitude. This is the case in which a signal falls in a true null of the asymptotic 

adapted antenna pattern, as discussed in Section 2. 

Using the results of Section 5, we can study the effect of the parameter SNRloss 

on the loss factor probability density function. Figure 6-1 shows a series of curves of 

this PDF for the values N = 4 and K=20, and for several values of SNRloss, described on 

the legend as "signal component." Case A represents a matched signal, and the curve 

is a simple Beta distribution which peaks around 0.9. Signal components much less 

than 0 dB have little effect on the loss factor, but large values of SNRloss shift its PDF 

dramatically toward small values. 
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25    - 

20 
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10 

SIGNAL COMPONENT: 

A No Signal 

B -5 dB 

C 0 dB 

D 5 dB 

E 10 dB 

F 15 dB 

G •    20 dB 

H 25 dB 

0.5 

LOSS FACTOR 

Figure 6-1. Loss factor probability density function; N - 4 and K = 20. 
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Figure 6-2 is analogous, but it corresponds to an observation space of dimension 

20 instead of 4. The number of secondaries has been increased in direct proportion. 

The signal-free case is again a simple Beta distribution, not quite so broad as before, 

and peaking at a loss factor of about 0.9 dB. The effect of a mismatched signal is 

much the same, but somewhat larger values of SNRloss are required to achieve corre- 

sponding shifts of the loss factor PDF, relative to the parameters of Figure 6-1. 
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Figure 6-2.  Loss factor probability density function; N = 20 and K = 100. 

The explicit expression for the probability of detection of a mismatched signal is 

fairly complicated, and a full derivation is presented in the Appendix. The basic 

parameters are the assigned PFA, the signal strength and the direction of the arriv- 
-6 ing signal relative to the steering direction. The value PFA = 10     has been used for all 
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the numerical results given here. It is a representative number and, in general, 

system performance does not change dramatically as a function of PFA. Signal 

strength is parametrized by the "available SNR" (SNRpp) defined in Equation (6-1). 

This parameter represents the strength of a signal relative to the actual interference 

present, and hence a constant value of SNR will usually imply a varying signal 

amplitude, as the direction of the signal in the observation space changes. 

The direction of the signal relative to the steering vector is parametrized by the 

quantity cos 9, defined in Equation (6-4). This is the most important parameter for 

our discussion, and its significance should be clearly understood. According to Equa- 

tion (2-4), this is the factor by which the available SNR of a signal is reduced when its 

direction differs from that of the steering vector by the angle 9 in the observation 
space. If the interference is only white noise, then this factor is identical to the side- 

lobe gain, relative to the peak gain, of the antenna system in the signal direction. In 

the presence of directive interference, it describes the factor by which a signal of con- 

stant available SNR is rejected by the asymptotic adapted pattern, even though the 
adaptation was carried out with respect to (known) interference which does not 

include this unwanted signal. The detection performance results obtained in this 

study then show how such a signal is rejected when the interference is not known, 

but is estimated from secondary data from which this particular signal is absent. 

A typical set of curves of detection probability versus SNR is shown in Figure 6-3, 
p 

with fixed PFA and with cos 9 as the parameter for each curve. Curve A describes the 
matched case, 9 = 0, while the others show the rapidly decreasing detection probability 

as cos 9 decreases. The smallest value shown corresponds to a reduction of only 
slightly more than 5 dB in effective sidelobe gain, yet the detection probability is 

sharply reduced. If cos  9 were zero, then the detection probability curve would be flat 
at the value PFA, as already noted.   It should be kept in mind, however, that there 

may be no true nulls in the asymptotic adapted pattern; in other words, the value 

9 = n/2 may be physically unrealizable. 

With increasing SNR, the curves of detection probability eventually level off at 

asymptotic values between the PFA and unity. We have noted that the mean value of 

the effective SNR [see Equation (6-6)] tends to a constant as the actual signal strength 

tends to infinity, and it can be shown that the standard deviation of this quantity 

also tends to a constant, non-zero value. In the Appendix an expression is given for 

the limiting form of the detection probability, for infinite signal amplitude, as a func- 

tion of cos 9 and the other parameters of the problem. This limiting probability does 

not depend on N and K separately, but only on the parameter L=K + 1-N, which mea- 

sures the excess of the number of secondaries over the minimum necessary for 

covariance matrix estimation. 
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Figure 6-3.  Mismatched signal probability of detection; N = 4 and K = 20. 

A plot of this asymptotic (in the sense of large signal amplitude) detection prob- 

ability is given in Figure 6-4. The independent parameter is sin 6, and each curve 
corresponds to a different value of L. The most striking feature of these curves is 

their tendency to crowd toward the right as the number of excess secondaries gets 

larger. This could have been anticipated from the form of Equation (6-6), which shows 

that the mean effective SNR increases linearly with L. When L itself is very large, we 

are approaching the case of known interference, since the quality of the estimate of 
its covariance continues to improve. But when the interference is known, the appro- 

priate detector is a simple colored noise matched filter, and as long as cos 6 is 

non-zero, the SNR developed by any signal eventually tends to infinity. In other words, 

if a signal does not fall into a true null of the adapted pattern, it will ultimately 
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Figure 6-4.  Asymptotic probability of detection. 

burn through the sidelobes as its amplitude increases without bound, as indicated by 

Equation (2-4). 

When the interference is unknown, however, the LR decision rule itself involves 
both interference estimation and threshold setting, and a true CFAR detector results. 

In effect, the component of an arriving signal which is orthogonal to the direction of 

the desired signal is included in the threshold estimation data, lowering the ultimate 

threshold and reducing the effect of this undesired signal. This mechanism can be 

appreciated by recasting the decision rule in the following way. 

The LR decision rule, given in Equation (3-1), involves the matrix S which is K 

times the sample covariance matrix of the secondary data vectors. We can therefore 

write 
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KS"1 = M"1 , 

where M is the sample covariance, an estimator of M. The LR test can then be 

expressed in terms of M as follows: 

K + ^M^z) 

K + (^)-^S'° (6"7) 

(qfM"lq) 

We introduce the notation [a,b] for the inner product of two vectors, relative to the 

inverse of the sample covariance matrix: 

[a,b] • (afM_1 b) . 

Then the LR decision rule can be expressed as 

K + [z,z] 

«+M - tar 
*  'o (6-8) 

Of course, [z,z] and [q,q] are the norms of the vectors z and q, associated with this 
inner product. 

Next, we introduce the unit vector corresponding to the steering vector, q: 

eq= b.q]-"q. 

and the components 

and 

z,| = [eq , z] eq 

Zj_   -   Z Z| 
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of z, which are respectively parallel and orthogonal to q in the sense of this inner 

product. It is easily verified that 

K.Zii] = o 

and 

[z,z] = [zpZ,] + [z^zj , 

and also that 

-^ = l[eq.z]P= [2,-2,]- 

With these definitions we obtain the formula 

K + [z.z] 

K + [Zi,zJ * '° 

for the LR test, which in turn can be simplified to 

>   K(J0-1) . (6-9) 
[Z,,2,] 

1  + £K.zJ 

This formula shows clearly that any component of z which is orthogonal to the 
steering vector q, in the sense of this inner product (which depends on the estimate 

of the interference matrix), will serve to raise the effective threshold for detection. 
The formula also shows how this feature disappears in the limit of large K. Finally, in 

this limit we see that the LR test becomes the familiar colored noise matched filter 

detector, since M converges to M when K increases without bound. 
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7. A GENERALIZATION OF THE DETECTION PROBLEM 

The problem we have been discussing so far concerns the detection of a signal of 

unknown complex amplitude and known direction in an N dimensional space of data 

vectors. In addition, the covariance matrix of the background interference (plus noise) 

is unknown. With a modest extension of the apparatus developed in this study, we 

can make the generalization that the signal being sought may be any vector in a 

given subspace, say one of dimension J, of the N space. The original problem then 

appears as a special case, for which J=l. The physical meaning of this new signal 

model will depend upon the specific application, whether to radar, communications, 

acoustic arrays, and so on, which is being made of the theory. 

The signal appears in our model as the expected value of the primary data vec- 
tor z, and we now represent it as a sum: 

Ez=EVj. (7"° 
j = l 

where the b: are unknown complex amplitudes, and the vectors e: are fixed. These vec- 

tors are assumed to be linearly independent, and their span is the J dimensional 

"signal subspace." Any set of vectors whose span is this subspace will suffice, and we 

shall see below that the LR decision rule and its performance are independent of the 

particular choice. It is not necessary to assume that the e: are normalized in any spe- 

cial way (although that would be a harmless assumption, given the presence of the 
unknown amplitudes), nor need they be orthogonal. 

The likelihood ratio analysis of Reference 1 is very simply generalized to include 

the new signal model, and we take up the derivation at the point just after the 
unknown covariance matrices have been estimated. The (K+l)s root of the likelihood 

ratio, which is still a function of the signal amplitudes, now has the following form: 

«"• b<> - ragfea • (7-2> 

The double bars signify determinants, and 
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T0=   j^r1(zzt + S) 

T   =      l 11 -   K + l !-M-W+s 

and 

K 

S S £ z(k) z(k)t . 
k=l 

as before. The final LR test is then 

Max    /(^ bj) = I 
bl bJ 

Min     ||T1(b1,...,bJ) 
bl bJ 

>   lr (7-3) 

The determinants are evaluated as in Reference 1, with the results 

ITQII = 
(K + l)r 

[l + ^S^z)] 

and 

|T'(b' b'>"" oS , + (. -£b,.>)V(, -|bjej 
(7-4) 

We now define the J x J matrix 

to-l ry- (e[s-A
ej) 

(7-5) 

and its inverse 

A • r" 
(7-6) 

Then the inner product appearing on the right side of Equation (7-4) is 
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• -fc^M' -&*) 
,to-l, ^^to-1 = (zTS-'z)- Eb'leJS-'z) 

i=l 
E(zts-1ej)bj+ E b'r^bj 

j = l i,j = l 

(7-7) 

Next, we define the quantities 

(7-8) 

and invert these equations to obtain 

(efs-1
2j)=t;rlij/9j 

When these definitions are substituted in Equation (7-7), and use is made of the 

evident Hermitian character of f, the right side of Equation (7-7) becomes 

(zV'z) + i (bfryb, - bfr^j - ffryb,) 

= (z^^z) + E (bj-^ryCbj-^p - i /s'^/Sj 
i.j = l i.j = l 

This expression is obviously minimized by the choice 

bi « fii . 

so that 

Min    HT^b, bj)|| = 
*>i W 

N (K + 1)"L 
1 + (zV^) 

i.j-l JJ 
(7-9) 
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We now use this evaluation in Equation (7-3), and eliminate the jg, by means of 

their definition. The resulting LR test is then 

l + CzV1^ 
i =    j    > h (7-10) 

1 +(ztS"1z)- £  (z^^A^e's^z) 
i.j = l 

This is a direct generalization of the original LR test, as given by Equation (3-1). 

Suppose we were to change to a new set of vectors for the characterization of 

the signal subspace, by means of a transformation such as 

J 

where C is any non-singular matrix. It is a straightforward matter to show that the 

form of the LR test is unchanged, inasmuch as 

J J 

£   (ztS-1ei)Aij(e}s-1z)= £   (zf S'1 e[) A^ (e^S"1 z) , ("MD 
i,j = l i.j = l 

where 

A' = (r*)"1 

and 

• to-l„o 

In this way we can, for example, convert to an orthonormal set of basis vectors for 

the signal subspace. 

To evaluate the performance of this LR test, we follow the usual procedure and 

carry out a whitening transformation, assuming that the actual covariance matrix is 

M. We let 

z -  M^z 
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and 

z(k) = M_1/2z(k) . 

As before, 

S = M^SM-^ 

is K times the sample covariance matrix of the whitened secondaries: 

K 
s = £ mmf • 

k=l 

We also introduce the whitened vectors 

§i = M"^ei , 

whose span defines the signal subspace in the new system of coordinates. 

Suppose the original primary vector contains the signal component 

Ez = bp , (7-12) 

where b is a complex amplitude and p is some vector in the hypothesized signal sub- 

space. After whitening, we will have 

Ez = bM_1/2p , 

which is a vector in the transformed signal subspace. This part of the discussion is 
the same as in Section 3, since only the signal hypothesis has changed to allow a 

broader class of signals. 

Ear simplicity, we are assuming here that the actual signal conforms to the sig- 

nal hypothesis. Our results can be extended directly to the mismatched case, in which 
the arriving signal has a component orthogonal to the hypothesized signal subspace. 

The implications of this generalization are discussed later on. 

Inner products are unaffected by the whitening transformation, and we have 

^tS_1ei)= (jfa-'Sj) 
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and also 

ritj= (gjTs-'gp 

Thus, 

I = 
1 + (zfS~lz) 

t- i J      t- i t- i      ' (7"13) 1 +(zrS !z) - E  (zV'e^A^e/s-'z) 
i.j = l 

and the matrix A is unchanged in value. Since a change of the basis vectors of the 

signal subspace is always possible, we may consider that the et have already been 

transformed into an orthonormal set, and no change of notation will be made. A final 

rotation of the data vectors can now be carried out, by means of a unitary matrix U, 

chosen so that the transformed basis vectors represent the first J coordinate vectors 

in the N space. 

As in Section 3, we continue to use the old notation for these vectors, writing 

z = Uz 

z(k) = Uz(k) 

and also 

ei= Ue,. 

The transformed primary vector now has the signal component 

Ez = bUM_V2p 

= bApf , (7-14) 

where f is a unit vector in the transformed signal subspace, and Ap is the same as the 

quantity defined in Equation (3-4). As a result of this transformation, the LR test 

returns to the form given in Equation (7-10), but where now 
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®l = [1.0 of 

e2 = [0,1 0]T 

etc. 

are the first J coordinate vectors of the N space. The matrices V and A are again 

given by Equations (7-5) and (7-6). 

At this point we decompose the data vectors, as well as the matrix S and its 

inverse P, into A and B components. This decomposition differs from the one made in 

Section 3 in the dimensionality of the components. The A components are now J 
dimensional, and correspond to the signal subspace, while the B components are of 
dimension N - J. If we write 

f = 
g 

0 

where g is a unit vector, then we have 

EzA = bApg. (7-15) 

Equations (3-10) through (3-13) are still valid, and the analog of Equation (3-14) is 

now written 

(ztS"1z)= (zlsB'zB) + y'r'y (7-16) 

In this formula, 

y = zA - SABSBBzB 

is now a J vector, and 

T =   PAA  ~   SAA "   SABSBBSBA 

is a J x J matrix. 
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The analysis of the matrix T follows very closely that of its scalar counterpart, 

given in Section 4. It begins by conditioning on the B components of the data vectors, 

and the matrices Q and R are then introduced by means of their old definitions. In 

the present case, however, the trace of R is 

Tr[R] =   K + J-N a  L . 

This definition of L is consistent with our earlier usage, when J was equal to unity. 

In terms of the J x K matrix 

zA - kd) *Aoo]. (7"17) 

we have 

T= ZARZA 

instead of Equation (4-3). Using the identical transformation expressed by Equa- 

tion (4-4), we introduce the J x K matrix 

VA=ZAW, (7-18) 

and then 

T= VA*VA. 

The columns of V"A are vectors which correspond to the scalars, w(m), of Equa- 

tions (4-5) and (4-6). We put 

VA =  [w(l) w(K)] , 

where the w(m) are J vectors in the present case, and finally obtain 

L 

T = YJ w(m)w(m)f . (7_19) 
m=l 
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In the present application, T appears as L times the sample covariance matrix of a 

set of L independent Gaussian J vectors. Each of these vectors has zero mean and 

covariance matrix equal to the identity matrix Ij. Instead of Equation (4-8), T is now 

subject to a more general Wishart distribution function. 

The analysis of y is quite similar, and Equations (4-9) through (4-11) require no 

change. The expected value of y, under the conditioning, is simply 

EBy = EzA - bApS - 

and the covariance is now a matrix: 

EB(y-EBy)(y-EBy)t = [1 + (zBSBBzB)] Ij 

The proof of the independence of y and T, given in Section 4, applies directly to the 

present more general situation. 

The analog of v is now a J vector: 

v = [1 + (4sB^B)l"wy. <7-20) 

whose conditional covariance matrix is just Ij, and whose conditional mean is 

EBv=bApp^g. (7-21) 

We have introduced the loss factor 

(7-22) 
1 + (zBSBBzB) 

which now depends on the N - J dimensional secondary data vectors. In the present 

case, we have the correspondences 

(4
S

BB
Z

B) = 2(N-J,K) 

and 

p = p(N-J.K) . (7_23) 
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When these results are combined, we see that Equation (7-16) can be written 

1 + (zV^) = [1 + ds£»B>] [1 + (v^^v)] , <7-24) 

in which the second factor on the right is conditioned on the B components only 

through the loss factor p. Since v and T are independent, Equation (7-24) is equivalent 

to the factorization expressed by 

1 + E(N,K) = [1 + E(N-J,K)] [1 + E(J,K + J-N)] . (7"25) 

If we replace J by N - M, Equation (7-25) is the same as Equation (4-29), which was 

inferred by induction in Section 4. 

These results apply directly to the analysis of the LR test, expressed by Equa- 

tion (7-10). Since the e: are now the basis vectors of the signal subspace, we see that 

the matrix T, whose elements are defined by Equation (7-5), is identical to PAA. It is 

also clear that the quantities 

(efs^z) 

are simply the components of the J vector 

PAAZA   +   PABZB  =   PAAY 

Thus, 

£  (•zV1ei)Aij(e}s-1z) = ytpAAy = y'f'y , 
i.J-1 

and hence, according to Equation (7-16), the LR test becomes 

I =    1 + (Z
t
tS;lz)    > <0 , (7-26) 

1 + (zBSBBzB) 

a direct generalizaton of Equation (3-20). 
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Application of the factorization identity expressed by Equation (7-24) yields the 
form 

(vV1^  > lQ - 1 

for the LR test. Since the left side of this equation is identical in structure to the 

quantity £(J, K + J-N), already studied in Section 5, we can apply the results of that 

section directly to obtain the performance of the generalized LR test in terms of its 
PD and PFA. 

We must retain the conditioning on the B components at first, so that v will be 

Gaussian, with expected value given by Equation (7-21). The conditional probability of 
detection will then be given by Equation (5-24), with the following parameter assign- 

ments: 

ff = J 

£ =   K + l-N = L + l-J 

c= \bfk2
pp 

* = '0-! (7-27) 

We define the signal parameter 

a^lbfAj; (7"28) 

which is consistent with our former definition, Equation (4-19), since the present situ- 

ation corresponds to 0 = 0. Substituting, we obtain for the conditional probability of 

detection 

•*» • » - J £,(m)«0-»mG^-(h) (7'29' 

According to Equations (7-23) and (5-34), the PDF of the present loss factor p will 

be simply 

f(p) = f(p;N-J,K,0) = fp(p;K + l + J-N,N-J) = f^(p;L + l,N-J) , 
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since there are no signal components in the secondaries in this problem. If we wished 

to extend the present analysis to the mismatched case, we would postulate the pres- 

ence of a signal in the primary vector which would have a component outside the 

signal subspace. The effect would be to add a signal to zB in the present context, and 

then the PDF of the loss factor p would be given by the more general form of Equa- 

tion (5-34), with an appropriate value for the signal parameter c. 

The computation of the detection probability of the generalized LR test is com- 

pleted by the removal of the conditioning, which again is confined to the loss factor. 
The result is 

^l-^£(>o-0'"Hm+1_J(A), (7-30) 
f-0   m 

where 

i 

Hm(y) S J Gm(py)f^p;L + l,N-J)dp (7"31) 

and, of course, 

L =   K + J-N 

The corresponding PFA is obtained by putting a = 0. Since Gm(0) = 1, Equation (7-31) 

gives H   (y) = 1, and the PFA becomes 

lQ m = 0 v     ' 

When J = l, this PFA is a single term, already given by Equation (4-26). Equation (7-30) 

reduces immediately to Equation (4-23) when J = l, and Equation (7"31) is the same as 
Equation (4-24) when the appropriate PDF is used for the loss factor in that equation. 

This loss factor will correspond to the absence of signals in the secondaries, i.e., 8 = 0. 

Expressions suitable for numerical computation of the detection probability, both for 

the problem analyzed in this section and the general problem addressed in Sections 3, 

4 and 5, are given in the Appendix. 
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8. SUBSPACE SIGNALS; NUMERICAL RESULTS AND DISCUSSION 

In the problem of detecting a signal which is hypothesized to lie in a subspace of 

the observation space, the basic parameters are the assigned PFA, the signal strength 

SNRpp, and the dimensionality of the subspace J. This signal strength parameter was 

defined in Equation (6-1) as the "available SNR," and it is the only SNR parameter 

required in the present instance, since the actual signals have been assumed to lie 

within the specified subspace. In other words, there is no analog of the 6 parameter. It 

should be kept in mind that a subspace of the N dimensional observation space does 

not correspond to a subset of directions of arrival of signals in real space, except in 
very special cases. 

An explicit formula for the detection probability is derived in the Appendix. It is 

simpler than the analogous formula for the mismatch problem, because the loss fac- 
tor PDF in the present case is a simple Beta distribution. Detection performance is 

illustrated in Figure 8-1, which shows PD as a function of SNR for the case N = 4 and 
K= 20. The curves are parametrized by all possible values of J. 

When J = 4 the "subspace" is the entire observation space, and the decision rule 
becomes a test between the hypothesis that the primary sample vector has expected 

value zero and the hypothesis that its expected value is any non-zero vector. No sig- 

nal structure is postulated in this case but the total interference is still modeled as 
having zero mean and unknown covariance. We note that at the 0.9 level of detection 

probability, the penalty for using this more general hypothesis (i.e., J = N) is slightly 
more than 1 dB, in the case illustrated in Figure 8-1. 

Such a test could be useful in a rapid search for signal energy in a situation 

where signals are expected to be scarce. It could then be followed up with more con- 
ventional tests in those antenna pointing directions for which signals were found. The 

general subspace test, of course, gives no indication of the direction of a detected sig- 

nal within the designated subspace. 

A similar family of surves is presented in Figure 8-2 for the case of a 

20-dimensional subspace, using 100 secondary vectors. Selected values of J have been 

chosen for the curves. The penalty (at a PD of 0.9) of testing for a totally unstruc- 

tured signal is now about 3 dB. 

To understand the operation of the LR test in this application, we recast the 

decision rule, using the inner product notation introduced in Section 6. Equa- 

tion (7-10), which expresses this rule, can then be written 

69 



1.0 

PD 0.5    - 

PFA = io-6 

J    VALUES: 

A 1 

B 2 

C 3 

D 4 

0   ' I ' 
5 

SNR (dB) 

Figure 8-1. Subspace signal probability of detection; N = 4 and K = 20. 

K + [z,z] 

K + [z,z] - £ [z.ejiAyfej.z] 

>  in  - 
(8-1) 

where the ej represent an arbitrary linearly-independent set of vectors whose span is 
the desired subspace. From their definitions we also have 

±A= (Krr1 
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Figure 8-2. Subspace signal probability of detection; N = 20 and K = 100. 

It is easy to show that the double sum 

i  T eA-e* 
K 

>.j = l 
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is a projection operator into the subspace, and that the corresponding term in Equa- 

tion (8-1) is the norm of that component of z which lies in this subspace. Approaching 

this by a different route, we introduce a new set of vectors to define the subspace, by 

means of a linear transformation on the ej, chosen so that the new vectors form an 

orthonormal set. As pointed out in Section 7 [see Equation (7-11)], the form of the LR 

test is unchanged by such a transformation. The matrix A, however, becomes K times 

the identity matrix in this special set of basis vectors, and the test itself becomes 

K + [z,z] 
x*     Cr 

' z -   ° " (8-2) 
K + [z,z]- Elfc.z]!2 

i=l 

«i-Eh.*». (8"3) 

Finally, we define the vector 

J 

I 
i=l 

which is the component of z in the subspace, and its orthogonal complement 

zx - z - z, . (8~4) 

These components are simple generalizations of the quantities given these names in 

Section 6. With the help of this notation, we see that the LR test can now be written 

in the identical form which was found in Section 6, namely: 

[Z,I'Z||] >  K«o-D • (8-5) 
1 +  ^[zi.zj 

If K is allowed to increase without limit, the LR test passes over into the test 

J 

2_. ||?i. z]r >   constant , 
i=l 

or 
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J 

£ \(e\Wlz)f>  constant (8_6) 
i=l 

in the original notation. The ej here are orthonormal basis vectors of the subspace. 

This asymptotic test has a simple significance. Each term in the sum is the deci- 

sion statistic for the detection of a signal in the direction of a basis vector, and the 

final test is a noncoherent summation of these quantities. This makes good sense as a 

way of testing for a signal whose structure only places it in a subspace, and the LR 

test for finite K is a CFAR version of this principle which operates with unknown 
interference. 

One expects the noncoherent combination to bring with it a performance pen- 
alty, just as does conventional noncoherent integration with respect to coherent inte- 

gration. In the present case, where a performance penalty is already being paid for 
interference estimation and CFAR operation, it appears that the additional penalty for 

a broadening of the signal hypothesis is not great. A somewhat similar situation 

arises with fluctuating targets of a more familiar kind, namely that noncoherent 

integration is more efficient than with nonfluctuating targets, since the fluctuation 
loss is being overcome at the same time. In our case, the loss factor represents a kind 

of fluctutation phenomenon, and perhaps this explains the modest loss associated 

with subspace detection. 
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APPENDIX: EVALUATION OF THE PROBABILITY OF DETECTION 

The probability of detection for the generalized problem of Section 7 was given in 
the form 

Pc^-^iOo-irH^). (A-D 
to  rn = J  v     ' \ U / 

where 

L =   K + J-N, 

a is the signal parameter, and 

l 

Hm(v)= jGm(py)f(p)dp. (A-2) 

o 

In this integral, f(p) is the loss factor PDF and 

m-l      k 

E 
k=0 

The corresponding PFA is 

J-i 

m-i       K 

«mw - •-' E h. (A"3) 

PFA x E(i )<*,-*•. (A-*) 
*0  m = 0  v 

In the problem of detecting a signal hypothesized to lie in a subspace, we assumed 

that the actual signal conforms to this hypothesis. In that case, the signal parameter 

is 

a = \bfkZ
p = |bfVM_1p). (A"5) 
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The actual interference covariance matrix is taken to be M, the unit vector p is in 

the direction of the actual signal, and b is a complex signal amplitude. 

Fbr the problem of the mismatched signal (discussed in Sections 3, 4, and 5), the 
signal parameter is 

a=|bpA2
Dcos20=|bPl(q'M"lp)P, (A-6) 

P (q'M-'q) 

where q is the steering direction and p is again a unit vector in the direction of the 

actually arriving signal. In this case we also have J = 1, hence the detection and false 

alarm probabilities are 

*n   m=l x u ' 

and 

PFA =   -V , (A-8) 
<0 

where now 

L =   K + l-N. 

It is a simple matter to solve Equation (A-8) for the threshold, given the false 

alarm probability. For the subspace problem, however, Equation (A-4) must be 
inverted, and this can be accomplished by means of the Newton-Raphson iteration. 

The threshold obtained by first solving Equation (A-8) can be used as a starting value. 

The iteration itself requires the derivative of PFA with respect to the threshold 

parameter, and this is given by the formula 

dPFA _ L    /L-l\,.      .xd-l) 
dlQ 

"0 

which can be verified in a straightforward manner, making use of the binomial iden- 

tity given in Equation (5-26). 
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To proceed with the evaluation, we substitute Equation (A-3) in Equation (A-2), 

and make a change of the variable of integration, replacing p by 1 - p. The result is 

m-l      k m-i       K    p 
Hm(y)= E h K^f(p)P

kdp 
k=0   K    J k=0        0 

m-l      k 

k=o  K 

where the new functions are 

1 

Jk(y)= JVyf(l-p)(l-p)kdp. (A-10) 

o 

The change of variable is introduced to obtain a series of exclusively positive terms, 

which is important to ensure the stability of the numerical computation. The evalua- 
tion of detection probability can be carried out in a variety of ways, leading to very 

different expressions as multiple series. The method employed here, which is a direct 

generalization of that used in Reference 1, provides a practical basis for computation. 

If we define 

H0(y) - o , 

then Equation (A-9) is equivalent to the recursion relation 

Hm(v) = Hm.1(y) + •"* ^ J^y) . (A"n) 

which is easily programmed for computation. 

We proceed with the evaluation of the Jm(y). using the PDF of the general loss 

function derived in Section 5; 

f(p) = f(p;^.K,c) = e-' £ (*) ^/-l?# °S ****'"+* '        (A_12) 
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where 

£ =   K + l-JT 

and c is a signal parameter. This will provide answers to both problems by specializa- 

tion of the parameters. For the mismatch problem, we have 

Jf =   N-l 

£ =   K + 2-N =   L + l 

c = IbpApSin^G , (A-13) 

while for the generalized problem of Section 7, we must put 

X =   N-J 

£ =   K + l + J-N =   L + l 

c = 0 . (A-14) 

We substitute Equation (A-12) in Equation (A-10): 

X ' 
-C 

= e W*^y\^'^+*^->ri> s = 0 Q 

In the second line we have made use of an obvious symmetry of the Beta distribu- 

tion. Next we substitute the definition of this Beta function, and absorb the power of 

1 - p into a new Beta function, with the result 

. l 

-e^ (£\   (^V + ^-l)!(^-l + m)!     sf   piy+c) m . 

s-0 0 
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By expanding the exponential, integrating term by term and recognizing the 

result as a hypergeometric function, one easily obtains the formula 

e p f^(p;n,m)dp = ^[njn + mjz] 

This is a well known integral representation for the confluent hypergeometric func- 

tion (see Reference 7), which appears here as a moment generating function for the 

Beta distribution. Applied to Equation (A-15), we obtain the desired result 

Uy) - a •E(;);t,.u':^(,_V5 1P1[r+.:jr+*+m+.;y+o]       (A-16) 

When the signal parameter vanishes, this formula simplifies to one term: 

The detection probability formula derived in Reference 1 agrees with Equation (A-17), 

when the parameter assignments of Equation (A-13) are used, since the analysis of 

that reference did not include signal mismatch. 

When the signal amplitude becomes very large, both y and c tend to infinity, and 

the asymptotic approximation for the confluent hypergeometric function (Refer- 

ence 7) can be applied to Equation (A-16). The result is that 

e-yLj   (y) - fr + "»-fl       y1"** (A-18) 
m!   mKy)        m!(tf-l)!    (y + c)* + m ' 

in this limit. This formula has been used to obtain the asymptotic detection curves 

that appear in Section 6. Equation (A-18) can also be obtained by first evaluating the 

asymptotic form of the loss factor PDF, going back to Equation (5-27). Retaining only 
the term va-£ in that series, and substituting in Equation (A-10), the same expression 

for Jm(y) can be derived. 

Equations (A-l), (A-9), and (A-16) or (A-17) are the basis for the evaluation of the 

detection probability curves of Sections 6 and 8. In the confluent hypergeometric 
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functions, the second argument exceeds the first, which results in monotonically 

decreasing coefficients in these series. It is then easy to obtain truncation bounds, in 

close analogy to the work of Shnidman8 on the Marcum Q-function. Shnidman's tech- 

nique for coping with underflow has also been found necessary here, to get answers 

for a wide range of the parameters. 

80 



REFERENCES 

1. E.J. Kelly, "Adaptive Detection in Non-Stationary Interference, Part I 

and Part II," Technical Report 724, Lincoln Laboratory, MIT (25 June 

1985), DTIC AD-A158810. 

2. DM. Boroson, 'Sample Size Considerations for Adaptive Arrays," IEEE 

Trans. Aerosp. Electron. Syst. AES-16, 446 (1980). 

3. I.S. Reed, J.D. Mallett, and L.E. Brennan, "Rapid Convergence Rate in 

Adaptive Arrays," IEEE Trans. Aerosp. Electron. Syst. AES-10, 853 

(1974). 

4. M.D. Springer, The Algebra of Random Variables (Wiley, New York, 

1979). 

5. Private communication. 

6. E.J. Kelly, "Finite-Sum Expressions for Signal Detection Probabilities," 

Technical Report 566, Lincoln Laboratory, MIT (20 May 1981), 

DTIC AD-A102143. 

7. E.T. Copson, An Introduction to the Theory of Functions of a Com- 

plex Variable (Oxford University Press, London, 1935). 

8. DA. Shnidman, "Efficient Evaluation of Probabilities of Detection and 

the Generalized Q-Punction,"  IEEE Trans. Inf. Theory IT-22, 746 (1976). 

81 



UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 

1a. REPORT SECURITY CLASSIFICATION 

Unclassified 

1b. RESTRICTIVE MARKINGS 

2a. SECURITY CLASSIFICATION AUTHORITY 

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE 

3. DISTRIBUTION/AVAILABILITY OF REPORT 

Approved for public release; distribution unlimited. 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 

Technical Report 761 

5. MONITORING ORGANIZATION REPORT NUMBER(S) 

ESD-TR-86-090 

6a. NAME OF PERFORMING ORGANIZATION 

Lincoln Laboratory, MIT 

6b. OFFICE SYMBOL 
(If applicable) 

7a. NAME OF MONITORING ORGANIZATION 

Electronic Systems Division 

6c. ADDRESS (City, State, and Zip Code) 

P.O. Box 73 

Lexington, MA 02173-0073 

7b. ADDRESS (City, State, and Zip Code) 

Hanscom AFB, MA 01731 

8a. NAME OF FUNDING/SPONSORING 
ORGANIZATION 

Air Force Systems Command, USAF 

8b. OFFICE SYMBOL 
(If applicable) 

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

F19628-85-C-0002 

8c. ADDRESS (City. State, and Zip Code) 

Andrews AFB 

Washington, DC 20334 

10. SOURCE OF FUNDING NUMBERS 

PROGRAM 
ELEMENT NO. 

63250F 

PROJECT 
NO. 

227 

TASK 
NO. 

WORK UNIT 
ACCESSION NO 

11. TITLE (Include Security Classification) 

Adaptive Detection in Non-stationary Interference, Part III 

12. PERSONAL AUTHOR(S) 

Edward J. Kellv 

13a. TYPE OF REPORT 

Technical Report 

13b. TIME COVERED 

FROM TO . 

14. DATE OF REPORT (Year, Month, Day) 

1987, August, 24 

15. PAGE COUNT 

92 

16. SUPPLEMENTARY NOTATION 

None 

17 COSATI CODES 

FIELD GROUP SUB-GROUP 

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 

adaptive detection 

maximum-likelihood estimation 

statistical hypothesis testing 

19. ABSTRACT (Continue on reverse if necessary and identify by block number) 

The analysis of Parts I and II of the report with this title has been extended in two directions. In the first case, the 

performance of an adaptive system with respect to signals arriving from directions other than the steering direction is 

evaluated. It is shown that these signals are rejected more strongly than would be suggested by the sidelobe levels of 

the adaptive patterns themselves. In the other case, the detection problem is generalized to include the detection of 

signals known only to lie in a subspace of the space of steering vectors. Again, performance is derived and the penalty 

associated with the greater uncertainty of the signal model is shown to be small. The analysis of Part I is essentially 

repeated here, both to keep this report self-contained and to present an alternative version of the basic derivations. 

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 

D UNCLASSIFIED/UNLIMITED       E SAME AS RPT. D DTIC USERS 

21. ABSTRACT SECURITY CLASSIFICATION 

Unclassified 

22a. NAME OF RESPONSIBLE INDIVIDUAL 

Maj. Thomas J. Alpert, USAF 

22b. TELEPHONE (Include Area Code) 

(617) 863-5500, x-2330 

22c. OFFICE SYMBOL 

ESD/TML 

DD FORM 1473, 84 MAR 83 APR edition may be u*ed until exhausted. 

All other »ditioni are obsolete. 
UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE 


