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Abstract. In this paper a novel class of noise attenuating and edge en-
hancing filters for color image processing is introduced and analyzed. The
proposed adaptive filter design is minimizing the cumulative dissimilarity
measure of a cluster of pixels belonging to a sliding filtering window and
outputs the most centrally located pixel. The proposed filter is compu-
tationally efficient, easy to implement and very effective in suppressing
impulsive noise, while preserving image details and enhancing its edges.
Therefore it can be used in any application in which simultaneous de-
noising and edge enhancement is a prerequisite for further steps of the
color image processing pipeline.
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1 Introduction

During image formation, acquisition, storage and transmission many types of
distortions limit the quality of digital images [1, 2, 3]. Quite often, images are
corrupted by the impulsive noise caused mainly either by faulty image sensors
or due to transmission errors. Common sources of impulse noise include also
lightenings, industrial machines, car starters, faulty or dusty insulation of high
voltage powerlines and various unprotected electric switches. These noise sources
generate short time duration, high energy pulses which block the regular signal,
resulting for example in bothering spots on the TV screen and sharp click sounds
in the audio [4].

The Vector Median Filter (VMF) is the most popular filter intended for
smoothing out spikes injected into the color image by the impulse noise pro-
cess, [5,6,7]. This filter is very efficient at reducing the impulses, preserves sharp
edges and linear trends, however it does not retain fine image structures, which
are treated as noise and therefore generally the VMF tends to produce blurry
images. This unwanted feature of the VMF is quite important as much of the im-
age information is contained in its edges and sharp edges are pleasing to humans
and are desirable for machine processing [8,9,10]. As a result much research has
been devoted to the construction of filters which can cope with image noise while
simultaneously preserving image details and enhancing image edges.
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In this paper a solution to the problem of image noise filtering with edge
enhancing abilities is presented. Extending the VMF concept using the peer

groups introduced in [11, 12], it is possible to efficiently remove impulse noise
while sharpening the color image edges. The proposed filtering design excels
over the VMF, preserves much better image details and produces images with
sharp object boundaries. Additionally, the proposed design ia able to adapt to
the noise intensity level so that no tuning parameters are required.

2 Vector Median Filter

In this paper the color image is defined as a two-dimensional matrix of size
N1×N2 consisting of pixels xi = (xi1, xi2, xi3), indexed by i, which gives the pixel
position on the image domain. Components xik, for i = 1, 2, . . . , N , N = N1·N2

and k = 1, 2, 3 represent the color channel values quantified into the integer
domain.

As color images are highly non-stationary, the filtering operators work on the
assumption that the local image features can be extracted from a small image
region centered at pixel xi called a sliding filtering window, W . Thus, the output
of the filtering operation will depend only on the samples from the filtering
window. Of course, the size and shape of the window influence the properties
and efficiency of the image processing operations and are therefore application
dependent. However, in order to preserve image details, mostly a 3 × 3 window
is used to process the central pixel surrounded by its neighbors.

To remove the impulse noise various filtering approaches based on the order
statistics theory have been devised. The most popular filtering class operating
on a sliding window is based on the reduced or aggregated ordering which assigns
an aggregated dissimilarity measure to each color pixel from the filtering window
[1, 13]. The aggregated dissimilarity measure assigned to pixel xi is defined as

Ri =
∑n

j=1
ρ(xi, xj) , xi, xj ∈ W , (1)

where ρ(·) is the chosen dissimilarity measure. The scalar accumulated dissim-
ilarity measures are then sorted and the vectors are correspondingly ordered

R(1) ≤ . . . ≤ R(n) ⇒ x(1) ≤ . . . ≤ x(n) . (2)

The dissimilarity measure depends on the kind of relationship between the sam-
ple vectors used to measure their difference. Usually the distance between vectors
and the angle between them is utilized. The combination of the magnitude and
directional processing can also be used, [14, 15].

In this paper we will focus on the vector median filter defined using the ac-
cumulated sum of distances between vectors, which serves as a dissimilarity
measure. The vector median of a set of vectors belonging to a filtering mask W
is defined as the vector x(1) for which the sum of distances to all other vectors
from W is minimized, [5, 16, 17, 18]

x(1) = arg min
x∈W

∑n

j=1
‖x − xj‖ , (3)
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Fig. 1. Illustration of the peer group concept: (a) output of the VMF, (n = 9) and
GVMF for α = 5 and (b) the peer group associated with xi, α = 5

where ‖ · ‖ denotes the Euclidean distance. The construction of the VMF is
illustrated in Fig. 1a, where the Euclidean distance is used. As can be seen, the
vector median of the set of pixels is centrally located within the samples from
the filtering window, meaning that the sum of distances to all other samples
from W is minimized.

3 Generalized Vector Median Filter

As in the definition of the VMF the sum of distances is used (Eqs. 1, 3), we
can say that the vector median is the vector x(1) whose average distance to the
n vectors from W is minimized. So we see that the vector median and also the
scalar median is utilizing the concept of averaging, which is a little bit surprising,
taking into account its properties, which are clearly opposed to the averaging
based filters.

In this paper we propose to generalize the definition of the vector median. In
the new approach the vector median will be the vector x

α
(1) for which the sum

of α smallest distances to other vectors from W is minimized. For α = n the
output of the Generalized VMF (GVMF) is identical with the standard VMF
and for α = 1 the identity filter is obtained, as the smallest distance is always
zero, because it is the distance of the reference pixel to itself.

If the distance between the vector xi and xj is denoted as ρi,j , then we can
order the set of distances ρi,j , for j = 1, . . . , n and obtain the following sequence:

ρ
(1)
i ≤ . . . ≤ ρ

(α)
i ≤ . . . ≤ ρ

(n)
i , where ρ

(k)
i is the k-th smallest distance from xi

and ρ
(1)
i = ‖xi − xi‖ = 0. For each pixel in the filtering window the cumulated

sum Rα
i is calculated

Rα
i =

∑α

k=1
ρ
(k)
i , (4)

and the output of the generalized VMF is the pixel for which the trimmed sum
of distances Rα is minimized.
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(a) PSNR, noise model U (b) PSNR, noise model I

(c) MAE, noise model U (d) MAE, noise model I

(e) NCD, noise model U (f) NCD, noise model I

Fig. 2. Dependence of the PSNR (a, b), MAE (c, d) and NCD (e, f) quality measures
on the contamination intensities for the used noise models U and I applied to the LENA

test image filtered with the GVMF for various values of the α parameter
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In [11] a concept of the so called peer group filtering was introduced. This con-
cept can be used to describe the construction of the proposed filtering approach.
The peer group P(x, α), denotes the set of α pixels consisting of x and (α − 1)
nearest pixels belonging to W . Using the peer group concept we can define the
generalized vector median filter output as the sample x whose peer group of
size α has the smallest accumulated sum of distances Rα, (see Fig. 1b). In other
words the output of the GVMF is the pixel centrally located within a peer group
of pixels with minimal dispersion, expressed as the sum of distances.

It is worth noticing the similarity of the new filter design with the α -trimmed

vector median filter. The trimming operation in the α -trimmed filter is however
being performed on the ordered set of vectors, whereas in the construction of
the new filter, the trimming is applied to the ordered set of distances associated
with a pixel from the filtering window.

So, the new filtering design is utilizing the concept of a peer group which has
been already successfully utilized for impulse noise removal [19, 20, 21] and can
be regarded as a generalization of the vector median filter, which is obtained as
a special case of the new filtering technique.

4 Adaptive Design

As can be observed in Fig. 2, the quality measures, which will be defined later
together with the used noise models, depend significantly on the α parameter
of the GVMF, which evokes the need for an adaptive scheme of adjusting this
parameter to the local image structures.

In [22] the following criterion for choosing the α parameter was proposed

α = max α′ subject to
(

∑α′

l=1
ρ
(l)
j

)

≤ ρ
(n)
j , j = 1, . . . , n , (5)

where ρ
(n)
j is the largest distance between the central pixel xj and its neighbors

from W . This rule for the setting of the α values works well for pixels corrupted
by impulsive noise, however for uncorrupted pixels in homogeneous image areas,
usually the number of the pixels α in the peer-group is very small, as the dis-
tances between pixels are comparable. Therefore a new scheme for the adaptive
determination of the choosing the α value has been elaborated.

The adaptive algorithm which will be denoted as Adaptive Generalized VMF
(AGVMF) requires to calculate for each pixel xk, the distances ρk,l, l = 1, . . . , n,
l �= k to other pixels belonging to the filtering window. The largest distance

ρ
(n)
k is used for building the peer-groups P(xk, αk) which consist of αk pixels

contained in a sphere centered at xk with diameter ρ
(n)
k . In this way the peer

group consists of αk pixels xl satisfying: ρk,l ≤ ρ
(n)
k /2. The highest value of the

αk for k = 1, . . . , n, denoted as α serves as an self-adaptive parameter of the
proposed filter. Thus, the filter output is the pixel xk for which the aggregated,
trimmed distance Rα

k defined in (4) is minimized

k = arg min
j

∑α

l=1
ρ
(l)
j , j = 1, . . . , n , where (6)
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Fig. 3. Illustration of the adaptive determination of the maximum size cluster

α = arg max
l

ρ
(l)
j ≤ 1

2
ρ
(n)
j , j = 1, . . . , n . (7)

Figure 3a shows an exemplary configuration of pixels. For the pixel x1 the most
distant neighbor is the outlying pixel x4 and in the sphere centered at x1 with
the diameter equal to the distance ρ1,4 four pixels are contained. The peer group
of pixel x4, whose most distant neighbor is x1 contains 2 pixels and the largest
peer group consisting of 5 pixels is assigned to pixel x6 whose most distant pixel
is x5. In this way the proposed filter is searching for a cluster of α = 5 pixels
with the lowest trimmed sum of distances.

As can be observed in Fig. 3b the proposed design is able to cope with the outliers
introduced by the noise process as their peer groups do not contain any other pixels
or like in a situation depicted in Fig. 3c the peer group size is quite low.

As often a few clusters with the same maximum number of pixels is found,
then the pixel centrally located in the most compact cluster is chosen as the
filter output. In other words, the output is the center of the peer-group whose
aggregated distances to its members attains a minimum value.

Additionally, in order to preserve image details a switching mechanism has
been incorporated into the adaptive filter design. As can be observed, the
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adaptive filter removes efficiently the impulses and enhances the image edges.
The changes introduced into the image are significant at pixels corrupted by im-
pulse noise and at edges. If the differences between the channel components of
the original and filtered image pixels are small, then most probably these pixels
are not corrupted and do not belong to an edge.

If xi = {xi1, xi2, xi3} denotes a pixel at a position indexed by i and yi =
{yi1, yi2, yi3} is the output of the Adaptive Generalized VMF (AGVMF), then
the final output will be xi if |xik − yik| < δ for k = 1, 2, 3 and yi otherwise. In
other words, if the changes in the RGB components are less than a threshold δ
then the color image pixels are not changed, otherwise they are replaced by the
AGVMF. Extensive experiments indicate that the value of δ equal to 30 provides
a good compromise between detail preservation and noise reduction.

5 Experiments

For the evaluation of the efficiency of the proposed adaptive denoising design a
set of standard color images has been contaminated with two noise types. In the
first model, which will be called impulsive salt and pepper noise model denoted
as I, the noisy signal is modeled as xi = {xi1, xi2, xi3}, where

xik =

{

ρik with probability π ,
oik with probability 1 − π ,

(8)

where oi is the original, uncorrupted image pixel and the contamination com-
ponent ρik is a random variable, which takes the value 0 or 255 with the same
probability. In this noise model the contamination of the color image components
is uncorrelated and the overall contamination rate is p = 1 − (1 − π)3.

The second type of noise, called random-valued or uniform noise denoted as
U is modeled as

xi =

{

ρi with probability p ,
oi with probability 1 − p ,

(9)

where ρi is a noisy pixel with all channels corrupted by noise of uniform distri-
bution in the range [0, 255]. In the first model the noise can corrupt one, two
or all three channels. In the second all channels are contaminated by random
values within the range [0, 255].

For the measurement of the restoration quality the commonly used Root

Mean Squared Error (RMSE) expressed through the Peak Signal to Noise Ratio

(PSNR) was used as the RMSE is a good measure of the efficiency of impulsive
noise suppression. For the evaluation of the detail preservation capabilities of
the proposed filtering design the Mean Absolute Error (MAE) has been used.

The PSNR, which measures the impulsive noise removal efficiency of a filter,
is defined as

PSNR = 20 log10

(

255√
MSE

)

, MSE =
1

N

N
∑

i=1

‖xi − oi‖2
2
, (10)
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where N is the total number of image pixels, and xik , oik denote the k-th
component of the noisy image pixel channel and its original, undisturbed value
at a pixel position i , respectively. The MAE defined as

MAE =
1

N

∑N

i=1
‖xi − oi‖1

, (11)

where ‖ · ‖γ denotes the Lγ Minkowski norm, is a good measure of detail
preservation.

Since RGB is not a perceptually uniform space, in the sense that differences
between colors in this color space do not correspond to color differences perceived
by humans, the restoration errors were also analyzed using the Normalized Color

Difference (NCD) based on the CIE Lab color space, [1].

∆E =
1

N

∑N

i=1

√

(

L∗
oi

− L∗
xi

)2
+

(

a∗
oi

− a∗
xi

)2
+

(

b∗
oi

− b∗
xi

)2
, (12)

NCD =
N ∆E1

N
∑

i=1

√

(

L∗
oi

)2
+

(

a∗
oi

)2
+

(

b∗
oi

)2
, (13)

where L∗ represents lightness values and (a∗, b∗) chrominance values correspond-
ing to original oi and noisy (filtered) xi samples expressed in CIE LAB color
space.

In order to evaluate the edge enhancing and noise canceling properties of the
proposed filter a synthetic color test image has been prepared, (Fig. 4a). This
image has been blurred by rotating it clockwise about 3 degrees, applying moving
average smoothing and rotating back about 3 degrees. The rotation operation
has been performed in order to avoid the generation of totally symmetric ramp
edges which would be produced by direct linear smoothing. Then the blurry
image has been contaminated by 10% impulsive noise (I) as shown Fig. 4d.

Figures 4b and 4e depict the output of the VMF when applied to the blurred
and noisy test image. As can be noticed the VMF removes the impulse noise
and preserves the blurred edges. This behavior is not present when inspecting
the output of the GVMF filter, which is able to enhance image edges, (Fig. 4c)
while suppressing the impulsive noise, (Fig. 4f). It is worth noticing that the
ramp edges tend to be converted into ideal step edges which separate piecewise
constant image regions.

The ability of the GVMG to remove impulses while sharpening the color image
edges by reducing their width is also depicted in Fig. 5 which exhibits the row 60
of the blue channel of color test image shown in Fig. 4d. As seen in the magnified
part of the main plot the spikes originating from the noise are removed and the
ramp edges tend to be converted into step edges.

This filter behavior is also clearly seen in Fig. 6 which presents three dimen-
sional representation of the blue channel of the artificial test images. The compari-
son of the GVMF technique with the standard VMF shows that the latter removes
efficiently the impulse noise but preserves the blurred edges. The proposed filter-
ing design replaces the impulses as efficiently as the VMF does but generates an
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(a) test image (b) VMF (c) GVMF, α = 6

(d) noisy image (e) VMF (f) GVMF, α = 6

Fig. 4. Edge enhancing and noise attenuating properties of the GVMF as compared
with VMF: (a) blurry test image, (b) its VMF output, (c) GVMF with α = 6, (d) test
image distorted by impulsive noise (noise model I, p = 0.1), (d) VMF and (e) GVMF
output with α = 6

Fig. 5. Plot of the blue channel intensities (row 60) of the corrupted and enhanced syn-
thetic test image depicted in Fig. 4c and below a zoomed part of the graph
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(a) test image (b) noisy test image

(c) VMF (d) VMF

(e) GVMF, α = 6 (f) GVMF, α = 6

Fig. 6. Visualization of the edge enhancing and noise reduction capabilities of the gen-
eralized VMF (GVMF) with fixed α = 6: (a) 3D representation of the inverted blue
channel of the test image depicted in Fig. 4a, (b) visualization of the inverted blue chan-
nel of the noisy test image shown in Fig. 4d, (c) and (d) the result of the VMF, (e) and
(f) output of the GVMF
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(a) noise model U (b) noise model I

(c) noise model U (d) noise model I

(e) noise model U (f) noise model I

Fig. 7. Dependence of the PSNR (a, b), and MAE (c, d) and NCD (e, f) quality measures
on the contamination intensities for the noise model U and I applied to the LENA test
image filtered with AGVMF with δ = 30 as compared with other denoising techniques
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(a) test image (b) noisy image (c) VMF

(d) AGVMF, δ = 30 (e) GVMF α = 6 (f) SVMF

(g) test image (h) noisy image (i) VMF

(j) AGVMF, δ = 30 (k) GVMF α = 6 (l) SVMF

Fig. 8. Comparison of the proposed filtering technique with the standard VMF: (a) color
test image, (b) test image distorted by 20% noise U, (c) VMF output, (d) AGVMF
output with δ = 30, (e) GVMF with α = 6, (f) SVMF output
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(a) test image FRUITS (b) noisy image, noise model U, p = 0.4

(c) VMF output, 2 iterations (d) DDF output, 2 iterations

(e) GVMF output, 2 iterations, α = 6 (f) AGVMF, 2 iterations, δ = 30

(g) VMF (h) GVMF (i) AGVMF

Fig. 9. Efficiency of the proposed Adaptive Generalized VMF - AGVMF (f) as com-
pared with the VMF (c), DDF [14, 15] (d) and GVMF (e) using a color test image (a)
contaminated with 40% noise U (b). Below cropped and zoomed parts of the outputs of
VMF (g), GVMF (h) and AGVMG with δ = 30 (i).
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image with sharp, almost ideal edges. Extensive experiments revealed that very
similar results were obtained for images distorted by the uniform noise model.

The overall good noise reduction abilities of the proposed adaptive filtering
design, are presented in Fig. 7, which show the dependance of the PSNR and
MAE on the uniform noise (U) intensity p when restoring the LENA noisy image.
As can be observed the efficiency of the proposed adaptive GVMF (AGVMF)
is superior to that of the Sharpening VMF (SVMF) proposed in [22] and the
Generalized VMF (GVM F) with fixed parameter α = 5. As can be observed the
efficiency of the proposed adaptive filter in terms of the used quality measures is
lower for the impulsive noise I. This behavior is caused by the creation of clusters
of similar pixels which are injected by the impulsive noise. For contamination
intensity exceeding 30%, the number of such clusters of noisy pixels is rapidly
increasing and as a result the noisy pixels are preserved by the proposed filter.

Apart from the good denoising efficiency, the proposed adaptive filtering
scheme has the unique ability to sharpen the edges present in the color im-
ages. This feature is visible in Fig. 8 which depicts the filtering results delivered
by the new filter as compared with the VMF, GVMF and SVMF. As can be
observed the new filtering design not only removes efficiently the impulses but
also preserves image details due to the incorporated switching mechanism.

The detail preservation can be also observed when evaluating the output of
the novel filter operating on a very noisy image depicted in Fig. 9. As can be
seen the proposed filter removes the noise component while preserving fine image
structures and significantly outperforms the basic filters like VMF, Directional
Distance filter (DDF) [14, 15] and the GVMF with a fixed α parameter.

6 Conclusions

In the paper an adaptive filtering design for impulsive noise removal has been
presented. The proposed adaptive scheme of choosing the optimal value of the
peer group size used in the construction of the filter exhibits very good denoising
properties outperforming the vector median based solutions. Extensive simula-
tions revealed very good noise attenuation properties of the proposed filtering
scheme combined with its unique ability to sharpen image edges while preserv-
ing image details. As a result, the novel class of filters exhibits very good noise
reduction efficiency which combined with its edge enhancing properties makes
the new filtering design an attractive tool for low level color image processing.
The simplicity of the new algorithm and its computational speed, which is com-
parable to that of the VMF makes the new noise removal method very useful in
the preprocessing of color images corrupted by impulse noise.
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