
Copyright © 2005 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from Permissions
Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
© 2005 ACM 0730-0301/05/0700-0936 $5.00

Adaptive Dynamics of Articulated Bodies

Stephane Redon∗ Nico Galoppo† Ming C. Lin‡

Department of Computer Science
University of North Carolina at Chapel Hill

Figure 1: Adaptive dynamics of articulated characters. In this complex scene, 200 human characters, represented by 17,800 rigid bodies
and 19,000 degrees of freedom, are suddenly pushed away from the camera due to applied forces. Our adaptive dynamics algorithm allows an
animator to progressively reduce the number of simulated joints in the characters as their distance to the camera increases, while automatically
determining which joints should be animated to best approximate the characters motion. Depending on the total amount of simplification
specified by the animator, a potentially significant speed-up can be achieved over typical linear-time forward dynamics algorithms.

Abstract: Forward dynamics is central to physically-based sim-
ulation and control of articulated bodies. We present an adaptive
algorithm for computing forward dynamics of articulated bodies:
using novel motion error metrics, our algorithm can automatically
simplify the dynamics of a multi-body system, based on the desired
number of degrees of freedom and the location of external forces
and active joint forces. We demonstrate this method in plausible
animation of articulated bodies, including a large-scale simulation
of 200 animated humanoids and multi-body dynamics systems with
many degrees of freedom. The graceful simplification allows us to
achieve up to two orders of magnitude performance improvement
in several complex benchmarks.

Keywords: dynamics, kinematics, level-of-detail, simulation, ar-
ticulated bodies

1 Introduction

Recent advances in modeling human motion have made it possi-
ble to animate articulated figures realistically through performance
capture, autonomous control, learning techniques, etc. [Bruderlin
and Calvert 1996; Gillespie and Colgate 1997; Granieri et al. 1995;
Faure 1999; Featherstone and Orin 2000; Ko and Badler 1993; Per-
lin 1995; Popovic and Witkin 1999; Yamane et al. 2004]. Despite
the exciting progress in the field, simulating a large group of artic-
ulated characters or a dynamical system with many degrees of free-
dom remains a computational challenge. One of the central com-
ponents of any control or simulation system for articulated bodies
is forward dynamics. Forward dynamics computes the accelera-
tion and the resulting motion of each link, based on the given set
of external forces and active joint forces. The best known algo-

∗Stephane Redon is now at INRIA. E-mail: stephane.redon@inria.fr.
† E-mail: nico@cs.unc.edu. ‡ E-mail: lin@cs.unc.edu

rithms [Bae and Haug 1987; Brandl et al. 1986; Featherstone 1987;
Hollerbach 1980; McMillan and Orin 1995] have a linear-time de-
pendence on the number of degrees of freedom. For a complex
scene with many articulated figures or with many degrees of free-
dom, however, dynamic simulation of the entire multi-body system
can become extremely costly.

Barzel et al. [1996] introduced the idea of “plausible” motion, i.e.
motion that could happen and look physically plausible to the view-
ers. For many visual applications or real-time interaction, accu-
rately simulating all the details of the real world is not necessary.
In fact, it is often sufficient to provide effective “motion texture”
to make the scene appear more realistic, without committing much
computational resources [Barzel et al. 1996]. For instance, the main
character should be animated with the highest degree of realism
possible using motion capture data or accurate full-body simula-
tion, while the crowds secondary to the story can be simulated at
much lower fidelity. Several techniques have been proposed for ac-
celerating various types of dynamic simulation. Yet, to the best of
our knowledge, there exists no known general algorithm for auto-
matic simplification of articulated body dynamics.

Main Results: In this paper, we present a novel adaptive algorithm
for automatic simplification of the forward dynamics of articulated
bodies. We introduce a new hybrid-body representation that allows
articulated links to be simulated as a combination of articulated and
rigid bodies updated at runtime, based on the bounded acceleration
error of simulated motion. The runtime complexity of our algo-
rithm is O(NA) + f × (O(NA) + O(N3

R)), where NA is the number
of active joints, f is the frequency at which the set of active joints
is updated, and NR is the number of links being rigidified during an
update of the set of active joints. Typically, f is a small constant and
NA � N. In comparison to existing methods, our algorithm offers
the users complete control over the number of degrees of freedom
that should be simulated, while automatically selecting the set of
active joints so as to best approximate the articulated body motion,
based on novel customizable motion error metrics. Depending on
the amount of simplification specified by the user, our approach can
significantly accelerate large-scale simulations of many articulated
bodies or multi-body dynamics with many degrees of freedom.

936

Organization: The rest of the paper is organized as follows. Sec-
tion 2 briefly surveys prior research on forward dynamics computa-
tion and dynamics simplification. Section 3 gives a brief overview
of the divide-and-conquer algorithm for forward dynamics [Feath-
erstone 1999a; Featherstone 1999b] that provides the basic struc-
ture for our work. We introduce a new multilevel representation for
articulated bodies in Section 4, and describe our method for auto-
matic simplification of articulated body dynamics using novel cus-
tomizable motion metrics in Section 5. Section 6 presents a method
to simplify the update of the simulation coefficients. We present
and analyze results, and discuss limitations and potential research
directions in Section 7, and conclude in Section 8.

2 Related Work

2.1 Forward Dynamics

Multi-body systems and forward dynamics have been active areas
of research for decades in computer animation and robotics. We
give a brief overview of related work here. For more detail, we
refer the readers to a recent survey [Featherstone and Orin 2000].

To model and control the locomotion of articulated characters and
robots, forward dynamics is one of the most essential steps for
physically-based simulation algorithms. Some of the best known
linear-time methods rely on a recursive formulation of the motion
equations [Bae and Haug 1987; Brandl et al. 1986; Featherstone
1987; Hollerbach 1980; McMillan and Orin 1995]. Several au-
thors have independently proposed to simplify the motion equa-
tions by developing new notations and formulations, including the
spatial notation [Featherstone 1999a; Featherstone 1999b], the spa-
tial operator algebra [Rodriguez et al. 1991], and Lie-Group for-
mulations [Mueller and Maisser 2003]. Baraff presented a general,
non-iterative linear-time algorithm based on Lagrange multipliers
[Baraff 1996]. More recently, parallel algorithms have also been
introduced to compute the forward dynamics of articulated bodies
using multiple processors [Fijany et al. 1995; Featherstone 1999a;
Featherstone 1999b; Anderson and Duan 2000; Yamane and Naka-
mura 2002].

2.2 Simulation Levels of Detail

In contrast to the vast literature on geometric simplification, there is
relatively little investigation on simulation levels of detail (SLODs)
for physically-based animation. Simulation levels of detail can
be computed based on pre-recorded motion sequences, kinematics,
procedural approaches, or dynamics computation.

Earlier human motion models in computer animation used proce-
durally generated motion, simplified dynamics and control algo-
rithms, off-line motion mapping, or motion play-back to create
SLODs [Bruderlin and Calvert 1989; Bruderlin and Calvert 1996;
Girard and Maciejewski 1985; Granieri et al. 1995; Ko and Badler
1993; Perlin 1995]. Carlson and Hodgins investigated the viabil-
ity of SLODs in accelerating the overall computation for a group
of legged creatures [Carlson and Hodgins 1997]. Their experimen-
tal results indicated the promising potential of dynamics simplifica-
tion for real-time animation. Popovic and Witkin introduced motion
transformation techniques preserving the essential properties of ani-
mated character motion with drastically fewer number of degrees of
freedom using space-time constraints [Popovic and Witkin 1999].
Multon et al. suggested a series of simplified walking models for
moving on complex terrain [Multon et al. 1999]. Faure [1999] pro-
posed a method to iteratively refine the computation of the forward
dynamics of an articulated body by progressively correcting bilat-
eral constraint errors. Similar to view-dependent culling for interac-
tive rendering, Chenney et al. proposed view-dependent dynamics

simplification by ignoring what is not visible to the viewer [Chen-
ney and Forsyth 1997; Chenney et al. 1999; Chenney et al. 2001].
SLODs have also been investigated to accelerate simulations using
particle systems [O’Brien et al. 2001], for hair modeling [Bertails
et al. 2003; Ward et al. 2003; Ward and Lin 2003], to simulate plant
motion [Perbet and Cani 2001; Beaudoin and Keyser 2004], etc.

Redon and Lin [2005] introduced an algorithm for adaptive simpli-
fication of forward quasi-statics of articulated bodies. This algo-
rithm does not handle articulated bodies with non-zero velocities
(i.e. the dynamics case), and does not allow the users to precisely
control the number of degrees of freedom. In this paper, we propose
perhaps the first algorithm for adaptive simplification of forward
dynamics of articulated bodies. Using novel customizable motion
error metrics, our algorithm can automatically simplify the dynam-
ics of a multi-body system, based on the desired number of degrees
of freedom, as well as external forces and active joint forces. Be-
cause it is based on a dynamics algorithm formulated in the con-
figuration space, our algorithm ensures that the joint constraints are
satisfied at all time.

3 Articulated-Body Dynamics

Figure 2: An articulated body C is formed by connecting two artic-
ulated bodies A and B through JC, the principal joint of C.

Our algorithm is built upon the divide-and-conquer algorithm
(DCA) introduced by Featherstone to compute the forward dy-
namics of an articulated body [Featherstone 1999a; Featherstone
1999b]. The algorithm is applicable to articulated bodies with
branches and loops, although we deal in this paper with acyclic
articulated bodies.

Featherstone [Featherstone 1987] defines an articulated body as a
system of rigid bodies with a set of handles, i.e. locations attached
to some of the rigid bodies where forces may be applied, and shows
that the acceleration of these handles are affine functions of the
forces applied to them, according to the following articulated-body
equations:

a1
a2
...

am

 =

Φ1 Φ12 · · · Φ1m
Φ21 Φ2 · · · Φ2m

...
...

. . .
...

Φm1 Φm2 · · · Φm

f1
f2
...
fm

+

b1
b2
...

bm

(1)

In this equation, ai is the 6× 1 spatial acceleration of handle i, fi
is the 6× 1 spatial force applied to handle i, bi is the 6× 1 bias
acceleration of handle i (the acceleration handle i would have if all
handle forces were zero), Φi is the 6× 6 inverse articulated-body
inertia of handle i, and Φi j is the 6×6 cross-coupling inverse inertia
between handles i and j.

In the DCA, an articulated body is recursively defined as a pair of
articulated bodies connected by a joint. The sequence of assembly
operations is described in a binary assembly tree, in which each

937

node represents a subassembly. The leaf nodes represent rigid bod-
ies, and the root node describes the complete articulated body and
its relationship to the world coordinate system. To compute the for-
ward dynamics of the articulated bodies, four complete traversals
of the assembly tree are performed. The first two consist of one
bottom-up and one top-down pass, in which the new body positions
and velocities are computed from the joint positions and accelera-
tions, as well as the coordinate transformation matrices between the
different coordinate systems in the algorithm. Then the main pass is
a bottom-up traversal, in which the DCA calculates the articulated-
body equations (1) for each node in the assembly tree from those
of its children. Finally, in the top-down back-substitution pass, the
kinematic constraint forces are propagated down the tree to com-
pute all the joint accelerations.

3.1 Main pass

Let C be an articulated body formed by assembling an articulated
body A with m + 1 handles HA

11
, . . . , HA

1m
, HA

2 , and an articulated
body B with n+1 handles HB

1 , HB
21

, . . . , HB
2n

. As illustrated in Figure
2, C is formed by connecting HA

2 of A and HB
1 of B. The other

handles are non-connecting handles. The joint used to connect A
and B is called the principal joint of C.

By isolating handle HA
2 , the articulated-body equation of A can be

written: [
aA

1
aA

2

]
=

[
ΦA

1 ΦA
12

ΦA
21 ΦA

2

][
fA

1
fA

2

]
+

[
bA

1
bA

2

]
,

where ΦA
1 = mat(ΦA

1i j
) is a 6m× 6m composite matrix of cross-

coupling and inverse articulated-body inertias involving the non-
connecting handles in A, ΦA

12 = (ΦA
21)

T = col(ΦA
1i2) is a 6m× 6

composite matrix of cross-coupling inverse inertias between the
non-connecting handles in A and the connecting handle HA

2 , and
ΦA

2 is the 6× 6 inverse articulated-body inertia of handle HA
2 . The

accelerations, forces, and bias acceleration are vectors of appropri-
ate dimensions involving the corresponding handles.

The articulated-body equation of B can be similarly written:[
aB

1
aB

2

]
=

[
ΦB

1 ΦB
12

ΦB
21 ΦB

2

][
fB

1
fB

2

]
+

[
bB

1
bB

2

]
,

where the connecting handle HB
1 is singled out. Finally, the

articulated-body equation of C can be written:[
aA

1
aB

2

]
=

[
ΦC

1 ΦC
12

ΦC
21 ΦC

2

][
fA

1
fB

2

]
+

[
bC

1
bC

2

]
,

where all quantities are composite vectors or matrices involving the
remaining m+n handles HA

11
, . . . , HA

1m
and HB

21
, . . . , HB

2n
.

Featherstone [Featherstone 1999a; Featherstone 1999b] shows that
the articulated-body coefficients of C can be expressed in terms of
those of A and B. Let S denote the 6×dJ joint’s motion subspace,
where dJ is the number of degrees of freedom of the joint1, and let
Q denote the dJ ×1 vector of active joint forces (i.e. forces applied
by joint actuators). Setting

V = (ΦA
2 +ΦB

1)−1 β = bA
2 −bB

1 + Ṡq̇◦
W = V−VS(ST VS)−1ST V γ = Wβ +VS(ST VS)−1Q

,

where q̇◦ is the velocity of C’s principal joint, the articulated-body
coefficients of C are:

ΦC
1 = ΦA

1 −ΦA
12WΦA

21 bC
1 = bA

1 −ΦA
12γ

ΦC
2 = ΦB

2 −ΦB
21WΦB

12 bC
2 = bB

2 +ΦB
21γ

ΦC
21 = ΦB

21WΦA
21 = (ΦC

12)
T

. (2)

1A typical value for a revolute joint in link coordinates is S =
(0,0,1,0,0,0)T .

The main pass of the DCA performs these computations for each
node of the assembly tree, from the bottom up. The leaf-node coef-
ficients are:

Φi = Φi j = I−1 bi = I−1(fk −v× Iv), (3)

where I and v are, respectively, the spatial inertia and the spatial
velocity of the rigid body, and fk is an acceleration-independent
external force applied to the rigid body.

3.2 Back-Substitution Pass

After the main pass, the back-substitution pass of the DCA com-
putes the joint accelerations and the kinematic constraint forces of
each node in the assembly tree, from the root to the leaves. Each
node receives the values of the constraint forces fA

1 and fB
2 from its

parent. The dJ ×1 acceleration q̈◦ of the principal joint of a node C
is then:

q̈◦ = (STVS)−1(Q−STV(ΦA
21f

A
1 −ΦB

12f
B
2 +β)), (4)

and the kinematic constraint forces are:

fB
1 =−fA

2 = WΦA
21f

A
1 −WΦB

12f
B
2 +γ (5)

The root node describes the relation of the complete articulated
body to the world, and has only one articulated-body child B. The
handle force fB

2 is assumed to be known (usually fB
2 = 0, since all

acceleration-independent forces have already been accounted for in
the bias accelerations). If the articulated body has a floating base,
then fB

1 = 0 and aB
1 = ΦB

12f
B
2 +bB

1 . However, if the articulated body
is attached to a fixed base through a joint, the joint acceleration and
forces are computed using Equations (4) and (5), but with the coef-
ficients relative to A set to zero. Note that it is possible to simulate
gravity by substituting bB

1 −ag for bB
1 , which eliminates the need to

account for gravity through the action of an external force upon all
leaf nodes.

4 Hybrid Bodies

In this section, we introduce hybrid bodies, a new multilevel rep-
resentation of an articulated body, which enables us to simplify the
dynamics of an articulated body by controlling how many degrees
of freedom are simulated.

4.1 Definitions

Let J be a joint in the articulated body. The joint will be said to
be active if it is simulated, i.e. if its acceleration, velocity and po-
sition are computed. When it is not simulated, the joint is said to
be inactive or, alternatively, to have been rigidified. To simplify the
dynamics of any articulated body, we select a set of active joints
and simulate only those joints. We define a hybrid body as an artic-
ulated body whose set of active joints is a subtree of the assembly
tree, with an identical root. Consequently, any node in the assembly
tree is either rigid, when all the joints in the subassembly are inac-
tive or the node itself is a leaf node, or hybrid, when the principal
joint of the node is active, but some descendents of the nodes are
rigid. The set of hybrid nodes is called the active region. The set of
rigid nodes is called the rigid region, and the nodes which are rigid
but whose parent is hybrid constitute the rigid front. We also clas-
sify the nodes according to applied external forces and active joint
forces. An internal node is said to be in the force update region
if the principal joint of the node is subject to an active joint force,
or some descendents of the node are in the force update region, or
some descendents of the node are rigid bodies to which external
forces are applied. Finally, for reasons that will become clear later
on, we call the union of the active region and the force update re-
gion the update region, and the corresponding complementary set

938

Figure 3: Classification of the nodes of a hybrid body. The active region (left) is composed of the nodes which are simulated. The force
update region (middle) contain the internal nodes which are directly influenced by an external force or an active joint force. The update region
(right) is the union of the active region and the force update region.

of nodes the passive region. A passive node whose parent is in the
update region is said to be in the passive front. Figure 3 summarizes
the different regions of the assembly tree of a hybrid body.

This multilevel representation of an articulated body allows us to
gracefully simplify the dynamics of an articulated body, from a fully
articulated state, where all the joints are active, to a fully rigid state,
where all the joints are rigidified and the articulated body behaves
like a single rigid body.

4.2 Hybrid-Body Dynamics

The dynamics equations of a hybrid body can be easily deduced
from the articulated-body equations (2): wherever a joint is inac-
tive, we replace the corresponding motion subspace S by 0. Since
a node C can only be rigidified if both its children A and B have
been rigidified or were actual rigid bodies, the rigid-state coeffi-
cients of a rigidified node can be recursively computed from those
of its children:

ΦC = ΦC
i = ΦC

i j = ΦB(ΦA +ΦB)−1ΦA

bC = bC
i = bA−ΦA(ΦA +ΦB)−1(bA−bB) (6)

The dynamics coefficients of the hybrid nodes are computed using
the regular articulated-body equations (2). Note that a rigidified
node behaves exactly like a rigid body. Especially, its inverse iner-
tia is a symmetric, positive definite matrix. Moreover, the inverse
inertias and bias accelerations of all its handles are equal up to a
rigid-body transformation.

4.3 Hybrid-Body Simulation

Assume that we know the set of active joints, and that this set does
not change for several frames. Assume moreover that the inverse
inertias of all nodes in the assembly tree have been computed, in-
cluding the rigid inverse inertias of the rigid and rigidified nodes.
Assume finally that the applied external forces and the active joint
forces are known. The dynamics of a hybrid body can be simu-
lated by modifying the DCA, resulting in the following multilevel
forward dynamics algorithm:

1. Bias accelerations computation: as in the DCA, the bias
accelerations are recursively computed from the bottom up.
However, the computations take different forms depending on
the region the node belongs to: the bias accelerations of an
active node are computed as in the DCA using Equation (2);
those of a rigid node in the force update region are computed
using Equation (6); those of a node in the passive front are
computed using Equation (3) with the rigid or rigidified inertia
of the node. The bias accelerations of any passive node out of
the passive front do not have to be computed.

2. Acceleration update: the accelerations of the active joints
are computed using Equation (4).

3. Velocity and position update: the velocities and positions of
the active joints are updated using the joint accelerations.

4. Inverse inertias update: the inverse inertias of the hybrid
nodes are updated using the new joint positions. We will show
in Section 6 that the inverse inertias of the rigid nodes do not
need to be recomputed.

When Step 4 completes, the simulation can proceed to the next time
step.

5 Adaptive dynamics

5.1 Overview

The multilevel algorithm introduced in the previous section enables
us to control the complexity of the dynamics of an articulated body.
Having chosen a set of active joints, we are able to simulate these
joints only and potentially obtain a substantial performance im-
provement over a method which would simulate all of the joints.
However, the actual challenge is to predict which joints should
be activated so as to best approximate the motion of the articu-
lated body, without computing the accelerations of all the joints
in the articulated body.

In order to determine which joints should be simulated, we in-
troduce two classes of motion metrics: acceleration-based and
velocity-based. They help us formalize the simplification of the dy-
namics of an articulated body. Based on these motion metrics, we
periodically perform the following active region update algorithm:

1. Conversion to the fully articulated state: the hybrid body
is converted back to its fully articulated state. This step in-
volves computing some articulated-body coefficients and ac-
celeration metric coefficients. We show in Section 6 that only
a limited subtree of the assembly tree has to be traversed in
order to perform the conversion.

2. Acceleration update

(a) Determination of the acceleration update region: we
determine the acceleration update region, i.e. the sub-
set of nodes of the full articulated body which matter the
most according to the acceleration metric. The union of
the previous active region and the acceleration update
region is the transient active region, i.e. the region tem-
porarily considered as the active region.

(b) Joint accelerations re-computation: in order to en-
sure a physically-based simplification of the articulated
body acceleration, we convert the articulated body to
the corresponding transient hybrid body, and compute
the joint accelerations in the transient active region.

939

3. Velocity update

(a) Determination of the new active region: we update
the joint velocities and the velocity metric values of the
nodes in the transient active region. We then determine
the set of nodes which are considered to be important
according to the velocity metric. This set becomes the
new active region.

(b) Rigidification: if one or more nodes become inactive
due to the update of the active region, we determine
a set of impulses that we must apply to the transient
hybrid body to perform the rigidification of these nodes.

4. Conversion to the new hybrid state: the articulated body
is converted from the transient hybrid state to the new hybrid
state, by updating a limited number of articulated-body coef-
ficients and acceleration metric coefficients.

We provide details of the algorithm in the rest of this section.

5.2 Motion Metrics

Let C be an articulated body with NC joints, and let q̈C =
(q̈1, . . . , q̈NC)T denote the composite acceleration of C. The com-
posite velocity q̇C = (q̇1, . . . , q̇NC)T is similarly defined. In order to
prioritize the degrees of freedom, we introduce the following two
motion metrics. The acceleration metric value and velocity metric
value of an articulated body C with acceleration q̈C and velocity q̇C

are:
A (C) = ∑

i∈C
q̈T

i Aiq̈i V (C) = ∑
i∈C

q̇T
i Viq̇i.

where Ai and Vi, i ∈ C, are symmetric, positive definite (SPD)
dJi × dJi weight matrices, and dJi is the number of degrees of free-
dom of joint i in C. The matrices Ai and Vi can be adapted to
achieve a specific type of approximation, but we require them to
only (potentially) depend on the position qi of joint i. The simplest
choice for the matrices Ai and Vi is the identity matrix.

The key to our approach is the demonstration that it is possible to
compute the acceleration metric value of any node C without having
to compute the accelerations of the joints in C:

Theorem 1 (Acceleration metric equation)
The acceleration metric value A (C) of an articulated body C,
formed by assembling an articulated body A with m + 1 handles
and an articulated body B with n + 1 handles, is a quadratic func-
tion of the handle forces acting upon C:

A (C) =
[

fA
1
fB

2

]T [
ΨC

1 ΨC
12

ΨC
21 ΨC

2

][
fA

1
fB

2

]

+
[

fA
1
fB

2

]T [
pC

1
pC

2

]
+ηC,

(7)

where ΨC
1 is a 6m× 6m matrix, ΨC

2 is a 6n× 6n matrix, ΨC
12 =

(ΨC
21)

T is a 6m× 6n matrix, pC
1 is a 6m× 1 vector, pC

2 is a 6n×
1 vector, and ηC is in IR. Equation (7) is called the acceleration
metric equation of C.

Furthermore, it can be shown by induction on the height of the as-
sembly tree that, just like the articulated-body coefficients, the ac-
celeration metric coefficients ΨC

1 , ΨC
2 , ΨC

12, ΨC
21, pC

1 , pC
2 and ηC

can be computed in a bottom-up fashion:

Theorem 2 (Acceleration metric coefficients)
Let C be an articulated body with children A and B, and let

A◦ denote the weight matrix of the principal joint of C. Setting

U = (ST VS)−1ST V R = (ST VS)−1(Q−STVβ)
N = UT A◦U Y = N+W(ΨA

2 +ΨB
1)W

Z = 2UT A◦R+W(pA
2 −pB

1)−2W(ΨA
2 +ΨB

1)γ,

the coefficients of the acceleration metric A (C) can be written:

ΨC
1 = ΨA

1 +ΦA
12YΦA

21− (ΦA
12WΨA

21 +ΨA
12WΦA

21)

ΨC
2 = ΨB

2 +ΦB
21YΦB

12− (ΦB
21WΨB

12 +ΨB
21WΦB

12)

ΨC
21 =−ΦB

21YΦA
21 +ΦB

21WΨA
21 +ΨB

21WΦA
21 = (ΨC

12)
T (8)

pC
1 = pA

1 −ΦA
12Z−2ΨA

12γ

pC
2 = pB

2 +ΦB
21Z+2ΨB

21γ

η
C = η

A +η
B +RTA◦R+γT (ΨA

2 +ΨB
1)γ−γT (pA

2 −pB
1).

The coefficients of a leaf node are all zero, since a leaf node repre-
sents a rigid body which does not contain any joint. The coefficients
of the root node are obtained by zeroing the coefficients relative to
A in Equation (8).

In the next section, we show how we use Equation (7) to control
the back-substitution pass and determine an acceleration update re-
gion, i.e. a subtree of C’s assembly tree whose nodes matter the
most according to the acceleration metric, without having to tra-
verse the whole assembly tree.

5.3 Acceleration Update

5.3.1 Determination of the Acceleration Update Region

Let C be an articulated body. When the back-substitution pass be-
gins, the forces fB

2 acting on the complete articulated body C are as-
sumed to be known, and the acceleration metric value A (C) can be
obtained from Equation (7). Similarly, during the back-substitution
pass, the forces acting upon a node can be used to compute not only
the principal joint’s acceleration and forces, but also the accelera-
tion metric value of the node, before processing its descendants.

Let εmax be a user-defined threshold. If A (C) 6 εmax, we consider
all joint accelerations in C to be sufficiently close to zero according
to the acceleration metric. We stop the back-substitution pass right
at the root node, implicitly setting all joint accelerations to zero,
and decide that the acceleration update region is empty.

However, if the acceleration metric value A (C) is strictly larger
than εmax, we do not stop the traversal of the assembly tree right at
the root node. Instead, we compute the joint acceleration and forces
of C’s principal joint, and recursively traverse the descendants of C
using a priority queue to order the nodes according to their accel-
eration metric value: a node A has a higher priority than a node B
if A (A) > A (B). Thus, during the traversal, we descend first in
the regions that matter the most according to the acceleration met-
ric. We simultaneously maintain the current acceleration error εc,
i.e. the error in the acceleration metric value of the full articulated
body that would result from stopping the recursion. Thus, we set
εc = A (C) at the beginning of the back-substitution pass, where
C is the root node of the assembly tree. Then, whenever the ac-
celeration q̈◦ of the principal joint of a node C is computed during
the recursion, we subtract the contribution q̈T

◦A◦q̈◦ of C’s princi-
pal joint from εc, and we push the children A and B of C into the
priority queue. Since the weight matrices Ai are SPD, the current
acceleration error can only decrease as more nodes are processed,
and the back-substitution pass can be stopped as soon as the cur-
rent acceleration error becomes smaller than εmax. The acceleration
update region is the set of NU nodes that have been processed dur-
ing this partial back-substitution pass, and the time required to de-
termine it is O(NU). Note that, alternatively, the recursion can be

940

stopped when a user-defined number of nodes has been processed.
This allows the user to precisely control the cost of determining an
acceleration update region.

5.3.2 Joint Accelerations Re-Computation

Simply zeroing some joint accelerations and keeping the joint ac-
celerations computed during the determination of the acceleration
update region can lead to inconsistencies in the simulation, as illus-
trated in Figure 4. In this example, the articulated body is a chain
of 5 links l1, . . . , l5 which are initially motionless, and a force fk is
applied to the second link in the x direction. All joints are prismatic
and can move in the x direction, and all links have the same mass
m. Under the action of fk, only two joints J1 and J2 have non-zero,
opposite accelerations, and only the second link begins to move,
with acceleration a2 = fk/m (Figure 4(a)).

Figure 4: Physically-based acceleration approximation. Once
the acceleration update region has been determined, the joint ac-
celerations are re-computed using the transient hybrid inertias to
ensure a physically-based simplification of the articulated body ac-
celeration (cf Section 5.3.2).
Assume however that, during the determination of the acceleration
update region, only the acceleration of joint J1 has been computed,
and the acceleration of joint J2 has been considered to be zero (for
example because the user chose to directly control the size of the
acceleration update region, regardless of the resulting acceleration
error). As a consequence, the links l3, l4 and l5 also begin to move,
with acceleration a2. The fact that these links begin to move di-
rectly results from the combined effect of the reduction of the num-
ber of degrees of freedom and the application of the force, and is
not a problem per se. However, the articulated body now behaves
as if larger forces than the initial one had been applied to it (Figure
4(b)).

Thus, we recompute the accelerations of the joints in the acceler-
ation update region, as well as those of the joints which were ac-
tive at the previous time step, using a partially rigidified version
of the articulated body. We define the transient active region, i.e.
the region temporarily considered as the active region, as the union
of the previous active region and the acceleration update region,
and form the corresponding transient hybrid body. As in Section
4, this step involves replacing the inverse inertias and bias accel-
erations by their rigid or hybrid counterparts, which again can be

achieved without traversing the whole assembly tree (cf Section 6).
We then compute the accelerations of the joints in the transient ac-
tive region. These joint accelerations are now consistent with the
reduced number of degrees of freedom in the transient hybrid body,
and the forces applied to the articulated body. In the example of
Figure 4, the accelerations of the links l2, . . . , l5 become equal to
a2 = fk/(4m), since after the rigidification of J2, J3 and J4, the ac-
tion of the force fk applied to l2 has an effect on l3, l4 and l5 as well
(Figure 4(c)).

5.4 Velocity update

5.4.1 Determination of the New Active Region

Once the joint accelerations have been determined, we update the
velocities of the joints in the transient active region, since only
these joints might have a non-zero acceleration. We perform the
update from the bottom up, starting from the transient rigid front,
and simultaneously compute the velocity metric value V (C) of each
processed node as follows. The velocity metric value of a node in
the transient rigid front is 0, as all joints in the node have been
rigidified. The velocity metric value of a node C in the transient
active region is computed in constant time from the velocity q̇◦ of
its principal joint and the velocity metric values of its children A
and B: V (C) = q̇T

◦V◦q̇◦ +V (A)+V (B). When the velocities and
the velocity metric values of all joints in the transient active region
have been updated, we determine which nodes are important ac-
cording to the velocity metric, through a procedure similar to the
one used to determine the acceleration update region. The stopping
criterion can be either an error threshold εmax or the number of tra-
versed nodes. The set of nodes traversed during this step becomes
the new active region, and the joint velocities outside the new active
region are now considered to be zero.

5.4.2 Rigidification

When the previous step completes, the velocity of each joint in the
transient active region might be non-zero. However, some of these
joints might not belong to the new active region, and thus should
have a zero joint velocity. Similar to the acceleration update, these
joint velocities cannot simply be set to zero before inactivating the
joints, as this could result in inconsistencies in the motion of the ar-
ticulated body. In order to cancel the velocities of the joints which
are going to be inactivated, we determine and apply some rigidifi-
cation impulses to the transient hybrid body.

Let q̇R denote the composite vector which contains the joint ve-
locities that have to be cancelled, and let QR denote the composite
vector of impulses that are going to be applied to the joints whose
velocity must be cancelled. Both q̇R and QR are dR-dimensional
vectors, where dR is the total number of degrees of freedom in the
involved joints. The required instantaneous change of velocities is
∆ q̇R = −q̇R. Assuming that the effects of external forces and ac-
tive joint forces (including gravity) are negligible compared to the
effects of the impulses, it can be shown that there exists a SPD
dR × dR matrix KR such that KRQR = ∆ q̇R. The coefficients of
the i-th column of KR are computed by applying a unit impulse
Qi on the i-th degree of freedom in q̇R and reporting the accelera-
tions induced in the dR degrees of freedom. This is similar to the
approach introduced in [Kokkevis et al. 1996]. This step involves
performing dR times the multilevel forward dynamics algorithm de-
scribed in Section 4. However, since the hybrid inverse inertias of
the transient hybrid body have already been computed during the
recalculation of the joint accelerations, and the joint positions do
not change when applying the impulses, only Steps 1 and 2 have to
be performed for each of the dR passes. Moreover, these steps can
be highly optimized in this case: in Step 1, only the node where a
unit impulse is applied and its ascendant nodes have non-zero bias
accelerations; in Step 2, only the nodes which are going to be in-
activated and their ascendant nodes have to be processed. Once the

941

matrix KR is known, the composite impulse QR is computed and
applied to the transient hybrid body by a final application of the
multilevel algorithm. Because (KR)−1 is a submatrix of the joint-
space inertia matrix (i.e. the kinetic energy matrix) of the complete
articulated body, it can be shown that the rigidification impulses
cannot increase the kinetic energy of the articulated body.

Note that, when rigidification impulses are applied, the velocities
of some joints in the new active region might be modified. In our
tests, however, potential “popping artifacts” appeared to be fairly
limited. This is essentially due to the following: (a) the joints that
are rigidified typically have small velocities compared to the joints
that remain active, and thus the rigidification impulses have a rela-
tively small effect on the active joints’ velocities; (b) the rigidifica-
tion impulses cannot increase the kinetic energy of the articulated
body; (c) some authors have noted that humans are typically less
sensitive to errors in the dynamics of objects than to errors in their
geometry (e.g. [Baraff and Witkin 1997]).

6 Coefficient Update
In this section, we describe how we update the various coefficients
involved in the multilevel forward dynamics algorithm and the ac-
tive region update algorithm. We show that it is possible to limit the
update of the coefficients to a subtree of the assembly tree.
6.1 Hierarchical State Representation

Let C be an articulated body formed by assembling two articulated
bodies A and B. We call the handles used to connect A and B the
principal handles of A and B. The root node has no principal han-
dle. As in Featherstone [Featherstone 1999a], we assign a unique
reference frame to each handle in which all the quantities related
to that handle are expressed. When the quadratic coefficients, i.e.
the regular, rigid and hybrid inverse inertias, as well as the accel-
eration metric coefficients ΨC

1 , ΨC
2 , ΨC

12 and ΨC
21, are expressed in

the handles reference frames, they only depend on the position of
C’s principal joint, through the coefficients W and Y, as well as
on their counterparts in A and B. Moreover, the weight matrices A◦
and V◦ of a node C only (potentially) depend on the position of C’s
principal joint by definition. Consequently, these coefficients only
need to be updated in the active region. In order to apply a force
on one of the rigid bodies composing the articulated body, however,
we need to express the force in the reference frames of the handles
attached to this rigid body. To do this, we maintain in each node of
the assembly tree three types of coordinates transformation matri-
ces that we use to obtain the position of a rigid body in the world
frame [Redon and Lin 2005]. These three types of transforms de-
pend on joint positions and have to be updated in the active region
only2. Similarly, in order to express object velocities in the world
frame when necessary, we maintain three corresponding types of
relative velocities, which also have to be updated in the active re-
gion only. These relative velocities allow us to obtain the world
frame velocities of all handles in the update region and the passive
front, and where necessary in the passive region when determining
the acceleration update region, without having to traverse the whole
assembly tree.

6.2 Linear Coefficients Tensors

The linear coefficients, i.e. the bias accelerations of a fully articu-
lated body, as well as the linear and constant acceleration metric co-
efficients pC

1 , pC
2 and ηC, also depend on external forces and active

joint forces applied to the rigid bodies and joints, and the velocities

2Note that the position of a rigid body is expressed in the world frame
only when an external force is applied to this rigid body. In particular, it is
not necessary to compute the positions of all the rigid bodies in the world
frame in order to perform the simulation. Furthermore, these world trans-
forms are not even required to display the articulated body when the graph-
ics library supports hierarchical representations (e.g. OpenGL).

of the rigid bodies. During the multilevel forward dynamics algo-
rithm, the linear coefficients of the nodes in the passive front can be
directly computed using Equation (3), because the rigid or rigidified
inertia and the world frame velocity of the node are available. The
coefficients in the update region are then computed from the pas-
sive front up to the root using Equations (2) and (6). Consequently,
the linear coefficients of the passive nodes out of the passive front
never have to be computed.

To determine the acceleration update region, however, we have to
use the fully articulated version of the linear coefficients, which pre-
vents us from using the rigid or rigidified inertias. Moreover, we do
not know in advance which joint accelerations are going to be com-
puted during the back-substitution pass, and we might thus have to
compute the linear coefficients of some passive nodes which are not
on the passive front. In order to avoid traversing the whole assem-
bly tree, we introduce some linear coefficients tensors which allow
us to obtain the linear coefficients of any passive node in constant
time, without having to traverse the node’s descendants. Especially,
we demonstrate that the linear coefficients of a passive node C can
be obtained directly from the velocities of the handles of C:

Theorem 3 (Linear coefficients tensors)
Let C be a node in the passive zone. The linear coefficients bC

1 ,
pC

2 , pC
1 and pC

2 of C can be obtained from the product of composite
rank-three tensors BC

1 , BC
2 , PC

1 and PC
2 , and the handles velocities:

(bC
1)a = (BC

1)abc(vC
1)b(vC

1)c (pC
1)a = (PC

1)abc(vC
1)b(vC

1)c
(bC

2)a = (BC
2)abc(vC

2)b(vC
2)c (pC

2)a = (PC
2)abc(vC

2)b(vC
2)c

.

These equations are formulated using the Einstein summation con-
vention, where an expression in which an index appears more than
once is summed over all possible values of the index (the ranges de-
pend on the dimensions of the composite spatial quantities). Sim-
ilarly, the constant acceleration metric coefficient ηC can be ob-
tained from the product of a rank-four tensor EC and the velocity
vC of the principal handle of C:

η
C = (EC)abcd(vC)a(vC)b(vC)c(vC)d .

To convert the articulated body to its fully articulated state, the lin-
ear coefficients are computed first on the passive front using these
tensors, and then in the update region using Equations (2) and (8).
Then, when a passive node is processed during the determination of
the acceleration update region, its linear coefficients are computed
using the linear coefficients tensors. It can be shown by induction
on the height of the assembly tree that the linear coefficients tensors
can be computed from the bottom-up:

Theorem 4 (Linear coefficients tensors computation)
Let C be an articulated body with children A and B, and let
A◦ denote the weight matrix of the principal joint of C. Setting

(Γ)abc = (W)ak(BA
2 −BB

1)kbc

(L)abc = (U)ak(BB
1 −BA

2)kbc

(∆)abc = 2(UT A◦)ak(L)kbc +(W)ak(PA
2 −PB

1)kbc

−2(W(ΨA
2 +ΨB

1))ak(Γ)kbc,

the linear coefficients tensors of C can be computed from those of A
and B:

(BC
1)abc = (BA

1)abc− (ΦA
12)ak(Γ)kbc

(BC
2)abc = (BB

2)abc +(ΦB
21)ak(Γ)kbc

(PC
1)abc = (PA

1)abc− (ΦA
12)ak(∆)kbc−2(ΨA

12)ak(Γ)kbc (9)

(PC
2)abc = (PB

2)abc +(ΦB
21)ak(∆)kbc +2(ΨB

21)ak(Γ)kbc

(EC)abcd = (EA +EB)abcd +(L)kab(A◦)kl(L)lcd

+(Γ)kab(ΨA
2 +ΨB

1)kl(Γ)lcd − (Γ)kab(PA
2 −PB

1)kcd .

942

The tensors PC
1 , PC

2 and EC of a leaf node are all zero, since a leaf
node represents a rigid body which does not contain any joint, while
the tensors BC

1 and BC
2 of a leaf node are determined by rewriting

the spatial cross product in Equation (3) using the spatial equiva-
lent of the Levi-Civita symbol. The coefficients of the root node are
obtained by zeroing the coefficients relative to A in Equation (9).

The linear coefficients tensors only depend on the joint positions,
and thus should be updated in the active region only. However, be-
cause we only use them in the passive region, we can dramatically
reduce the cost of maintaining these tensors by updating them only
when a node becomes rigid.

7 Results and Applications
7.1 Features and Benefits

The algorithms introduced in this paper have been implemented in
C++ and tested on a 2.8 GHz Pentium PC with 2GBytes of RAM.
Although we initially considered using a fourth-order Runge-Kutta
integrator, our system proved to be stable enough with a simple ex-
plicit Euler integrator. We believe that our algorithm might actually
increase the stability of the simulation for three reasons: (a) several
researchers have reported that articulated bodies are more difficult
to simulate and control when the number of degrees of freedom in-
creases (e.g. [Ascher et al. 1997; Featherstone 2004]), while our
method helps by rigidifying some subassemblies; (b) the joint ac-
celerations are re-computed in step (2)(b) of the active region up-
date algorithm to ensure a physically-based simplification of the
joints accelerations; (c) similarly, the rigidification impulses allow
for a physically-based simplification of the joint velocities.

We first present an empirical analysis of our algorithm and demon-
strate how adaptive dynamics allows us to gracefully reduce the
complexity of an articulated body motion and increase the effi-
ciency of the dynamics computations. Figure 5 shows the progres-
sive motion simplification of a pendulum with 300 degrees of free-
dom, under the sole influence of gravity, as the user reduces the
number of active joints. The five rows represent the same time seg-
ment, and the pendulum has the same initial state in each case. For
reference, Fig. 5(a) shows the motion of the fully articulated pen-
dulum, when 300 joints are active. In this case, the average time
required to perform the dynamics computations is about 5 millisec-
onds per time step. Fig. 5(b)-(e) show the motion simplification for
the pendulum, when 100, 50, 20, and finally 1 node(s) are simu-
lated. The resulting average computational costs per time step in
these examples are respectively about 1.7, 0.7, 0.25, and 0.02 mil-
liseconds, providing up to two orders of magnitude speed-up.

Figure 6: Adaptive active region determination. a: one of the
links of a 50-link pendulum is attached to a point in the environ-
ment through a spring. b: equilibrium state when 50 joints are
active. c: equilibrium state when 5 joints are active, without adap-
tive determination of the active joints. d: equilibrium state when 5
joints are active, with adaptive determination of the active joints by
our algorithm.
Adaptive determination of the active joints is crucial to achieve a
high-quality approximation of an articulated body motion, despite

NA

Adaptive dynamics DCA
NF 1 50 100 150 200 250 300
1 0.02 0.51 1.71 2.97 4.04 5.40 5.89
5 0.07 0.49 1.54 3.21 4.34 5.19 5.89
10 0.16 0.73 1.47 3.03 4.22 5.16 5.88
20 0.40 0.90 1.60 3.00 4.72 5.56 5.90
50 0.98 1.40 2.16 3.58 4.99 5.59 5.92

250 1.83 2.30 2.97 4.28 5.43 6.31 6.04

Table 1: Performance of our adaptive dynamics algorithm vs the
DCA, when simulating the 300-link pendulum of Figure 5 (timings
in milliseconds, cf Section 7.2).

the potentially drastic simplification imposed by an animator. Fig-
ure 6 shows a pendulum with 50 joints in which one of the links
is attached to a spring. Fig. 6(a) shows the initial state when the
spring force is applied at the attachment point. Fig. 6(b) shows the
final equilibrium state of the fully articulated pendulum. Fig. 6(c)
shows the final equilibrium state of a hybrid body with only 5 active
joints, which are selected prior to the beginning of the simulation
by a breadth-first traversal of the pendulum assembly tree. Arbi-
trarily choosing the active joints results in a poor approximation
of the equilibrium state when only few joints are active. Fig. 6(d)
shows the final equilibrium state of a pendulum with only 5 active
joints adaptively selected at runtime by our algorithm. Even in this
extreme simplification case where 90% of nodes are rigidified, our
algorithm provides a high-quality approximation of the articulated
body motion.

7.2 Performance Analysis

The overall complexity of our algorithm is O(NA)+ f × (O(NA)+
O(N3

R)), where NA is the number of active joints, f is the frequency
at which the active region is updated (e.g. every 20 time steps), and
NR is the number of nodes that have to be rigidified. Note that, al-
though the size NU of the acceleration update region might be set
arbitrarily, it is typically preferable to choose a number smaller than
the size of the active region, so that the number of nodes that have
to be rigidified is zero or a small value. Furthermore, note that the
accelerations of the active joints are computed anyway during the
re-computation of the accelerations. Thus, when NA is large, NU can
be set to small values without affecting the responsiveness of the ar-
ticulated body to external forces and active joint forces. Similarly,
the frequency f allows the user to take advantage of the potentially
high temporal coherence in the dynamics simulation (for example
when small time steps are used). This again enables a trade-off be-
tween the responsiveness of the articulated body to changes (due
to external forces, active joint forces, or inertial terms) and the ef-
ficiency of the overall dynamics simulation. Because of the vari-
ous traversals performed in the active region update algorithm, the
average cost per node is approximately three times as high as the
average cost per node in the DCA or in our multilevel forward dy-
namics algorithm. Hence, the amortized cost of our algorithm is
O((1+3× f)×NA)+ f ×O(N3

R).

We have thus fixed the update frequency f to 1/20, and have tested
our algorithm by varying the number NF of forces applied at each
time step to the pendulum, as well as the size NA of the active re-
gion. The size of the acceleration update region was equal to the
size of the active region in our tests. Table 1 provides the average
running time of our algorithm (in milliseconds) depending on the
size of the active region NA and the number of forces NF applied to
the 300-link pendulum. The simplification of the dynamics of an
articulated body enabled by our algorithm results in performance

943

Figure 5: Progressive simplification of the motion a pendulum (cf Section 7.1).

improvements of up to two orders of magnitude in this case. The
timings show the increase in efficiency when the number of active
degrees of freedom and the number of applied forces decrease.

Note that a typical forward dynamics solver might be implemented
using a faster algorithm than the DCA. For example, from the op-
eration count reported in [Featherstone 1999b], the DCA is approx-
imately three times slower than the standard articulated-body al-
gorithm (ABA, [Featherstone 1987]) when run on a single proces-
sor. However, the ABA and other classical forward dynamics algo-
rithms would also be linear in the number of joints in the articulated
body, and thus would be outperformed by our adaptive dynamics
algorithm as the simplification of the articulated body dynamics in-
creases. Furthermore the DCA, on which our algorithm is based, is
inherently parallel and rapidly outperforms the ABA when the num-
ber of processors increases. We believe that our adaptive algorithm
might also be able to benefit from the use of multiple processors.

7.3 Limitations

Our algorithm has a few limitations:

Assembly tree dependency: the performance of our algorithm de-
pends on the topology of the assembly tree. Even when only one
node C could be activated to have a high-quality approximation of
the articulated body motion, our method has to activate the nodes
that are ascendant to C. This can reduce the quality of the approx-
imated motion when the user allows very few active joints in the
articulated body. Unless we know in advance where forces might
be applied during the simulation, the best strategy is thus to build
balanced assembly trees.
Potential damping: our algorithm is guaranteed not to increase the
kinetic energy of the articulated body. However, the kinetic energy
might be decreased when some nodes are rigidified (this clearly oc-
curs when the single joint connecting a rigid body to a fixed base is
rigidified).
Partial approximation guarantees: although some steps of our
adaptive dynamics algorithm are provably error bounded (e.g. the
determination of the acceleration update region and of the new ac-
tive region), we currently do not have a proof that the other steps
are error-bounded as well. Note that our algorithm can easily be
turned into an approximate forward dynamics algorithm with guar-
anteed error bounds: we can ensure that the complete algorithm is
error-bounded by removing the joint accelerations re-computation

step and the rigidification step, and by updating the active region at
every time step. However, this approach would be too conservative,
as we explain in Section 5. Our adaptive dynamics algorithm pro-
vides the animator with complete control on the amount of motion
simplification for articulated bodies.

7.4 Applications and Future Research

Next, we describe a few possible applications and future research
directions enabled by our adaptive dynamics algorithm.

View-dependent articulated body dynamics: by appropriately
customizing the weight matrices A◦ and V◦ in the motion met-
rics, it might be possible to develop a framework for rigorous
view-dependent simplification of articulated body dynamics, which
would determine the joints that have to be active based on the max-
imum amount of pixel error specified by the animator.
Perceptually-based simplification: some authors have studied hu-
man perception of animated characters [Reitsma and Pollard 2003].
It would be interesting to determine to what extent humans are sen-
sitive to errors in general articulated body dynamics. It might then
be possible to tune the motion metrics of our framework and take
advantage of the results of these perceptual studies.
Adaptive collision detection and response: since our algorithm
simplifies the dynamics of articulated bodies by rigidifying some
subassemblies, it might be possible to speed up the collision de-
tection and response as well by taking advantage of the temporal
coherence in the acceleration structures.
Articulated body control simplification: in our examples, we
only used very simple controllers (e.g. proportional-derivative con-
trollers to help enforce joint limits in human characters). Since
our algorithm handles active joint forces, and thus actuated joints,
it might be possible to develop adaptive controllers that could be
combined with our adaptive dynamics framework. For example,
one could imagine that the motion of a rigidified character ankle is
compensated by a modification of the character hip motion which,
in turn, would force the character to “tip-toe” or walk on his heels,
as humans can. Passive systems (e.g. hair, chains, and other articu-
lated models) are also handled by our algorithm and are of interest
as well. We envision a continuum of adaptive algorithms for the
control and simulation of articulated figures, as well as hybrid algo-
rithms using a combination of physically-based simulation, learn-
ing techniques, and data-driven modeling.

944

8 Conclusion
We have introduced a new approach for automatic simplification of
the dynamics of an articulated body. Our algorithm allows the user
to specify the number of degrees of freedom to simulate, and adap-
tively evolves the set of simulated joints over time to best approx-
imate the underlying motion, based on novel customizable motion
error metrics. Depending on the amount of simplification specified
by an animator, this framework potentially offers significant speed-
ups over typical linear-time forward dynamics algorithms.

We plan to perform a formal error analysis and examine ways to
extend this approach to inverse dynamics. Besides the possible fu-
ture research directions mentioned in Section 7.4, we would like to
further investigate potential applications and extensions to other ar-
eas, such as interactive manipulation of molecular structures, rapid
prototyping of complex mechanisms, “motion textures” for training
environments, etc.

Acknowledgements

The authors wish to thank Dr. Roy Featherstone for his help with
the DCA, James T. Pineda for proofreading the submission version
of this paper, and the anonymous reviewers for their thorough and
constructive comments on improving this paper. This project is sup-
ported in part by the Army Research Office, Intel Corporation, the
National Science Foundation, and the Office of Naval Research.

References

ANDERSON, K. S., AND DUAN, S. 2000. Highly parallelizable low-order dynamics
simulation algorithm for multi-rigid-body systems. AIAA Journal on Guidance,
Control, and Dynamics 23, 2, 355–364.

ASCHER, U. M., PAI, D. K., AND CLOUTIER, B. P. 1997. Forward dynamics,
elimination methods, and formulation stiffness in robot simulation. In International
Journal of Robotics Research, vol. 16, no. 6, pp. 749-758.

BAE, D., AND HAUG, E. 1987. A recursive formulation for constrained mechanical
systems dynamics: Part i. open-loop systems. Mechanical Structures and Ma-
chines, Vol. 15, No. 3, pp. 359-382.

BARAFF, D., AND WITKIN, A. 1997. Partitioned dynamics. Technical Report CMU-
RI-TR-97-33, Robotics Institute, Carnegie Mellon University.

BARAFF, D. 1996. Linear-Time simulation using lagrange multipliers. In SIGGRAPH
96 Conference Proceedings, Addison Wesley, H. Rushmeier, Ed., Annual Confer-
ence Series, ACM SIGGRAPH, 137–146. held in New Orleans, Louisiana, 04-09
August 1996.

BARZEL, R., HUGHES, J., AND WOOD, D. 1996. Plausible motion simulation for
computer graphics animation. Proc. of Eurographics Workshop on Computer Ani-
mation and Simulation, pp. 183–197.

BEAUDOIN, J., AND KEYSER, J. 2004. Simulation levels of detail for plant motion.
Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

BERTAILS, F., KIM, T.-Y., CANI, M.-P., AND NEUMANN, U. 2003. Adaptive
wisp tree - a multiresolution control structure for simulating dynamic clustering in
hair motion. Proc. of ACM SIGGRAPH / Eurographics Symposium on Computer
Animation.

BRANDL, H., JOHANNI, R., AND OTTER, M. 1986. A very efficient algorithm for the
simulation of robots and similar multibody systems without inversion of the mass
matrix. IFAC/IFIP/IMACS Symposium, pp. 95-100.

BRUDERLIN, A., AND CALVERT, T. 1989. Goal-directed, dynamic animation of
human walking. In Computer Graphics (Proc. of SIGGRAPH’89), 233–242.

BRUDERLIN, A., AND CALVERT, T. 1996. Knowledge-driven, interactive animation
of human running. In Proc. of Graphics Interface, 213–221.

CARLSON, D., AND HODGINS, J. 1997. Simulation levels of detail for real-time
animation. In Proc. of Graphics Interface 1997.

CHENNEY, S., AND FORSYTH, D. 1997. View-dependent culling of dynamic systems
in virtual environments. In Proc. of ACM Symposium on Interactive 3D Graphics.

CHENNEY, S., ICHNOWSKI, J., AND FORSYTH, D. 1999. Dynamics modeling and
culling. IEEE Computer Graphics and Applications March/April, pp. 79–87.

CHENNEY, S., ARIKAN, ., AND FORSYTH, D. 2001. Proxy simulations for efficient
dynamics. Proc. of Eurographics 2001, Short Presentations.

FAURE, F. 1999. Fast iterative refinement of articulated solid dynamics. IEEE Trans.
on Visualization and Computer Graphics 5, 3, 268–276.

FEATHERSTONE, R., AND ORIN, D. E. 2000. Robot dynamics: Equations and algo-
rithms. IEEE Int. Conf. Robotics and Automation, pp. 826-834.

FEATHERSTONE, R. 1987. Robot Dynamics Algorithms. Kluwer, Boston, MA.

FEATHERSTONE, R. 1999. A divide-and-conquer articulated body algorithm for par-
allel o(log(n)) calculation of rigid body dynamics. part 1: Basic algorithm. Inter-
national Journal of Robotics Research 18(9):867-875.

FEATHERSTONE, R. 1999. A divide-and-conquer articulated body algorithm for paral-
lel o(log(n)) calculation of rigid body dynamics. part 2: Trees, loops, and accuracy.
International Journal of Robotics Research 18(9):876-892.

FEATHERSTONE, R. 2004. An empirical study of the joint space inertia matrix. In
International Journal of Robotics Research, vol. 23, no. 9, pp. 859-871.

FIJANY, A., SHARF, I., AND D’ELEUTERIO, G. 1995. Parallel o(log n) algorithms
for computation of manipulator forward dynamics. IEEE Trans. Robotics and Au-
tomation 11(3):389400.

GILLESPIE, R. B., AND COLGATE, J. E. 1997. A survey of multibody dynamics for
virtual environments. Proc. of ASME Int. Mech. Engr. Conf. and Expo..

GIRARD, M., AND MACIEJEWSKI, A. 1985. Computational modeling for computer
animation of legged figures. In Computer Graphics (Proc. of SIGGRAPH), vol. 19,
263–270.

GRANIERI, J., CRABTREE, J., AND BADLER, N. 1995. Production and playback of
human figure motion for 3d virtual environments. In Proc. of VRAIS, 127–135.

HOLLERBACH, J. 1980. A recursive lagrangian formulation of manipulator dynamics
and a comparative study of dynamics formulation complexity. IEEE Transactions
on Systems, Man, and Cybernetics, Vol. SMC-10, No. 11.

KO, H., AND BADLER, N. 1993. Straight-line walking animation based on kinematic
generalization that preserves the original characteristics. In Proc. of Graphics In-
terfaces.

KOKKEVIS, E., METAXAS, D., AND BADLER, N. 1996. User-controlled physics-
based animation for articulated figures. Proc. of Computer Animation, 16–26.

MCMILLAN, S., AND ORIN, D. E. 1995. Efficient computation of articulated-body
inertias using successive axial screws. IEEE Trans. on Robotics and Automation,
vol. 11, pp. 606-611.

MUELLER, A., AND MAISSER, P. 2003. A lie-group formulation of kinematics and
dynamics of constrained mbs and its application to analytical mechanics. Multibody
System Dynamics, vol. 9, no. 4, pp. 311-352(42).

MULTON, F., VALTON, B., JOUIN, B., AND COZOT, R. 1999. Motion levels of detail
for real-time virtual worlds. Proc. of ASTC-VR’99.

O’BRIEN, D., FISHER, S., AND LIN, M. 2001. Simulation level of detail for auto-
matic simplification of particle system dynamics. Proc. of Computer Animation,
210–219.

PERBET, F., AND CANI, M. 2001. Animating prairies in real-time. Proc. of ACM
Symposium on Interactive 3D graphics.

PERLIN, K. 1995. Real time responsive animation with personality. IEEE Transac-
tions on Visualization and Computer Graphics 1, 1, 5–15.

POPOVIC, Z., AND WITKIN, A. 1999. Physically based motion transformation. In
Proc. of SIGGRAPH 1999, 11–20.

REDON, S., AND LIN, M. C. 2005. An efficient, error-bounded approximation al-
gorithm for simulating quasi-statics of complex linkages. In Proceedings of ACM
Symposium on Solid and Physical Modeling.

REITSMA, P. S. A., AND POLLARD, N. S. 2003. Perceptual metrics for character ani-
mation: Sensitivity to errors in ballistic motion. In ACM Transactions on Graphics
22(3) 537-542, SIGGRAPH 2003 Proceedings.

RODRIGUEZ, G., JAIN, A., AND KREUTZ-DELGADO, K. 1991. Spatial operator
algebra for manipulator modelling and control. Int. J. Robotics Research, vol. 10,
no. 4, pp. 371-381.

WARD, K., AND LIN, M. 2003. Proc. of pacific graphics. Adaptive Grouping and
Subdivision for Simulating Hair Dynamics.

WARD, K., LIN, M., LEE, J., FISHER, S., AND MACRI, D., 2003. Modeling hair
using level-of-detail representations. http://gamma.cs.unc.edu/HSLOD.

YAMANE, K., AND NAKAMURA, Y. 2002. Efficient parallel dynamics computation of
human figures. Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 530–537.

YAMANE, K., KUFFNER, J., AND HODGINS, J. 2004. Synthesizing animations of
human manipulation tasks. ACM Trans. on Graphics (Proc. SIGGRAPH 2004).

945

