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Abstract— In this paper, we investigate the control design
for a class of strict-feedback nonlinear systems preceded by
unknown backlash-like hysteresis. Using the characteristics
of backlash-like hysteresis, adaptive dynamic surface control
(DSC) is developed without constructing a hysteresis inverse.
The explosion of complexity in traditional backstepping design
is avoided by utilizing DSC. Function uncertainties are compen-
sated for using neural networks due to their universal approx-
imation capabilities. Through Lyapunov synthesis, the closed-
loop control system is proved to be semi-globally uniformly
ultimately bounded (SGUUB), and the tracking error converges
to a small neighborhood of zero. Simulation results are provided
to illustrate the performance of the proposed approach.

Index Terms— Dynamic surface control (DSC), hysteresis,
neural networks(NNs).

I. INTRODUCTION

Hysteresis nonlinearities are common in many industrial

processes, especially in position control of smart material-

based actuators, including piezoceramics and shape memory

alloys. The existence of hysteresis nonlinearities severely

limit system performance such as giving rise to undesirable

inaccuracy or oscillations and even may lead to instability

[1]. Since hysteresis is a very complex phenomenon, mod-

eling a general type of hysteresis is still an active research

topic and there exist many hysteresis models in the literature,

such as the Preisach model, the Ishlinskii hysteresis operator,

the Prandtl-Ishlinskii hysteresis model, the Duhem hysteresis

operator, the Bouc Wen model, an so on. Interested readers

can refer to [2] for a review of the hysteresis models. Among

of them, the backlash hysteresis model is the most familiar

and simple model, which can be described by two parallel

lines connected via horizontal line segments and will be

considered in this paper.

Due to the nonsmooth characteristics of hysteresis nonlin-

earities, traditional control methods are inadequate in dealing

with the effects of unknown hysteresis. Therefore, advanced

control techniques to mitigate the effects of hysteresis have

been called upon and have been studied for decades. One

of the most common approaches is to construct an inverse

operator to cancel the effects of the hysteresis as in [1]

and [3]. However, it is a challenging task to construct the

inverse operator for the hysteresis, due to its complexity and

uncertainty. To circumvent these difficulties, alternative con-

trol approaches that do not need an inverse model have also
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been developed. In [4] and [5], robust adaptive control and

adaptive backstepping control were, respectively, investigated

for a class of nonlinear systems in a Brunovsky form with

unknown backlash-like hysteresis and system parameters.

Motivated by the above works [4] and [5], in this paper,

we extend the system to a class of nonlinear systems in strict-

feedback form with unknown functions and disturbances.

The function uncertainties are compensated for by neural

networks due to their universal approximation capabilities

[6]-[8]. For the control of strict-feedback nonlinear systems,

though backstepping is one of the popular design methods,

an obvious drawback in the traditional backstepping design

is the problem of “explosion of complexity”, which is caused

by the repeated differentiations of certain nonlinear functions

such as virtual controls. To overcome the “explosion of

complexity”, dynamic surface control (DSC) was proposed

for a class of strict-feedback nonlinear systems with known

fi(x1, ..., xi) and gi = 1 by introducing first-order filtering of

the synthetic virtual control input at each step of traditional

backstepping approach [9]. The result was extended to a class

of strict-feedback nonlinear systems with unknown functions

fi and virtual coefficients gi = 1 by combining DSC

control and neural networks [10]. In this paper, the virtual

coefficients gi of the strict-feedback nonlinear systems are

considered as unknown constants further. The bounds of the

“disturbance-like” terms, including disturbances and neural

network approximation errors, are estimated by adaptive

control.

The organization of this paper is as follows. The problem

formulation and preliminaries are given in Section II. In

Section III, adaptive dynamic surface control is developed

for a class of unknown nonlinear systems in strict-feedback

form with the unknown backlash-like hysteresis. The closed-

loop system stability is analyzed as well. Results of extensive

simulation studies are shown to demonstrate the effectiveness

of the approach in Section IV, followed by the conclusion

in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Throughout this paper, (̃·) = (̂·) − (·), ‖ · ‖ denotes the

2-norm, λmin(·) and λmax(·) denote the smallest and largest

eigenvalues of a square matrix (·), respectively.

Consider a class of nonlinear systems in strict-feedback

form described as follows:

ẋ1 = f1(x1) + g1x2 + d1(t)

...
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ẋi = fi(x̄i) + gixi+1 + di(t), i = 2, ..., n − 1

...

ẋn = fn(x̄n) + gnu(v) + dn(t)

y = x1 (1)

where x̄i = [x1, ..., xi]
T ∈ Ri, i = 1, ..., n are the states,

y is the system output, gi are the unknown constant virtual

coefficients, fi(·) are the unknown smooth functions, di(·)
are the unknown bounded time varying disturbances, and

u ∈ R is the system input and the output of the backlash-

like hysteresis, which is described as follows:

du

dt
= α

∣

∣

∣

∣

dv

dt

∣

∣

∣

∣

(cv − u) + B1
dv

dt
(2)

where α, c, and B1 are constants, c > 0 is the slope of lines

satisfying c > B1. Fig. 1 shows that the model (2) indeed

generates a class of backlash-like hysteresis curve, where

α = 1.0, c = 3.1635, B1 = 0.345 and the input signal

v = 6.5 sin(2.3t).
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Fig. 1. Backlash-like Hystersis curve

Based on the analysis in [4], (2) can be solved explicitly

as follows:

u(t) = cv(t) + h(v) (3)

where

h(v) = [u0 − cv0]e
−α(v−v0)sgnv̇

+e−αvsgnv̇

∫ v

v0

[B1 − c]eαζ(sgn v̇)dζ (4)

Substituting (3) into (1), we have:

ẋ1 = f1(x1) + g1x2 + d1(t)

...

ẋi = fi(x̄i) + gixi+1 + di(t), i = 2, ..., n − 1

...

ẋn = fn(x̄n) + gncv(t) + gnh(v) + dn(t)

y = x1 (5)

The control objective is to design adaptive control law v(t)
for system (5) such that the output y follows the specified

desired trajectory yd.

To facilitate the control design later in Section III, the

following assumptions are needed.

Assumption 1: The signs of gi are known, and there exist

constants gi max ≥ gi min > 0 such that gi min ≤ |gi| ≤
gi max.

Assumption 2: The desired trajectory vectors are contin-

uous and available, and [yd, ẏd, ÿd]
T ∈ Ωd with known

compact set Ωd = {[yd, ẏd, ÿd]
T : y2

d + ẏ2
d + ÿ2

d ≤ B0} ⊂ R3,

whose size B0 is a known positive constant.

Assumption 3: [4] There exist constants cmin and cmax

such that the slope c in (2) satisfies c ∈ [cmin, cmax].

Assumption 4: [4] There exist a constant hmax such that

h(v) ≤ hmax.

Assumption 5: There exist constants di max such that

di(t) ≤ di max.

Remark 1: Assumption 1 implies that unknown constants

gi are strictly either positive or negative. Without losing

generality, we will only consider the case when gi > 0.

Assumptions 3 and 4 assume the slop range of a backlash

hysteresis and the upper bound of the hysteresis loop, which

are reasonable according to the analysis in [4]. In Assump-

tion 5, the disturbances are also required to be bounded,

which is practical in reality. It should be noted that all these

bounds gmax, gmin, cmin, cmax, hmax and di max are not

required in implementation proposed control design. They

are used only for analytical purposes.

III. CONTROL DESIGN AND STABILITY ANALYSIS

In this section, we will combine the dynamic surface con-

trol with backstepping and adaptive control for the nth-order

system described by (5). Similar to traditional backstepping,

the design of adaptive dynamic surface control is based on

the following change of coordinates: z1 = x1−yd, zi = xi−
ωi, i = 2, ..., n, where ωi is the output of a first order filter

with αi−1 as the input, and αi−1 is an intermediate control

which shall be developed for the corresponding (i − 1)th
subsystem. Finally, an overall control law v is constructed

at step n. The major difference of dynamic surface control

with traditional backstepping is to replace, at each step

of recursion, the quantity α̇i−1 by ω̇i in determining the

virtual control α̇i . As a result, the operation of differ-

entiation can be replaced by simpler algebraic operation.

Before proceeding with the adaptive control, some notations

are presented below: z̄i = [z1, ..., zi]
T , ȳj = [y2, ..., yj ]

T ,
¯̂
W i = [ŴT

1 , ..., ŴT
i ]T , where i = 1, ..., n, yj = ωj − αj−1,

j = 2, ..., n.

Step 1: Since z1 = x1 − yd, and its derivative is

ż1 = ẋ1 − ẏd = f1(x1) + g1x2 + d1(t) − ẏd (6)

Consider the following Lyapunov function candidate:

Vz1 =
1

2g1
z2
1 (7)
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Its derivative along (6) is

V̇z1 =
1

g1
z1ż1

= z1[Q1(Z1) + x2 +
1

g1
d1(t)] (8)

where Q1(Z1) = g−1
1 f1(x1) − g−1

1 ẏd with Z1 = [x1, ẏd] ∈
ΩZ1 ⊂ R2. To compensate for the unknown function

Q1(Z1), we can use the radial basis function neural network

(RBFNN) in [11], ŴT
1 S(Z1), with Ŵ1 ∈ Rl×1, S(Z1) ∈

Rl×1, and the NN node number l > 1, to approximate the

function Q1(Z1) on the compact set ΩZ1
as follows

Q1(Z1) = ŴT
1 S(Z1) − W̃T

1 S(Z1) + ε1(Z1) (9)

where the approximation error ε1(Z1) satisfies |ε1(Z1)| ≤
ε∗1 with a positive constant ε∗1. Substituting (9) into (8) and

according to Assumptions 1 and 5, we obtain

V̇z1
≤ z1[Ŵ

T
1 S(Z1) − W̃T

1 S(Z1) + x2] + |z1|D1(10)

where D1 = d1max

g1 min
+ ε∗1. Since x2 = z2 + y2 + α1, (10)

becomes

V̇z1 ≤ z1[Ŵ
T
1 S(Z1) − W̃T

1 S(Z1) + z2 + y2 + α1]

+|z1|D1 (11)

Choose the following virtual control law and adaptation laws:

α1 = −k1z1 − ŴT
1 S(Z1) − tanh(

z1

ǫ
)D̂1 (12)

˙̂
W 1 = Γ1[z1S(Z1) − σ1Ŵ1] (13)

˙̂
D1 = γd1 [z1 tanh(

z1

ǫ
) − σd1D̂1] (14)

where k1 > 0, ǫ > 0, D̂1 is the estimate of D1, Γ1 = ΓT
1 ∈

Rl×l > 0, σ1 > 0, γd1 > 0 and σd1 > 0.

Substituting (12) into (11), and using the following prop-

erty of the hyperbolic tangent function tanh(·):

0 ≤ |z1| − z1 tanh(
z1

ǫ
) ≤ 0.2785ǫ (15)

we obtain that

V̇z1 ≤ −k1z
2
1 + z1z2 + z1y2 − z1W̃

T
1 S(Z1)

−z1 tanh(
z1

ǫ
)D̂1 + |z1|D1

≤ −k1z
2
1 + z1z2 + z1y2 − z1W̃

T
1 S(Z1)

−z1 tanh(
z1

ǫ
)D̃1 + |z1|D1 − z1 tanh(

z1

ǫ
)D1

≤ −k1z
2
1 + z1z2 + z1y2 − z1W̃

T
1 S(Z1)

−z1 tanh(
z1

ǫ
)D̃1 + 0.2785ǫD1 (16)

where D̃ = D̂ − D. Using the Young’s inequality, the

following inequalities hold:

z1z2 ≤ z2
1 +

1

4
z2
2 (17)

z1y2 ≤ z2
1 +

1

4
y2
2 (18)

Substituting (17) and (18) into (16) leads to

V̇z1 ≤ −(k1 − 2)z2
1 +

1

4
z2
2 +

1

4
y2
2 − z1W̃

T
1 S(Z1)

−z1 tanh(
z1

ǫ
)D̃1 + 0.2785ǫD1 (19)

Define the filtered virtual control ω2 in the following

manner:

τ2ω̇2 + ω2 = α1, ω2(0) = α1(0), (20)

where τ2 is a design constant that we will choose later.

Due to y2 = ω2 − α1, from (20), we have ω̇2 = −y2

τ2
.

Therefore, we have

ẏ2 = ω̇2 − α̇1 = −
y2

τ2
+ [k1ż1 +

˙̂
W

T

1 S(Z1) + ŴT
1 Ṡ(Z1)

+ tanh(
z1

ǫ
)

˙̂
D1 + (1 − tanh2(

z1

ǫ
))ż1D̂1] (21)

As such,
∣

∣

∣
ẏ2 +

y2

τ2

∣

∣

∣
≤ ζ2(z̄2, y2, Ŵ1, D̂1, yd, ẏd, ÿd) (22)

where ζ2(z̄2, y2, Ŵ1, D̂1, yd, ẏd, ÿd) is a continuous function.

From (21) and (22), using the Young’s inequality, we

obtain that

y2ẏ2 ≤ −
y2
2

τ2
+ |y2|ζ2 ≤ −

y2
2

τ2
+ y2

2 +
1

4
ζ2
2 (23)

Consider the following Lyapunov function candidate:

V1 = Vz1 +
1

2
W̃T

1 Γ−1
1 W̃1 +

1

2γd1

D̃2
1 +

1

2
y2
2 (24)

Its time derivative along (19) and (23) is

V̇1 = V̇z1 + W̃T
1 Γ−1

1
˙̃

W 1 +
1

γd1

D̃
˙̃
D + y2ẏ2

≤ −(k1 − 2)z2
1 +

1

4
z2
2 − z1W̃

T
1 S(Z1)

−z1 tanh(
z1

ǫ
)D̃1 + 0.2785ǫD1 + W̃T

1 Γ−1
1

˙̂
W 1

+
1

γd1

D̃
˙̂
D −

y2
2

τ2
+ 1

1

4
y2
2 +

1

4
ζ2
2 (25)

Substituting (13) and (14) into (25) results in

V̇1 ≤ −(k1 − 2)z2
1 +

1

4
z2
2 − σ1W̃

T
1 Ŵ1 − σd1D̃1D̂1

−
y2
2

τ2
+ 1

1

4
y2
2 +

1

4
ζ2
2 + 0.2785ǫD1 (26)

Step i (2 ≤ i < n): The time derivative of zi is

żi = fi(x̄i) + gixi+1 + di(t) − ω̇i (27)

Consider the following Lyapunov function candidate:

Vzi
=

1

2gi

z2
i (28)

Its derivative along (27) is

V̇zi
=

1

gi

ziżi = zi[Qi(Zi) + xi+1 +
1

gi

di(t)] (29)
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where Qi(Zi) = g−1
i fi(x̄i) − g−1

i ω̇i with Zi = [x̄i, ω̇i] ∈
ΩZi

⊂ Ri+1. To compensate for the unknown function

Qi(Zi), we can use the radial basis function neural network

(RBFNN), ŴT
i S(Zi), with Ŵi ∈ Rl×1, S(Zi) ∈ Rl×1, and

the NN node number l > 1, to approximate the function

Qi(Zi) on the compact set ΩZi
as follows

Qi(Zi) = ŴT
i S(Zi) − W̃T

i S(Zi) + εi(Zi) (30)

where the approximation error εi(Zi) satisfies |εi(Zi)| ≤ ε∗i
with a positive constant ε∗i . Substituting (30) into (29), we

obtain

V̇zi
≤ zi[Ŵ

T
i S(Zi) − W̃T

i S(Zi) + xi+1] + |zi|Di

(31)

where Di = d1 max

g1 min
+ ε∗i . Since xi+1 = zi+1 + yi+1 + αi,

(31) becomes

V̇zi
≤ zi[Ŵ

T
i S(Zi) − W̃T

i S(Zi) + zi+1 + yi+1 + αi]

+|zi|Di (32)

Choose the following virtual control law and adaptation laws:

αi = −kizi − ŴT
i S(Zi) − tanh(

zi

ǫ
)D̂i (33)

˙̂
W i = Γi[ziS(Zi) − σiŴi] (34)

˙̂
Di = γdi

[zi tanh(
zi

ǫ
) − σdi

D̂i] (35)

where ki > 0, ǫ > 0, D̂i is the estimate of Di, Γi = ΓT
i ∈

Rl×l > 0, σi > 0, γdi
> 0 and σdi

> 0.

Substituting (33) into (32) and using the property of the

hyperbolic tangent function as (15), we obtain

V̇zi
≤ −kiz

2
i + zizi+1 + ziyi+1 − ziW̃

T
i S(Zi)

−zi tanh(
zi

ǫ
)D̃i + 0.2785ǫDi (36)

Using the Young’s inequality, the following inequalities hold:

zizi+1 ≤ z2
i +

1

4
z2
i+1 (37)

ziyi+1 ≤ z2
i +

1

4
y2

i+1 (38)

Substituting (37) and (38) into (36) leads to

V̇zi
≤ −(ki − 2)z2

i +
1

4
z2
i+1 +

1

4
y2

i+1 − ziW̃
T
i S(Zi)

−zi tanh(
zi

ǫ
)D̃i + 0.2785ǫDi (39)

Define the filtered virtual control ωi+1 in the following

manner:

τi+1ω̇i+1 + ωi+1 = αi, ωi+1(0) = αi(0), (40)

where τi+1 is a design constant that we will choose later.

Due to yi+1 = ωi+1 − αi, from (40), we have ω̇i+1 =
−yi+1

τi+1
. Therefore, we have

ẏi+1 = ω̇i+1 − α̇i

= −
yi+1

τi+1
+ [kiżi +

˙̂
W

T

i S(Zi) + ŴT
i Ṡ(Zi)

+ tanh(
zi

ǫ
)

˙̂
Di + (1 − tanh2(

zi

ǫ
))żiD̂i] (41)

As such,
∣

∣

∣
ẏi+1 +

yi+1

τi+1

∣

∣

∣
≤ ζi+1(z̄i+1, ȳi+1,

¯̂
W i,

¯̂
Di, yd, ẏd, ÿd) (42)

where ζi+1(z̄i+1, ȳi+1,
¯̂
W i,

¯̂
Di, yd, ẏd, ÿd) is a continuous

function.

From (41) and (42), using the Young’s inequality, we

obtain that

yi+1ẏi+1 ≤ −
y2

i+1

τi+1
+ |yi+1|ζi+1 ≤ −

y2
i+1

τi+1
+ y2

i+1

+
1

4
ζ2
i+1 (43)

Consider the following Lyapunov function candidate:

Vi = Vzi
+

1

2
W̃T

i Γ−1
i W̃i +

1

2γdi

D̃2
i +

1

2
y2

i+1 (44)

Its time derivative along (39) and (43) is

V̇i = V̇zi
+ W̃T

i Γ−1
i

˙̃
W i +

1

γdi

D̃
˙̃
Di + yi+1ẏi+1

≤ −(ki − 2)z2
i +

1

4
z2
i+1 − ziW̃

T
i S(Zi) + W̃T

i Γ−1
i

˙̂
W i

+
1

γdi

D̃
˙̂
Di −

y2
i+1

τi+1
+ 1

1

4
y2

i+1 +
1

4
ζ2
i+1 (45)

Substituting (34) and (35) into (45) results in

V̇i ≤ −(ki − 2)z2
i +

1

4
z2
i+1 − σiW̃

T
i Ŵi − σdi

D̃iD̂i

−
y2

i+1

τi+1
+ 1

1

4
y2

i+1 +
1

4
ζ2
i+1 + 0.2785ǫDi (46)

Step n: In this final step, we will design the control input

v(t). Since zn = xn − ωn, the time derivative of zn is

żn = fn(x̄n) + gncv(t) + gnh(v) + dn(t) − ω̇n (47)

Consider the following Lyapunov function candidate:

Vzn
=

1

2gnc
z2
n (48)

Its derivative along (47) is

V̇zn
=

1

gnc
znżn = zn[Qi(Zn) + v(t) +

h(v)

c

+
1

gnc
dn(t)] (49)

where Qn(Zn) = (gnc)−1fn(x̄n) − (gnc)−1ω̇n with Zn =
[x̄n, ω̇n] ∈ ΩZni ⊂ Rn+1. To compensate for the unknown

function Qn(Zn), we can use the radial basis function neural

network (RBFNN), ŴT
n S(Zn), with Ŵn ∈ Rl×1, S(Zn) ∈

Rl×1, and the NN node number l > 1, to approximate the

function Qn(Zn) on the compact set ΩZn
as follows

Qn(Zn) = ŴT
n S(Zn) − W̃T

n S(Zn) + εn(Zn) (50)

where the approximation error εn(Zn) satisfies |εn(Zn)| ≤
ε∗n with a positive constant ε∗n. Substituting (50) into (53)and

according to Assumptions 1, 3-5, we obtain that

V̇zn
≤ zn[ŴT

n S(Zn) − W̃T
n S(Zn) + v(t)] + |zn|Dn

(51)
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where Dn = hmax

cmin
+ dn max

gn mincmin
+ ε∗n. Choose the following

control law:

v(t) = −knzn − ŴT
n S(Zn) − tanh(

zn

ǫ
)D̂n

(52)

where kn > 0, ǫ > 0, D̂n is the estimate of Dn. Substituting

(52) into (51), and using the property of the hyperbolic

tangent function as (15), we obtain that

V̇zn
≤ −knz2

n − znW̃T
n S(Zn) − zn tanh(

zn

ǫ
)D̃n

+0.2785ǫDn (53)

where D̃n = D̂n − Dn.

Consider the following Lyapunov function candidate:

Vn = Vzn
+

1

2
W̃T

n Γ−1
n W̃n +

1

2γdn

D̃2
n (54)

where Γn = ΓT
n ∈ Rl×l > 0, γdn

> 0. Its time derivative

along (53) is

V̇n = V̇zn
+ W̃T

n Γ−1
n

˙̃
Wn +

1

γdn

D̃n
˙̃
Dn

≤ −knz2
n − znW̃T

n S(Zn) − zn tanh(
zn

ǫ
)D̃n

+0.2785ǫDn + W̃T
n Γ−1

n
˙̂

Wn +
1

γdn

D̃n
˙̂
Dn(55)

Choose the following adaptation laws:

˙̂
Wn = Γn[znS(Zn) − σnŴn] (56)

˙̂
Dn = γdn

[zn tanh(
zn

ǫ
) − σdn

D̂n] (57)

where σn > 0 and σdn
> 0. Substituting (56) and (57) into

(55) results in

V̇n ≤ −knz2
n − σnW̃T

n Ŵn − σdn
D̃nD̂n + 0.2785ǫDn

(58)

The following theorem shows the stability and control

performance of the closed-loop adaptive system.

Theorem 1: Consider the closed-loop system consisting of

the plant (5) under Assumptions 1-5, the controller (52), and

adaption laws (34)(35). For bounded initial conditions, there

exist constants p > 0, ki > 0, τi > 0, λmax(Γ
−1
i ), σi > 0,

γdi
and σdi

> 0, satisfying V =
∑n

i=1 Vi ≤ p, such that the

overall closed-loop control system is semi-globally stable in

the sense that all of the signals in the closed-loop system are

bounded, and the tracking error is smaller than a prescribed

error bound.

Proof: Consider the Lyapunov function candidate V =
∑n

i=1 Vi. Its derivative with respect to time is:

V̇ =
n

∑

i=1

V̇i (59)

Substitute (26)(46) and (58) into (59), it follows that

V̇ ≤ −(k1 − 2)z2
1 −

n−1
∑

i=2

(ki − 2
1

4
)z2

i − (kn −
1

4
)z2

n

−
n

∑

i=1

σiW̃
T
i Ŵi −

n
∑

i=1

σdi
D̃iD̂i +

n−1
∑

i=1

[

−
y2

i+1

τi+1

+1
1

4
y2

i+1 +
1

4
ζ2
i+1

]

+

n
∑

i=1

0.2785ǫDi (60)

Since for any B0 > 0 and p > 0, the sets Ωd = {(yd, ẏd, ÿd) :

y2
d + ẏ2

d + ÿ2
d ≤ B0} and Ωi = {[z̄T

i , ȳT
i ,

¯̂
W

T

i ]T :
∑i

j=1 Vj ≤

p}, i = 1, ..., n are compact in R3 and R2i−1+
∑

i
j=1 lj ,

respectively. Therefore, ζi+1 has a maximum Mi+1 on Ωd×
Ωi.

By completion of squares, the following inequalities hold:

−σiW̃
T
i Ŵi ≤ −

σi‖W̃i‖
2

2
+

σi‖W
∗

i ‖
2

2
(61)

−σdi
D̃iD̂i ≤ −

σdi
D̃2

i

2
+

σdi
D2

i

2
(62)

Substituting (61) and (62) into (60) leads to

V̇ ≤ −(k1 − 2)z2
1 −

n−1
∑

i=2

(ki − 2
1

4
)z2

i − (kn −
1

4
)z2

n

−
n

∑

i=1

σi‖W̃i‖
2

2
−

n
∑

i=1

σdi
D̃2

i

2
+

n−1
∑

i=1

[

−
y2

i+1

τi+1

+1
1

4
y2

i+1

]

+ µ (63)

where

µ =

n
∑

i=1

σi‖W
∗

i ‖
2

2
+

n
∑

i=1

σdi
D2

i

2
+

1

4

n−1
∑

i=1

M2
i+1

+

n
∑

i=1

0.2785ǫDi (64)

Choosing

α0 ≤ min{σdi
γdi

,
σi

λmax(Γ
−1
i )

}, i = 1, ..., n

k1 ≥ 2 +
α0

2g1 min

ki ≥ 2
1

4
+

α0

2gi min
, i = 2, ..., n − 1

kn ≥
1

4
+

α0

2gi mincmin

1

τi

≥ 1
1

4
+

α0

2
, i = 2, ..., n (65)

and substituting them into (60), we obtain that

V̇ ≤ −α0V + µ (66)

If V = p and α0 > µ
p

, then V̇ ≤ 0. If implies that V (t) ≤

p, ∀t ≥ 0 for V (0) ≤ p. Multiplying (66) by eα0t and

integrating over [0, t] yields

0 ≤ V (t) ≤
µ

α0
+

[

V (0) −
µ

α0

]

e−α0t (67)
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Therefore, all signals of the closed-loop system, i.e., zi, yi

and Ŵi are uniformly ultimately bounded. Furthermore,

xi, αi and Ωi are also uniformly ultimately bounded. From

(64) and (65), we know that for any given constants

B0, p, σdi
and σi, we can decrease λmax(Γ

−1
i ) to make

µ
α0

arbitrarily small. Thus, the tracking error z1 becomes

arbitrarily small. This completes the proof.

IV. SIMULATION STUDIES

To demonstrate the effectiveness of the proposed approach,

we consider the plant used in [4] and [5]:

ẋ = a
1 − e−x(t)

1 + e−x(t)
+ bu(v)

y = x (68)

where a = 1, b = 1, and u(v) represents an output of the

following backlash-like hysteresis:

du

dt
= α

∣

∣

∣

∣

dv

dt

∣

∣

∣

∣

(cv − u) + B1
dv

dt
(69)

with α = 1, c = 3.1635, and B1 = 0.345. As discussed in

[4], without control, i.e., u(v) = 0, (68) is unstable, since

ẋ = a1−e−x(t)

1+e−x(t) > 0 for x > 0, and ẋ = a1−e−x(t)

1+e−x(t) < 0 for

x < 0. The objective is to control the system output y to

follow a desired trajectory yd = 12.5 sin(2.3t).
We adopt the control law and adaption laws in (52) (56)

(57). The following initial conditions and control design

parameters are chosen as: x(0) = u(0) = v(0) = 0.0,

Ŵ (0) = D̂(0) = 0.0, k1 = 0.3, Γ = 0.1I25, σ = 0.1,

γd = 0.1,σd = 0.1, ǫ = 0.05.

The simulation results are shown in Figs. 2 and 3.

From Fig. 2, we observe that good tracking performance

is achieved and the tracking error converges to a small

neighborhood of zero. At the same time, the control signal v

and hysteresis output u are kept bounded, as seen in Figs. 3.

It is noted that there is a large difference between the signals

v and u in Fig. 3, which indicates the significant hysteresis

effect.

V. CONCLUSION

Adaptive dynamic surface control (DSC) using neural

networks has been proposed for a class of nonlinear systems

in strict-feedback form with back-lash hysteresis input, where

the hysteresis is modeled as a differential equation. The

developed adaptive control can guarantee that all signals

involved are semi-globally uniformly ultimately bounded

(SGUUB) without constructing a hysteresis inverse. Simu-

lation results have been provided to show the effectiveness

of the proposed approach.
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