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Abstract

With the development of modern image sensors enabling flexible image acquisition, single shot high

dynamic range (HDR) imaging is becoming increasingly popular. In this work, we capture single shot HDR

images using an imaging sensor with spatially varying gain/ISO. This allows all incoming photons to be

used in the imaging. Previous methods on single shot HDR capture use spatially varying neutral density

(ND) filters which lead to wasting incoming light. The main technical contribution in this work is an

extension of previous HDR reconstruction approaches for single shot HDR imaging based on local

polynomial approximations (Kronander et al., Unified HDR reconstruction from raw CFA data, 2013; Hajisharif

et al., HDR reconstruction for alternating gain (ISO) sensor readout, 2014). Using a sensor noise model, these

works deploy a statistically informed filtering operation to reconstruct HDR pixel values. However, instead of using a fixed

filter size, we introduce two novel algorithms for adaptive filter kernel selection. Unlike a previous work, using adaptive

filter kernels (Signal Process Image Commun 29(2):203–215, 2014), our algorithms are based on analyzing the model fit

and the expected statistical deviation of the estimate based on the sensor noise model. Using an iterative procedure,

we can then adapt the filter kernel according to the image structure and the statistical image noise.

Experimental results show that the proposed filter de-noises the noisy image carefully while well preserving

the important image features such as edges and corners, outperforming previous methods. To demonstrate

the robustness of our approach, we have exploited input images from raw sensor data using a commercial

off-the-shelf camera. To further analyze our algorithm, we have also implemented a camera simulator to

evaluate different gain patterns and noise properties of the sensor.
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1 Introduction

The range of radiance intensities found in most real-

world scenes, spanning from the sun or direct light

sources to areas in shadow, typically exceeds, by

orders of magnitude. It is very difficult to accurately

capture this wide range using a digital sensor in a

single image or video frame. This limitation has

spurred the development of techniques for capture

of high dynamic range (HDR) images and video; for

an overview, see [26].

We present two algorithms for HDR image

reconstruction based on a single input image where

the pixel gain is varied over the sensor [4, 10].

Similar to [34, 35], we use the per-pixel gain of the

analog signal, pixel measurements, to increase the

dynamic range in the captured image. The analog

pixel gain is proportional to the ISO setting found

on most cameras. The input to our algorithm is a

RAW sensor image consisting of pixels with either a

high or a low gain setting, for example, varying the

gain by every other two rows. The low gain setting

enables the capturing of high-intensity region with-

out saturation, while the high-gain setting enables us

to capture image with a high signal-to-noise ratio in

darker areas of the scene. Without loss of generality,

we assume that color is captured using a color filter

array (CFA), e.g., a Bayer pattern overlaid on the

image sensor. Figure 1 illustrates two different distri-

butions of per-pixel gain settings overlaid onto a raw

CFA image. This approach to HDR capture is very

robust and can be applied to off-the-shelf consumer

cameras [4]. It does not suffer from, e.g., the various

motion blurs or ghosting artifacts found in the com-

monly used exposure bracketing methods [7, 12].

Compared to multi-sensor cameras, e.g., [16, 31], it
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does not require costly specialized hardware and

removes the requirement of careful geometric sensor

calibration and the risk of misalignment between the

exposures.

The main contribution in this paper is an exten-

sion of the previous statistical reconstruction method

for dualISO data developed in [10, 15], using two

novel algorithms for adapting the scale of the filter-

ing window. In contrast to previous works [10, 15],

the window support is adapted both to the statistical

properties of the image noise as well as the under-

lying signal structure contained in the image. We

show that the novel scale selection results in

increased image quality in several examples.

2 Background

Since the seminal work by Devebec and Malik [7], a

large body of work has developed more robust and

higher quality HDR capture and reconstruction

methods; for a complete overview, see, e.g., [23, 26].

In this section, we give an overview of the previous

work most closely related to the methods proposed

in this paper.

2.1 HDR capture

High-quality HDR capture using off-the-shelf image

sensors can currently be performed with three distinct

approaches.

The traditional approach captures a sequence of

images with varying exposure times and then merges

these into an HDR image [7, 12]. For dynamic

scenes, non-rigid registration of the individual expo-

sures is necessary; and for moving objects, general

de-ghosting algorithms are necessary to apply for

high-quality results. While there has been a large

body of work improving these approaches, see, e.g.,

the survey [33], they still cannot robustly handle

moving cameras and objects in general scenes.

The second approach to HDR capture is based on using

beam splitters to project incident light onto multiple

sensors with different exposures. The different exposures

can be achieved by using varying neutral density (ND)

filters in front of the sensors [1, 8, 16, 19] or by clever

setups of semi-transparent beam splitter arrangements [31].

These systems offer a major advantage over exposure time

fusion methods in that they robustly handle motion of the

camera and objects in the scene by using the same

exposure time for each sensor.

The third approach, which is most closely related

to this work, is spatial multiplexing of the image to

achieve HDR capture. Here, a single sensor image is

used where the response to incident light varies over

the sensor. Most previous works achieved this by

placing a spatially varying array of ND filters in

front of the sensor [2, 24, 25, 27]. Its most familiar

application is color imaging via a color filter array

(e.g., the Bayer pattern [6]). By avoiding the need for

more than one sensor, this design provides a cost-

effective solution to achieve robust HDR capture.

However, most existing methods still suffer from

noise as large portions of the incident light are

wasted in the ND filters. By instead focusing on

spatially multiplexing the response to incident light

using the gain/ISO setting, we can use the entire

incident light for high-quality HDR reconstruction.

2.2 HDR reconstruction

To reconstruct HDR images from a set of images

with different exposures, the traditional method is to

compute a per-pixel weighted average of the low

dynamic range (LDR) measurements. The weights,

often based on heuristics, are chosen to suppress

Fig. 1 Illustrates three different gain patterns, with two different gain settings (ISO), for a sensor with a Bayer pattern CFA, and (middle)

how the multiple gain pixels are filtered to reconstruct the HDR output value zj at pixel location Xj. The different gains, g1 and g2,

corresponding to, e.g., 1× and 16×, amplification of the analog readout enables the capture of a wider range of intensities and extends the dynamic range

in the final image
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image noise and remove saturated values from pro-

cessing [3, 7, 20]. Mann and Picard [20] assigned

weights according to the derivative of the inverse

camera response, and later Debevec and Malik [7]

used a simple double ramp function that excludes

values close to the saturation point or the black

level. Later work derived weight functions based on

more sophisticated camera noise models. Mitsunaga

and Nayar [22] derived a weight function that maxi-

mizes SNR assuming signal-independent additive

noise, and Kirk and Andersen [13] derived a weight

function inversely proportional to the temporal vari-

ance of the digital LDR values. Granados et al. [9]

extended this approach to include both spatial and

temporal camera noises. While most previous

methods consider only a single pixel at a time from

each LDR exposure, Tocci et al. [31] presented an

algorithm that incorporates a neighborhood of LDR

samples in the reconstruction.

The vast majority of previous HDR reconstruction

algorithms treat the complete imaging pipeline from

raw pixel measurements to a full HDR image in a

series of steps [7, 9, 31], either performing demosai-

cing after or before HDR fusion and denoising. In

this work, we instead treat all of these operations in

a single joint filtering operation. This enables us to

take sensor noise into account in a systematic fash-

ion while also improving the reconstruction speed.

Recently, Heide et al. [11] proposed a framework for

joint demosaicing, denoising, and HDR assembly by

solving an inverse problem with different global image

priors and regularizers using convex optimization

methods. While providing impressive results, their

method does not incorporate a well-founded model of

the heterogeneous sensor noise, and despite GPU

implementations, their implementation is still compu-

tationally expensive which requires solving a global

optimization problem. Instead, we take a local ap-

proach, enabling rapid parallel processing, while also

incorporating a well-founded statistical noise model.

Our statistically motivated locally adaptive filtering

framework is inspired by recent methods in image

processing. The last two decades have seen an

increased popularity of image processing operations

using locally adaptive filter weights, for applications

in, e.g., interpolation, denoising, and upsampling.

Examples include normalized convolution [14], the

bilateral filter [32], and moving least squares [17].

Recently, deep connections have been shown [21, 29]

between these methods and traditional non-parametric

statistics [18]. In this paper, we extend the earlier

framework for HDR reconstruction developed in [10, 15,

16] based on fitting local polynomial approximations (LPA)

[5] to irregularly distributed samples around output pixels

using a localized maximum likelihood estimation [30] to

incorporate the heterogeneous noise of the samples. In

contrast to the previous works [10, 15, 16], we propose a

novel adaptation of the filter kernel size that allows the

filter extent to adapt not only to local image structure but

also the sensor noise in the region.

3 DualISO capture and reconstruction—overview

The goal of the algorithm presented in this paper is to

generate an HDR image based on input data in which

the per-pixel gain (ISO) is varying over the sensor. This

means that the analog readouts are amplified differently

between segments of pixels on the sensor. Figure 1 illus-

trates three different gain patterns with two different

gain values, g1 and g2, using a sensor with a Bayer pat-

tern color filter array (CFA). The unity gain, g1, pixel

segments capture the high-intensity regions in the scene

while the amplified segments, g2, capture low-intensity

regions. g2 pixels may lie well below the acceptable noise

floor for g1 pixels.

The key benefit of using a varying per-pixel gain,

gi, is that the dynamic range in the final output will

be extended using a single image as an input [10,

11]. However, accurate reconstruction of the output

HDR image is a challenging filtering problem. The

different gain settings lead to a loss of data in the

spatial domain due to the fact that the amplified

pixels, using gain g2, saturate faster. For high-quality

reconstruction, it is also necessary to take into

account the heterogeneous image noise, which for a

specific camera and exposure setting, varies with

both intensity and the choice of gain settings.

The method presented here extends the statistical

HDR reconstruction developed by [15, 16] to include

reconstruction kernels which adapts to both the image

content and the heterogeneous measurement noise.

We assume that the input data is a raw CFA sensor

image with per-pixel gain settings varying between

pixel segments as described in Fig. 1 (middle). Each

pixel value, zj, at a pixel coordinate, Xj, in the output

HDR image is, for each color channel, reconstructed

by filtering the input pixels within a neighborhood

around Xj. Our statistical approach first estimates the

variance, or measurement noise, for each input sample

in the raw image using a noise model. The input

samples are then weighted using the estimated

variances and an adaptive Gaussian kernel in the

spatial domain. The weights, computed from the

variances, ensure that low noise samples are weighted

higher than noisy samples, and the Gaussian filter

gives lower weights to samples further away from

the reconstruction point, Xj. The HDR pixel value zj
at location Xj is then reconstructed iteratively by

adjusting the shape of the Gaussian kernel to the
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weighted input samples. In the first iteration, the

Gaussian kernel is very small. The spatial support of

the kernel is gradually increased until a statistically

informed threshold based on the variances and

image content is reached. The final HDR pixel value,

zj, is then estimated by fitting a polynomial to the

weighted input samples. Our method performs noise

reduction, color interpolation, and HDR fusion in a

single operation.

The detailed presentation of the algorithm is laid

out as described below. Section 4 first describes the

camera noise model used to estimate sample

variances, and Section 5 describes how each HDR

pixel value is reconstructed using our statistical

HDR reconstruction framework. The novel methods

for filter scale selection for HDR reconstruction are

presented in Section 6. Finally, in Section 7, we

describe how the parameters for the noise model are

calibrated and in Section 8, we show example results

and evaluation of our reconstruction method.

4 Sensor noise model

The camera sensor electronics convert the incident

radiant power f, which for convenience we express

as the number of photo-induced electrons collected

per unit time, to a measured digital value yi at a

pixel i. The samples, yi, contain measurement noise

that is dependent on sensor characteristics such as

readout noise, gain/ISO setting, and the inherent

Poisson shot noise in the incident illumination.

To model the dependence of the measured digital

pixel value on the incident radiant power and the cam-

era parameters, we use a well-established radiometric

model derived from previous works [9, 15]. Using this

model, the non-saturated pixel values are modeled as

random variables following a normal distribution:

yi∼N g iaitf i þ μR; g
2
iaitf i þ σ2

R g i
� �� �

; ð1Þ

where t is the exposure time, gi is the pixel gain/ISO,

ai is a pixel non-uniformity, μR is the mean of the

read out noise, and σ2R is the variance of the read

out noise. An example showing the standard devi-

ation of the read out noise, σR, for varying gain/ISO

using a Canon Mark III sensor (saturation around

1600) is shown in Fig. 2.

In order to compute an estimate of the incident

radiant power, f̂ i, from the noisy digital input sample

values yi, we use the following estimator:

f̂ i ¼
yi−bi

g itai
; ð2Þ

where bi is obtained from a bias frame captured with no

light reaching the sensor.

Fig. 2 Mean standard deviation versus gain/ISO of the 14-bit Canon Mark III sensor. The ISO settings are 100, 200, 400, 800, 1600, 3200, and 6400
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Similarly, we approximate the variance of this

estimator by

σ̂ 2
f̂ i

¼
g2i tai f̂ i þ σ̂ 2

R g i
� �

g2i t
2a2i

; ð3Þ

where gi, ai, and σ̂ 2
R gi
� �

are found through calibration;

see Section 7. We do not include the effect of pixel

cross-talk, and the variances, σ̂ 2
f̂ i

, are assumed to be

independent of each other.

5 Adaptive HDR reconstruction

To estimate an HDR pixel value zj at a location Xj

on the sensor, we use a LPA [5] to fit the observa-

tion samples of the incident radiant power in the

local neighborhood. The same framework is also

known as kernel regression [29].

5.1 Local polynomial approximation

To estimate the radiant power, f(x), at an output

pixel, we use a generic local polynomial expansion of

the radiant power around the output pixel location

Xj = [x1, x2]
T. Assuming that the radiant power f(x) is

a smooth function in a local neighborhood around

the output location Xj, an Mth order Taylor series

expansion is used to predict the radiant power at a

point Xi close to Xj as follows:

~f X ið Þ ¼ C0 þ C1 X i−X j

� �

þ C2tril X i−X j

� �

X i−X j

� �T
n o

þ…; ð4Þ

where tril lexicographically vectorizes the lower triangular

part of a symmetric matrix and

C0 ¼ f X j

� �

ð5Þ

C1 ¼ ∇f ðX jÞ ¼
∂f ðX jÞ

∂x1
;
∂f ðX jÞ

∂x2

� �

ð6Þ

C2 ¼
1

2

∂
2f ðX jÞ

∂x21
; 2

∂
2f ðX jÞ

∂x1∂x2
;
∂
2f ðX jÞ

∂x22

� �

: ð7Þ

Given the fitted polynomial coefficients, C1 :M, we

can thus estimate the radiant power and the HDR

pixel value, zj, at the output location Xj by zj = C0 =

f(Xj).

5.2 Maximum localized likelihood fitting

To estimate the coefficients, we maximize a localized

likelihood function [30] defined using a Gaussian

smoothing window centered around Xj

Wh X j

� �

¼
1

2πh2
exp

− Xk−X j

� �T
Xk−X j

� �

h

( )

; ð8Þ

where h is a local scale parameter (see Section 6)

which determines the shape of the filtering kernel.

In Section 6, we discuss how the size of the window

function can be selected adaptively depending on the

features at each location in the image.

We denote the observed pixel samples (radiant

power estimates, f̂ i X j

� �

at position Xj) in the support

of the local neighborhood window by fk with a linear

index k = 1… K. Note that these are obtained from

the digital pixel values using Eq. 2 derived from the

sensor noise model.

Using the assumption of normally distributed radi-

ant power estimates, fk, the polynomial coefficients,
~C , maximizing the localized likelihood function is

found by the weighted least squares estimate

~C ¼ Φ
TWΦ

� �−1
Φ

TW�f ; ð9Þ

where

�f ¼ f 1; f 2;…f K½ �T

W ¼ diag
Wh X1ð Þ

σ̂ 2
f 1

;
Wh X2ð Þ

σ̂ 2
f 2

;…;
Wh XKð Þ

σ̂ 2
f k

2

4

3

5

Φ ¼

1 X1−X j

� �

trilT X1−X j

� �

X1−X j

� �T
n o

…

1 X2−X j

� �

trilT X2−X j

� �

X2−X j

� �T
n o

…

⋮ ⋮ ⋮ ⋮

1 XK−X j

� �

trilT XK−X j

� �

XK−X j

� �T
n o

…

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

ð10Þ

The operator tril lexicographically vectorizes the lower

triangular part of a symmetric matrix.

Using this maximum likelihood approach, we can

efficiently solve for the polynomial coefficients C1 :M

and estimate the final HDR pixel value zj at a pixel

location Xj for a given smoothing parameter h.

However, in order to enable a good trade-off

between bias and variance, i.e., between image sharp-

ness and noise reduction, it is necessary to locally

adapt the smoothing parameter h to image features

and image noise. If h is globally fixed over the

image, reconstruction may lead to a noisy final

image for small h and blurry result for a high h

value. The best trade-off between image sharpness

and denoising is achieved by adapting the smoothing

parameter h to local image features.

In the next section, we describe the iterative

reconstruction method and two algorithms for

selecting the locally best smoothing parameter, h, for

each HDR pixel estimate, zj, individually.
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6 Adaptive scale selection

The size of the window function introduces a trade-off

between bias and variance. A large window will reduce

the variance but can lead to overly smoothed images

(bias). Ideally, it is desirable to have large window

supports in regions where the smooth polynomial

model, used for the reconstruction, is a good fit to the

underlying signal, while keeping the window size small

close to the edges or important image features. The size

of the smoothing window is determined by the smooth-

ing parameter h. Figure 3 illustrates how a signal value,

the black point, is being estimated using a kernel with a

gradually increasing smoothing parameter, h. When the

smoothing parameter h is increased from h0, the h1,

i.e., a higher degree of smoothing, the variance in the

estimated value can be explained by the signal vari-

ance. When the smoothing parameter is increased

from h1 to h2, the kernel reaches the step in the signal

and the estimation at the black point can no longer be

explained by the signal variance. Smoothing parameter

h1 thus produces a better estimate.

The adaptation of the smoothing parameter, h, scale

selection is carried out iteratively. The goal of the

adaptation is to gradually increase h, and find an optimal

Fig. 3 Illustrating how a signal value, the black point, is estimated using a kernel with an iteratively increasing smoothing parameter, h. Increasing

from h0 to h1, i.e., a higher degree of smoothing, the variance in the estimated value can be explained by the variance in the original signal.

However, when the smoothing parameter is increased from h1 to h2, the kernel reaches the step in the signal and the estimate at the black point

can no longer be explained by the signal variance
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h such that the variation in the estimated value between

iterations can be explained by the signal variance and

the smoothing applied. Denoting each iteration by l and

the corresponding smoothing parameter by h1, Algorithm

1 describes the outline of the HDR pixels zj reconstructed

by adapting the smoothing parameter h1. In each iteration,

we estimate the signal value and its variance. We then

apply an update rule which determines whether the h

value used is valid or not. This is repeated until the update

rule does not hold or the maximum h value, hmax, is

reached. In Sections 6.1 and 6.2, we describe how the

variance of the pixel is estimated in detail with the two

different update rules.

6.1 Update rule 1: error of estimation versus standard

deviation (EVS)

The first update rule is built on the intuition that if the

weighted mean reconstruction error is larger than the

weighted mean standard deviation, i.e., the difference

between the data and the fit cannot be explained by the

expected signal variation due to noise, the polynomial

model does not provide a good fit to the underlying

image data. As described in Algorithm 1, the smoothing

parameter, h1, is iteratively increased with an increment

hinc. In each iteration, l, the EVS update rule computes

the weighted reconstruction error e1 as

el ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

k

W 2ðk; kÞð~f ðXkÞ−f̂ kÞ
2

s

; ð11Þ

where k indexes the pixels in the neighborhood and W is

the weights including both the variance of the original

pixels and the spatial Gaussian kernel as described in

Eq. 10. The weighted standard deviation, ~σ ẑ j;hi
, of this

estimate can be obtained from the covariance matrix MC

for the fitted polynomial coefficients, ~C , which is given by

MC ¼ Φ
TWΦ

� �−1
Φ

TWΣWT
Φ Φ

TWT
Φ

� �−1
; ð12Þ

where Σ ¼ diag½σ2f 1 ; σ
2
f 2
;…; σ2f k

� is the variance of the

observation. The variance of estimated radiant power zj,
~σ f̂ j

, at the output location Xj, is thus given by the element
~σ ẑ j;hi

¼ MC 0; 0ð Þ in MC. During the iterations, the

smoothing parameter, hl, is updated to hl + 1 = hl + hinc as

long as the weighted reconstruction error, l, is smaller

than the standard deviation �l < Γ~σ ẑ j;hi
, where Γ is a user-

Fig. 4 Reconstructed from dualISO data with ISO100–1600 captured with Canon 5D Mark III. Reconstructed with ICI M = 2, h ∈ [0.6, 5.0], and Γ = 1.0
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Fig. 5 Reconstruction process of one sample raw image. Top left shows the raw input image with CFA Bayer pattern and dualISO row pattern. Top

right indicates the resulted tone mapped HDR reconstructed image with EVS rule. Bottom rows extracted images from left to right: cutout of the raw

image, scaling parameter image for R, G, B color channels with Γ = 1.0, and the cutout of the reconstructed HDR image

Fig. 6 Lamp scene with different methods for comparison: a LPA M = 2 from left to right: h = 0.6, 1.4, and5.0; b SKR M = 2 from left to right h = 0.6,

1.4, and5.0; c our method with ICI M = 2 from left to right Γ = 0.6, 1.0, and1.4; d our method with EVS M = 2 from left to right Γ = 0.6, 1.0, and1.4
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specified parameter controlling the trade-off between

levels of denoising applied by the kernel.

6.2 Update rule 2: intersection of confidence intervals

(ICI)

The second update rule is based on the ICI algorithm

[5]. The main purpose of this algorithm is to obtain the

largest scaling parameter in the local neighborhood of

the estimation point under the constraint that the

polynomial model remains a likely fit to the underlying

data. As described in Algorithm 1, the smoothing

parameter, hmin ≤ hl ≤ hmax, is iteratively increased. For

each iteration, l, the ICI rule determines a confidence

interval, Dl = [Ll,Ul]:

Ll ¼ ẑ j;hl xð Þ−Γ~σ ẑ j;hl
; ð13Þ

U l ¼ ẑ j;hl xð Þ þ Γ~σ ẑ j;hl
; ð14Þ

where ẑ j;hl xð Þ is the estimated radiant power given the

scaling parameter hl and ~σ ẑ j;hl
is the weighted standard

deviation of this estimate computed using Eq. 12. Γ is a

scaling parameter controlling how wide the intersection

interval is. During adaptation, hl is increased as long as

there is an overlap between the confidence intervals, i.e.,

hl is updated to hl + 1 = hl + hinc if there is an overlap

between Dl and Dl + 1. In practice, we utilize Γ as a user

parameter, enabling an intuitive trade-off between image

sharpness and denoising. A detailed overview of the ICI

rule and its robustness can be found in [28].

7 Camera parameter calibration

The variance of the readout noise, the sensor gain, bias,

and the sensor saturation point are calibrated once for

each sensor. The bias frame, b, and readout noise

variance, Var[ri(gi, t)], are calibrated as the per-pixel

mean and the variance, respectively. This calibration is

done over a set of black images captured with the lens

covered, so that no photons reach the sensor. The sensor

gain, gi, can be calibrated using the relation,

Var½yi�−Var½bi�

E½yi�−E½bi�
¼

g2i Var½ei�

g iE½ei�
¼ g i; ð15Þ

where the second equality follows from ei being Poisson

distributed shot noise with E[ei] = Var[ei]. In addition, E[yi]

and E[bi] can be estimated by averaging flat fields and the

bias frame, respectively, and Var[bi] as described above.

The per-pixel non-uniformity, ai, can be estimated using a

flat field image computed as the average over a large

sequence of non-saturated images.

8 Results and evaluation

The proposed algorithm has been evaluated on two

different sets of images. One synthetic image data set with

known ground truth computed using a camera simulator

and one set of images captured using a Canon 5D Mark III

running the Magic Lantern firmware with the dualISO

module installed. The synthetic data is generated using a

camera simulation framework which takes a noise-free

HDR image as input and applies noise based on the camera

Fig. 7 Another comparison of a cutout of the simulated lamp scene

for different methods: a LPA M = 2 from left to right: h = 0.6, 1.4,

and 5.0; b SKR M = 2 from left to right h = 0.6, 1.4, and 5.0; c our

method with ICI M = 2 from left to right Γ = 0.6, 1.0, and 1.4; d our

method with EVS M = 2 from left to right Γ = 0.6, 1.0, and 1.4

Fig. 8 The ground truth reference images for the cutouts compared

in Figs. 6 and 7
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noise model described in Section 4. The camera parameters

estimated from real cameras as described in Section 7 are

used for simulating dualISO sample data. The noise-free

HDR images (ground truth) were captured as a set of

carefully calibrated exposure brackets one f-stop apart

covering the dynamic range of the scene. Each of the

different exposures in the bracketing sequence was

captured as the average of 100 calibrated RAW images

with the same exposure settings. The test images used

exhibit a very large dynamic range, were selected to be

representative for challenging scenes, and include features

such as dark and bright image regions, high- and low-

frequency regions, image noise, and strong local contrasts.

In our evaluation, we compare three different gain pat-

terns as shown in Fig. 1. We have tested our algorithm

for a polynomial degree of M = 0, 1, 2 and a range of

different parameter settings for Γ. In all tests (except

for the non-adaptive fixed h comparisons), the

smoothing parameter, h, is allowed to vary between

h = 0.6 and h = 5.0. Figure 4 shows an image

captured with a Canon 5D Mark III running the

Magic Lantern dualISO module and reconstructed

by the proposed method. The image shows that our

algorithm performs well in the reconstruction by

keeping image sharpness while allowing high-quality

noise reduction.

Figure 5 shows a high contrast scene simulating a

Canon 5D camera with dualISO settings of ISO100

and ISO1600 alternating in pairs of rows on the

sensor as shown in Fig. 1 (left). Figure 5 shows the

input raw CFA Bayer image, and three images in the

bottom row show the locally adapted h values for

the red, green, and blue color channels, respectively.

The EVS update rule adapts the smoothing param-

eter h to both the image features and the image

noise. The parameter h becomes smaller as we get

closer to edges and textured regions and larger in

homogeneous areas.

In Figs. 6 and 7, we focus on the trade-off between

image sharpness and denoising. We compare our algo-

rithm using both the ICI and EVS update rules to LPA

using non-adaptive filtering kernels, [10], with h = 0.6,

1.4, and 5.0, and the widely used steering kernel regres-

sion (SKR) method [29]. The images compare two cut-

out regions of the lamp scene from Fig. 5. The two

regions have been chosen to display the performance of

our algorithm in a dark region, Fig. 6, and a highlight re-

gion, Fig. 7. The ground truth reference images of the

cutouts are displayed in Fig. 8. In both images, the com-

parisons are ordered as follows: (a) non-adaptive LPA M

= 2 from left to right with h = 0.6, 1.4, and5.0, (b) SKR

[29] M = 2 from left to right with h = 0.6, 1.4, and5.0, (c)

Fig. 9 Living room scene. Comparison of our method with EVS rule M = 2; Γ = 1.0 for different gain patterns: block pattern, row pattern, and

diagonal pattern
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our method with ICI rule for local adaptation of scale

parameter, M = 2, from left to right: Γ = 0.6, 1.0, and1.4,

and (d) our method with EVS rule, M = 2, from left to

right: Γ = 0.6, 1.0, and1.4. From Fig. 6, it is evident that

the non-adaptive method in (a) [10] does not perform

well. SKR produces good results for h = 1.4 but cannot

fully adapt the smoothing parameter as artifacts from

the noise filtering are visible (zoom in). Both ICI- and

EVS-based algorithms keep sharpness while reducing

the image noise more than the other methods. In Fig. 7,

SKR with h = 1.4 produces a sharp image without color

artifacts; however, it also smooths the reflection on the

red toy. ICI and EVS produce a similar result, but EVS

leads to less smoothing around the highlight areas of the

scene compared to ICI. The images show that our algo-

rithms using ICI and EVS update rules produce high-

quality images. In general, the EVS update rule allows

for a higher degree of smoothing and denoising while

keeping higher contrast edges intact. However, in dark

regions, the EVS update leads to a loss of detail com-

pared to ICI rule. Another important difference is that

although the EVS update rule may produce better results

in some cases, it is built on the heuristic argument that

the reconstruction error should be smaller than the

Fig. 10 Lamp scene, evaluation of EVS, and ICI method for different degrees of polynomial for dualISO 100–1600 with row pattern from left to

right with M = 0, 1, and 2

Fig. 11 Cutouts of the checkerboard in the lamp scene, evaluation of ISO settings for EVS M = 2, Γ = 1.0. (Top row) From left to right: reference, dualISO

100–400, dualISO 100–800, and dualISO 100–1600. (Bottom row) From left to right: dualISO 100–3200, dualISO 100–6400, dualISO 100–12800, and

dualISO 100–25600
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standard deviation in the filtered region. While ICI rule

is statistically motivated and designed to minimize the

estimate variance.

In Fig. 9, we demonstrate how our algorithms perform

using the three different gain patterns illustrated in Fig. 1.

This particular image region is selected as it contains

slanted edges in different directions. The comparisons

show that the block pattern and diagonal pattern in some

cases produce better results. However, the reconstruction

quality depends on how the image features are oriented

and the statistically optimal configuration of the gain

pattern is out of scope of this paper. Figure 10 shows a

cutout of the lamp scene simulated with row pattern and

reconstructed using a varying polynomial degree of M = 0,

1, and 2. As expected, M = 0 produces a blocky result, and

M = 1 and M = 2 produce increasingly more accurate

reconstructions.

In Figs. 11 and 12, we show the effect of increasing the

ISO separation in the dualISO image using a simulated

14-bit Canon 5D sensor. The dualISO settings are varied

from ISO100–ISO200 to ISO100–ISO25600. As the

separation between the ISO settings increase, the number

of overlapping bits in the two exposures decrease. The

image shows that our algorithm works well up to

ISO100–ISO6400, i.e., a separation of six f-stops and an

overlap of 8 bits. By increasing the separation further,

artifacts start to appear along the edges.

9 Conclusions

In this paper, we presented a novel approach for adaptive

unified HDR image reconstruction that includes the sensor

noise model and error of the estimation for a more robust

and accurate reconstruction of single shot spatial multiplex-

ing raw data. The method handles severe noise, especially

in the darker regions while it keeps the error of the estima-

tion low to prevent over-smoothing of the image. To the

best of our knowledge, none of the previous methods have

considered sensor noise model and estimated error and

variance in order to adapt the reconstructed kernel for each

local region of the image. The robustness of our approach

for noise reduction and HDR reconstruction has been ex-

perimentally verified on both real data and simulated cam-

era images. While being a simple method to implement,

our results demonstrate a relatively good performance.
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