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ABSTRACT Automatic identification system (AIS) is an important part of perfecting terrestrial networks,

radar systems and satellite constellations. It has been widely used in vessel traffic service system to improve

navigational safety. Following the explosion in vessel AIS data, the issues of data storing, processing, and

analysis arise as emerging research topics in recent years. Vessel trajectory compression is used to eliminate

the redundant information, preserve the key features, and simplify information for further data mining, thus

correspondingly improving data quality and guaranteeing accurate measurement for ensuring navigational

safety. It is well known that trajectory compression quality significantly depends on the threshold selection.

We propose an Adaptive Douglas-Peucker (ADP) algorithm with automatic thresholding for AIS-based

vessel trajectory compression. In particular, the optimal threshold is adaptively calculated using a novel

automatic threshold selection method for each trajectory, as an improvement and complement of original

Douglas-Peucker (DP) algorithm. It is developed based on the channel and trajectory characteristics,

segmentation framework, and mean distance. The proposed method is able to simplify vessel trajectory

data and extract useful information effectively. The time series trajectory classification and clustering are

discussed and analysed based on ADP algorithm in this paper. To verify the reasonability and effectiveness

of the proposed method, experiments are conducted on two different trajectory data sets in inland waterway

of Yangtze River for trajectory classification based on the nearest neighbor classifier, and for trajectory

clustering based on the spectral clustering. Comprehensive results demonstrate that the proposed algorithm

can reduce the computational cost while ensuring the clustering and classification accuracy.

INDEX TERMS Douglas-Peucker algorithm, trajectory compression, trajectory clustering, trajectory clas-

sification, maritime safety.

I. INTRODUCTION

The Automatic Identification System (AIS) network, includ-

ing ships, AIS base stations, and shore stations, is one part

of satellites and radars in navigation [1]. Based on the Very

High Frequency (VHF) radios and mutual exchanging data

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhixiong Peter Li .

communication [2], AIS is a self-reporting messaging system

and originally conceived for collision avoidance via high-

speed updates in ship-to-ship and ship-to-shore communica-

tion. It provides a vast amount of real-time information that

can be used to support trajectory anomaly detection, coastal

surveillance, maritime knowledge discovery, maritime situ-

ational awareness, and decision-making [3]. AIS can track,

report, and locate vessels to enhance maritime supervision
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and navigational safety [4]. Following the extensive instal-

lation and use of AIS equipment, the issues of vessel trajec-

tory data storing, processing, and analysis arise as emerging

research topics [5]. The accurate processing and extraction

of massive trajectory data are vital for trajectory clustering,

classification, and prediction [6]–[8].

The original AIS trajectory data containsmassive noise and

redundant information. Themaritime navigational authorities

need to manage and regulate vessels based on effective and

real-time AIS data [9]. The visualization of vessel trajectories

based on AIS data is conductive to detecting abnormal behav-

iors and aiding maritime surveillance [10]. The compression

of AIS trajectory data is a valid data pre-processing way

in practical applications, and also an effective method to

visualize the massive trajectories. Moreover, the automatic

and rational simplification threshold selection method is cru-

cial in trajectory data compression. Therefore, effective data

compressing algorithm and threshold selection method are

proposed and improved to solve these problems while retain-

ing the main features.

Trajectories are described as different types of curves with

all sorts of linear features, and consist of many spatiotemporal

points. A lot of classical algorithms (e.g. online and batched

compression techniques [11]) are proposed and developed

to compress the trajectories while preserving them with

important geometrical properties. The online compression

techniques include Reservoir Sampling (RS) algorithm [12],

Sliding Window (SW) algorithm [13] and Normal Open-

ing Window (NOW) algorithm [14]. The batched compres-

sion techniques mainly are associated with three algorithms,

unformal sample [15], Douglas–Peucker (DP) [16] algo-

rithm and Bellman algorithm [17]. The uniform sampling

algorithm takes each ith point in trajectory coordinates. The

DP algorithm [18] is a classical simplification algorithm to

preserve location, orientation, and shape of different tra-

jectories based on the recursive and refinement approach

of retaining the furthest vertexes. The Bellman algorithm

is able to preserve the geometry feature of a certain num-

ber of points after their simplification as the original ones.

The distances between points in the compression process

are measured by two ways, Perpendicular Euclidean Dis-

tance (PED) and Time Synchronized Euclidean Distance

(TSED) [19]. PED is the Euclidean Distance from one point

to the line, and doesn’t consider the temporal factor. TSED

is the Euclidean Distance based on the time synchronised

information, which takes the time interval ratio of different

points as the weight to calculate the new projection location

point.

Trajectory compression algorithms are widely used in vari-

ous areas, such asmaritime trajectory visualization, trajectory

clustering, road traffic, pedestrian movement information,

cartographic and map generalisation [20]. The theory of line

compression has been widely used in trajectories processing.

It’s evident that the DP algorithm is one of the most effective

methods to simplify and compress line data [21], and receives

frequent usage [22].

Many different DP enhancements are proposed to

compress trajectories. Saalfeld [23] discloses that the result-

ing simplified polyline by the DP algorithm is consis-

tent with itself and adjacent features in the topology.

Bertolotto and Zhou [24] develop the Saalfeld’s algorithm

to reduce the processing time, and integrate the new algo-

rithm with a web-mapping system. Gudmundsson et al. [25]

propose an extended DP algorithm to retain the geometry of

self-crossing lines. The appropriate threshold interval [26]

is selected from the experiment comparison results of dif-

ferent DP thresholds based on the AIS trajectory visualiza-

tion quality. The Spatial QUalIty Simplification Heuristic

Method (SQUSHM) is proposed by Muckell et al. [27] to

reduce the computation time based on the selection of the

local critical points. Chen et al. [28] put forward a fast polyg-

onal approximation algorithm to simplify the GPS trajecto-

ries based on an integral square synchronous distance error

criterion. Zhang et al. [29] present a new threshold selection

method based on the minimum ship domain evaluation to

define the threshold. Etienne et al. [30] propose an AIS

trajectories simplification method based on the DP algorithm

to reduce the computation time. However, the issue as to

how the simplified threshold can be automatically determined

remains unclear. A line simplification method is introduced

in map generalisation, and Pallero [31] put forwards a robust

and easy-to-implement DP algorithm to guarantee the lines

without self-intersections. Birnbaum et al. [32] present a new

trajectory compressing algorithm by splitting the trajectories

into sub-trajectories based on their similarities. A new trajec-

tory simplification algorithm namely Trajic is proposed by

Nibali and He [33] based on the delta compression approach

to achieve a good compression ratio and small error margin.

Zhao and Shi [34] conduct clustering analysis based on the

DP compression and the improved Density-Based Spatial

Clustering of Applications with Noise (DBSCAN). However,

all the improved DP algorithms are only based on the trajec-

tory shape without changing the algorithm or automatically

selecting the threshold.

Trajectory classification and clustering [35] are fundamen-

tal for trajectory prediction, anomaly detection and collision

avoidance [36]. Trajectory classification and clustering are

the important research methods of data mining, which are

conducive to extracting pattern information and detecting

anomaly behaviors [37], [38]. The classification and clus-

tering processes are known as supervised and unsupervised

learning methods respectively. Data pre-processing is the

first step of trajectory classification and clustering, which

can receive more effective information. The similarity mea-

surement method can help calculate the distances between

trajectories, which is used to measure their similarity. The

distances between trajectories are a vital factor for tra-

jectory classification and clustering [39]. There are many

distance measurement methods from previous studies, for

instance, simple Euclidean Distance (ED) [40], Hausdorff

distance [41], HMM (Hidden Markov Model) [42], DTW

(Dynamic Time Warping) [43], LCSS (Longest Common
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Subsequence) [44] and so on. ED requires the equal length

of all trajectories, and does not take into account the time

information. Hausdorff distance is time-consuming. HMM

distance sets a statistical model for each trajectory, however

it has high time complexity. It has been proved that both

Hausdorff and HMM have poor performance [45]. Compared

with location similarity, LCSS involves more shape similarity

and has high time cost. DTW can easily find the shape

similarity of the trajectory, andwarps the route from feature to

feature [46]. Therefore, DTW is also adopted and developed

in the process of similarity measurement.

The relevant literatures indicate that the DP algorithm has

been widely studied and used in different fields. To the best

of our knowledge, no research has been conducted on the

development of automatic threshold selection and a single

different threshold for each trajectory. The threshold in the

original DP algorithm must be defined by its users to sim-

plify the lines. Therefore, how to select the threshold auto-

matically is one of the research challenges to be addressed

in this work. Each time series trajectory is different from

others. The other improvement is to automatically select an

appropriate threshold for each trajectory. These two improve-

ments can provide useful insights to guide and act as a solid

foundation to develop future studies relating to time series

trajectories. To address these two problems, we present an

Adaptive DP (ADP) algorithm to select the threshold for

each trajectory automatically according to the characteristics

of different trajectories. Meanwhile, the classification and

clustering experiments are carried out on different data sets to

verify the effectiveness and robustness of the newly proposed

ADP algorithm.

The remainder of the paper is organized as follows. The

basic and improved algorithms are described in detail in

Section II. Section III describes the proposed framework in

this paper, which is used for classifying and clustering time

series trajectories. The numerical experiments are carried

out on different data sets to validate the effectiveness and

reasonability of the ADP in the automatic threshold selection

in Section IV. Finally, Section V concludes work together

with future work.

II. BASIC ALGORITHMS AND IMPROVED ALGORITHMS

A. THE BASIC DOUGLAS-PEUCKER ALGORITHM

The classical DP algorithm is proposed by Douglas and

Peucker, and its essence is that the line segments are used

to approximate the original trajectory. The final simplified

trajectory is topologically consistent with the original one,

especially for the neighborhood characteristics in trajectories.

The characteristic points are extracted, and then reconstructed

the original trajectory which can approximate the original

trajectory. The advantage of the basic DP is that it has trans-

lation and rotation invariance, the sampling results will be

certain when the curve and threshold are given. However, the

threshold must be pre-defined by the users to simplify the

line. It is evident that the DP algorithm is able to compress

FIGURE 1. The schematic diagram of original DP algorithm.

trajectories effectively while preserving the main geometrical

structures.

Suppose T = (T1,T2, · · · ,Ti, · · · ,Tn) is the orig-

inal trajectory. When the number of points is large

enough, the original trajectory can be replaced by line

segments T1T2,T2T3, . . . ,Ti−1Ti, . . . ,Tn−1Tn. To decrease

the amount of trajectory points, we reconstruct the tra-

jectory with fewer but more important points which are

selected from the original point set T , T ′ = (Tk1,

Tk2, · · · ,Tkj, · · · ,Tkm), T ′ ⊆ T . If the characteris-

tic points are extracted accurately, the new line segments

Tk1Tk2,Tk2Tk3, . . . ,Tk(i−1)Tki, . . . ,Tk(m−1)Tkm can substi-

tute the original trajectory.

Fig. 1 is the schematic diagram of the original DP algo-

rithm. The original trajectory is constructed by the line seg-

ments that connect 6 points (T1,T2, · · · ,T6). To preserve

the main geometrical structure of the original trajectory and

reduce the redundant trajectory points, it is necessary to

extract the characteristic points from the original trajectory.

The pre-defined threshold (i.e., tolerance) as a benchmark

is selected to simplify the trajectory. The line (T1T6) con-

necting the first point (T1) and last point (T6) is taken as

the datum line (or a base line). Then the vertical Euclidean

distance of each point to the datum line is calculated in the

original trajectory. It can be seen that some of the vertical

Euclidean distances are larger than the threshold, (e.g., T2),

the point related to the maximum vertical Euclidean distance

will be selected to divide the original trajectory into two sub-

trajectories (e.g. T1T2,T2T6). This procedure will be per-

formed iteratively until there is no characteristic point which

has a larger Euclidean distance than the threshold.

B. THE ADAPTIVE DOUGLAS-PEUCKER ALGORITHM

The threshold in the original DP algorithm must be set in

advance to simplify the line. Currently, there is scanty studies

on the selection of the best threshold in the literature. There-

fore, this research pioneers the automatic selection of the

threshold. Each time series trajectory is different from others,

hence it is beneficial to select the appropriate threshold for

each trajectory automatically. The success of such improve-

ments will lay a solid foundation for the subsequent trajectory

classification and clustering.

The original DP has only one threshold for all trajectories,

and it is difficult to be determined. The ADP algorithm has a

different threshold for each trajectory, and can automatically
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select the appropriate thresholds for different trajectories.

The essence of ADP is to calculate the thresholds auto-

matically according to the distances and characteristics of

all feature points. ADP can further extract and preserve

key features based on the channel characteristics, trajectory

characteristics, segmentation framework, and mean distance.

The improved DBSCAN is an effective reprocessing method

to remove the noise points. The innovation of the improved

DBSCAN is that the circular neighborhood is changed into

a square neighborhood. Then the square sliding window

can handle all the points according to the coordinates, ε,

and MinPts. All the points in a data set are reprocessed

to extract more efficient points. The criterion is to deter-

mine whether the point coordinates are within the range of

the square neighborhood. This improvement can avoid the

data explosion and memory overflow. For instance, if there

are 800,000 points, there will have 319,999,600,000 dis-

tance values between different points. The original

DBSCAN algorithm will fail to solve the problem of this

complexity.

The ADP algorithm is proposed based on the channel char-

acteristics, trajectory characteristics, segmentation frame-

work, and mean distance to select the threshold for each

trajectory automatically.

The pseudo code of the ADP algorithm is listed as follows.

C. THE DTW ALGORITHM

From the statistical point of view, the spatio-temporal AIS

trajectory is essentially a kind of time series. Suppose

Q = {q1, q2, · · · , qm} and C = {c1, c2, · · · , cn} denote the
two AIS trajectories (i.e., time series), qi represents the value

of the ith point in series Q, cj represents the value of the jth

point in series C , m and n indicate the length of the entire

sequences of Q and C , respectively. d
(

qi, cj
)

denotes the

distance between qi and cj.

DTW is used to calculate the similarity between two time

series. The process of DTW is described as follows. All points

are sorted according to their time, then the users construct a

matrix Am×n, and aij = d(qi, cj) =
√

(qi − cj)2 ∈ Am×n.
A set of adjacent matrix elements in Am×n is called a warp-

ing path, denoted by W = {w1,w2, · · · ,wk , · · · ,wK }, and
max {m, n} < K ≤ m+n−1, the k th point inW is represented

by wk =
(

aij
)

k
, the warping path must meet the following

constraints:

(1) Boundary condition: w1 = a11,wk = amn;
(2) Continuity and monotonicity:

ifwk−1 = ai′j′ ,wk = aij, then 0 ≤ i−i′ ≤ 1, 0 ≤ j−j′ ≤ 1.

They together ensure that every coordinate in two trajectories

can appear inW , and the dotted line between the trajectories

does not intersect. Certainly, the time at each point is also

monotonic inW .

DTW can find a path with a minimum of the cost of

the optimal path based on dynamic programming [47]. The

algorithm steps are described as follows:

Step1. Starting from the start point of the two sequences

i, j to calculate the DTW distance D(i, j) between the two

Algorithm 1 ADP Algorithm

Input: (x
j
i ± ε, y

j
i ± ε), MinPts

//ε is the step size, (x
j
i ± ε, y

j
i ± ε) is the square sliding

window, MinPts is the number of points covered by the

sliding window.

T
j
i = (x

j
i , y

j
i, t

j
i ) ∈ D, i = 1, · · · , n, j = 1, · · · ,m,

T
j
1 = (x

j
1, y

j
1, t

j
1), T

j
n = (x

j
n, y

j
n, t

j
n)

//D is the trajectory data set, T
j
i is the i

th point in the jth

trajectory, T
j
1 is the starting points of each trajectory, T

j
n is

the ending points of each trajectory.

(xxt , yyt ) ∈ S, t = 1, · · · ,m · n.
//S is the point data set in ascending order.

Channel characteristics, trajectory characteristics

Output: θ j, d
j
i , TT

j
i .

//θ j is the automatic threshold of each trajectory, d
j
i is the

Euclidean distances from all points to the baseline, TT
j
i is

the simplified trajectories (the characteristic point set).

//Data preprocessing based on the improved

DBSCAN.//

1: Set ε and MinPts based on the latitude and longitude in

trajectory data set.

2: For j = 1 to j = m

3: For i = 1 to i = n

4: Save all the points in ascending order of the abscissa.

5: End

6: End

//Mark all points as the core points, boundary points

and noise points.//

7: for t = 1 to t = m · n
8: IF

xxt+ii ∈ [xxt − ε, xxt + ε], yyt+ii′ ∈ [yyt − ε, yyt +
ε], ii, ii′ ∈ Z+

9: min(ii, ii′) < MinPts

10: THEN mark this point as the core point.

11: IF xxt+ii = |xxt + ε| , yyt+ii′ = |yyt + ε| , ii, ii′ ∈ Z+

12: THEN mark this point as the boundary point.

13: ELSE

14: THEN mark this point as the noise point;

15: End

16: Delete the noise points.

//The automatic threshold selection of each trajec-

tory based on the segmentation framework.//

17: For j = 1 to j = m

18: y = y
j
n−y

j
1

x
j
n−x

j
1

(x − x
j
1) + y

j
1 = k(x − x

j
1) + y

j
1;

19: // The baseline equation calculation of each trajectory.

20: d
j
i =

∣

∣

∣
k(x−xj1)+y

j
1−y

∣

∣

∣

√
1+k2

;

// The Euclidean distances from all points to the baseline

are calculated;

21: IF the dataset is straight trajectory,

22: THEN θ j = |k| ·
n−1
∑

i=2

d
j
i/(n− 2)

// The automatic threshold of each trajectory is calculated.

23: ELSE IF the dataset is curved trajectory,
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Algorithm 1 (Continued.) ADP Algorithm

24: THEN θ j =
n−1
∑

i=2

d
j
i/(n− 2)

// The automatic threshold of each trajectory is calculated.

25: ELSE the dataset is complex trajectory,

26: THEN divide the complex trajectory into straight and

curved trajectory based on the datum line and max d
j
i , and

the channel characteristics. Return to step 21.

// The segmentation framework is formed based on the

channel and trajectory characteristics.

27: End

//The compression process of each trajectory.//

28: For j = 1 to j = m

29: For i = 2 to i = (n− 1)

30: // The starting point and ending point of each trajectory

must be preserved.

31: IF d
j
i > θ j

32: THEN point i must be preserved.

33: ELSE

34: point i should be deleted.

35: End

36: End

37: End

38: The reserved points of each trajectory constitute the

compressed point sets TT
j
i .

// The compression ratio are calculated. //

39: For j = 1 to j = m

40: σ j =
∑

preserve(i)/n

41: End

sequences.










D(1, 1) = d11

D(i, j) = dij + min {D(i− 1, j− 1),

D(i, j− 1),D(i− 1, j)}
(1)

dij = d(qi, cj) =
√

(qi − cj)2 ∈ Dm×n (2)

where i = 2, 3, · · · ,m, j = 2, 3, · · · n, and d(qi, cj) denotes
the Euclidean distance.

Step2. The distance D(i, j) of the end point in the two

sequences is the DTW distance of the two sequences.

The time complexity of the Euclidean distance and DTW

are O(n) and O(n2) respectively. DTW does not require that

the two sequences are equal.

III. THE PROPOSED METHOD FRAMEWORK

The proposed ADP algorithm can automatically select a

threshold for each trajectory, and hence significantly com-

press the trajectories, and calculate the compression rate

according to the characteristic of each trajectory. It can reduce

the amount of data, save the follow-up calculation time and

preserve the important structural properties well. The ADP

and DTW algorithms can accelerate the data processing

and similarity measurement between massive time series.

FIGURE 2. The proposed method and the experiment flowchart.

FIGURE 3. The visualization of data sets.

The ADP algorithm is proposed to compress the time series

data sets, and the DTW algorithm with a warping window

is introduced to calculate the distances between time series.

Then the classification and clustering analysis are carried out

in two different time series data sets to verify the validity

and effectiveness of the proposed algorithms. The experiment

flowchart is shown as follows.

The threshold is the main factor that determines the tra-

jectory compression quality. When its value becomes too

small, it will lead to a high calculation cost, while if it

becomes too large, it will not capture the original feature

of the trajectory. Manual selection of the best compression

threshold is the shortcoming of the current research of tra-

jectory compression. To solve this problem, a novel ADP

algorithm is proposed to automatically select the thresholds

while preserving the structural and geometric characteris-

tics well. Moreover, DTW is chosen to calculate the dis-

tance between the time series accurately. This paper not

only presents a new algorithm, but also analyses its validity

and feasibility through different experiments in the ensuing

sections.

VOLUME 7, 2019 150681



J. Liu et al.: ADP Algorithm With Automatic Thresholding

FIGURE 4. The original and compressed trajectories of inland waterway: (a) the original vessel trajectories; (b) the original point data; (c) the trajectories
after compression by ADP; (d) the point data after compression by ADP.

IV. EXPERIMENT RESULTS AND EVALUATION

OF TWO DATA SETS

A. EXPERIMENTAL SETUP AND DATA SETS

Two experiments are performed using 64-bit Windows 10 on

a 2.60 GHz Intel Core i7-5600U CPU equipped with 8 GB

memory. We implemented the proposed ADP, classification,

and clustering methods using MATLAB R2016a, and DTW

with a warping window algorithm using MATLAB R2016a

and C language.

To verify the accuracy and efficiency of the proposed ADP

algorithm, numerical experiments are implemented based on

real AIS trajectory data of an inland waterway for classi-

fication and the bridge area waterway for clustering. The

inland waterway data set is collected fromYangtze River, and

has 404 trajectories with 74,263 points. The AIS trajectory

data set in the bridge area waterway is the spatial-temporal

trajectories with time, longitude, latitude and speed, etc. The

AIS trajectory data sets in the bridge area waterway are three-

dimensional time series. The experimental data are collected

from the AIS base station in theWuhan section of the Yangtze

River. The bridge area waterway data set includes the AIS

trajectory data of 377 vessels with 58,296 points. The visual-

ization of data sets is shown in Fig. 3.

B. TRAJECTORY COMPRESSION RESULT OF ADP ON A

CLASSIFICATION DATA SET

In this paper, the validity of the proposed ADP algorithm

is demonstrated by the real vessel trajectory data set.

150682 VOLUME 7, 2019
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FIGURE 5. Visualization of the number of points and the threshold based on ADP: (a) the number of points before and after compression; (b) the number
of points after compression; (c) the threshold of each trajectories.

Data cleansing is the basic step of trajectory visualization.

The incomplete, repeated, redundant, and invalid trajectory

data are deleted based on the trajectory acquisition time and

time interval. The original data set includes 404 trajectories,

and there are 380 trajectories with 59,888 points are preserved

after data cleansing.

In the first step, the longitude range is [121.6830,

121.7502] and latitude range is [31.267, 31.3435] in the

selected trajectory data set. Then the parameter ε is set to

0.0003 and the parameterMinPts is set to be 5 in the improved

DBSCAN based on the longitude and latitude range of the

trajectory points.

The proposed ADP algorithm is used for compressing

the trajectories. The visualization of original and com-

pressed trajectories are shown in Fig. 4. Fig. 4(a) and

Fig. 4(c) are the original vessel trajectories and the com-

pressed trajectories respectively. Meanwhile, Fig. 4(b) and

Fig. 4(d) show the point data before and after compres-

sion respectively. It can be seen that from Fig. 4(b) and

Fig. 4(d), the data volume is significantly reduced. The num-

ber of points on all trajectories is 1,553 after the trajectory

compression.

The number of points and the threshold based on the ADP

algorithm are shown in Fig. 5. Fig. 5 (a) displays the number

of points before and after compression, where the red line

expresses the number of points in original trajectories and the

blue one is the number of points in compressed one. The num-

ber of points after compression is shown in Fig. 5 (b), which

further clearly shows the number of points. The threshold of

different trajectories is shown in Fig. 5 (c), and the range is

[0, 4× 10−3]. The threshold is automatically selected based

on features of different trajectories. To show the classification

performance more clearly, the vessel trajectories are further

analysed based on their movement courses. The trajectories

of up-bound and down-bound vessels are separated based

on their different sailing directions. Then there are 201 up-

bound and 179 down-bound vessels, respectively. The visu-

alization of original and compressed trajectories of up-bound

vessels are shown in Fig. 6. Fig. 6 (a) and Fig. 6 (c) are the

original vessel trajectories and the ones after compression,

respectively. Meanwhile, Fig. 6 (b) and Fig. 6 (d) show the

point before and after compression respectively. It can be

seen from Fig. 6 (b) and Fig. 6 (d) that the data volume is

significantly reduced. There are 31,503 points on 201 up-

bound trajectories, and only 828 points after using our ADP

compression algorithm.

The number of points and the thresholds of up-bound

trajectories are shown in Fig. 7. Fig. 7 (a) displays the num-

ber of points before and after compression, where the red

line indicates the number of points in original trajectories

and the blue one is the number of points of all trajectories

after compression. The number of points after compression is

shown in Fig. 7 (b), which further clearly shows the number

of points. The thresholds of different trajectories are shown

in Fig. 7 (c), and the range is [0, 4 × 10−3]. The threshold

is automatically selected based on the features of different

trajectories.

The visualization of original and compressed trajectories

of the down-bound vessels are shown in Fig. 8. Fig. 8 (a) and

Fig. 8 (c) are the original vessel trajectories and the ones after

compression, respectively. Meanwhile, Fig. 8 (b) and Fig. 8

(d) show the points before and after compression respectively.

It can be seen from Fig. 8 (b) and Fig. 8 (d) that the data

volume is significantly reduced. There are 28,385 points on

179 down-bound trajectories, and only 725 points after using

the ADP compression algorithm.

The number of points and the thresholds of the down-

bound trajectories are shown in Fig. 9. Fig. 9 (a) displays the

number of points before and after compression, where the red

line represents the number of points in original trajectories

and the blue one is that in compressed trajectories. The num-

ber of points after compression is shown in Fig. 9 (b), which

further clearly shows the number of points. The thresholds of

different trajectories are shown in Fig. 9 (c), and the range

is [0, 3 × 10−3]. The thresholds are automatically selected

based on the features of different trajectories.
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FIGURE 6. The original and compressed trajectories of up-bound vessels: (a) the original vessel trajectories; (b) the original point data; (c) the
compressed trajectories by ADP; (d) the point data after compression by ADP.

FIGURE 7. Visualization of the number of points and the threshold of up-bound trajectories: (a) the number of points before and after compression;
(b) the number of points after compression; (c) the threshold of each trajectory.
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FIGURE 8. The original and compressed trajectories of down-bound vessels: (a) the original vessel trajectories; (b) the original point data; (c) the
compressed trajectories by ADP; (d) the point data after compression by ADP.

C. TRAJECTORY COMPRESSION RESULT OF ADP ON

CLUSTERING DATA SET

The data cleansing method used in this section is the same

with the above process. The original data set includes 377 tra-

jectories, and there are 324 trajectories with 25,678 points are

preserved after data cleansing.

In the first step, the longitude range is [114.2746,

114.2919] and latitude range is [30.545, 30.562] in the

selected trajectory data set. Then the parameter ε is set to

0.0006 and the parameterMinPts is set to be 4 in the improved

DBSCAN based on the longitude and latitude range of

trajectory points.

The visualization of the trajectories before and after com-

pression based on the ADP algorithm are shown in Fig. 10.

Fig. 10 (a) and Fig. 10 (c) are the original vessel trajec-

tories and the ones after compression respectively. Mean-

while, Fig. 10 (b) and Fig. 10 (d) show the point data before

and after compression respectively. It can be seen that from

Fig. 10(b) and Fig. 10 (d), the data volume after compression

is significantly reduced.

The number of points and the thresholds are shown

in Fig. 11. Fig. 11 (a) displays the number of points before

and after compression, where the red line expresses the num-

ber of points in original trajectories and the blue one is

the number of points in the trajectories after compression.

The number of points after compression is clearly shown

in Fig. 11 (b). The thresholds of different trajectories are

shown in Fig. 11 (c), the range is [0, 1 × 10−3] and the
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FIGURE 9. Visualization of the number of points and the threshold of down-bound trajectories: (a) the number of points before and after compression;
(b) the number of points after compression; (c) the threshold of each trajectory.

FIGURE 10. The original and compressed trajectories in bridge area waterway: (a) the original vessel trajectories; (b) the original point data;
(c) the compressed trajectories by ADP; (d) the point data after compression by ADP.
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FIGURE 11. Visualization of the number of points and the threshold: (a) the number of points before and after compression; (b) the
number of points after compression; (c)the threshold of each trajectory.

FIGURE 12. Visualization of the distance matrix: (a) 2D image visualization of the 380 × 380 distance matrix before trajectory compression; (b) 2D image
visualization of the 380 × 380 distance matrix after trajectory compression; (c) 2D image visualization of the 324 × 324 distance matrix before trajectory
compression; (b) 2D image visualization of the 324 × 324 distance matrix after trajectory compression.
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FIGURE 13. The classification results of data set in the inland waterway: (a) visualization of the original data set; (b) the classification results of the
original data set; (c) visualization of the data set with ADP; (d) the classification results of the compressed data set.

thresholds are automatically selected based on trajectories

characteristics.

D. TRAJECTORY SIMILARITY MEASUREMENT

BASED ON DTW

There are 380 trajectories in the inland waterway data set,

while 324 trajectories in the bridge area waterway data

set after trajectory compression. The distances between the

trajectories are calculated by DTW. The distance matrix

visualization for different data sets is shown in Fig. 12.

Fig. 12(a) and Fig. 12(b) are the 2D image visualization of

the 380 × 380 distance matrix before and after trajectory

compression, respectively. The 2D image visualization of the

324 × 324 distance matrix before and after trajectory com-

pression are shown in Fig. 12 (c) and Fig. 12 (d), respectively.

E. CLASSIFICATION RESULTS

1) VISUALIZATION OF CLASSIFICATION RESULTS

IN INLAND WATERWAYS

The classification results of the original and compressed data

sets are shown in Fig. 13. The original trajectories are shown

in Fig. 13(a), where the red lines are the trajectories of the

up-bound vessels and the blue ones represent the one of the

down-bound vessels. The classification result of the original

data set is shown in Fig. 13(b), where the red, blue, green,

and black colors represent different classes respectively. The

blue line in the black one is the misclassification trajectory.

Fig. 13(c) is visualization of the compressed data set, where

the red and blue lines have the same meaning in Fig. 13(a).

The classification result of the compressed data set is shown

in Fig. 13(d), and the trajectories are clearly divided into
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FIGURE 14. The classification results of the inland waterway data set based on different course: (a) visualization of the up-bound vessel trajectories;
(b) the classification results of (a); (c) visualization of the down-bound vessel trajectories; (d) the classification results of (c).

four categories. The classification accuracy of these four

categories is 100%. The original data set have 59,888 points,

while the compressed data set only have 1,553 ones. The cal-

culation time and processing time are significantly reduced,

which provide theoretical basis and technical support for

realizing big data research and analysis in future.

2) VISUALIZATION OF TRAJECTORY CLASSIFICATION

RESULTS BY COURSE

The classification results of the data set in the inland water-

way based on different courses are compared and shown

in Fig. 14. Fig. 14 (a) is visualization of the up-bound vessel

trajectories, and Fig. 14 (b) shows the classification result of

the up-bound vessel trajectories. The classification accuracy

of the up-bound vessel trajectories is 100%. The visualization

of the down-bound vessel trajectories is shown in Fig. 14 (c),

and the classification result of the down-bound vessel trajec-

tories is shown in Fig. 14 (d). The classification accuracy of

the down-bound vessel trajectories is also 100%.

F. CLUSTERING RESULTS

1) VISUALIZATION OF CLUSTERING RESULTS

IN BRIDGE WATERWAYS

Spectral Clustering (SC) is based on the spectral graph par-

tition theory, and its essence is to transform the clustering

problem of a sample space into the optimal partition problem

of graph. It can divide the graph into several subgraphs, which

have no intersections between each other. The points have

the highest similarity in the same subgraph and the lowest
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FIGURE 15. The clustering results of the bridge area waterway data set: (a) the clustering results based on spectral clustering (k = 2); (b) the
clustering results based on spectral clustering (k = 3).

TABLE 1. The top 10 eigenvalues (EV) and the corresponding accumulative contribution rate (ACR) with PCA based on the original DTW.

similarity between different subgraphs. SC can identify the

sample space with an arbitrary shape and converge to the

global optimal solution. The basic idea of SC is to classify

the feature vectors received by the feature decomposition

based on the similarity matrix of the sample data.

The clustering results of data set in the bridge area water-

way are shown in Fig. 15. Fig. 15 (a) is the clustering results

based on SC when the number of clustering centers is 2.

Fig. 15 (b) is the clustering results based on spectral clustering

when the number of clustering centers is 3.

2) VALIDATION OF THE NUMBER OF CLUSTERS

Table 1 is the accumulative contribution rate of the top ten

eigenvalues based on ADP and DTW, and the top two eigen-

values and the top three are 95.23% and 98.73%, respectively.

The number of clusters is set to 2, and the performance

analysis of two or three clustering centers are shown and

analysed in the previous experiments. It can be clearly seen

from Fig.15, the performance of two clustering centers is

better than the three ones. The verification of the number of

clustering centers further proves the effectiveness of the pro-

posed compression algorithm and the clustering algorithm.

G. COMPARATIVE ANALYSIS OF TIME COMPLEXITY

The time complexity of the used methods in this work are

as follows: DTW isO(n2), the nearest neighbor classification

is O(n), and spectral clustering is O(n2). In the above time

complexity expressions, n represents the number of AIS tra-

jectories. The comparison results before and after trajectory

compression are listed in Table 2.

TABLE 2. Comparison results before and after trajectory compression.

In the inland waterway data set, there are 380 trajectories,

consisting of 59,888 points and 1,553 points before and after

compression. The running time of DTW before and after

compression is 250.292 s and 183.762 s, respectively. The

classification running time is 6.348 s and 3.256 s, respec-

tively. Whether the course is considered or not, the classifica-

tion accuracy after trajectory compression is always 100%.
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The running time and the classification accuracy further

verify the validity of the proposed trajectory compression

algorithm.

The data set in the bridge area waterway includes 324 tra-

jectories, consisting of 25,678 and 1,154 points before and

after trajectory compression. The running time of DTW

before and after compression is 174.246 s and 108.141 s,

respectively. The clustering time is 5.322 s and 3.818 s,

respectively. The clustering accuracy is 96.9% and 100%,

respectively.

The accuracy of classification and clustering after trajec-

tory compression is better than that before trajectory com-

pression. The running time of different parts after trajectory

compression is less than that before trajectory compression.

The comparison results before and after trajectory compres-

sion have further prove the effectiveness and feasibility of our

proposed trajectory compression algorithm.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel trajectory compression algo-

rithm to extract valid trajectory features, accelerate the sim-

ilarity measures between massive AIS trajectories, improve

the accuracy of classification and clustering, and reduce the

processing and running time. The quality of trajectory com-

pression and the accuracy of similarity measurement are the

key factors to determine trajectory classification and cluster-

ing. The traditional DP compression threshold needs to be

set manually or selected by experimental comparison. The

proposed method could significantly compress the AIS tra-

jectories while maintaining the main geometrical structures,

and also automatically calculate a different threshold for each

trajectory. It is always important to guarantee the structural

features and increase the compression quality in trajectory

clustering and classification. Therefore, trajectory similarity

measurement based on ADP, the classification accuracy, and

the clustering accuracy could be significantly improved and

accelerated in practical applications. It is of significance for

realizing big data research in future. Numerous experiments

of trajectory classification and clustering are implemented

using different trajectory data sets to verify the effectiveness

and feasibility of the new ADP.

To generalise the improved algorithm in future, we need to

research the particular shape trajectories, then further realize

big data analysis based on the proposed ADP algorithm.

Thus, further studies should be conducted to investigate the

threshold automatic selection method of special and chaotic

trajectories. In addition, the automatic segmentation frame-

work should also be further studied.
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