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Abstract

Direct reciprocity is a mechanism for the evolution of cooperation. For the iterated prisoner’s dilemma, a new class of
strategies has recently been described, the so-called zero-determinant strategies. Using such a strategy, a player can
unilaterally enforce a linear relationship between his own payoff and the co-player’s payoff. In particular the player may act
in such a way that it becomes optimal for the co-player to cooperate unconditionally. In this way, a player can manipulate
and extort his co-player, thereby ensuring that the own payoff never falls below the co-player’s payoff. However, using a
compliant strategy instead, a player can also ensure that his own payoff never exceeds the co-player’s payoff. Here, we use
adaptive dynamics to study when evolution leads to extortion and when it leads to compliance. We find a remarkable cyclic
dynamics: in sufficiently large populations, extortioners play a transient role, helping the population to move from selfish
strategies to compliance. Compliant strategies, however, can be subverted by altruists, which in turn give rise to selfish
strategies. Whether cooperative strategies are favored in the long run critically depends on the size of the population; we
show that cooperation is most abundant in large populations, in which case average payoffs approach the social optimum.
Our results are not restricted to the case of the prisoners dilemma, but can be extended to other social dilemmas, such as
the snowdrift game. Iterated social dilemmas in large populations do not lead to the evolution of strategies that aim to
dominate their co-player. Instead, generosity succeeds.
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Introduction

Repeated games are among the best-studied objects in game

theory, and the iterated prisoner’s dilemma has stimulated

research on the evolution of cooperation for more than five

decades [1–5]. The prisoner’s dilemma describes a social dilemma

between two players, each having the choice whether to cooperate

or to defect. When both cooperate, they each receive a mutual

reward R, which exceeds their payoff for mutual defection, P. But

if one player cooperates and the other defects, then the defector

gets the highest payoff T , whereas the cooperator ends up with the

lowest payoff S. Thus, if the game is played only once (or for a

known finite number of rounds), then mutual defection is the only

equilibrium. However, when players cannot anticipate how often

the game will be played, cooperative solutions become feasible

[3,5,6].

Researchers from diverse disciplines have used the iterated

prisoner’s dilemma to discuss the potential of direct reciprocity for

the evolution of cooperation [7–19]. However, recently Press and

Dyson [20] discovered that the infinitely repeated prisoner’s

dilemma also contains strategies that allow the manipulation and

extortion of opponents [21–25]. To show this, they first proved

that there are simple strategies, which only depend on the outcome

of the previous round, such that each side can enforce a linear

relationship between the payoffs of the two players. More

precisely, suppose player 1 applies a memory-one strategy

p~(pR,pS,pT ,pP), where pi is the probability to cooperate after

yielding a payoff i[fR,S,T ,Pg in the previous round (additionally,

such a strategy needs to specify a move for the first round.

However, for infinitely iterated games, the first round can often be

neglected). Moreover, assume that there are three constants a,b,c

such that p can be written as

pR~aRzbRzcz1

pS~aSzbTzcz1

pT~aTzbSzc

pP~aPzbPzc:

ð1Þ

Press and Dyson [20] showed that when player 1 applies such a

strategy against an opponent with arbitrary strategy q, then the

player’s payoff A(p,q) and the opponent’s payoff A(q,p) fulfill the

linear relation

aA(p,q)zbA(q,p)zc~0: ð2Þ

Since their proof required certain determinants to vanish, Press

and Dyson called such strategies p zero-determinant strategies. At first

sight, zero-determinant strategies might seem as a mere mathe-

matical curiosity [26]. However, their existence has several

surprising consequences. Press and Dyson [20] discovered that

certain zero-determinant strategies can guarantee that a player

always yields at least the opponent’s payoff. They showed that by

setting c~{(azb)P, a zero-determinant strategist can enforce

the relation
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A(p,q){P~x A(q,p){Pð Þ, ð3Þ

where x~{b=a§1 is called the extortion factor [20,23]. Such

extortioner strategies p guarantee that the player’s own surplus (over

the maximin value P) exceed’s the co-player’s surplus by a fixed

percentage. In particular, when the the typical payoff relations

Pv(TzS)=2vR hold, the payoff of an extortioner is never

below the payoff of its co-player, suggesting that extortioners

would dominate any evolutionary opponent [20].

On the other hand, Stewart and Plotkin [21,25] considered a

generous counterpart to extortioners. Starting from

c~{(azb)R, they investigated zero-determinant strategists that

enforce the relation

R{A(p,q)~x R{A(q,p)ð Þ, ð4Þ

where again x~{b=a§1. With such a generous strategy, a

player can ensure that her payoff is never above the opponent’s

payoff. In [23] such players are called compliers. Although

compliant strategies seem to be too generous to succeed in

competitive environments, Stewart and Plotkin [21] showed that

compliers do surprisingly well in round robin tournaments, in

which the compliant strategy was outperforming all other

strategies (including the most prominent strategies All D, Tit for

Tat, Win-Stay Lose-Shift, and an extortioner strategy). Moreover,

as shown in [25], a large fraction of compliant strategies is

‘‘evolutionary robust’’, meaning that no mutant with another

strategy can have a selective advantage over a resident population

of compliers.

Zero-determinant strategies thus have remarkable conceptual

properties, but comparably little is known which of these strategies

would evolve in a natural setup. It has recently been argued that

extortioners are evolutionarily unstable [22]: since extortioners

demand an extortionate share from any surplus, two interacting

extortioners would end up with a surplus of zero. Moreover,

numerical simulations indicate that zero-determinant strategies in

general are disfavored by selection in sufficiently large populations

[23]. However, this does not preclude certain zero-determinant

strategies, such as compliers, to play an important role, as recently

demonstrated by [21,25]. To identify such important strategies,

researchers have focused on particular limiting cases of zero-

determinant strategies, such as extortioners, equalizers, and

compliers. Moreover, to investigate the dynamics of these

strategies, previous studies either had to resort to individual-based

simulations, or they needed to restrict attention to a finite subset of

representative strategies [22,23,25].

Instead, it is the aim of this study to provide an analytical

framework that allows to study the evolutionary dynamics of all

zero-determinant strategies. Constructing an analytical model for

the evolutionary dynamics of the iterated prisoner’s dilemma is not

straightforward. Already for simple memory-one strategies, a

calculation of the resulting payoffs may become prohibitively

laborious (for an example see [22]). To derive an analytical model

of the dynamics, we will thus focus on an appropriate super-set of

zero-determinant strategies: the set of all memory-one strategies

that enforce a linear relation of the form (2), as in [25]. We show

that if all players apply such strategies then the payoffs and the

resulting adaptive dynamics take a remarkably simple form. In

particular, we find that populations either move to the edge of

compliers, or they move towards a neighborhood of unconditional

defectors AllD. In this process, extortioners play an important

role, as they can neutrally invade unconditional defectors, thereby

promoting the emergence of compliance. On the other hand,

altruistic strategies (such as unconditional cooperators) have the

opposite effect: they can subvert a population of compliers, giving

rise to the evolution of selfish strategies. Which of these strategies

gets the upper hand in the long run, critically depends on the

population size. While small populations favor the emergence of

selfish strategies, compliance succeeds as populations become

sufficiently large.

Results

In the following, let us focus on the set of all memory-one

strategies that enforce a linear relation between the payoffs of the

two players. As players cannot set their own score [20], it is

reasonable to consider only those strategies fulfilling Eq. (2) for

which b=0 (formally this means that we exclude the strategy

repeat~(1,1,0,0) from the set of zero-determinant strategies,

which is fully dependent on the initial condition). In the appendix

we show that this subset of strategies is then identical to the set

LR~fp[½0,1�4DAl, s[R, Vq : s(A(p,q){l)~A(q,p){lg: ð5Þ

Instead of the three parameters a, b=0 and c, this specification

only requires two free parameters, l and s. Both parameters allow

an intuitive interpretation (see Figure 1). The parameter s gives the

correlation between both players’ payoffs. A factor sw0 means

that a player enforces a positive linear relation between the

payoffs, whereas for sv0, the payoffs obey a negative linear

relation. The parameter l, on the other hand, can be considered as

the payoff that a player would get against himself (see Figure 1).

We thus call the parameter l the baseline payoff, and we refer to s as

the slope of an LR–strategy (in fact, the slope s is just the inverse of

the extortion factor x).

We consider an iterated prisoner’s dilemma and make the

common assumption that the payoffs of the one-shot game fulfill

the relation TwRwPwS, and Rw(TzS)=2wP, such that

mutual cooperation is the best outcome and mutual defection is

the worst outcome. As payoffs then need to be in the interval

½S,T �, and because memory-one strategies need to consist of four

probabilities, there are restrictions on the linear relations that a

player can enforce. In the Methods section, we show that a pair

(l,s) is enforceable if

PƒlƒR

{min
T{l

l{S
,
l{S

T{l

� �

ƒsƒ1:
ð6Þ

For example, the set of extortioners corresponds to the set of pairs

(l,s) with l~P and sw0. The set of compliers is given by those

memory-one strategies for which l~R and sw0. In the following,

we study the evolution of zero-determinant strategies by considering

the dynamics on the (l,s)-plane. That is, we assume that each player

determines an enforceable pair (l,s) and then picks a p from the

corresponding class of LR-strategies. Depending on the player’s

performance in the game, the enforceable pair (l,s) may then be

adopted by others, a process that we will describe with adaptive

dynamics and individual-based simulations.

Adaptive Dynamics in Infinite Populations
In order to derive the adaptive dynamics on the (l,s)–plane, we

first have to calculate the payoffs for each player. While the payoff
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function for general memory-one strategies is highly non-trivial,

these calculations become straightforward for LR-strategies.

Suppose a player wants to enforce the linear relation (l1,s1) by

choosing an appropriate LR-strategy p, whereas the co-player

enforces the pair (l2,s2) by choosing q[LR. Then the payoffs are

implicitly given by

s1(A(p,q){l1) ~ A(q,p){l1

s2(A(q,p){l2) ~ A(p,q){l2:
ð7Þ

From this, we recover the result that a player can set the co-

player’s score to a fixed value [20,27]: by choosing s2~0, player 2

can guarantee that the first player’s payoff is l2 (i.e., the set of so-

called equalizers corresponds to all enforceable pairs (l,s) with

s~0).

Excluding the two non-generic cases that both players enforce

the most extreme payoff relations (s1~s2~1 or s1~s2~{1), this

system of two linear equations has a unique solution for the payoffs

A(l1,s1; l2,s2) : ~ A(p,q) ~
(1{s1)s2

1{s1:s2
:l1z

1{s2

1{s1:s2
:l2

A(l2,s2; l1,s1) : ~ A(q,p) ~
1{s1

1{s1:s2
:l1z

(1{s2)s1

1{s1:s2
:l2:

ð8Þ

It follows that if both players have the same baseline payoff,

l : ~l1~l2, then their payoff will be l, irrespective of their choice

of the slopes s1 and s2. In particular, the payoff of a homogeneous

(l,s)-population is l. As a consequence, if we consider homoge-

neous populations, and if we assume that the populations move

towards the direction where mutants have the highest invasion

fitness, then the resulting adaptive dynamics [28–30] is given by

d

dt
s ~

L

Ls2
A(l2,s2; l1,s1)Dl2~l1~l,s2~s1~s ~ 0

d

dt
l ~

L

Ll2
A(l2,s2; l1,s1)Dl2~l1~l,s2~s1~s ~

s

1zs

ð9Þ

The first equation implies that the slope s remains constant

under adaptive dynamics. Nevertheless, the initial value of s

determines the eventual fate of the population: if individuals

enforce a positive correlation between payoffs (sw0), then the

baseline payoff l increases over time. Eventually, such a population

will thus yield the maximum payoff R, i.e. the population

converges to the edge of compliers, see Fig. 2. On the other

hand, for sv0 the population payoffs l decrease over time, and the

dynamics leads to strategies in the neighborhood of AllD.

Interestingly, although extortioners always outcompete their direct

opponent, the edge of extortioners is unstable, as illustrated in

Fig. 2. Along this edge, mutants with higher baseline payoff l can

invade. By giving in the extortioners’ claim, they are able to yield a

payoff that exceeds the payoff P that extortioners get against

themselves. However, this argument rests on the assumption of an

infinite population, such that the probability for an extortioner to

interact with a rare, but profitable mutant is zero. In the following

section, we therefore extend our analysis to finite populations.

Adaptive Dynamics in Finite Populations
Extortioners play a more prominent role in finite populations

[23], where pairwise payoff advantages have a stronger effect (see

also [14,31]). This is most intuitive when the population only

consists of two individuals; since extortioners outperform their

direct co-player by definition, extortion is expected to spread.

These observations suggest that a given extortionate strategy can

be stable as long as the population size is below some critical

threshold. To calculate this threshold analytically, let us consider a

homogeneous population of size N that enforces the pair (l1,s1).

From time to time, a player may mutate to a different enforceable

pair (l2,s2). If mutation (or exploration) events are sufficiently rare,

the strategy of the mutant goes extinct, or fixates, before the next

mutation occurs [32,33]. In this case, the fixation probability r is

the decisive quantity for the evolutionary dynamics. It can be

shown that such a process can be described with a modified form

of the adaptive dynamics equation; instead of asserting that

homogenous populations move towards the direction where

mutants have the highest invasion fitness, it is assumed that the

population moves towards the direction where mutants have the

highest fixation probability. In Imhof and Nowak [34] it is shown

that this direction can be found by calculating the adaptive

dynamics for a slightly perturbed payoff matrix (called the effective

Figure 1. Illustration of zero-determinant strategies for an iterated prisoner’s dilemma with T~5, R~3, P~1 and S~0. All graphs
show the possible payoffs of the focal player (on the horizontal axis) and the resulting payoff for the opponent (on the vertical axis) as colored areas
or lines. The colored points represent the payoff pairs for 103 randomly chosen opponents. (a) In general, as for example when the focal player
applies the win-stay lose-shift strategy p~(1,0,0,1), the possible payoff pairs form a convex polygon. (b) However, if the focal player applies a
compliant strategy, the set of all possible payoff pairs degenerates to a line with positive slope s, which intersects the diagonal at l~R. (c) An
extortioner enforces payoff relations that are on a line with positive slope s, intersecting the diagonal at l~P. (d) The strategy AllD~(0,0,0,0)
enforces a linear relation between the payoffs of the two players although AllD is not a zero-determinant strategy for the given parameters, as
described in the Methods section.
doi:10.1371/journal.pone.0077886.g001
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payoff matrix, or modified payoff matrix, see [35,36]),

~AA(p,q) : ~A(p,q){
A(p,q)zA(q,p)

N
, ð10Þ

The first correction term, A(p,q)=N means that individuals

cannot play against themselves, whereas the second correction

term A(q,p)=N corresponds to the competition effect in finite

populations. In our case, the adaptive dynamics for finite

populations becomes

d

dt
s ~

L~AA(l2,s2; l1,s1)

Ls2
Dl2~l1~l,s2~s1~s ~ 0

d

dt
l ~

L~AA(l2,s2; l1,s1)

Ll2
Dl2~l1~l,s2~s1~s ~

(N{1)s{1

(1zs)N

ð11Þ

Remarkably, the slope s remains invariant for all population

sizes. However, the dynamics for the baseline payoff l changes for

small N: in the extreme case of N~2, all trajectories in the

interior of the state space lead to the lowest possible population

payoff. For Nw2, a bistable situation emerges: if the value of s in

the initial population exceeds 1=(N{1), then the population

moves towards the edge of compliers (with l~R), whereas for

smaller values of s populations move towards a non-cooperative

equilibrium (with l~P). Therefore, larger populations promote

the evolution of cooperative behaviors, and in the limit of infinitely

large populations, N??, we recover the original adaptive

dynamics (9). The dynamical equations (11) also imply that a

given extortionate strategy can only be stable if sv1=(N{1), or

equivalently if the strategy’s extortion factor x~s{1 fulfills

xwN{1. Thus, to be stable in a finite population, extortioners

need to be sufficiently demanding (xwN{1), whereas compliers

must not be too generous (xvN{1).

In order to confirm these predictions, we have simulated the

dynamics in finite populations for a pairwise comparison process,

where the probability to switch to the role model’s strategy is given

by a Fermi function [37,38]. We assume that mutations follow

Gaussian distributions around l and s and focus on the distribution

of strategies and on the distribution of payoffs. For N~2 we find

that the population clusters around the edge of low population

payoffs (see Fig. 3a), and the density function for the payoffs has a

single peak at l~P. Increasing the population size has a two-fold

effect (Fig. 3b and 3c). First, compliant strategies with

sw1=(N{1) become stable, such that the density function of

the population payoffs has a second peak at l~R. Second,

increasing the population size reduces the stochastic noise; as a

consequence almost all the mass is concentrated around the two

peaks l~R and l~P. As predicted by adaptive dynamics, and in

line with previous results [23], larger populations exhibit larger

payoffs. For example, payoffs for a population size N~100 exceed

the payoffs for N~2 by more than a factor of six.

Although extortioners seem to apply a fully selfish strategy, they

are important as they can act as a catalyst for cooperation, by

helping the population to escape from states with low payoffs [23].

Our adaptive dynamics formalism allows us to give an intuitive

explanation for this effect: under a local mutation scheme, a

population of AllD players can only be invaded by neutral drift, by

moving along the vertical line of strategies with l~P. For

cooperative strategies to have a selective advantage, the new

resident population needs to have a positive slope s (i.e., only when

the new resident applies an extortionate strategy, cooperation can

evolve). In order to confirm this catalytic effect of extortionate

strategies, we have removed a d-neighborhood around the edge of

extortioners from the set of enforceable pairs (see Fig. 4a; in [34]

this method is called a knock-out experiment). That is, only those

mutants are permitted that are sufficiently different from

extortioners. The result is surprising: although extortioners are

defined as strategies with the lowest payoff against themselves,

their exclusion reduces the average payoff of the population for all

population sizes Nw2 (Fig. 4b). This effect is especially

pronounced in larger populations; for N~100, Fig. 4b indicates

that it is almost impossible to reach a cooperative regime without

extortioners.

So far, we have assumed that a mutant’s strategy is close to the

parent’s strategy (which allowed us to use derivatives to

approximate the dynamics), and that mutations are rare (which

allowed us to focus on games between a resident and one mutant

strategy). Let us now weaken these assumptions and numerically

explore the impact of non-local mutations, and of different

mutation rates, respectively. In Fig. 5, we distinguish four

simulations, according to whether the mutation rate is high or

low (m~0:05 vs. m~0:001), and whether mutations occur on a

local or on a global level (mutant strategies are drawn from a

normal distribution around the parent’s strategy, vs. mutant

strategies are uniformly distributed over the set of enforceable

pairs). These simulations indicate that all treatments follow the

same pattern: average payoffs are close to the minimum P in small

populations, and they increase with population size. However,

Figure 2. Adaptive dynamics in the (l,s)-plane. The grey-shaded
state space represents the set of all enforceable linear relations that
fulfill the inequalities (6). The corners of this state space consist of the
payoff relations (l,s) that correspond to the five strategies Always
Cooperate (AllC), Tit-for-Tat (TFT , which starts with cooperation, and
then repeats the opponent’s previous move), Suspicious Tit-for-Tat
(sTFT , which starts with defection and then repeats the opponent’s
previous move), Always Defect (AllD), and an Anti-Tit-for-Tat strategy
(ATFT , which always plays the opposite of the opponent’s previous
move). Three special subsets of this state space are of particular interest:
(i) Extortioners are strategies for which l~P and sw0. (ii) Equalizers are
strategies with s~0 (iii) Compliers correspond to the edge l~R and
sw0. The grey line between AllD and AllC corresponds to the set of
linear relationships that can be enforced with unconditional strategies
(in particular it follows that all unconditional strategies enforce linear
relationships with a negative slope, see Methods section). The adaptive
dynamics for this system is surprisingly simple: orbits are parallel to the
l-axis; for sw0, they converge towards the edge of compliers, whereas
for sv0, they converge towards the left boundary of the state space.
Parameters: T~3, R~2, P~0, S~{1.
doi:10.1371/journal.pone.0077886.g002
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Figure 3. Stochastic dynamics for different population sizes.We consider a homogeneous population of size N[f2,10,100g. Once a mutation
occurs, the mutant strategy either takes over the whole population (with probability r), or goes extinct before the next mutation arises. This leads to
a sequence of residents in the state space, which is shown in the upper three graphs (the dashed line corresponds to the threshold 1=(N{1)). The
lower three graphs give the distribution of the resulting payoffs in the population. (a) In the extreme case of N~2, most players enforce a strategy
with baseline payoff l~P. In particular, extortion strategies can persist. (b) As population size increases, a bistable situation emerges: the population
clusters along the edges with (l~P, sv1=(N{1)) and (l~R, sw1=(N{1)). (c) For large population sizes, this implies that the edge of compliers is
(neutrally) stable, whereas the edge of extortioners is unstable. As a consequence, mean payoffs increase with population size. The figure shows
simulation runs for 105 residents for a prisoner’s dilemma with T~3, R~2, P~0, S~{1. New mutant strategies are randomly drawn from a
Gaussian distribution around the parent strategy (s~0:05) . The invasion probability r of a mutant is calculated as

r~(1z
PN{1

m~1 P
m
j~1 exp ({v(AM{AR)))

{1 , where AM and AR are the respective payoffs of mutants and residents, and where v~10 is the

strength of selection.
doi:10.1371/journal.pone.0077886.g003

Figure 4. Extortioners facilitate cooperation. In order to study the impact of extortioners on the evolutionary dynamics, we have excluded all
mutant strategies that are d-close to the set of extortioners. (a) For the simulations we have used d~0:1, represented by the white area in the upper
left corner of the panel. (b) As a result, we find for all population sizes Nw2 that the removal of extortioners decreases the average payoff. This
decrease is particularly dramatic in large populations, N§50. Parameters are the same as in Fig. 3.
doi:10.1371/journal.pone.0077886.g004
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there is a clear difference between treatments with local mutations

and treatments with non-local mutations. If mutations are local,

populations can be trapped in regions with a low payoff for a

considerable time, although distant mutant strategies would offer

an immediate escape. For example, we have seen that any strategy

of the form (l~P, sv0) forms a stable fixed point of the adaptive

dynamics. However, once we allow mutants to adopt any strategy

of the state space, mutants with s close to one and lwP can easily

invade (in fact, in Stewart and Plotkin [25] it is shown that in

sufficiently large populations, compliant strategies with s&1 can

replace any noncooperative zero-determinant strategy). Overall,

non-local mutations thus lead to a shift of the invariant distribution

towards more cooperative strategies.

Discussion

The set of zero-determinant strategies exhibits a fascinating

variety of possible behaviors, ranging from extortioners to

compliant strategies, and from selfish strategies to altruists. To

evaluate the evolutionary relevance of these different possible

behaviors, previous studies focused on particular subsets. Adami

and Hintze [22] demonstrated that neither extortioners nor

equalizers are evolutionarily stable, and Hilbe et. al. [23]

confirmed numerically that these two subsets are only favored

by selection if the population is sufficiently small. In contrast, as

shown by Stewart and Plotkin [25], large population sizes favor

the emergence of compliant strategies, which are evolutionary

robust (they can only be invaded by neutral drift), and which in

turn are quite successful in invading other strategies. However, this

focus on specific subsets of zero-determinant strategies comes at

the risk of neglecting other important subsets. Thus, here we have

systematically explored the space of all zero-determinant strate-

gies.

To this end, we have derived the adaptive dynamics for all

strategies that enforce a linear relation between the payoffs of the

two players. This set of strategies includes all zero-determinant

strategies [20] and all unconditional strategies such as AllC or

AllD (see Methods section), but not all memory-one strategies (for

example, it does not contain the win-stay lose-shift rule depicted in

Figure 1a). The focus on this strategy space allows us to describe

the evolutionary dynamics with an analytically tractable model.

The resulting dynamics in large populations is bistable and the

state space contains two neutrally stable sets. When the initial

population enforces a positive relation between payoffs (sw0), the

population is most likely to end up at the edge of compliers. This

subset of strategies shares the following three properties: (i)

compliers enforce a linear relation between the payoffs of the two

players, (ii) a population of compliers yields the maximum possible

payoff l~R, and (iii) compliers play a best response to themselves

(no strategy can yield a payoff higher than R when playing against

a complier, see also [24] for a characterization of such strategies).

However, compliers have one shortcoming: they can be neutrally

invaded by altruistic strategies (strategies that accept a decrease of

their own payoff to increase the opponent’s payoff, such as AllC

with s~{c=b). Such altruistic strategies give rise to selfish

behaviors, leading the population to a neighborhood of AllD. To

escape from that neighborhood, extortioners play an important

role [23]: they can invade AllD by neutral drift and promote the

emergence of compliant strategies. Thus, the route from cooper-

ation to defection goes via altruism, whereas the route from

defection to cooperation goes via extortion.

It is natural to ask which of these dynamical results on the space

of all zero-determinant strategies are robust when we consider

evolution in more general strategy spaces, such as memory-one

strategies, or strategies encoded by a finite automaton (see, for

example, [5]). Further simulations suggest that our results hold

more generally: for Fig. 6 we consider the adaptive dynamics on

the space of all memory-one strategies (similar simulations are also

presented in [23,25]). The numerical results confirm our analytical

predictions based on the adaptive dynamics framework: extor-

tioners are strongest in small populations, whereas compliers

succeed in large populations. Note, however, that zero-determi-

nant strategists in general are disfavored by selection as the

population size increases. In fact, as our analysis suggests, a large

proportion of zero-determinant strategies only play a transient role

in the evolutionary dynamics. For most of the time, the population

applies a strategy that is close to one of the boundaries l~P and

l~R, whereas interior states are hardly visited. The dynamics is

centered around the edge of selfish strategies and extortioners, and

around the edge of compliers and altruists, whereas the

evolutionary importance of other zero-determinant strategies

seems negligible.

Our results on the adaptive dynamics of zero-determinant

strategies resemble the results for the evolution of reactive

strategies (i.e., memory-one strategies with pR~pT and pS~pP,

[5,28,34]). In both models, there are two regimes. There is a

cooperation rewarding zone where populations evolve towards an edge

of fully cooperative strategies (the edge of compliers, or the edge

between tit-for-tat and generous tit-for-tat, respectively). Outside

of this cooperation rewarding zone, populations move towards

lower population payoffs (ending up at a neighborhood of AllD).

These similarities are not a mere coincidence. Instead, for games

with equal gains from switching (when RzP~SzT ), every

reactive strategy is a zero-determinant strategy [23] and thus

reactive strategies form a subset of LR. Conversely, we show in

the Methods section that any enforceable payoff relation (l,s) can

be enforced by a reactive strategy in this case. Thus, for games

with equal gains from switching, the space LR is essentially

equivalent to the space of reactive strategies.

Throughout this manuscript, we have focused on the dynamics

of an iterated prisoner’s dilemma. However, only a few of our

results actually depend on the characteristic order of payoffs,

TwRwPwS. In fact, the only result specific to the prisoner’s

Figure 5. Average payoffs for the four different mutation
treatments. In rare-mutation treatments, the mutation rate is set to
m~0:001, whereas in frequent-mutation treatments the mutation rate is
m~0:05. Local mutations are randomly drawn from a Gaussian
distribution around the parent strategy, non-local mutations are
randomly drawn from the entire state space. The rare local mutations
correspond to the previous simulations in Figs. 3 and 4. All other
parameters are the same as before.
doi:10.1371/journal.pone.0077886.g005
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dilemma concerns the characterization of enforceable (l,s) pairs in

Eq. (6). For games that are different from the prisoner’s dilemma,

the geometry of the state space may thus be different, but the

dynamics on the respective state space remains unchanged. In

Figure 7, we illustrate this observation by considering the

dynamics of an iterated snowdrift game (which is defined by the

payoff relations T~b, R~b{c=2, S~b{c, P~0 with 0vcvb

such that TwRwSwP, see [39,40]). For snowdrift games we

observe that only a subset of extortionate strategies is feasible [41]:

extortionate strategies with l~P need to fulfill the requirement

s§(b{c)=b (i.e. the maximum extortion factor is

x~1=s~b=(b{c)). Moreover, only strategies that yield a baseline

payoff higher than l~S can enforce a payoff relation with

negative slope, sv0. As a consequence, any sufficiently large

initial population that yields a payoff less than S against itself can

be replaced by more cooperative mutant strategies with higher

baseline payoffs. As in the prisoner’s dilemma, this dynamics leads

to the edge of compliers, which can only be left by neutral invasion

of altruists.

Similar results may be feasible for social dilemmas with a

continuous action space, as for example considered in [42–46].

However, transferring our findings to the continuous case is not

straightforward. First, the existing literature on zero-determinant

strategies exclusively deals with games where the players can only

choose among two actions (either to cooperate or to defect), and it

is not obvious how the corresponding proofs can be generalized to

iterated games with continuous action spaces. Moreover, even if

continuous games admit zero-determinant strategies, one may

wonder which linear relations (l,s) these strategies can enforce. Is

there an upper bound on the extortion factor? Which payoffs can

be enforced by an equalizer strategy? The answers to these

questions are likely to depend on specific details of the benefit and

cost function, representing an interesting topic for future research.

Our results confirm that extortionate behaviors can only prevail

in small populations. In large populations, the evolutionary steady

state is increasingly biased in favor of cooperative strategies. This

may come as a surprise, as it has been shown that intermediate

population sizes are optimal for the fixation of rare cooperative

mutants in a population of defectors [14]. However, compliant

strategies do not need to invade defectors directly. Instead, in

sufficiently large populations extortioners always provide an

escape path to leave non-cooperative populations. More impor-

tantly, once compliant strategies are common, they are evolution-

ary robust [25], with the neutral invasion of overly altruistic

strategies as their only weak spot. Overall, compliance succeeds.

Methods

The Geometry of the State Space
Let us first show that the set of all strategies that fulfill condition

(2) coincides with the set LR, as defined by (5). If we multiply the

condition

s(A(p,q){l)~A(q,p){l ð12Þ

with some W=0, then we can relate (2) and (5) by the following

transform of coordinates

a~Ws

b~{W

c~W(1{s)l

ð13Þ

It then follows from (1) that a zero-determinant strategy p enforces

the pair (l,s) if and only if there is a W such that p has the form

pR~1{W(1{s)(R{l)

pS~1{W(s(l{S)z(T{l))

pT~W((l{S)zs(T{l))

pP~W(1{s)(l{P):

ð14Þ

Since all entries pi need to be in the interval ½0,1�, there are

restrictions on the pairs (l,s) that can be enforced by zero-

determinant strategies. For the parameters of the prisoner’s

dilemma, it follows by pP§0 and pRƒ1 that baseline payoffs l

need to fulfill the condition PƒlƒR. Again because pP§0 and

pRƒ1, we may then conclude that W(1{s)§0. As a consequence,

the requirement pSƒ1 yields sƒ1 and Ww0. Then pT§0 leads

to the restriction s§{(l{S)=(T{l), whereas pSƒ1 implies

s§{(T{l)=(l{S). In summary, we conclude that for all pairs

(l,s) that fulfill

PƒlƒR

{min
T{l

l{S
,
l{S

T{l

� �

ƒsƒ1:
ð15Þ

there is a corresponding zero-determinant strategy p of the form

(14) such that p[½0,1�4 (we only have to choose a W that is

Figure 6. Statistics for the stochastic dynamics on the space of
all memory-one strategies. Instead of taking the enforceable pairs
(l,s) as the evolving traits, we consider the adaptive dynamics on the
space of memory-one strategies p~(pR,pS ,pT ,pP), see also [23,25]. (a)
To assess the impact of zero-determinant strategies, extortioners, and
compliers, we record how often the evolving population is in a d-
neighborhood of these strategy sets, and compare this to their
expected abundance in a neutral process. A given strategy set is thus
favored by selection if its relative abundance exceeds one. Our
simulations indicate that in small populations extortioners are favored
by selection, whereas in large populations compliers are favored. (b) As
a consequence, average payoffs increase with population size.
Simulations are run for a sequence of 106 mutants. We assume that
mutant strategies are uniformly distributed over the space of memory-
one strategies, and use the parameters v~1 and d~0:1. The other
parameters of the evolutionary process are the same as in the previous
figures.
doi:10.1371/journal.pone.0077886.g006

Adaptive Dynamics of Extortion and Compliance

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e77886



sufficiently small). Conversely, the linear relations (l,s) that can be

enforced by zero-determinant strategies are in fact all possible

linear relations that can be enforced in an iterated prisoner’s

dilemma with Rw(TzS)=2wP. To see this, we note that for any

memory-one strategy p we have:

1. The payoff pair (A(p,AllD), A(AllD,p)) is on the line between

(S,T) and (P,P), whereas

2. the payoff pair (A(p,AllC), A(AllC,p)) is on the line between

(T ,S) and (R,R).

Thus, any linear payoff relation (l,s) enforced by some p[LR
connects the line segment between (S,T) and (P,P) with the line

segment between (T ,S) and (R,R) (see also Figs. 1b–1d). A

straightforward computation verifies that any such linear payoff

relation (l,s) needs to meet the conditions (15).

The set LR is a proper super set of the zero-determinant

strategies. For example, the strategy AllD~(0,0,0,0) is not a zero-

determinant strategy in the general prisoner’s dilemma (it is only a

zero-determinant strategy in games with equal gains from

switching, i.e. when RzP~SzT ). However, AllD[LR holds

true in all prisoner’s dilemma games. In fact, every unconditional

strategy (r,r,r,r) is an element of LR, with parameters

l ~ (1{r)2Pzr(1{r)(TzS)zr2R

s ~ {
(1{r)(P{S)zr(T{R)

(1{r)(T{P)zr(R{S)

W ~ (1{r)(T{P)zr(R{S)

ð16Þ

In particular, it follows that unconditional strategies can only

enforce linear payoff relations with negative slopes s. As previously

suggested, these values of l and s satisfy the inequalities (15) for all

r; any linear relation (l,s) that can be enforced by an unconditional

strategy can also be enforced by a zero-determinant strategy.

Given a triplet (a,b,c), the corresponding zero-determinant

strategy p is uniquely determined by (1). However, for a given pair

(l,s) there will generally be many zero-determinant strategies p that

enforce the corresponding linear relationship in (5) - one for every

W in (14). We call two strategies p,p’[LR equivalent, and write

p*p’, if they give rise to the same pair (l,s). To study the

evolutionary dynamics of LR-strategies, we consider the dynamics

on the space of equivalence classes LR=
*
. That is, we assume that

each player determines a pair (l,s) and then picks a p from the

corresponding class of LR-strategies. The dynamics is well-defined

in the sense that the adaptive dynamics does not depend on the

choice of the class representative p.

LR-strategies Versus Reactive Strategies
When payoffs fulfill equal gains from switching, RzP~TzS,

we can choose W~1=(R{Szs:(T{R)) such that the zero-

determinant strategies according to Eqs. (14) are given by

pR ~
s(T{l)zl{S

s(T{R)zR{S

pS ~
(1{s)(l{P)

s(T{R)zR{S

pT ~
s(T{l)zl{S

s(T{R)zR{S

pP ~
(1{s)(l{P)

s(T{R)zR{S

: ð17Þ

In particular, pR~pT and pS~pP, i.e. all resulting zero-

determinant strategies are reactive strategies. For such reactive

strategies it follows that for PƒlƒR the conditions 0ƒpRƒ1 and

0ƒpSƒ1 are equivalent to the conditions

{
l{S

T{l
ƒsƒ1

{
T{l

l{S
ƒsƒ1,

ð18Þ

respectively. From this, we conclude that for games with equal

gains from switching, all payoff relations (l,s) that can be enforced

by zero-determinant strategies (given by the conditions (15)) can

already be enforced by reactive strategies.

Figure 7. Zero-determinant strategies for the iterated snowdrift game (with b~2, c~1, and T~b, R~b{c=2, S~b{c, P~0). (a) The
grey shaded area gives the space of feasible payoff pairs in the snowdrift game. The three colored lines give three examples of possible payoff
combinations if the focal player uses a strategy that enforces a linear relation between payoffs. Unlike in the iterated prisoner’s dilemma, the slope of
AllD is positive, s~(b{c)=b. (b) The grey-shaded area depicts the space of possible combinations of baseline payoff l and slopes s that are
enforceable in the snowdrift game. A comparison with Fig. 2 shows that the state space differs considerably from the state space of a prisoner’s
dilemma game. However, the qualitative dynamics within the state space remains unchanged.
doi:10.1371/journal.pone.0077886.g007
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30. Geritz SAH, Kisdi E, Meszéna G, Metz JAJ (1998) Evolutionarily singular

strategies and the adaptive growth and branching of the evolutionary tree.

Evolutionary Ecology Research 12: 35–57.

31. Hilbe C, Traulsen A (2012) Emergence of responsible sanctions without second

order free riders, antisocial punishment or spite. Nature Scientific Reports 2:

458.

32. Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in

finite populations. Bulletin of Mathematical Biology 68: 1923–1944.

33. Wu B, Gokhale CS, Wang L, Traulsen A (2012) How small are small mutation

rates? Journal of Mathematical Biology 64: 803–827.

34. Imhof LA, Nowak MA (2010) Stochastic evolutionary dynamics of direct

reciprocity. Proceedings of the Royal Society B 277: 463–468.

35. Lessard S (2011) Effective game matrix and inclusive payoff in group-structured

populations. Dynamic Games and Applications 1: 301–318.

36. Hilbe C (2011) Local replicator dynamics: A simple link between deterministic

and stochastic models of evolutionary game theory. Bulletin of Mathematical

Biology 73: 2068–2087.

37. Blume LE (1993) The statistical mechanics of strategic interaction. Games and

Economic Behavior 5: 387–424.

38. Traulsen A, Nowak MA, Pacheco JM (2006) Stochastic dynamics of invasion

and fixation. Physical Review E 74: 011909.

39. Sugden R (1986) The Economics of Rights, Co-operation and Welfare. Oxford

and New York: Blackwell.

40. Doebeli M, Hauert C (2005) Models of cooperation based on the prisoner’s

dilemma and the snowdrift game. Ecology Letters 8: 748–766.

41. Roemheld L (2013) Evolutionary extortion and mischief - zero determinant

strategies in 262 games. arXiv 1308.2576.

42. Roberts G, Sherratt TN (1998) Development of cooperative relationships

through increasing in vestment. Nature 394: 175–179.

43. Killingback T, Doebeli M (1999) ‘Raise the stakes’ evolves into a defector.

Nature 400: 518.

44. Wahl LM, Nowak MA (1999) The continuous prisoner’s dilemma: I. Linear

reactive strategies. Journal of Theoretical Biology 200: 307–321.

45. Wahl LM, Nowak MA (1999) The continuous prisoner’s dilemma: II. Linear

reactive strategies with noise. Journal of Theoretical Biology 200: 323–338.

46. Killingback T, Doebeli M (2002) The continuous Prisoner’s Dilemma and the

evolution of cooperation through reciprocal altruism with variable investment.

The American Naturalist 160: 421–438.

Adaptive Dynamics of Extortion and Compliance

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e77886


