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ABSTRACT Detection of transformer faults avoids the transformer’s undesirable loss from service
and ensures utility service continuity. Diagnosis of transformer faults is determined using dissolved gas
analysis (DGA). Several traditional DGA techniques, such as IEC code 60599, Rogers’ ratio method,
Dornenburg method, Key gas method, and Duval triangle method, but these DGA techniques suffer from
poor diagnosis transformer faults. Therefore, more research was used to diagnose transformer fault and
diagnostic accuracy by combining traditional DGA techniques with artificial intelligence and optimization
techniques. In this paper, a proposed Adaptive Dynamic Polar Rose Guided Whale Optimization algorithm
(AD-PRS-Guided WOA) improves the classification techniques’ parameters that were used to enhance the
transformer diagnostic accuracy. The results showed that the proposed AD-PRS-Guided WOA provides
high diagnostic accuracy of transformer faults as 97.1%, which is higher than other DGA techniques in
the literature. The statistical analysis based on different tests, including ANOVA and Wilcoxon’s rank-sum,
confirms the algorithm’s accuracy.

INDEX TERMS Diagnostic Accuracy, Dissolved Gas Analysis, Polar Rose, Artificial Intelligence, Data
Classification

I. INTRODUCTION

T
HE power transformers are very crucial in the electrical
power system, and the electricity utilities are keen to

carry out inspections to monitor their status regularly. The
malfunction in their operation will lead to disconnection
of the system and consequently to revenue loss [1], [2].
The detection of the transformer faults is essential to avoid
an unexpected and undesired outage from the system [3].
Dissolved gas analysis (DGA) is a method that interprets
the cause of transformer faults and identifies the fault types
[4]. Several DGA methods have been developed to address
the rules used to diagnose the transformer faults, such as
the Dornenburg, Rogers’ ratios, IEC code 60599, and Duval
triangle methods, as the traditional DGA methods [5]–[9].
Some graphical representations are designed to identify the

transformer faults such as Duval Triangle [7], [8], pentagon
[10], [11], and heptagon [12]. The poor accuracy of the tra-
ditional DGA methods is observed, and decreasing the errors
between the estimated and actual diagnostic faults requires
other tools to solve this shortcoming; then, the intelligent
techniques are utilized.

Several attempts were carried out to increase the traditional
DGA method’s diagnostic accuracy to provide a correct di-
agnosis of transformer fault type using artificial intelligence
techniques. Several intelligent techniques were addressed
combining with traditional DGA methods to improve the
accuracy of diagnosing the transformer faults such as arti-
ficial neural networks (ANN) [13]–[15], Fuzzy logic system
[FLS] [10], [16]–[18], Neuro-fuzzy [19], [20], support vector
machine (SVM) [21], [22], Dempster–Shafer Theory [23],
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and k-NN [24]. Despite the combination of artificial intelli-
gence methods with traditional DGA methods, the accuracy
of diagnosing transformer faults is still less than researchers’
aspiration. Therefore many of them resorted to trying to
improve the accuracy of diagnosis through optimization tech-
niques.

Some of the researchers’ contributions using the optimiza-
tion techniques were reported to improve the artificial intel-
ligence methods’ parameters to enhance the accuracy of the
diagnosis of transformer faults. In [25], the genetic algorithm
(GA) is used to adapt the wavelet networks (GAWNs) param-
eters such as the nodes’ weighting values and wavelet nodes
translation and dilation. The GAWNs, ANN, and conven-
tional DGA accuracy results were compared. The bootstrap is
used with genetic programming (GP) to enhance the extrac-
tion of classification features of each transformer fault type
[26]. The features supplied the ANN, SVM, and K-nearest
neighbor (KNN) classifiers as the inputs to identify each
fault classification. The results revealed that the suggested
algorithm improved the accuracy of the transformer faults
diagnosis. A Genetic Neural Computing (GNC) is used in
[27] to interpret and diagnose the transformer faults based on
DGA data. According to IEEE C57.104, the faults are catego-
rized into four subsets using GA. The clustered data are used
as inputs to ANN to predict the transformer fault types. The
suggested algorithm developed the required decision rules to
identify the correct diagnoses of the transformer faults.

In [28], the Particle swarm optimizer (PSO) optimized the
Parzan windows (PW) parameters to improve its ability for
transformer fault classification. An intuitive interpretation of
transformer faults and correct decision-making are the main
advantages of this algorithm. Furthermore, the diagnostic
accuracy is enhanced according to the other DGA methods.
The ANN and PSO are merged to increase the accuracy of the
transformer faults diagnosis based on DGA datasets [29]. It
revealed that the accuracy is improved using the suggested
algorithm. A hybrid modified evolutionary particle swarm
optimization-time varying acceleration coefficient (MEPSO-
TVAC) with artificial neural network (ANN) was suggested
as a combined optimizer to identify the transformer faults
based on DGA records [30].

The transformer faults can be diagnosed using an opti-
mized regression ANN (GRNN), Cuckoo search algorithm
(CSA), and rough set theory (RS) in [31]. The RS reduced
and simplified the high dimensioned data to develop the
better features of GRNN input. The CSA with Levy flight
helps the GRNN to get a good global convergence. Real
fault cases are used to validate the proposed algorithm, and
the results explained that the algorithm could provide good
accuracy for diagnosing the fault types based on the DGA
dataset. The IEC 60599 code and Rogers’ ratio method were
utilized to identify the transformer faults, but they have poor
diagnostic accuracy; then, the PSO-FS optimizer is used to
determine the optimal limit of the two methods ratios to
enhance the diagnostic accuracy [1]. The Fuzzy system (FS)
identifies the transformer faults by the modified ratio limits

developed by PSO. The proposed algorithm enhanced the
diagnostic accuracy compared with the other DGA methods
in the literature.

A hybrid grey wolf optimizer (GWO) with differential
evaluation (DE) is presented for enhancing the diagnostic
accuracy of DGA methods by avoiding the local optima,
improving the diversity of the population, then fitting the re-
lation between the exploration and exploitation [32]. A fault
diagnosis model of GWO optimized least square support
vector machine (HGWO-LSSVM) is suggested and applied
to transformer fault diagnosis with the optimal hybrid DGA
feature set selected as the model’s input. The kernel principal
component analysis (KPCA) is utilized to extract the features
decreasing the model training time. A fuzzy system produced
the rules to limit the gas ratio for transformer fault types
considering three memberships for three regions of each
gas percentage range [33]. The membership limits can be
optimized using GWO, which developed the diagnostic code
matrix. The proposed algorithm enhanced the diagnostic
accuracy of the transformer faults (95.45 %) for the random
testing data.

The traditional DGA techniques in IEC standard 60599
[5] and IEEE Standards C 57.104 [6] fail to interpret the
transformer faults in most cases, then the diagnostic accuracy
of these methods is lacking. Moreover, combining the DGA
methods and artificial intelligence methods to enhance the
diagnostic accuracy of traditional DGA techniques requires
much work, and diagnostic accuracy is still low. Therefore,
the researchers attempted to use the optimization techniques
to optimize the DGA method parameters or to optimize
the classification parameters for the classification techniques
[1], [21], [22], [28]–[33]. The optimization techniques max-
imize the agreement of predicting and the actual faults to
develop the highest diagnostic accuracy of the transformer
faults. Table 1 illustrates the recent research diagnosing the
transformer fault based on several artificial intelligence and
optimization methods. The accuracy differs from the DGA
method to another based on the used technique and the
number of data samples. It is seen that only one approach
develops high diagnostic accuracy, as in [34]. Still, the num-
ber of data samples is deficient, which can not indicate the
robustness of the BA-PNN based DGA technique. The other
recent DGA techniques develop diagnostic accuracy of about
90%, which is higher in most cases than traditional DGA
methods.

In this work, 475 dataset samples were collected from
the central chemical laboratory of the Electricity Authority
of Egypt and literature. The proposed Adaptive Dynamic
Polar Rose Guided Whale Optimization algorithm (AD-
PRS-Guided WOA) enhances several classification methods’
parameters, such as k-NN, ensemble classifier, and voting
classifier, to improve their performance in classifying pur-
poses. The proposed classification method developed an ex-
cellent diagnostic accuracy of the transformer faults. First,
a binary version of the proposed (AD-PRS-Guided WOA)
algorithm is used for feature selection from the tested dataset.
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TABLE 1: Recent research for classification in diagnostic accuracy of transformer faults

Reference Methods # of samples Accuracy
S. S. M. Ghoneim et al. (2016), [4] Multiple parallel ANN 184 87.8%
S. S. M. Ghoneim et al. (2016), [35] Mathematical model based on gases ratios 386 84.71%
S. Koroglu et al. (2016), [36] Multi-layer SVM 100 84-92%
I. B. M. Taha et al. (2017), [13] Conditional probability 403 83.13–86.85%
T. Kari et al. (2018), [37] Adaptive neuro-fuzzy inference system (ANFIS) and Dempster-Shafer Theory 697 84.4±3.7 %
Y. Kim et al. (2018), [38] SVM and KNN 189 88%
X. Zhang et al. (2019), [34] BA-PNN-based methods 139 98.46%
I. B. M. Taha et al. (2020), [1] Particle Swarm Optimization Fuzzy-Logic Approach 481 88.65%
X. Wu et al. (2020), [39] Deep learning frameworks based on CNN and LSTM 528 96.9%
S. S. M. Ghoneim et al. (2021), [40] Teaching-learning based optimization (TLBO) 386 83.15%
I. B. M. Taha et al. (2021), [41] Neural pattern-recognition techniques 335 92.8%

The binary AD-PRS-Guided WOA algorithm is evaluated in
compared with the Grey Wolf Optimizer (GWO) [42], PSO
[43], [44], Bat Algorithm (BA) [45], [46], WOA [47], [48],
Bowerbird Optimizer (SBO) [49], Multiverse Optimization
(MVO) [50], Biogeography-Based Optimizer (BBO) [51],
Firefly Algorithm (FA) [52], and Genetic Algorithm (GA)
[53]. Second, a voting classifier based on the proposed al-
gorithm (voting AD-PRS-Guided WOA) is applied to the
experiments’ dataset. The output results are compared with
voting WOA, voting GWO, voting GA, and Voting PSO.
Finally, the diagnostic accuracy of the proposed classification
algorithm of the randomly selected samples extracted by
the optimizer from the total of 475 samples is investigated.
The comparison of the proposed classification algorithm and
the other DGA techniques in literature, such as Conditional
probability [13] and NPR [41] and other DGA techniques, is
illustrated in the experiments.

The main contributions of this work can be formed as
follows.

• A novel Adaptive Dynamic Polar Rose Guided Whale
Optimization algorithm (AD-PRS-Guided WOA) is
proposed.

• A binary version of the proposed algorithm (binary AD-
PRS-Guided WOA) is used for feature selection from
the tested dataset.

• To test the statistical difference of the proposed binary
AD-PRS-Guided WOA, a one-way analysis of variance
(ANOVA) and a one-sample t-test tests are applied in
this experiment.

• A voting classifier based on the proposed algorithm
(voting AD-PRS-Guided WOA) is developed to im-
prove the tested dataset classification accuracy.

• The ANOVA and Wilcoxon’s rank-sum tests are inves-
tigated to test the statistical difference of the proposed
voting (AD-PRS-Guided WOA) algorithm.

• The importance of the current work is applying a new
optimization Polar Rose Guided Whale Optimization
algorithm (ADPRS-GuidedWOA) to enhance several
classification methods’ parameters, such as k-NN, en-
semble classifier, and voting classifier.

• The AD-PRS-Guided WOA algorithm is used to im-
prove the classification method performance in classi-
fying purposes and apply it in a new application of high

voltage engineering to diagnose the transformer faults
achieving high diagnostic accuracy of the transformer
faults.

• The proposed binary and voting algorithms can be gen-
eralized and applied to different types of datasets.

II. MATERIALS AND METHODS

This section will discuss the dataset samples tested in this
work and introduce the essential machine learning algo-
rithms, including mathematical discussion of the traditional
classifiers and ensemble methods. The original whale opti-
mization algorithm will also be introduced in this section.

A. DATASET

In this study, 475 dataset samples were collected from
the central chemical laboratory, Egyptian electricity holding
company, and the literature. The distribution of the 475
samples is based on the transformer fault types, and their ref-
erences are illustrated in Table 2. Table 2 shows that 242 data
samples for real cases from the central chemical laboratory
and Egyptian electricity holding company are included [54].

TABLE 2: Distribution of the data samples according to
transformer fault types and literature

Ref. PD D1 D2 T1 T2 T3 Total
[7] 3 0 0 3 1 0 7
[8] 13 27 52 1 0 18 111
[21] 0 2 1 1 3 1 8
[54] 27 42 57 70 18 28 242
[55] 1 0 5 2 0 1 9
[56] 3 0 4 4 3 5 19
[57] 1 1 2 1 0 1 6
[58] 1 4 2 0 2 8 17
[59] 0 2 2 0 0 0 4
[60] 1 0 4 4 0 2 11
[61] 0 0 0 0 1 2 3
[62] 0 0 0 0 0 2 2
[63] 1 0 0 4 2 14 21
[64] 0 1 4 2 1 0 8
[65] 0 3 1 2 0 1 7

Total 51 82 134 94 31 83 475

B. MACHINE LEARNING ALGORITHMS

In this section, traditional classifiers and ensemble methods
are considered as they are employed in the experiments for
the dataset illustrated in Table 2. The traditional classifiers are
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Multilayer Perceptron (MLP) and k-Nearest Neighbors (k-
NN). Ensemble methods cover two main types of ensemble
methods: bagging classifier and random forest as a type of
averaging technique, and Adaboost and voting as a type of
boosting technique.

1) Traditional classifiers

Artificial neural networks (ANN) are excellent classification
algorithms due to their ability to learn a non-linear decision
boundary, like MLP, containing two or more layers. Thus,
it is very flexible in solving real-world tasks. It consists of
many processing elements (PEs) that are called artificial neu-
rons and connections. These PEs try to emulate our human
nervous system’s operation using special training algorithms
(i.e., ADAM, SGD, and L-BFGS-B) [66]. The MLP neural
network can include input and output layers and one layer
between them named hidden layer. For the node output value
calculations, the weighted sum is computed as

Sj =
n
∑

i=1

wijIi + βj (1)

where Ii indicates input variable i and wij is connection
weight between Ii and neuron j in the hidden layer. βj is
a bias value. The node j output can be defined using the
sigmoid activation function as

fj(Sj) =
1

1 + exp−Sj
(2)

The network output is then defined using the value of fj(Sj)
for all hidden layer neurons as

yk =
m
∑

j=1

wjkfj(Sj) + βk (3)

where wjk is the weights between neuron j in the hidden
layer and output node k and βk is the bias value for the output
layer.

The k-NN algorithm classifies samples or cases based on
their similarity measure after storing all variable samples. In
this algorithm, data is used directly for classification, and
the classification process is done based on the nearest points
or samples. The value of the nearest neighbors (k) is an
adjustable parameter that can change to make the model more
(i.e., small values of k) or less flexible (i.e., large values
of k). Besides, the value of the nearest neighbors is one by
default [67]. k-NN is employed to predict the output variables
based on classification approaches. The dataset is divided
into training and testing data in this approach. A similarity
measure is used by the k-NN model to compare the given
testing to training data. The Euclidean distance is commonly
used between training data (xtrain) and data testing (xtest),
and it can be as follows.

D (xtrain,i, xtest,i) =

√

√

√

√

k
∑

i=1

(xtrain,i − xtest,i)2 (4)

In predicting output variables, the k-NN model chooses k
training data that can be close to the testing data. To predict
the output value of the unknown testing data, the output value
of k training data is selected to be the nearest neighbors.
To predict a value, the following formula is used by k-NN
regression.

ŷ =
1

k

k
∑

j=1

yj (5)

where k represents number of nearest neighbors of yj . In
case of time series data, Eq. 5 is less efficient because the
correlation between observations (time) is not considered. To
predict the data testing, the following general formulation is
applied.

ŷ =
k

∑

j=1

wjyj (6)

where wj is weighted for the jth neighbor. This weighting is
adjusted based on the observed data, as wj = j/n, with n
represents number of training data. This model is considered
as a time series model of k-NN.

2) Averaging Ensemble Classifiers

The ensemble methods seek to merge ML classifiers’ predic-
tions to improve performance over a single classifier because
of the variance reduction. Bagging or averaging methods
are based on building several classifiers independently and
then averaging their predictions (e.g., bagging classifier, ran-
domized trees (random forest), and voting methods (soft and
hard). These algorithms are less affected by the overfitting
problem. Random decision forests (RF) is one of the most
popular and successful ensemble algorithms used for classi-
fication, regression. RF has gained massive interest due to
its accuracy and immunity to noise than single classifiers
did. This means that small changes in training data do not
make any reasonable change in the tree. This is because
of the hierarchical architecture of the tree classifiers. High
variance is a drawback for this algorithm. Generally, RF
performance is lower than gradient boosted trees (GBT) and
higher than decision trees (DT). This technique is a very
effective technique for high-dimensional classification tasks
[68].

For the RF training algorithm, set X = x1, . . . , xn with
responses set as Y = y1, . . . , yn. With B times, the bagging
selects a sample randomly with the training set replacement
and fits trees to these samples. Let b = 1, ..., B, a sample,
with replacement, for n training examples from X and Y ;
named Xb and Yb. Then, train the classification/regression
tree fb on Xb and Yb. After the training process, the predic-
tions for unseen samples x′ can be made by averaging the
predictions from all the individual regression trees on x′ as
follows.

f̂ =
1

B

B
∑

b=1

fb(x
′) (7)

In the classification trees case, the majority vote is applied.

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083593, IEEE Access

Sherif. S. M. Ghoneim et al.: Adaptive Dynamic Meta-heuristics in Diagnostic Accuracy of Transformer Faults

3) Boosting Ensemble Classifiers

Adaboost is a type of ensemble boosting method that can
improve accuracy by combining multiple classifiers. It builds
a high-performance classifier by merging a set weak classifier
(low accurate). This algorithm’s philosophy is to set the
weights of classifiers and to train the data case in each
iteration to ensure the exact predictions of unusual observa-
tions. Any ML technique can be used as a base estimator
if it accepts weights on the training set. Bagging classifier
is an acronym from Bootstrap aggregating. It gets its name
because it merges two techniques (i.e., Bootstrapping and
Aggregation) into one model. It is a type of ensemble av-
eraging method with simple implementation and improves
the performance of ML algorithms [69]. It works by learning
different classifiers on randomly generated training sets to get
a final prediction. All classifiers in the ensemble are used to
classify the test sample by merging all models’ predictions
using uniform averaging or voting methods over class labels.
This technique can be used as a variance reduction method
because of the randomization into its structure procedure, and
then we can create an ensemble out of it. The concept behind
this method is to merge a set of ML estimators and use a
majority vote (i.e., the output of each estimator) called hard
voting. On the opposite side, soft voting or average predicted
probabilities returns the class label as argmax of the sum of
predicted probabilities. The expected class probabilities are
collected for each classifier. It is then multiplied by a specific
weight for each classifier and is then averaged. The final class
label (i.e., the highest average probability) is then derived
from the class label. This technique is suitable for equally
well-performing ML classifiers to balance their weaknesses
[68].

C. WHALE OPTIMIZATION ALGORITHM

WOA has shown its advantages in the optimization area,
and it is considered one of the most effective algorithms
in the literature. However, it suffers from a low exploration
capability of the search space in some applications [68]. The
inspiration in the WOA algorithm is from the behaviour of
whales in finding food [47], [70]. There is an n-dimensional
search space in which whales swim. n represents the num-
ber of variables. The global solution can be found if each
solution’s position in the space search is updated. The main
mechanism of this algorithm uses this equation to update
solution’ positions.

X(t+ 1) = X∗(t)−A.D,D = |C.X∗(t)−X(t)| (8)

where X(t) indicates a solution at iteration t and X∗(t)
indicates the prey’ position (best solution). The "." is pairwise
multiplication and X(t+ 1) indicates the updated solution’s
position [71], [72]. The A and C vectors are updated in each
iteration by A = 2a.r1−a and C = 2.r2. a is changing from
2 to 0 linearly. r1 and r2 are random values in [0, 1].

III. PROPOSED AD-PRS-GUIDED WOA ALGORITHM

The proposed Adaptive Dynamic Polar Rose Guided Whale
Optimization Algorithm (AD-PRS-Guided WOA) has the
following main parts that are different from the original
WOA algorithm. These changes are used to explore the
search space while being affected by the leader’s position
to enhance exploration performance. The AD-PRS-Guided
WOA algorithm is shown in Algorithm (1).

• The algorithm follows three random solutions instead of
one solution.

• It uses exponentially change instead of linearly one to
change between exploration and exploitation processes
smoothly.

• It calculates a list of generated walks in a diffusion
process, according to the best solution, as a polar rose
function.

Each of these changes, the Guided WOA Algorithm, Adap-
tive Dynamic Technique, and Polar Rose Function, then
the proposed algorithm, will be explained in detail in the
following subsections.

A. GUIDED WOA ALGORITHM

In the AD-PRS-Guided WOA algorithm, the updating po-
sitions mechanism of the WOA algorithm is modified to
follow three random solutions instead of one solution. The
three random solutions are named Xo1, Xo2, and Xo3. These
solutions are updated each iteration to enhance the algorithm
performance and reach the best solution at minimum time.

X(t+ 1) = w1 ∗Xo1

+ z ∗ w2 ∗ (Xo2 −Xo3)

+ (1− z) ∗ w3 ∗ (Q−X(t))

(9)

where X(t) represents the solution at iteration t and X(t+1)
represents the updated solution position. Q indicates the best
solution (prey’ position). w1, w2, and w3 are random values
in [0, 0.5], [0, 1], and [0, 1], respectively. z is updated between
exploitation and exploration smoothly and is calculated as
follows

z = 1−

(

t

itersmax

)2

(10)

where itersmax is maximum iterations and t is an iteration.

B. ADAPTIVE DYNAMIC TECHNIQUE

A fitness value is determined for each solution in the pop-
ulation after initialization. The algorithm then finds the best
solution with the best fitness value. After that, the algorithm
splits individuals from the population into two groups as
shown in Fig. 1: the exploration and exploitation groups.
Some individuals in the exploitation group are going toward
the best "leaders" option, and other individuals search in the
area around the leaders. Most individuals in any of the sub-
groups of the population dynamically change. To guarantee a
balance between exploration and exploitation, the algorithm
starts with a (50/50) population.
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FIGURE 1: Groups balance in the proposed AD-PRS-Guided WOA algorithm.

C. POLAR ROSE FUNCTION

The polar rose function is employed in the proposed algo-
rithm to search around the best solution to find another good
solution. It can be applied as follows.

X(t+ 1) = k sin
(a

b
θ
)

(11)

where a and b are within [−10, 10] and 0 ≤ θ ≤ 12π.
The k value decreases exponentially and is calculated as 2−

2×t2

(itersmax)2
for iteration t and maximum iterations itersmax.

To show how this function helps search about the best
solution and how it can cover an enormous range of areas
around the selected solution, Fig. 2 shows the output of the
polar rose function based on different values of a and b.

D. COMPUTATIONAL COMPLEXITY

The proposed AD-PRS-Guided WOA algorithm’ computa-
tional complexity, as shown in Algorithm 1, can be expressed
as follow for a number of population n = n1+n2 and number
of iterations itersmax.

• Population settings: O (1).
• Parameters settings w1, w2, w3: O (1).
• Collection of configuration parameters: O (1).
• Calculate objective function for n solutions: O (n).
• Finding best solution Q: O (n).
• Selecting three random solutions Xo1, Xo2, and Xo3: O

(itersmax × n).
• setting z value: O (itersmax × n).
• Positions’ updating for each solution: O (itersmax×n).

• Positions’ updating for each solution in exploration
group: O (itersmax × n1).

• Positions’ updating for each solution in exploitation
group: O (itersmax × n2).

• Increasing solutions in exploration group: O (itersmax×
n1).

• Decreasing solutions in exploitation group: O
(itersmax × n2).

• Updating random solutions in exploration group Xo1,
Xo2, Xo3, and Q: O (itersmax × n1).

• Mutate solutions in exploration group: O (itersmax ×
n1).

• Positions’ updating for each solution: O (itersmax ×
n1).

• Updating random solutions in exploitation group Xo1,
Xo2, Xo3, and Q: O (itersmax × n2).

• Move solutions in exploitation group: O (itersmax ×
n2).

• Searching around best solution in exploitation group: O
(itersmax × n2).

• Amend solutions: O (n).
• Update fitness: O (n).
• Returning the best solution Q: O (1).

This analysis shows that the proposed AD-PRS-Guided
WOA algorithm’ complexity of computations is O
(itersmax × n), since n ≥ n1 and n ≥ n2. In case of a
d dimension’ problem, the algorithm’ complexity will be O
(itersmax × n× d).
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a = 1, b = 3 a = 1, b = 6 a = 1, b = 9

a = 7, b = 3 a = 7, b = 6 a = 7, b = 9

FIGURE 2: Polar rose function based on different values of a and b.

E. BINARY OPTIMIZER

For the problems of feature selection, the solutions are only
binary with values of 0 or 1. Thus, the proposed AD-PRS-
Guided WOA algorithm’s continuous values can be con-
verted into binary [0,1] to achieve the feature selection pro-
cess. The following equation based on the Sigmoid function
is applied in this work.

X(t+ 1) =

{

1 if Sigmoid(x) ≥ 0.5

0 otherwise
,

Sigmoid(x) =
1

1 + exp−10(x−0.5)
,

(12)

where X(t+ 1) indicates the binary solution at iteration
t. Sigmoid can scale the output values to be binary.
Sigmoid(x) ≥ 0.5 converts the value to be 1. x represents
the best solution of the proposed algorithm. The binary AD-
PRS-Guided WOA Algorithm in explained step by step in
Algorithm 2.

F. OBJECTIVE FUNCTION

The objective function is applied to get the optimizer so-
lutions’ quality. To evaluate the quality of a solution, the
following equation is used.

Fn = αER(D) + β
|s|

|f |
(13)

where ER(D) gives classier’ error rate, s indicates number
of selected features, f represents the hole number of features.
α ∈ [0, 1], β = 1 − α shows the number of the selected
feature importance for population. The solution is a good
solution if it can get a subset of features that can give
low classification error rate with lower number of selected
features.

IV. DIAGNOSTIC ACCURACY OF TRANSFORMER

FAULTS FRAMEWORK

The proposed step-by-step framework for the diagnostic
accuracy of transformer faults is shown in Fig. 3. The
framework consists of three main steps: First step of data
processing, Second step of training base model, and Third
step of training voting ensemble model. In the first step
of the framework, the processes of removing null values,
feature scaling, and correlation analysis are applied to the
input data samples as a data processing stage. The binary
AD-PRS-Guided WOA algorithm, shown in Algorithm 2,
is applied here for the feature selection from the processed
data in the input dataset. The data is then divided randomly
into 80% for training purposes, and the remaining samples
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Algorithm 1 : Proposed AD-PRS-Guided WOA algorithm

1: Set population Xi(i = 1, 2, ..., n), objective function Fn, size n, maximum iterations itersmax.
2: Set parameters w1, w2, w3

3: Collection AD-PRS-Guided WOA configuration parameters
4: Calculate objective function Fn for all solutions Xi

5: Set Q = best agent position
6: while t ≤ itersmax do

7: for (i = 1 : i ≤ n) do

8: Select three random solutions Xo1, Xo2, and Xo3

9: Set z = 1−
(

t
itersmax

)2

10: Update position of current search agent as
X(t+ 1) = w1 ∗Xo1 + z ∗ w2 ∗ (Xo2 −Xo3) + (1− z) ∗ w3 ∗ (Q−X(t))

11: end for

12: Update Solutions in exploration group (n1) and exploitation group (n2)
13: if (Best Fn is same for three iterations) then

14: Increase solutions of exploration group (n1)
15: Decrease solutions of exploitation group (n2)
16: end if

17: for (i = 1 : i ≤ n1) do

(exploration group update)
18: update three random solutions Xo1, Xo2, Xo3, and Q (The best solutions were elitism)
19: if (Q < Any of the best solutions) then

20: Mutate the solution by
X(t+ 1) = k +

(∑
Xo1+Xo2+Xo3

ezk

)

, k = 2− 2×t2

(itersmax)2

21: else

22: Update agent position by
X(t+ 1) = w1 ∗Xo1 + z ∗ w2 ∗ (Xo2 −Xo3) + (1− z) ∗ w3 ∗ (Q−X(t))

23: end if

24: end for

25: for (i = 1 : i ≤ n2) do

(exploitation group update)
26: update three random solutions Xo1, Xo2, Xo3, and Q (The best solutions were elitism)
27: if (Q < Any of the best solutions) then

28: Move towards the best solution by
X(t+ 1) = w1 ∗Xo1 + z ∗ w2 ∗ (Xo2 −Xo3) + (1− z) ∗ w3 ∗ (Q−X(t))

29: else

30: Search around the best solution
X(t+ 1) = k sin

(

a
b
θ
)

31: end if

32: end for

33: Amend solutions
34: Update fitness
35: end while

36: Return best agent Q

are used for testing the models. The base models of NN, k-
NN, and Random forest are trained on the second step of the
framework using the processed data in the first step. The NN
model is based on Eq. 1, Eq. 2, and Eq. 3. The k-NN model
is based on Eq. 4, Eq. 5, and Eq. 6, while the Random Forest
model uses Eq. 7.

The last step of the proposed framework as shown in
Fig. 3 is the training voting ensemble model. In this step,
a voting classifier is presented using the proposed AD-PRS-

Guided WOA algorithm illustrated in Algorithm 1 based on
the Guided WOA Algorithm, Adaptive Dynamic Technique,
and Polar Rose Function. The voting algorithm improves
the ensemble’s accuracy by aggregating the NN, k-NN, and
Random Forest classifiers. Voting is based on merging a set
of ML algorithms and returns the class label as argmax of the
sum of predicted probabilities. The predicted class probabil-
ities are collected for each classifier. Then, it is multiplied
by a specific weight for each classifier and is then averaged.
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FIGURE 3: Proposed Framework based on AD-PRS-Guided WOA algorithm.

Algorithm 2 : Proposed binary AD-PRS-Guided WOA Al-
gorithm

1: Set AD-PRS-Guided WOA population, parameters, con-
figuration.

2: Convert solutions to binary [0,1]
3: Calculate objective function and select best solutions
4: Train k-NN and calculate error
5: while t ≤ itersmax do

6: Apply AD-PRS-Guided WOA algorithm
7: Convert updated solution to binary by Eq. 12
8: Calculate fitness
9: Update parameters

10: end while

11: Return best solution

The final class label (i.e., the highest average probability)
is then derived from the class label. In addition, weights
are optimized using the AD-PRS-GUIDE WOA algorithm.
This process will guarantee the best model performance. The
ensemble of the classifier is based on weighted voting. The

data is then classified, and the output is predicted.

V. EXPERIMENTAL RESULTS

There are two main parts of the experiments. The first part
considers the feature selection ability of the proposed bi-
nary AD-PRS-Guided WOA algorithm. The second part is
designed for the classification problem of the tested dataset
based on the algorithm. The 475 dataset samples are divided
into 80% training and 20% testing. The training samples are
used to train the proposed optimizer, and the testing samples
are used for the evaluation.

A. FEATURE SELECTION SCENARIO

The proposed binary algorithm is used in this scenario for
feature selection from the tested dataset. The binary AD-
PRS-Guided WOA algorithm is evaluated in compared with
the Grey Wolf Optimizer (GWO), PSO [43], Bat Algorithm
(BA) [45], [46], WOA [47], Bowerbird Optimizer (SBO)
[49], Multiverse Optimization (MVO) [50], Biogeography-
Based Optimizer (BBO) [51], Firefly Algorithm (FA) [52],
and Genetic Algorithm (GA) [53]. Table 3 shows the perfor-
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TABLE 3: Performance metrics for feature selection

Metric Value
Average Error 1−

1

M

∑M
j=1

1

N

∑N
i=1

Match(Ci, Li)

Average Select Size 1

M

∑M
j=1

size(g∗j )

D
Average Fitness 1

M

∑M
j=1

g∗j
Best Fitness MinM

j=1
g∗j

Worst Fitness MaxM
j=1

g∗j

Standard Deviation
√

1

M−1

∑

(g∗j −Mean)2

TABLE 4: AD-PRS-Guided WOA algorithm configuration

Parameter Value
Agents 10
Iterations 80
Repetitions 20
Dimension Number of features
a [−10, 10]
b [−10, 10]
θ [0, 12π]
α of Fn 0.99
β of Fn 0.01

TABLE 5: Compared algorithms configuration

Algorithm Parameter (s) Value (s)
GWO a 2 to 0
PSO Inertia Wmax, Wmin [0.9,0.6]

Acceleration constants C1, C2 [2,2]
BA Pluse rate 0.5

Loudness 0.5
Frequency [0,1]

WOA a 2 to 0
r [0,1]

BBO Immigration Probability [0,1]
Mutation Probability 0.05
Habitat modification Probability 1.0
Step size 1.0
Migration rate 1.0
Max immigration 1.0

MVO Wormhole existence probability [0.2,1]
SBO Step size 0.94

Probability of Mutation 0.05
Upper and lower limit difference 0.02

FA Fireflies 10
GA Mutation ratio 0.1

Crossover 0.9
Selection mechanism Roulette wheel

mance metrics for feature selection tested in this experiment.
The configuration of the proposed algorithm is presented in
Table 4. The parameters of the objective function α and β
are set to 0.99 and 0.01. The configuration of the compared
algorithms is shown in Table 5. The average error of (0.4515)
achieved by the proposed binary AD-PRS-Guided WOA,
shown in Table 6 is the minimum error among the compared
algorithms. Other metrics, including the standard deviation of
(0.0337), approve the algorithm’s superiority in this kind of
problem. Figure 4 shows the fast convergence of the proposed
AD-PRS-Guided WOA algorithm to find the optimal solution
compared to other techniques.

To test the statistical difference of the proposed (AD-PRS-
Guided WOA), a one-way analysis of variance (ANOVA) test
is applied in this experiment. A null hypothesis is set as (H0:
µAD−PRS−Guided WOA = µGWO = µPSO = µBA =

FIGURE 4: Convergence curves of the proposed and com-
pared algorithms.

µWOA = µBBO = µMVO = µSBO = µFA = µGA) and an
alternate hypothesis is confirmed as (H1: No equal means).
Table 7 shows the ANOVA test results. Figure 5 presents
the proposed and compared algorithms ANOVA test results
considering the function Fn. It is noted that the alternate
hypothesis H1 can be accepted for this test.

Another test, named one sample t-test, is conducted for
the evaluation at a significance level of 0.05. In this test, a
null hypothesis is set as (H0: µA = µGWO, µA = µPSO,
µA = µBA, µA = µWOA, µA = µBBO, µA = µMVO,
µA = µSBO, µA = µFA, µA = µGA), for A = AD −
PRS−GuidedWOA, and an alternate hypothesis is formed
as (H1: No equal means). Table 8 show the test results of 20
runs (Repetitions) as indicated in Table 4. This confirm that
the p-values are less than 0.05 which shows the statistical
significant difference between groups. Thus, the hypothesis
H1 can be accepted accepted.

The residual values and plots can observe the possible
problems better than the plot of the original dataset. Some
datasets cannot be good candidates for the feature selec-
tion process. Figure 5 shows the residual, heteroscedasticity,
quantile-quantile (QQ) plots, and the heatmap. These plots
provide a visual view between the prediction errors and the
predicted dependent variable scores. Any violation can be
quickly determined to improve the accuracy of the research
findings. Note that the QQ plot points’ distributions are
approximately near to the line. These plots indicate that
the actual and the predicted residuals are linearly related,
confirming the proposed algorithm performance.

B. CLASSIFICATION SCENARIO

The second part of the experiment is based on the proposed
voting classifier (voting AD-PRS-Guided WOA) algorithm.
The algorithm results are compared with voting WOA, voting
GWO, voting GA, and Voting PSO against the Area Under
The Curve (AUC) and the Mean Square Error (MSE). The
AUC or balanced accuracy is calculated using an average of
sensitivity and specificity in the following equation.

AUC = (Sensitivity + Specificity)/2 (14)
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TABLE 6: Feature selection results of the proposed and compared algorithms

AD-PRS-Guided WOA bGWO bPSO bBA bWOA bBBO bMVO bSBO bFA bGA
Average error 0.4515 0.4687 0.5025 0.5121 0.5023 0.4707 0.4792 0.5108 0.5009 0.4823
Average Select size 0.4043 0.6043 0.6043 0.7437 0.7677 0.7681 0.7008 0.7746 0.6388 0.5467
Average Fitness 0.5147 0.5309 0.5293 0.5522 0.5371 0.535 0.559 0.569 0.5812 0.5423
Best Fitness 0.4165 0.4512 0.5096 0.4419 0.5012 0.5247 0.4842 0.5121 0.4999 0.4456
Worst Fitness 0.515 0.5181 0.5773 0.5435 0.5773 0.6112 0.6022 0.5918 0.5975 0.5607
Standard deviation Fitness 0.337 0.3417 0.3411 0.351 0.3433 0.386 0.3918 0.402 0.3779 0.3433

TABLE 7: ANOVA test results of the proposed algorithm

ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between columns) 0.07437 9 0.008263 F (9, 190) = 77.51 P < 0.0001
Residual (within columns) 0.02026 190 0.0001066
Total 0.09462 199

TABLE 8: One sample t-test results of the proposed and compared algorithms

AD-PRS-Guided WOA GWO PSO BA WAO BBO MVO SBO FA GA
Theoretical mean 0 0 0 0 0 0 0 0 0 0
Actual mean 0.4515 0.4687 0.502 0.5111 0.5028 0.4712 0.4787 0.5103 0.5009 0.4823
Number of values 20 20 20 20 20 20 20 20 20 20

One sample t-test
t, df t=195.9 t=171.4 t=440.5 t=99.66 t=186.8 t=276.4 t=345.2 t=332.4

df=19 df=19 df=19 df=19 df=19 df=19 df=19 df=19
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
P value summary **** **** **** **** **** **** **** ****
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes Yes

FIGURE 5: Different curves for the feature selection techniques.
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FIGURE 6: Different curves for the classification techniques.

TABLE 9: Classification Models Parameters

Classifier Parameter (s) Value (s)
NN hidden_layer_sizes 20

learning_rate_init 0.007
validation_fraction 0.1
beta_1 0.6
beta_2 0.899
epsilon 1e-06

k-NN n_neighbors 3
leaf_size 20
p 2

Random Forest n_estimators 40
min_samples_split 2
min_samples_leaf 1
min_weight_fraction_leaf 0.0

Voting estimators *
voting hard
weights ’optimal’ #AD-PRS-Guided WOA
flatten_transform True

TABLE 10: Single classification models’ results

NN k-NN Random Forest
AUC 0.744 0.7387 0.797
MSE 0.080226 0.098999 0.04887

The MSE value is evaluated by calculating the difference
between the required and the actual output of the classifiers
according to this equation:

MSE =
n
∑

x=1

(ohxd
h
x)

2 (15)

where for n number of outputs, dhx is the xth input neuron
optimal value when applying hth training instance. When the
hth training instance appears in the input, ohx is the optimal
output actual value of the xth input neuron.

Classification models parameters settings are presented in
Table 9. The table includes the values of the parameters of
NN, k-NN, Random Forest, and Voting classifiers.

Single classification models’ results for the tested dataset
based on the NN, k-NN, Random forest techniques are shown
in Table 10. The Random forest classifier achieved an AUC
of (0.797) and an MSE of (0.04887), which are better than the
NN and k-NN classifiers for the current problem. However,
the results can be improved. The results of the proposed
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TABLE 11: Proposed optimization ensemble (AD-PRS-Guided WOA) compared to other algorithms

Bagging AdaBoost Majority voting Voting (AD-PRS-Guided WOA)
AUC 0.802 0.827 0.887 0.971
MSE 0.022941 0.015132 0.005813 4.77E-04

TABLE 12: Proposed optimization ensemble voting (AD-PRS-Guided WOA) compared to other voting based algorithms

Voting (AD-PRS-Guided WOA) Voting WOA Voting GWO Voting GA Voting PSO
AUC 0.971 0.946 0.926 0.917 0.938
MSE 4.77E-04 0.004324 0.008195 0.0097441 0.00667

TABLE 13: Descriptive statistics of the proposed optimization ensemble (AD-PRS-Guided WOA) compared to other
algorithms

Voting (AD-PRS-Guided WOA) Voting WOA Voting GWO Voting GA Voting PSO
Number of values 20 20 20 20 20
Minimum 0.000477 0.002324 0.004195 0.007744 0.00467
25% Percentile 0.000477 0.004324 0.008195 0.009744 0.00667
Median 0.000477 0.004324 0.008195 0.009744 0.00667
75% Percentile 0.000477 0.004324 0.008195 0.009744 0.00667
Maximum 0.000477 0.005324 0.01195 0.01744 0.00967
Range 0 0.003 0.007755 0.009697 0.005
Mean 0.000477 0.004274 0.008183 0.01003 0.00672
Std. Deviation 0 0.0005104 0.001259 0.001801 0.000826
Std. Error of Mean 0 0.0001141 0.0002814 0.0004027 0.000185
Coefficient of variation 0.000% 11.94% 15.38% 17.96% 12.29%
Geometric mean 0.000477 0.004236 0.008076 0.009917 0.006675
Geometric SD factor 1 1.16 1.192 1.153 1.125
Sum 0.00954 0.08548 0.1637 0.2006 0.1344

TABLE 14: ANOVA test results of the proposed optimization ensemble (AD-PRS-Guided WOA) algorithm

ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between columns) 0.0011 4 0.000275 F (4, 95) = 238.2 P < 0.0001
Residual (within columns) 0.0001096 95 1.15E-06
Total 0.001209 99

TABLE 15: Wilcoxon Signed Rank Test results of the proposed and compared voting-based algorithms

Voting (AD-PRS-Guided WOA) Voting WOA Voting GWO Voting GA Voting PSO
Theoretical median 0 0 0 0 0
Actual median 0.000477 0.004324 0.008195 0.009744 0.00667
Number of values 20 20 20 20 20

Wilcoxon Signed Rank Test
Sum of signed ranks (W) 210 210 210 210 210
Sum of positive ranks 210 210 210 210 210
Sum of negative ranks 0 0 0 0 0
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001
Exact or estimate? Exact Exact Exact Exact Exact
P value summary **** **** **** **** ****
Significant (alpha=0.05)? Yes Yes Yes Yes Yes

(voting AD-PRS-Guided WOA) algorithm compared to Bag-
ging, AdaBoost, and Majority, voting ensemble techniques,
are presented in Table 11.

The voting AD-PRS-Guided WOA algorithm reached an
AUC value of (0.971) and an MSE value of (4.77E-04).
These results show the algorithm’s performance compared
to single classifier models, including Random forest and
ensemble-based techniques. The algorithm is compared to
voting WOA, voting GWO, voting GA, and voting PSO
algorithms to confirm the proposed voting algorithm’s classi-
fication accuracy. Table 12 presents the voting-based algo-
rithms results. This table confirms that the AUC value of
(0.971) and the MSE value of (4.77E-04) are the optimal

results that can be achieved based on the tested dataset. The
descriptive statistics of voting AD-PRS-Guided WOA, voting
WOA, voting GWO, voting GA, and voting PSO algorithms
are shown in Table 13 which confirms the superiority of the
proposed voting algorithm.

The ANOVA test is also applied in this experiment to test
the statistical difference of the proposed voting (AD-PRS-
Guided WOA). A null hypothesis is set as (H0: µA1 =
µB1 = µC1 = µD1 = µE1), where A1: Voting (AD-PRS-
Guided WOA), B1: Voting WOA, C1: Voting GWO, D1:
Voting GA, and E1: Voting PSO, and an alternate hypothesis
is formed as (H1: No equal means). Table 14 shows the
ANOVA test results. Figure 6 presents the proposed and
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compared algorithms ANOVA test results considering the
function Fn. It is noted that the alternate hypothesis H1 can
be accepted for this test.

One more test, named Wilcoxon’s rank-sum test, is em-
ployed in this part. This test can discover whether the pro-
posed algorithm results have a significant difference com-
pared to other algorithms. If the p-value < 0.05, it will
indicate that algorithm has significant superiority. A null
hypothesis is set as (H0: µA1 = µB1, µA1 = µC1, µA1 =
µD1, µA1 = µE1), and an alternate hypothesis is formed as
(H1: No equal means). Table 15 show the test results of 20
runs (Repetitions) as indicated in Table 4. This confirms that
the p-values are less than 0.05, which shows the statistically
significant difference between groups. Thus, the hypothesis
H1 can be accepted.

The residual values and plots can observe the possible
problems better than the plot of the original dataset. Some
datasets can be not also good candidates for the classification
process. Figure 6 shows the residual, heteroscedasticity, and
quantile-quantile (QQ) plots and the heatmap for the tested
dataset classification process. These plots indicate that the ac-
tual and the predicted residuals are linearly related, confirm-
ing the proposed voting (AD-PRS-Guided WOA) algorithm
performance. Figure 6 also includes the ROC curves of the
proposed voting (AD-PRS-Guided WOA) algorithm mapped
to the compared voting algorithms. The ROC curves indicate
that the proposed voting algorithm can distinguish different
cases with a high AUC value near 1.0.

VI. VALIDATION AND DISCUSSION

The proposed classification algorithm is validated by com-
paring its results with the other DGA techniques in the
literature. A total of 74 samples were extracted from the 475
data samples as testing samples. A total of the 74 samples
was randomly selected by the optimization method. The
distribution of the testing samples is illustrated in Table 16.
In this table, the samples were categorized as 6 labels for
PD, 13 for D1, 24 for D2, 16 for T1, 4 for T2, and 10 for
T3 fault. It also shows the number of samples that were
collected from the practical cases (39 real samples from
[54]) and the credited published articles as 17 samples from
[8]. The results of the diagnostic accuracy of the proposed
classification algorithm are illustrated in Table 17 comparing
with the diagnostic accuracy of other DGA techniques in the
literature. It showed from Table 17 that the overall diagnostic
accuracy of the proposed classification algorithm is 94.6%,
which is greater than that of the other DGA techniques where
the highest diagnostic accuracy that close to the proposed
algorithm is Conditional probability [13] and NPR [41] pro-
viding 90.54%. On the other hand, the other traditional DGA
techniques have poor overall diagnostic accuracies such as
IEC 60599 (50%), Rogers Ratio method (45.95%), and Duval
triangle method (66.27%). The proposed classification algo-
rithm’s diagnostic accuracy results revealed that the proposed
classification algorithm’s a high ability for correct diagnoses
of the transformer faults.

TABLE 16: Distribution of the 74 testing samples according
to the fault type and references

Ref. PD D1 D2 T1 T2 T3 Total
[8] 1 6 8 1 1 17
[54] 6 6 11 11 3 2 39
[56] 2 1 3
[57] 1 1
[58] 2 2
[59] 1 1
[60] 1 1 1 3
[61] 1 1
[63] 2 1 3 6
[64] 1 1

Total 7 13 24 16 4 10 74

The proposed binary AD-PRS-Guided WOA algorithm
in the feature selection process achieved an average error
of (0.4515) which is the minimum error among the com-
pared algorithms, and other metrics, including the standard
deviation of (0.0337), approve the algorithm’s superiority
in this kind of problem. The algorithm also shows a fast
convergence in finding find the optimal solution compared
to other techniques. The proposed voting AD-PRS-Guided
WOA algorithm achieved an AUC (balanced accuracy) value
of (0.971) and a MSE value of (4.77E-04) which are the
best results that can be achieved based on the tested dataset
compared to other techniques.

For the feature selection scenario, the ANOVA test was
applied to test the statistical difference of the proposed (AD-
PRS-Guided WOA) algorithm. Another test, named the one-
sample t-test, was also conducted for the evaluation at a
significance level of 0.05. For the classification scenario,
the ANOVA test was applied in the experiment to test
the statistical difference of the proposed voting (AD-PRS-
Guided WOA) algorithm. One more test, named Wilcoxon’s
rank-sum test, was also employed in this part. This test
can discover whether the proposed algorithm results have
a significant difference compared to other algorithms. The
statistical analysis based on different tests confirmed that the
proposed algorithm is a statistically significant difference.

VII. CONCLUSION

Several traditional dissolved gas analysis (DGA) techniques,
such as IEC code 60599 and the Duval triangle method,
were used to diagnose the transformer faults. This paper
proposed a novel Adaptive Dynamic Polar Rose Guided
Whale Optimization algorithm (AD-PRS-Guided WOA) to
improve classification techniques’ parameters of several clas-
sification techniques. A binary version of the proposed algo-
rithm (binary AD-PRS-Guided WOA) was used for feature
selection from the tested dataset. ANOVA and one-sample t-
test tests were applied in this experiment to test the statistical
difference of the proposed binary AD-PRS-Guided WOA.
A voting classifier based on the proposed algorithm (voting
AD-PRS-Guided WOA) was developed to improve the tested
dataset classification accuracy. The ANOVA and Wilcoxon’s
rank-sum tests were investigated to show the proposed vot-
ing’s statistical difference (AD-PRS-Guided WOA) algo-
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TABLE 17: Diagnostic accuracy of the 74 testing samples of the suggested DGA algorithm and the other DGA techniques in
literature

Fault Type Samples Adaptive IEC-60599 [5] Rog. 4 Ratios [6] IEC 60599 Modified [1] Rog. Modified [1] Duval [7], [8]
PD 7 100 28.57 14.29 100 100 42.86
D1 13 92.31 30.77 0 61.54 61.54 69.23
D2 24 91.67 41.67 50 87.5 79.17 75
T1 16 93.95 68.75 100 100 100 56.25
T2 4 100 75 25 100 100 0
T3 10 100 70 40 100 100 100

Overall 74 94.6 50 45.95 89.19 86.49 66.27
Fault Type Samples Clustering [73] Cond. Prob. [13] CSUS-ANN [4] NPR [41] SVM [41]

PD 7 100 100 85.71 100 85.71
D1 13 69.23 61.54 53.85 76.92 76.92
D2 24 91.67 100 87.5 87.5 91.67
T1 16 93.75 87.5 93.75 100 100
T2 4 75 100 75 75 25
T3 10 100 100 80 100 100

Overall 74 89.19 90.54 81.08 90.54 87.84

rithm. The proposed AD-PRS-Guided WOA algorithm pro-
vided high diagnostic accuracy of transformer faults, higher
than other DGA techniques in the literature. The proposed
algorithm’s diagnostic accuracy results have a high ability
for correct diagnoses of the transformer faults. The proposed
algorithm’s diagnostic accuracy based on randomly selected
samples from the tested dataset approved the algorithm’s per-
formance compared to other DGA techniques. The proposed
binary and voting algorithms can be generalized and applied
to different datasets in the future.
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