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Abstract—The diffusion of wearable and mobile devices for the
acquisition and analysis of cardiac signals drastically increased
the possible applicative scenarios of biometric systems based
on electrocardiography (ECG). Moreover, such devices allow
for comfortable and unconstrained acquisitions of ECG signals
for relevant time spans of tens of hours, thus making these
physiological signals particularly attractive biometric traits for
continuous authentication applications. In this context, recent
studies showed that the QRS complex is the most stable compo-
nent of the ECG signal, but the accuracy of the authentication
degrades over time, due to significant variations in the patterns
for each individual. Adaptive techniques for automatic template
update can therefore become enabling technologies for continuous
authentication systems based on ECG characteristics.

In this work, we propose an approach for unsupervised
periodical re-enrollment for continuous authentication, based on
ECG signals. During the enrollment phase, a “super” template
obtained from a fixed number of samples is stored in the gallery.
In continuous authentication, an update condition is periodically
verified. If the condition is satisfied, confirming that the fresh
data pertain to the stored identity, an update strategy is applied
to fuse the fresh data with the “super” template. Different update
conditions and update strategies are presented and evaluated.

Tests have been performed on a significantly large public
dataset of 24h Holter signals acquired in uncontrolled conditions,
proving that the proposed approach obtains a relevant accuracy,
which increases with respect to traditional biometric approaches
based on a single enrolled template for each individual.

Index Terms—Biometrics, ECG, Continuous Authentication,
Re-enrollment, Adaptive Biometrics.

I. INTRODUCTION

Recent studies in biometrics focus on the use of one-

dimensional physiological signals, e.g., electrocardiograms

(ECG), electroencephalograms (EEG) [1], phonocardiograms

(PCG) [2], and photoplethysmograms (PPG) [3], [4].

Physiological signals present some important advan-

tages [5]:

• they are more difficult to counterfeit with respect to traits

like face, fingerprint or voice.

• the analysis of physiological signals can reveal informa-

tion related to psychological states, as well as physiolog-

ical and clinical conditions of the person.

• they can usually be acquired for long periods of time

without requiring explicit efforts from the user, making

them particularly suitable for continuous authentication

applications.
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Fig. 1. The QRS complex. Five aligned and superimposed heart beats of an
individual measured at three different leads.

ECG-based biometric systems are of particular relevance,

given the fact that ECG is one of the most widespread

and mature technologies in clinical analyses. Previous studies

on ECG-based biometric systems reveal that ECG signals

have sufficient discriminability so that accurate results can be

obtained [6]. However, ECG-based systems have to overcome

different practical issues due to the leads placement, scalabil-

ity, heart rate variability, and, most notably, the time-varying

nature (permanence issue) of the ECG signals [5]. In fact, a

performance decrease of the system can usually be observed

when samples are captured with sufficient distance of time and

in uncontrolled conditions [5].

Research proved that the QRS complex is that part of

the ECG which is more robust to temporal variations [7]. It

represents the depolarization of the right and left ventricles.

An example of this waveform, for the three different leads of

an ECG signal, is shown in Fig. 1.

In our previous work [8], we presented a preliminary study

on continuous authentication systems based on ECG signals.

The main goal was to analyze the permanence of the QRS

complex. The persistency analysis showed that the recognition
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performance is strictly related to the time elapsed between the

acquisition of the signals under comparison. In particular, we

found that the persistence of the QRS complex in the entire

record is limited to 2 hours out of 24. This result certainly

depends on the peculiarities of the ECG signal pointed out

above, such as the variability of the signal in time, which

impacts on the recognition performances.

During the enrollment phase, features extracted from bio-

metric data are associated (“labelled”) to the correspond-

ing user’s identity. However, variations between the enrolled

biometric traits (labelled) and the ones obtained after the

enrollment stage (unlabelled), constitutes a significant issue

for biometric systems designed for continuous recognition,

whose performance can degrade quickly. With the aim of

increasing the classification results, adaptive techniques may

be considered, as suggested in [9]. In these systems, new

biometric data collected over the time, if correctly labelled,

can be exploited to adapt the system to input data variations.

In real operational scenarios, there are situations where

variations of data acquired by biometric systems can be of

considerable importance [10]. That happens for example with

changes of the environmental conditions (e.g., illumination), or

variations in the interaction of the user with the sensor (e.g.,

pose of the face, start of a new activity), or even aging of

the biometric trait, etc. All these cases show a large intraclass

variability of the biometric pattern, a condition that can lead to

templates with reduced capacity of representing the enrolled

data, and in turn to reduced recognition performance.

Temporal variations in the biometric patterns can be caused

by the non-stationary nature of the source of the data. This

is particularly true with ECG, where autonomic modulations,

respiration and postural changes depend on the activities done

by the person, and the pattern can vary during the day. Data

recordings in non-stationary cases can be reasonably exploited

in order to implement adaptive systems that can improve

performances while they are operating. Holter ECG recordings

could help for tackling the intrinsic variability of this trait,

considering that a lot of new biometric data are made available

over 24 hours.

There are cases in which, in a single enrollment session,

multiple templates can be acquired. For example, changes in

the pose of the face can be acquired in the enrollment session,

asking the collaboration of the user. Furthermore, enrollment

sessions repeated more times surely help to capture part of

the temporal variations of biometric traits of an individual.

However, frequent re-enrollment sessions can be expensive,

in terms of effort of the user, storage capability, length of

the session, etc. By contrast, ECG data may be recorded over

24 hours without having a significant impact on the normal

activities of the user.

Taking ground from the conclusions of our previous

work [8], we propose a novel biometric recognition approach

for continuous authentication, based on ECG signals. Exploit-

ing continuous ECG recordings, information coming from

variations over time in the ECG signal can be captured and

used to adapt the template enrolled previously. The main goal

of this work is to analyze different strategies for template’s

updating, in order to improve the accuracy of the recognition

method.

The contribution of the paper is twofold. First, for the first

time in the literature, different re-enrolment techniques are

applied to long-term ECG signals and compared by using a

publicly available dataset. Second, a specific set of adaptive

methods are proposed in order to exploit the peculiarities of the

QRS complex, with respect to more accurate hard biometric

traits.

The paper is structured as follows. Section II describes

the state of the art related to ECG biometric recognition

and adaptive biometric systems. The proposed ECG adaptive

recognition approach is then presented in Section III. The

results we obtained are discussed in Section IV. Finally,

Section V proposes conclusions and final remarks.

II. RELATED WORKS

Most of the studies on ECG biometric recognition are based

on single lead signals [5]. However, researches which use

multiple leads have also been presented [11], [12], since the

increased quantity of information allows for improvements in

the accuracy and reduces the effects of the noise on recog-

nition. Several techniques in the literature extract information

from all the components of the ECG [13]. However, methods

considering only the QRS component, as the most stable-in-

time part of the ECG, have also been suggested for biometric

recognition: [14] is based on functional approximation of the

signal, and [15], [16], [17] use computational intelligence and

statistical techniques in the matching strategy.

In this work, we chose an approach based only on the

QRS complex, obtained from multiple leads, for continuous

authentication. To the best of our knowledge, in the literature

there are only a few studies tackling continuous authentication

based on ECG signals [18], [19], [20]. The method presented

in [18] performs authentications every 35 heartbeats, whereas

in [19], [20] time intervals of 5s are used. These methods,

however, have been evaluated on small datasets of signals

encompassing a maximum period of 15 minutes. Given this

relevant limit, the real applicability of the proposed techniques

on long-term ECG recognition is not proven.

Continuous authentication systems based on more com-

monly used biometric traits have also been studied [21]. Face

characteristics are used in [22] for continuous recognition of

users working in front of a computer. Multimodal approaches

have also been proposed, in order to obtain better accuracy

results. The system described in [23] is designed for the

same purpose (i.e. computer user authentication), fusing soft

biometric features – as primary elements of the matching–

with face features and password. The system in [24] is based

on both fingerprint and face features, and uses a holistic

strategy to fuse the matching scores. A multimodal approach

based on fuzzy systems is proposed in [25], where face and

fingerprint data are used together for continuous authentication

applications.



Most of these systems perform the enrollment once. Novel

studies instead propose a continuous update of the stored

templates [23], and there are also examples of strategies for

periodically updated biometric databases [26], [27].

In [9], the authors consider adaptive biometric systems as

systems performing a semi-supervised learning task, using

initially labelled data and then unlabelled training examples.

Unlabelled archives of data are acquired when the system

operates, while labelled data are collected during an initial

enrollment phase. Some systems have been developed using

semi-supervised learning methods, such as [28], [29]. Using a

similar approach, unlabelled archives were exploited in recog-

nition systems to adapt fingerprint [30], [31] or of face [32]

templates.

A. Adaptive Fingerprint Recognition

Regarding the recognition of fingerprints, the techniques

proposed in the literature to address a large intraclass variabil-

ity aim at the creation of a gallery of representative templates,

or, from multiple samples, at producing a single “super”

template [9]. In [10] authors proposed two methods to select

a gallery of templates representative of multiple fingerprints.

The methods adopt respectively a clustering strategy and a

maximum similarity criteria. Methods which generate super

templates by merging multiple fingerprints are used by [30],

[31]. They proposed the merge of minutiae points of different

fingerprints into a single minutia. All these methods process

fingerprints on-line, one by one, and update the template

accordingly, meaning that the sequence of input is crucial.

Moreover, only fingerprints recognized as genuine with high

reliability are used for the update.

B. Adaptive Face Recognition

Many systems were developed for adaptive face recognition.

An incremental update of the galleries of face images was

proposed by Okada and von der Malsburg, who described a

prototype system for face recognition in video streams [33].

Only views recognized with high reliability in the input video

are added to the galleries. On the contrary, when the identity

of the face image is unknown, a new entry is created in the

gallery. Another early work in this area is [34], where the

authors proposed a self-organizing approach to face recogni-

tion in video, also to address the “forgetting” issue (that is,

how the system may fail to “remember” outdated data) and

save memory. The work [35] presented “Argus”, an adaptive

system for automatic face identification of visitors entering a

building. However the system was not self-adaptive as it was

supervised by the watchmen during its operation, who assigned

an identity to unknown visitors’ images. Incremental update

is used also in a face recognition system based on PCA [32].

More recently, Nagy introduced a new concept called CAVIAR

(Computer Assisted Visual Interactive Recognition) aiming to

exploit the different abilities of humans and computers in

visual recognition [36], [37]. The user provides feedbacks to

the CAVIAR-based system, which may be used to adapt the

recognition models.

C. Adaptive ECG Recognition

At the present, we have knowledge of very few works on

adaptive approaches applied to ECG. Home telemonitoring

is the application setting in [20], where a biometric system

is designed to identify users from ECG signals for the sake

of their security. The authors claim that the system is robust

in user identification, and capable of adapting to physical or

emotional variations of the person monitored. However, the

adaptation criterion does not consider the possible presence

of impostors after enrollment, as it might happen in a real

authentication scenario.

The approach presented here does not include a standard

technique taken from the literature “as it is”, since these

techniques refer to the re-enrollment of biometric traits, like

fingerprints, characterized by higher accuracy with respect to

the ECG. On the contrary, we tested different methods which

modify the standard approach to adaptive recognition, and

make it suitable to the essential characteristics of ECG data

(e.g., the strong variability).

III. THE PROPOSED APPROACH

In this paper, we propose a novel adaptive approach for

continuous biometric recognition based on the analysis of

ECG signals collected in uncontrolled scenarios from portable

devices (Holter acquisitions). The approach exploits the high

temporal variability of ECG signals by adaptively modifying

the knowledge base of the biometric system in an unsupervised

manner [26]. The main idea of the approach consists in

automatically updating the gallery of biometric templates by

analyzing the results obtained from biometric queries.

Differently from most of the adaptive biometric systems

in the literature, which are designed to reduce the intraclass

variability of the gallery or to update the knowledge base of

the system considering slow aging processes in long periods of

time, the proposed approach considers quick and unpredictable

variations of the ECG signal due to differences in activities

performed by the user or, possibly, emotional states. The base

of the approach consists in the biometric recognition method

previously presented in [8].

The proposed adaptive template update strategy is general

and can also be applied to different biometric recognition

systems. It can be considered as a tailoring of the techniques

described in [30], [38], [31] to biometric data undergoing

quick variations, like ECG signals. The schema of the pro-

posed approach is shown in Fig. 2.

A. Feature Extraction and Matching

As proposed in [8], in this work we use multiple leads

in order to obtain accurate recognitions, and we consider

samples with fixed time duration of ∆t seconds. The biometric

recognition method can be divided into the following steps:

1) noise reduction

2) segmentation;

3) feature extraction;

4) matching;

5) score fusion.



Fig. 2. Schema of the proposed template update approach.

The noise reduction step is performed by using a notch

IIR filter to remove the noise introduced by the 50 Hz power

transmission lines and then by applying a third order high-pass

Butterworth filter with cutoff frequency of 0.5 Hz to normalize

the signal’s baseline.

The segmentation algorithm employed first estimates a list

of R fiducial points (the main positive peak in the QRS

complex) in the ECG signal by using an automatic labeling

software (Vision Premier, SpaceLab-Burdick Inc.). For each

point R, the corresponding QRS complex is then estimated

by using a fixed time window centered in R (from -50 ms to

+70ms). The result of this step is a vector H of QRS signals.

In the next step, an iterative algorithm creates a feature

vector composed by a maximum of m QRS signals with the

best correlations with the average QRS pattern of H .

The matching process consists in searching for the maxi-

mum correlation value between the corresponding QRS com-

plexes of two feature vectors. We consider a template x
as a set of heartbeat signals obtained from the different

leads. In order to obtain higher accuracy, the matching scores

obtained from signals of different leads are finally fused using

well-known algorithms. Differently from the work presented

in [8], as matching function we compute the median of the

matching scores of the single leads, since it improves the

update strategies with more accuracy on datasets composed

by higher numbers of samples (a detailed description of this

results is given in the experimental section).

B. Online Template Update

During the enrollment phase, the proposed method creates

a “super” template X composed by N templates xj , with j ∈
[1 : N ]. The “super” template X is then updated online during

the execution of the continuous verification system.

Since every template x is computed from samples repre-

senting ECG signals with a fixed duration of ∆t seconds,

the enrollment phase requires a total of N × ∆t seconds.

Therefore, the value N should be chosen as a tradeoff be-

tween accuracy and usability. In this work, we considered a

maximum enrollment time of 15 minutes, which is comparable

to the time usually employed by medical doctors to check the

status of the Holter apparatus when applied to patients.

During the continuous verification process, for each identity

comparison, the proposed approach first verifies if it is possible

to update a stored “super” template X . If the update condition

is reached, template update algorithms are then applied to X .

Finally, the matching score s is computed.

1) Update condition: Considering an identity verification

performed at the instant of time t, the fresh template xt is

considered as pertaining to the individual i only when the

following condition is satisfied:

Update =

{

1 ifmaxj=1...N

[

match
(

X(j)(i,t−1), xt

)]

> tu

0 otherwise
,

(1)

where X(j)(i,t−1) are the templates composing the “super”

template X(i,t−1) associated to the identity i at the instant of

time t − 1, match(·) is the matching function, and tu is an

empirically estimated threshold.

In order to avoid identity substitutions in the biometric

database, the threshold value tu should be sufficiently strict

to avoid all impostors to access the system. For this reason,

we suggest to set the value of tu to the threshold value

corresponding to Zero False Match Rate (ZeroFMR) of the

initial gallery, or to estimate this value from other available

databases acquired in similar conditions. Nevertheless, in sce-

narios with very noisy and variable biometric acquisitions, this

threshold could be also set to different values, according to the

security/applicability (FAR/FRR) tradeoff of the applications.

2) Template update: Since ECG signals can present both

changes due to physiological conditions and noise inserted

by environmental factors, we investigate different algorithms

for template updating. The goals are different: to maximize

the intraclass variability covered by templates pertaining to

the “super” templates in the gallery (reducing the effects of

the physiological variability of the signal), or to minimize the

intraclass variability of the templates pertaining to the “super”

templates in the gallery (reducing the effects of external noise).

The implemented algorithms are described in the following:

• Update A - The “super” template X(i,t) is obtained by

substituting the template X(k)(i,t−1) from X(i,t−1) with

xt, where:

k = argmax
j=1...N

{

match
[

X(j)(i,t−1), xt

]}

. (2)

• Update B - The “super” template X(i,t) is obtained

similarly to Update A, but computing k as follows:

k = argmin
j=1...N

{

match
[

X(j)(i,t−1), xt

]}

. (3)

• Update C - The templates pertaining to the “super”

template X(i,t−1) and the probe template xt are stored

in a vector V .

All the possible (N + 1) × (N + 1) matching scores

between the elements of V are then computed and stored

in the matrix Y . A similarity weight is then computed



for every template j of V by estimating the median of

every column of Y as follows:

W (j) = median
k=1...N+1

[Y (j, k)] . (4)

The template V (nr) is then removed from V and the

“super” template X(i,t) is finally set as equal to V . The

template number nr is selected as follows:

nr = argmin
j=1...N+1

[W (j)] . (5)

• Update D - The ‘super” template X(i,t) is obtained

similarly to Update C, but computing nr as follows:

nr = argmax
j=1...N+1

[W (j)] . (6)

3) Matching score computation: The matching score ms is

finally computed as follows:

ms = max
j=1...N

{

match
[

X(j)(i,t), xt

]}

. (7)

IV. EXPERIMENTAL RESULTS

Experiments have been performed to evaluate the proposed

adaptive template update approach, in continuous authentica-

tion scenarios, based on Holter ECG acquisitions. The analyses

focused on the evolution of the system’s performances in

time. In particular, we performed both traditional tests, to

estimate the verification accuracy, and tests simulating the

operative conditions of a continuous authentication system.

For the latter, we assumed that a set of users is continuously

authenticated, with periodic checks after ∆a s. We assumed

the value of ∆a to be larger or equal than the length of the

template employed ∆t.

Using a set of ECG signals with a duration of T seconds,

collected from M individuals, the verification performance of

the biometric system is usually evaluated by dividing each

signal in S samples and then performing [(M×S)×(M×S−
1)]/2 identity comparisons. In order to simulate a continuous

verification system, we performed M×S identity comparisons

for each instant of time t. Unlabelled templates at time t are

therefore compared only with the templates composing the

gallery at time t. Thus, the total number of performed identity

comparisons is M × (M − 1)× S.

A. The Biometric Dataset

The database we employed was derived from the E-HOL-

03-0202-003 (Intercity Digital Electrocardiogram Alliance –

IDEAL) database [39], which is composed of 202 digital

24-hours Holter recordings (SpaceLab-Burdick Inc.) obtained

from 202 individuals. The acquisitions were performed with-

out any restrain or control on the activities performed. Males

and females are equally distributed. The ECG signals were

acquired with a three pseudo-orthogonal leads configuration

(X, Y and Z). The sampling frequency is 200 Hz and the

amplitude resolution is 10 µV.

In 17 recordings, at least one channel was corrupted by

artifacts and noise; they were excluded from further analyses.

Thus we only considered samples from 185 individuals out of

202. Due to the high computational costs of the tests we de-

signed, we further selected three subsets of the Holter database

to validate the proposed approach, which are composed as

follows:

• DB 1 - 4,200 samples acquired from 100 individuals. For

each individual, 3.5 hours of ECG signals are considered,

thus obtaining 42 samples.

• DB 2 - 8,400 samples acquired from 100 individuals. For

each individual, 7 hours of ECG signals are considered,

thus obtaining 84 samples. Half of the samples pertain

also to DB 1. DB 2 was designed to evaluate the contin-

uous authentication method over a time span representing

a working day.

• DB 3 - 7,770 samples acquired from 185 individuals. For

each individual, 3.5 hours of ECG signals are considered,

thus obtaining 42 samples. Samples of 100 individuals

pertain also to DB 1. DB 3 was designed to test contin-

uous authentication methods with the larger number of

users.

B. Parameters’ values employed

An important parameter of the template update method is

the threshold value tu. In order to avoid identity substitutions,

it must correspond to the ZeroFMR (Zero False Matche Rate)

of the biometric system. Nevertheless, in some applicative

contexts, it might be reasonable to relax this requirement. For

this reason, we performed experiments with different values

of the parameter tu:

• tu = tEER, where tEER is the threshold value corre-

sponding to the Equal Error Rate (EER), as computed on

the enrolled templates;

• tu = tZeroFMR, where tZeroFMR is the maximum

impostor score computed from the enrolled templates.

A second relevant parameter is the number N of templates

composing the “super” templates. In order to limit the enroll-

ment time to 15 minutes, we used samples with a duration

∆t = 5 minutes and N = 3 .

C. Verification Accuracy (baseline estimation)

As a reference for the successive tests, we report the results

obtained evaluating the verification accuracy of the considered

biometric recognition system on the three subsets of the full

database, listed before. The test involved: 8,817,900 identity

comparisons for DB 1, 35,275,800 identity comparisons for

DB 2, and 30,182,565 identity comparisons for DB 3. The

Receiver Operating Characteristic (ROC) curves are presented

in Fig. 3 and the numerical results are summarized in Table I.

A comparable accuracy was obtained on DB 1 and DB 3,

while performances decreased on DB 2, which is composed

by samples acquired over a longer time span. As an example,

the EER obtained on DB 1 is equal to 5.68%, while the EER

obtained on DB 2 is equal to 6.86%.

D. Continuous Verification Accuracy

We evaluated the accuracy of the proposed template update

approach in different configurations, by simulating continuous
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Fig. 3. ROC curves obtained analyzing the system accuracy in verification
modality. The obtained EER values are 5.68% on DB 1, 6.86% on DB 2,
and 5.68% on DB 3.

TABLE I
VERIFICATION ACCURACY ON THE CONSIDERED DATASETS.

EER FRR (%) @

Dataset (%) FAR = 1%

DB 1 5.68 14.08
DB 2 6.86 16.57
DB 3 5.68 13.73

verification. For these tests, we simulated the continuous au-

thentication in ideal conditions, when no attacks are performed

by impostors to the template update module. Since every

enrolled “super” template is composed by three templates,

the tests involved: 390,000 identity comparisons for DB 1,

810,000 identity comparisons for DB 2, and 1,334,775 identity

comparisons for DB 3. We considered two configurations of

the system: i) tu = tZeroFMR, the decision threshold is

set to the working point ZeroFNMR of the gallery; and ii)

tu = tEER, the decision is set to the working point EER of

the gallery. The results are presented in Table II.

The best performances of the method were obtained when

using the configuration Update A, for which the highest

accuracy on all the datasets was obtained. Moreover, the results

show that the choice of the threshold tu drastically influences

the performance of the system and when using tu = tEER, the

system displayed higher accuracy. However, this configuration

of the biometric system is more vulnerable to attacks with

respect to tu = tZeroFMR.

E. Comparison with the Baseline Accuracy Values

In order to prove the validity of the proposed approach,

we compared the performances of the sequent biometric

recognition systems:

• Baseline 1 - the system does not use template update

strategies and stores one template per individual in the

gallery;

• Baseline 2 - the system does not use template update

strategies and stores a “super” templates composed by 3

templates;

TABLE II
RESULTS OBTAINED SIMULATING A CONTINUOUS VERIFICATION

SCENARIO.

Theshold Update EER FRR (%) @ % of

Dataset Value Method (%) FAR = 1% Updates

DB 1 tEER Update A 1.47 1.62 98.38

DB 1 tEER Update B 1.98 2.15 97.85

DB 1 tEER Update C 5.21 11.92 94.33

DB 1 tEER Update D 2.13 2.44 97.97

DB 1 tZeroFMR Update A 3.89 8.18 76.46

DB 1 tZeroFMR Update B 4.10 8.64 75.46

DB 1 tZeroFMR Update C 4.70 10.59 67.82

DB 1 tZeroFMR Update D 4.24 8.56 74.36

DB 2 tEER Update A 1.34 1.44 98.56

DB 2 tEER Update B 2.27 2.46 97.54

DB 2 tEER Update C 5.64 13.11 93.10

DB 2 tEER Update D 2.73 4.20 97.57

DB 2 tZeroFMR Update A 4.22 8.14 75.73

DB 2 tZeroFMR Update B 4.84 9.85 71.80

DB 2 tZeroFMR Update C 5.70 12.11 60.25

DB 2 tZeroFMR Update D 5.03 10.27 68.98

DB 3 tEER Update A 1.97 2.00 98.00

DB 3 tEER Update B 2.54 2.61 97.39

DB 3 tEER Update C 4.79 11.16 93.76

DB 3 tEER Update D 2.66 3.34 97.34

DB 3 tZeroFMR Update A 3.83 7.66 72.38

DB 3 tZeroFMR Update B 3.91 8.84 72.32

DB 3 tZeroFMR Update C 4.44 10.40 63.87

DB 3 tZeroFMR Update D 4.05 8.54 70.76

• Adaptive EER - the system uses the proposed template

update approach in the best configuration (Update A),

with threshold tu = tEER;

• Adaptive ZeroFMR - the system uses the proposed tem-

plate update approach in the best configuration (Update

A), with threshold tu = tZeroFMR.

Fig. 4 presents the ROC curves obtained while the numerical

results are summarized in Table III. They show that the

proposed approach outperforms the baseline methods on the

biometric datasets considered. The performance increase is

particularly evident on DB 2 (the dataset composed by Holter

signals acquired in the longer time period). As an example,

the EER decreases from 7.36% (Baseline 1) to 4.22%, for

the configuration with tu = tZeroFMR, and to 1.34%, for the

configuration with tu = tEER.

To evaluate the effectiveness of the proposed approach, we

have also analyzed the evolution of the recognition perfor-

mances during time. As an example, Fig. 5 presents the EER

obtained at each instant of time on DB 3. It is possible to

observe that the method effectively reduces the error increase

during time, due to the variability of ECG signals.

F. Robustness to Attacks

In order to evaluate the robustness of the template update

strategy, we simulated impostors’ attacks to this module. We

considered the best configuration of the proposed approach

(Update A) with the threshold tu = tZeroFMR. In the

simulations of the continuous authentication scenario (Subsec-

tion IV-D), we quantified the number of impostor comparisons

with matching score greater than tu. In fact, the threshold value

tZeroFMR was computed only on the templates enrolled and

not on the full set of templates. The results we obtained are

reported in Table IV. The estimated percentages of successful
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Fig. 4. ROC curves obtained by applying the baseline algorithms and proposed approach in the best configuration (Update A) and different values of the
threshold tu on: (a) DB 1, (b) DB 2, and (c) DB 3. It is possible to observe that the proposed method obtains higher accuracy with respect to the baseline
algorithms.

TABLE III
COMPARISON BETWEEN THE PROPOSED APPROACH AND THE BASELINE

METHODS.

EER FNMR (%) @

Dataset Method (%) FMR = 1%

DB 1 Baseline 1 6.80 18.80
DB 1 Baseline 2 4.49 10.62
DB 1 Adaptive EER 1.47 1.62
DB 1 Adaptive ZeroFMR 3.89 8.18

DB 2 Baseline 1 7.36 19.61
DB 2 Baseline 2 5.23 11.95
DB 2 Adaptive EER 1.34 1.44
DB 2 Adaptive ZeroFMR 4.22 8.14

DB 3 Baseline 1 6.71 18.93
DB 3 Baseline 2 4.40 11.23
DB 3 Adaptive EER 1.97 2.00
DB 3 Adaptive ZeroFMR 3.83 7.66

attacks on the datasets can be considered as satisfactory for

most of the biometric recognition applications based on ECG

signals.

V. CONCLUSION

The paper presented a study focused on re-enrollment

adaptive methods in ECG biometric recognition, with specific

reference to the QRS complex. It introduced the design and test

of different methods meant to create and adapt in time a set of

QRS templates (a “super” template), associated to each user,

by efficiently managing the variability of the ECG signals. Dif-

ferent strategies to update the “super’ template are presented

and compared with respect to a normal recognition scenario

without re-enrollment. The work considered a dataset with a

relevant time span and with a significant number of users with

respect to previously published studies. Moreover, the study

confirmed the differences with respect to similar techniques

used in hard biometric templates, such as fingerprints. Results

are encouraging, and the proposed study shows that is possible

to tune the parameters of the methods in order to effectively

select the security level of the application.
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Fig. 5. Evolving of the EER during time obtained by applying the baseline
algorithms and proposed approach in the best configuration (Update A) and
different values of the threshold tu on DB 3. It is possible to observe that
proposed adaptive method effectively reduce the error increasing during time.
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