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ABSTRACT To address problems that the loss function does not correlate well with perceptual vision

in super-resolution methods based on the convolutional neural network(CNN), a novel model called the

ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network.

Combined with global perception and the local structure adaptive method, spatial loss based on the diagonal

variation model is proposed to make the loss function can be adjusted according to the spatial features. Pixel

loss and characteristic loss are in combination with the spatial loss for the fusing optimization of the total

loss function such that high-frequency details of the images are maintained to improve their quality. The

results of experiment show that the proposed method can obtain competitive results in objective evaluations.

In subjective assessment, images reconstructed by it are clear, delicate, and natural, and it preserved edge-

and texture-related details.

INDEX TERMS Generative adversarial network, super-resolution imaging, image reconstruction, total

variation, loss function.

I. INTRODUCTION

Methods to reconstruct super-resolution images can be

classified into five categories. The first consists of interpo-

lation methods [1] that estimate the pixel values of interpo-

lation points by using information on the neighborhood of

known pixel points. The cons of interpolation methods is

that although they have very less complexity, however, poor

selection of neighboring pixels for interpolation often leads

to the creation of artifacts [2]. The second consists of two-

step upscaling methods [3] that apply simple interpolation

methods in first stage to upscale the image followed by

edge refinement to reduce the artifacts created due to the

first stage interpolation. The issue with such methods is that

they often over-smooth the edges during refinement process.

Especially, for interpolation with large scale, they convert the

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy .

pointy edges into curves. The third consists of reconstruction

methods [4] that establish an observation model and solve it

using the inverse process to implement image reconstruction.

Because the degradation of images is complex and diverse,

it is difficult to define for humans to comprehensively define

the observation model. With the increase in the magnifica-

tion of images, the effects of restoring them are not ideal.

The fourth class of methods to reconstruct super-resolution

images is exemplified in the proposal in [5], which can extract

the non-linear mapping between LR-images and HR-images.

However, the effect of such methods remains poor in terms of

the magnification factor and complex scenes, and is further

limited by their poor capabilities of extraction and represen-

tation. The fifth class consists of deep learning methods [6]

that can compensate for the lack of representation ability of

shallow learning, has better generalization ability, and can

better deal with complex image features than other meth-

ods. Deep learning methods based CNN are first introduced
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in super-resolution field. The pioneer study is proposed by

Dong et al. [7] which is named as SRCNN. It uses only three

layers of the CNN to fit the non-linear mapping and feature

transformation. To accelerate the model, Dong et al. [8]

propose the FSRCNNmodel, which uses a small convolution

layer to replace the large one in SRCNN. A lot of effec-

tive improvements over the CNN-based methods have been

proposed to raise the performance of super-resolution ever

since [9], [10]. However, those methods commonly encounter

problems concerning image smoothing, step effects, insuffi-

cient expressive accuracy of textural features, and distortion

in case of high magnification.

With the emergence of the generative adversarial network

(GAN) [11], its powerful capability to generate realistic tex-

ture provides a new solution for super-resolution imaging.

To overcome those problems in CNN-based methods and

further improve the perceptual quality of the reconstructed

image, a novel model called the ADTV-SRGAN is designed

based on the adaptive diagonal total-variation generative

adversarial network. It employs pixel loss, characteristic

loss, spatial loss, and adversarial loss to recreate realistic

details and avoid the phenomenon whereby the use of mean

square error(MSE) based loss function leads to the excessive

smoothing of image texture. The main contributions of this

paper are as follows:

1. A multi-loss ensemble is used to produce visually satis-

factory super-resolution results with the combination of pixel

loss, characteristic loss, spatial loss, and adversarial loss,

which can obtain a balance between objective evaluation and

perceptual quality.

2. A new adaptive model based on diagonal total varia-

tion is proposed to keep high-frequency texture details and

achieve better results.

3. A novel strategy is introduced to improve the perfor-

mance of super-resolution based on GAN coupled with the

total-variation based model.

II. RELATED WORK

At present many CNN-based methods have been proposed by

researchers to solve super-resolution problems. Shi et al. [12]

propose ESPCN-based super-resolution method that uses

sub-pixel convolution to extract features directly. Aiming

at problems as slow convergence and inability to perform

multi-scale tasks, Kim et al. [13] propose the VDSR-based

super-resolution method that uses a residual network ResNet

to train a deeper super-resolution network model to achieve

higher accuracy. In light of problems in sample learning

in complex mapping, Lai et al. [14] propose LapSRN-

based super-resolution method combining anti-convolution

and residual learning. It uses the Laplacian pyramidal struc-

ture and hierarchical upper-sampling method to complete

high multiple learning, using two-times sampling each time

for super-resolution imaging through gradual sampling and

step-by-step prediction of the residuals. It achieves a good

perceptual reconstruction effect. Chen et al. [15] propose

a GuideAE-based method for super-resolution imaging that

combines a statistical model and the auto-encoder network to

restore the image.

The above methods mostly use MSE-based loss for

training to obtain a high value of quantitative metrics.

While MSE-based loss function can be easy to opti-

mize, it often fails to target a diversity of image features

and struggles to accurately restore image detail [16]–[19].

As a result, the super-resolution image obtained is poor.

In particular at high magnification, visual perception is

prone to distortion. To overcome such issues, GAN for

image super-resolution has attracted more and more atten-

tions. Recently, GAN-based super-resolution methods such

as SRGAN [20], EnhanceNet [21], PESRGAN and ISR-

GAN [23] have been proposed for generating better

perceptual quality. Ledig et al. [20] introduce GAN into

super-resolution for the first time, and proposed SRGAN

method. SRGAN focuses on the use of adversarial and per-

ceptual loss to enhance a realistic texture of super-resolution

images that are consistent with our understanding of visual

perception. Sajjadi et al. [21] propose EnhanceNet by using

GAN with the concept of fully covolutional neural net-

works in the adversarial training. EnhanceNet introduces an

additional texture loss in combination with adversarial and

perceptual loss for better realistic textures. Vu et al. [22]

propose PESRGAN by using a relativistic discriminator in

the adversarial training. PESRGAN uses relativistic loss

function in combination with content loss and total variance

loss to improve the super-resolution quality. Chudasama and

Ulpa [23] propose ISRGAN by using GAN with the concept

of densely connected deep convolutional networks to recover

the high-frequency texture details. Instead of relying only

on MSE-based loss, ISRGAN is trained by the combina-

tion of of VGG based perceptual loss and adversarial loss.

To further improve the quality of super-resolution images,

inspired by adaptive total variation [24], [25] and diagonal

total variation [26], [27] model to take full advantage of

directional information of edges and textures, a novel strategy

is introduced to improve the performance of super-resolution

based on GAN coupled with the total-variation based model.

Furthermore, a new adaptive model based on diagonal total

variation is proposed to keep texture details. Combined with

pixel loss characteristic loss and adversarial loss, the spatial

loss based on the diagonal total-variation model is introduced

to optimize the loss function adaptively adjusted according

to the spatial features. The multi-loss ensemble can help

the ADTV-SRGAN model preserve more high-frequency

details and achieve better qualitative and quantitative

super-resolution

performance.

III. ADTV-SRGAN METHOD

The key framework of ADTV-SRGAN consists of two mod-

els, the generative model G for generating high-resolution

images to fool the discriminative model, and the discrim-

inative model D that identifies whether the input images

are produced by the generative model or obtained from
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FIGURE 1. The schematic process of training the ADTV-SRGAN.

high-resolution samples. The adversarial learning is finished

until the discriminative model cannot distinguish between

generated image and the real sample. The architecture

of ADTV-SRGAN is derived from SRGAN, but the loss

function is different from it, and this is also the major

improvement. The generative and discriminative network of

ADTV-SRGAN are the same structure as that of the SRGAN

except the loss function. As shown in Figure 1, ADTV-

SRGAN is trainedwith amulti-loss ensemblewith the combi-

nation of pixel loss LSRPix , characteristic loss L
SR
Vgg, spatial loss

LSRSpa, and adversarial loss L
SR
Adv, which are described in details

separately in the following subsections.

The goal of optimizing the generative modelG is to enable

the generated image G(ILR) to approach the HR-image IHR,

and that of the discriminative model D is to distinguish it

from IHR. The optimization is a process of a minimax game

involving the two models, where the function V (D,G) is as

follows:

V (D,G) = min
θG

max
θD

EIHR∼ptrain(IHR)
[logDθD (I

HR)]

+ EILR∼pG(ILR)
[log(1 − DθD (GθG (I

LR)))] (1)

where θG and θD are the parameters of the networks of the

generative model and discriminative model, respectively. To

train the SR-image ISR using the LR-image ILR, it is neces-

sary to solve for the optimal generation model parameters θ̂G
as follows:

θ̂G = argmin
θG

1

N

N
∑

n=1

LSR
(

GθG

(

ILRn

)

, IHRn

)

(2)

where LSR is total loss that determines whether the generative

model can generate super-resolution images similar to the real

samples. It contains pixel loss, characteristic loss, adversarial

loss, and spatial loss. To retain textural details and ensure

that the generative image is more real, this paper introduces

spatial loss LSRSpa based on the adaptive diagonal total-variation

model, so that it can be adjusted according to the spatial struc-

ture of the image. The new pixel loss LSRPix and characteristic

loss LSRVgg are used to implement the fusion optimization of

total loss LSR:

LSR = LSRPix + LSRVgg + LSRAdv + LSRSpa (3)

A. PIXEL LOSS

Pixel loss is used to assess the consistency of content between

the HR-image and the real sample. Traditional CNN-based

methods of reconstruction mostly use pixel loss based on the

MSE, which causes the reconstructed image to be too smooth

and appear unrealistic. Lai et al. [14] proposed the Charbon-

nier loss which is a differentiable variant of L1 loss [28], [29].

To improve such details as the edges and contours of the

reconstructed image, pixel loss uses Charbonnier loss to

replace the MSE-based content loss function in SRGAN. The

pixel loss LSRPix is calculated as follows:

LSRPix =
1

N

N
∑

n=1

√

(

GθG

(

ILRn
)

− IHRn
)2

+ ε2 (4)

where GθG(I
LR
n ) is the generated HR-image and IHRn the real

sample. ε(0 < ε < 1) is the constant term of the Charbonnier

penalty. Following approach [14], ε is empirically set to be

0.001 in this paper.

B. CHARACTERISTIC LOSS

Characteristic loss is used to assess semantic similar-

ity between the HR-image and the real sample. John-

son et al. [17] propose the perceptual loss to provide

edges preserved possible solutions. Most traditional deep

learning-based methods of reconstruction use layer 4 of the

pre-trained VGG [17] network to extract feature maps. Fea-

tures extracted by the VGG-16, which is an image classifi-

cation network, can help retain the contours of edges of the

image, but the effect of the reconstruction of local textural

details is not realistic by adopting low-level feature maps.

In accordance with recent approaches [18], [19], [30], [31],

it can obtain better texture details using the high-level

VGG perceptual features compared to low-level perceptual

features. To extract more hierarchical semantic character-

istics and recover closer textures to the original high-

resolution image, following approach [31], this paper uses

layer 13 of the pre-trained VGG-16 network, and calculates

the Euclidean distance of high-level features as characteristic

loss, which is more global and invariant. The characteristic

loss LSRVgg is calculated as follows:

LSRVgg=
1

Si,jHi,j

Si,j
∑

x=1

Hi,j
∑

y=1

(

φi,j

(

IHR
)

x,y
−φi,j

(

GθG

(

ILR
))

x,y

)2

(5)

where φi,j is the feature mapped to the j-th convolution layer

in front of the i-th pooling layer. Si,j and Hi,j respectively

represent the length and width of the feature map.

C. ADVERSARIAL LOSS

Adversarial loss [20] represents the probability that the gen-

erated HR-image is a real sample given by the discriminative
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model. Adversarial loss LSRAdv is the cross-entropy:

LSRAdv =

N
∑

n=1

− logDθD

(

GθG

(

ILR
))

(6)

whereDθD (·) is the probability that an image is a real sample

and GθG

(

ILR
)

is the generated HR-image.

D. SPATIAL LOSS

Spatial loss is based on the total-variation model [32], [33]

to reconstruct an image that maintains features of the edges

and texture to the greatest extent. The total-variation model is

a classic model in image restoration that exhibits good edge

retention characteristics [24]–[27]. Details of the image can

be preserved while smoothing. The total-variation model is

as follows:

T (x) =

H
∑

i=1

W
∑

j=1

∣

∣∇i,jx
∣

∣ =

H
∑

i=1

W
∑

j=1

√

(

∇
p
i,j

)2
+

(

∇
q
i,j

)2
(7)

where W andH are image width and height, respectively.∇
p
i,j

and∇
q
i,j represent the gradient of pixel xi,j along the horizontal

and vertical sides, respectively, and ∇
p
i,j and ∇

q
i,j satisfy the

following equations:

∇
p
i,j = xi,j+1 − xi,j, ∇

q
i,j = xi+1,j − xi,j (8)

Because the total-variation model considers only the gra-

dient of pixels on the two sides, it is easy for the ladder effect

to occur. Therefore, combined with the diagonal information

of the pixels, the diagonal total-variation model is proposed

as follows:

DT (x) =

H
∑

i=1

W
∑

j=1

∣

∣∇i,jx
∣

∣

=

H
∑

i=1

W
∑

j=1

√

(

∇
p
i,j

)2
+

(

∇
q
i,j

)2
+

(

∇r
i,j

)2
+

(

∇k
i,j

)2

(9)

where ∇r
i,j and ∇k

i,j represent the gradient of pixel xi,j in the

two diagonal directions, respectively, and ∇r
i,j and ∇k

i,j satisfy

the following equations:

∇r
i,j = xi+1,j − xi,j+1, ∇

k
i,j = xi+1,j+1 − xi,j (10)

The diagonal total-variation model balances the influence

on all sides of the pixel points, and can overcome the step

effect and protect details of the edges in the image while

smoothing it. To enable the spatial loss to control the intensity

of constraints on the diagonal total-variation at the pixel

points, the indicator of difference curvature [34], [35] is used

to distinguish the edge region from the flat region of the

image. Spatial loss can thus be adjusted according to the

structure of the image. The difference curvatureCi,j is defined

as follows:

Ci,j =
∣

∣

∣

∣uηη

∣

∣ − |uεε|
∣

∣ (11)

uηη =
µ2
xµxx + 2µxµyµxy + µ2

yµyy

µ2
x + µ2

y

(12)

uεε =
µ2
yµxx − 2µxµyµxy + µ2

xµyy

µ2
x + µ2

y

(13)

where uηη and uεε represent the second derivatives along

the directions of the gradient and the vertical gradi-

ent, respectively. |.| represents the absolute value, and

µx , µy, µxy, µxx , µyy represent the first and second deriva-

tives of the gradient information of pixel points. For the edge

region,
∣

∣uηη

∣

∣ is large and |uεε| is small. Ci,j is thus large

in the edge region. For the flat region,
∣

∣uηη

∣

∣ and |uεε| are

small. Ci,j is thus small in the flat region. The value of Ci,j
can distinguish regions occupied by edges from flat regions.

The difference curvature can be used to build the weight of

spatial information Wi,j that can be adjusted adaptively and

dynamically.Wi,j is defined as follows:

Wi,j =
1

1 + βCi,j
(14)

where β is a constant. In areas occupied by edges, the value

of Ci,j is large, and the adaptive value of the weight of spatial

information Wi,j is small. Thus, to better maintain details of

edges of the image, in flat areas, the value of Ci,j is small

and the adaptive value of the weight of spatial information

Wi,j is large. This ensures that the generated HR-image and

the real sample do not exhibit large deviations in detail. The

adaptive diagonal total-variation model and spatial loss are as

follows:

ADT (x)

=

H
∑

i=1

W
∑

j=1

∣

∣∇i,jx
∣

∣

=

H
∑

i=1

W
∑

j=1

Wi,j

√

(

∇
p
i,j

)2
+

(

∇
q
i,j

)2
+

(

∇r
i,j

)2
+

(

∇k
i,j

)2

(15)

LSRSpa

= ADT (GθG

(

ILRxi,j

)

) (16)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. TRAINING DETAILS

The experiment uses the framework of TensorFlow GPU.

The experimental hardware environment included aXeon E5-

2600 2.1 GHz six-core processor with 32 GB of memory, and

an NVIDIA Tesla P4 (8G) graphics card. The experimental

software environment included a Ubuntu 16.04 Operating

System and the CUDA 8.0 Development Kit. The DIV2K

training set [19] is used in this experiment, and consisted

of 1,000 images, with 80% used for training, 10% for valida-

tion, and the remainder for testing. All these images contain

at least 2,040 pixels on the horizontal or the vertical axis.

Data enhancement solutions are also provided for the training

process, rotated images of the training set clockwise at 0◦,
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FIGURE 2. PSNR and SSIM of castle.png Reconstructed by different methods (3× upscaling). (a) SRCNN/25.93/0.8363;
(b) VDSR/26.96/0.8680; (c) LapSRN/26.95/0.8673; (d) GuideAE/26.98/0.8685; (e) SRGAN/26.91/0.8593; (f) ADTV-SRGAN/26.96/0.8690.

FIGURE 3. PSNR and SSIM of building.png reconstructed by different methods (4× upscaling). (a) SRCNN/25.00/0.7448;
(b) VDSR/25.26/0.7568; (c) LapSRN/25.28/0.7571; (d) GuideAE/25.30/0.7574; (e) SRGAN/25.24/0.7570; (f)ADTV-SRGAN/25.27/0.7576.

90◦, 180◦, and 270◦ and flipped them horizontally. This

enables to increase the number of training images to eight

times more than the original. Network training is performed

using the Adam optimizer [36], at a learning-rate 0.0001 and

20,000 iterations.

In equation (14), the parameter β is used to control the

weight of spatial information W . As shown in Table 1,

the effect of β on the super-resolution performance is com-

pared at a magnification factor of ×4 on the set5 dataset..

Different high and low values of β such as 0.01, 0.05,

0.2, 0,1, 0.5, 1 and 2 are used. It is found that a better

super-resolution performance in the peak signal-to-noise ratio

(PSNR) and structural similarity index measurement (SSIM)

can be obtained when β is set at 0.1. Therefore, β is empir-

ically set to be 0.1 in the paper. The PSNR and SSIM are

objective indicators of image quality. The PSNR reflects error

in the corresponding pixel points between images, where a

higher PSNR indicates less distortion. The SSIM reflects the

similarity between images, where a higher value indicates

that the SR-image is more similar to the HR-image. Methods

to calculate the PSNR and SSIM are provided in [37], [38].

B. COMPARISON WITH OTHER METHODS

To verify performance, benchmark sets Set5, Set14, BSD100,

and Urban100 are used, and the results are compared with

TABLE 1. Comparison of the effect of parameter β on the
super-resolution performance.

many methods to obtain super-resolution images, like the

SRCNN [7], VDSR [13], LapSRN [14], GuideAE [15], and

SRGAN [20]. The subjective perception of the visual effects

are used to judge the performance of the proposed method by

examining the characteristics of textural details of different

sample images subjected to different methods to reconstruct

super-resolution images. Figures 2–4 show a comparison

of the effect of image super-resolution on sample images

with magnification factors of 3×, 4×, and 8×, respectively.

From left to right are the ground HR-image, and images

reconstructed by the SRCNN, VDSR, LapSRN, GuideAE,

SRGAN, and ADTV-SRGAN. We partially enlarge the roof

of the castle, the window of the building, and the frame

of the curtain wall in the images. The SRCNN, VDSR,

LapSRN, and GuideAE methods based on the CNN are
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FIGURE 4. PSNR and SSIM of curtain.png reconstructed by different methods (8× upscaling). (a) SRCNN/21.20/0.5432;
(b) VDSR/21.68/0.5632; (c) LapSRN/21.78/0.5711; (d) GuideAE/21.81/0.5813; (e) SRGAN/21.70/0.5716; (f) ADTV-SRGAN/21.76/0.5815.

TABLE 2. Comparison of methods in terms of PSNR/SSIM.

generated smoother images in terms of visual effect than

the image reconstructed by methods based on the GAN,

where the edges exhibit a certain step effect, especially at

high magnification. For example, at a magnification factor

of 3×, edges are still visible in images generated using the

SRCNN, VDSR, LapSRN, and GuideAE. At a 4× magnifi-

cation, edges are barely visible in images reconstructed by

these methods, and become blurred at a magnification of 8×.

However, the SRGAN and ADTV-SRGAN of GAN-based

super-resolution methods are able to reconstruct higher-

frequency details in the images than othermethods. The edges

are clearer and complete in these images, especially at a

high magnification factor, and the improvement in the quality

of the reconstructed image is obvious. Compared with the

SRGAN, the proposed model ADTV-SRGAN uses global

perception and local structure adaptation, which enable the

loss function to adapt to the structure of the image space, and

lead to a more realistic visual effect than the SRGAN. Visual

deviation from the original sample is minimal, and better than

that attained by the SRGAN.

In the aspect of objective evaluation, as shown in Table 2, a

comparison in terms of PSNR and SSIM is made between the

ADTV-SRGAN, and the Bicubic [1], A+ [2], SRCNN [7],

VDSR [13], LapSRN [14], GuideAE [15], and SRGAN [20].

The parameters of these methods remain unchanged and

can be referred in the corresponding study. The average

PSNR and SSIM are obtained at magnification factors 3×,

4×, and 8×. The values of both indicators are higher for

deep learning-based methods than traditional methods, such

as Bicubic and A+, and the PSNR values of the VDSR,

LapSRN, and GuideAE are generally higher that of the

SRCNN. Although the SRGAN is more consistent in terms of

subjective effects with perceptions of human visual system,

it lags behind methods of super-resolution imaging based

on the CNN in terms of PSNR and SSIM. The proposed

ADTV-SRGAN method exhibits some advantages over the
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TABLE 3. Comparison of methods in terms of PI.

TABLE 4. Design of different combinations of loss functions.

SRGAN in terms of subjective visual effect and the objective

evaluation indexes. Although its scores of PSNR and SSIM

are not the highest on all datasets, it yields good results in

relation to the similarity indicators, and yields PSNR values

comparable to those of the VDSR, LapSRN, and GuideAE.

The subjective visual effects of its reconstructed images

are superior in terms of delicacy and naturalness. Because

GAN tends to focus on the perceptual quality, evaluation

index PSNR and SSIM cannot accurately measure its visual

effect [19]. It has been proved by [18] that the perception

index(PI) is more suitable for GAN-based super-resolution

assessments, where a lower PI indicates better perceptual

quality. Table 3 shows a comparison at magnification factor

4× in terms of PI is made between the ADTV-SRGAN,

FIGURE 5. Comparison in terms of SSIM of different combinations of loss
functions.

and the Bicubic [1], SRCNN [7], VDSR [13], SRGAN [20],

EnhanceNet [21], and PESRGAN [22]. Method to calculate

the PI is provided in [18]. From Table 3, ADTV-SRGAN

obtains the best quantitative results than other methods in

terms of PI, which the average value is 3.11, 0.21 and

0.32 less than that of VDSR, SRGAN and EnhanceNet sepa-

rately. The results demonstrate that ADTV-SRGAN signif-

icantly improves the perceptual quality of super-resolution

images.

C. COMPARISON OF DIFFERENT LOSS COMBINATIONS

To assess the loss function, verification models of different

loss functions are designed. As shown in Table 4, pixel loss,

characteristic loss, adversarial loss, and spatial loss are com-

bined in different ways. To assess spatial loss based on the

adaptive diagonal total-variation model, LSRSpa−TV is specially

designed in the experiment.

The results are shown in Figure 5. The PVA-ADTV

model combined with pixel loss, characteristic loss, adver-

sarial loss, and spatial loss, and based on the adaptive

diagonal total-variation model obtained the highest SSIM

in the training epochs, followed by spatial loss based on

the total-variation model. This shows that the PVA-ADTV

model can be adjusted adaptively to the spatial features to

improve reconstruction capability. The loss convergence of

the ADTV-SRGAN is shown in Figure 7. It can be seen

that the loss of ADTV-SRGAN is decreasing steadily until
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FIGURE 6. Comparison of visual quality of different combinations of loss
functions.

FIGURE 7. The loss convergence of the ADTV-SRGAN.

convergence is finished and provides better convergence

property than SRGAN.

To further compare the capability of different combinations

of loss function, Figure 6 shows a comparison of their visual

quality. It is clear that the PA model lacked a sufficient

number of high-frequency features, and the edge contours of

reconstructed image are the most fuzzy. The PVAmodel uses

characteristic loss and retains the high-frequency features of

the edge contours, but its overall visual effect is not clear. The

PVA-TV model uses spatial loss based on the total-variation

model to preserve details of the images. The PVA-ADTV

model applies spatial loss based on the adaptive diagonal

total-variation model, and yields the clearest and most natural

high-frequency features to yield a more realistic subjective

visual effect.

D. COMPARISON OF COMPUTATIONAL COMPLEXITY

The computational complexity [40] of the proposed

ADTV-SRGAN model is compared with the SRCNN [7],

VDSR [13], LapSRN [14], GuideAE [15], and SRGAN [20].

The theoretical complexity of ADTV-SRGAN is

O
(

∑D
l=1MlKlCl−1Cl

)

, whereD is the depth of the proposed

model, l is the l-th layer, M is size of feature map and

K is the kernel size, C is the number of feature maps.

Table 5 shows the number of network layers, parameters,

run time, and experimental results at a magnification factor

of ×4 on the set5 dataset. The run time is the average time

for the super-resolution reconstruction for all images in set5.

Table 2 shows that the SRCNN method is the fastest because

it has the simplest network architecture and the fewest net-

work layers, whereas the VDSR, LapSRN, and GuideAE

contained deeper network convolution layers, which slow

TABLE 5. Comparison of computational complexit.

down computation. Because the SRGAN and ADTV-

SRGAN use the network architecture of the GAN, they

are slightly slower than GuideAE. However, the proposed

method yields higher values of the PSNR and SSIM than the

SRGAN. Thus, theADTV-SRGANcan significantly improve

the quality of the reconstructed image without excessive loss

of speed, which verifies its feasibility.

V. CONCLUSION

To solve the problems of an excessively smooth image with

insufficiently precise details of the edges and texture, and

distorted visual effects at high magnification in reconstruct-

ing super-resolution images, a model based on the adaptive

diagonal total-variation generative adversarial network is pro-

posed by combining the GAN and the total-variation model.

Spatial loss based on the diagonal total-variation model is

introduced to adjusted the loss function according to the spa-

tial features, and pixel loss and characteristic loss are used for

the fusion optimization of total loss. Through comparisons of

various aspects of performance in experiments, it is clear that

the proposed method can fully restore the textural features

of images, maintain high-frequency details while improving

the image quality, and can better reconstruct super-resolution

images.
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