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Abstract—Drivers’ fatigue has been implicated as a causal

factor in many accidents. The development of human cognitive

state monitoring system for the drivers to prevent accidents behind

the steering wheel has become a major focus in the field of safety

driving. It requires a technique that can continuously monitor

and estimate the alertness level of drivers. The difficulties in

developing such a system are lack of significant index for detecting

drowsiness and the interference of the complicated noise in a

realistic and dynamic driving environment. An adaptive alertness

estimation methodology based on electroencephalogram, power

spectrum analysis, independent component analysis (ICA), and

fuzzy neural network (FNNs) models is proposed in this paper for

continuously monitoring driver’s drowsiness level with concurrent

changes in the alertness level. A novel adaptive feature selection

mechanism is developed for automatically selecting effective fre-

quency bands of ICA components for realizing an on-line alertness

monitoring system based on the correlation analysis between the

time-frequency power spectra of ICA components and the driving

errors defined as the deviation between the center of the vehicle

and the cruising lane in the virtual-reality driving environment.

The mechanism also provides effective and efficient features

that can be fed into ICA-mixture-model-based self-constructing

FNN to indirectly estimate driver’s drowsiness level expressed by

approximately and predicting the driving error.

Index Terms—Alertness estimation, electroencephalogram
(EEG), independent component analysis (ICA), ICA-mixture--
model-based self-constructing fuzzy neural networks (ICAFNN),
power spectrum analysis.
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I. INTRODUCTION

D
EVELOPMENT of the drowsiness monitoring technology

for preventing accidents behind the steering wheel has

become a major interest in the field of safety driving since

drivers’ fatigue is a causal factor in many accidents because

of the marked decline in the drivers’ abilities of perception,

recognition, and vehicle control abilities while sleepy. Thus,

developing accurate and noninvasive real-time driver drowsi-

ness monitoring system would be highly desirable, particularly

if this system can be further integrated into an automatic

warning system. It is known that abundant information on

physiological changes such as eye activity measures, heart rate

variability (HRV), or particularly, the electroencephalogram

(EEG) activities can relate with drowsiness [1]–[5]. Previous

studies [6]–[8] showed that the eye blink duration and the

blink rate typically increases while blink amplitude decreases

as function of the cumulative time, and the saccade frequen-

cies and velocities of electrooculogram (EOG) decline when

people get drowsy. Although approaches based on EOG signals

showed that eye-activity variations were highly correlated

with the human fatigue and can accurately and quantitatively

estimate alertness levels, the step size (temporal resolution) of

those eye-activity based methods is relatively long (about 10 s)

to track slow changes in vigilance [9]. Contrarily, the step size

of the EEG-based methods can be reduced to about 2 s to track

second-to-second fluctuations in the subject’s performance

[10]–[17]. Since the computer power becomes faster and faster,

it is practicable and appealing to know what information about

human cognitive state and behavior are available through

analyzing complex EEG signals. In [18], we constructed a

virtual-reality (VR) based highway-driving environment to

study drivers’ cognitive changes during a long-term driving.

A lane-keeping driving experiment was designed to indirectly

quantify the driver’s drowsiness level and a drowsiness estima-

tion system combining the EEG power spectrum analysis, the

principle component analysis (PCA) and the linear regression

model was developed. In [19], the independent component

analysis (ICA) [20]–[24] was used in the similar experiments

to locate the optimal electrode placements for each individual.

A total of ten frequency bands in two ICA components are

selected and fed to the linear regression models to estimate

driver’s performance. In order to develop an on-line alertness

estimation system and improve its performance, we develop a

novel adaptive feature selection mechanism (AFSM) based on

the correlation analysis between the subjects’ driving errors
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and power spectra of the ICA components to automatically

select effective features in this paper. In addition, the ICA-mix-

ture-model-based fuzzy neural networks (ICAFNN) developed

in [25] are employed as the drowsiness estimator to improve

the prediction performance.

II. EXPERIMENTAL SETUP

A. Virtual-Reality (VR)-Based Driving Environment

A virtual-reality (VR) based highway-driving environment

that was developed in our previous studies [18], [19] to investi-

gate drivers’ cognitive changes during a long-term driving was

also used in this paper. It includes 3-D surround scenes pro-

jected by seven projectors and a real car mounted on a 6-de-

gree-of-freedom Stewart platform. During the driving experi-

ment, all scenes are moving according to the displacement of

the car and the subject’s wheel handling. The driving speed is

fixed as 100 km/hr and the car is randomly and automatically

drifted away from the center of the cruising lane to mimic the

consequences of a non-ideal road surface. We asked the sub-

ject to keep the car on the third cruising lane (from left to right

counted). While the subject is alert, his/her response time will

be short and deviation of the car will be small; otherwise the

subject’s response time and the car deviation will be slow and

long. In this driving experiment, the VR-based freeway scene

provides only one car driven on the road without any other event

stimuli to simulate a monotonous and unexciting task that will

make drivers fallen asleep.

B. Subjects

A total of ten subjects (ages from 20 to 40 years,

years old) participated in the VR-based highway driving exper-

iments. Each subject completed a training session in one day

and testing sessions on the other days. To maximize the oppor-

tunities to get valuable data for our study, all the experiments

were conducted in the early afternoons after lunch. Statistical

reports [26] showed that people often get drowsy within one

hour of continuous driving during these periods, indicating that

drowsiness is not necessarily caused by long driving-hours. On

the first day, participants were told of the general features of

the driving task, completed necessary informed consent mate-

rial, and then started with a 15 to 45-min practice to keep the

car at the center of the cruising lane by maneuvering the car

with the steering wheel. Subjects reported this amount of prac-

tice to be sufficient to train participants to asymptote on the task.

After practicing, participants were wired with EEG electrodes

and began a 45-min lane-keeping driving task. Participants re-

turned on a different day to complete the other 45-min driving

session for cross-session test.

C. Data Acquisition

The physiological data acquisition uses 33 sintered Ag/AgCl

EEG/EOG electrodes with a unipolar reference at right earlobe

and 2 ECG channels in bipolar connection placed on the chest.

All the EEG/EOG electrodes were placed based on a modi-

fied International 10–20 system and refer to right ear lobe. Be-

fore data acquisition, the contact impedance between EEG elec-

trodes and cortex was calibrated to be less than 5 k . We use the

Fig. 1. (a) VR-based freeway scene. (b) Driving error. Horizontal dashed line
means the “dangerous” boundary.

Scan NuAmps Express system (Compumedics Ltd., VIC, Aus-

tralia) to simultaneously record the EEG/EOG/ECG data and

the deviation between the center of the vehicle and the center of

the cruising lane triggered by the VR program. The EEG data

were recorded with 16-bit quantization level at sampling rate

500 Hz and the recording are down-sampled to sampling rate

250 Hz for the simplicity of data processing. Then, EEG data

were preprocessed using a simple low-pass filter with a cutoff

frequency of 50 Hz to remove the line noise (60 Hz and its har-

monic) and other high-frequency noise for further analysis.

D. Alertness Measurement

In order to investigate the relationship between the measured

EEG signals and subject’s cognitive state, and to quantify the

level of the subject’s alertness, we defined the subject’s alert-

ness level index as the deviation between the center of

the vehicle and the center of the cruising lane as an indirect

measurement of the subject’s alertness level. Our pilot studies

showed that when the subject is drowsy (checked from video

recordings and subjects’ reports), the derivation error of car drift

increases, and vice versa. Since the fluctuates of drowsiness

level with cycle lengths were longer than 4 min [12]–[15], the

alertness level index were smoothed using a causal 90-s square

moving-average filter advancing at 2-s steps to eliminate vari-

ance at cycle lengths shorter than 1–2 min as (1). It is noted that

the step size of eye-activity based approaches is about 10 s [9].

It means that the temporal resolution of our method is 5 times

higher than that of the eye-activity based approaches

(1)

where is the 90-s window length is the

sampling rate, and denotes the distance between the center

of the vehicle and the center of the cruising lane at time . Fig. 1

shows the designed VR-based freeway scene and the smoothed

alertness level index. The red numbers in Fig. 1(a) depict the

widths in pixels of the four lanes from left to right in VR frontal

scene. In our case, each lane covers 60 pixels and the width of

the car is 32 pixels. We can also convert the distance of each

pixel into the width of the real road. Fig. 1(b) plots the time

course of deviation (alertness level) across time (in seconds).

Each experiment lasted about 45-min (2700 s). The vertical axis

represents the deviation of the car in pixel. When the deviation
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Fig. 2. Flowchart of data processing procedures of the proposed drowsiness.

is greater than 32 pixels [horizontal dashed line in Fig. 1(b)], the

car was completely off the cruising lane which could easily lead

to accidents. Participants who demonstrated waves of drowsi-

ness containing two or more micro-sleeps in both sessions were

selected as successful subjects. Based on these criteria, five par-

ticipants (ten sessions) were selected for further modeling and

cross-session testing.

III. DATA ANALYSIS

The proposed data analysis procedure for drowsiness estima-

tion is shown in Fig. 2. Analytical modules are detailed below.

A. Independent Component Analysis

ICA is a signal processing technique that finds a linear map-

ping matrix or unmixing matrix such that the unknown un-

mixed signals of the dimension

could be separated from their mixtures, , that is

. The ICA methods were extensively applied to blind

source separation problem since 1990s [17], [20]–[24]. Subse-

quent technical reports [27]–[33] demonstrated that ICA was

a suitable solution to the problem of EEG source segregation,

identification, and localization.

In this study, we used an extended version of informax algo-

rithm of Bell and Sejnowski [19], [22] that can separate sources

with either super- or sub-Gaussian distributions, to decompose

distinct brain activities. It has also been used in our previous

study [19]. Fig. 3 shows the scalp topographies of ICA back-pro-

jection matrix of subject 2 and the log bandpower spectra

of all ICA components. As shown in Fig. 3, most of the eye-

movement artifacts are isolated to components 1–3, while ICA

components 8, 17, 27 and etc. are drowsiness related (based on

the correlation analysis below).

B. Power Spectrum Analysis

Analysis of changes in spectral power and phase can charac-

terize the perturbations in the oscillatory dynamics of ongoing

EEG. Moving-averaged spectral analysis of the drowsiness re-

lated component data was then accomplished using a 750-point

Hanning window with 250-point overlap, i.e., stepping in

2 s. Each 750-point epoch was further divided into several

125-point frames using Hanning windows with 25-point step

size again. Windowed 125-point frames were extended to

256 points by zero-padding to calculate its power spectrum

by using a 256-point fast Fourier transform (FFT), resulting

in power-spectrum density estimation with a frequency reso-

lution near 1 Hz. Then, we averaged the power spectrum of

all the sub-epochs within each epoch. Previous studies [18],

[19] showed that the EEG spectral amplitudes correlated with

the wake-sleep transition more linearly in the logarithmic

scale than in the linear scale. Therefore, the averaged power

spectrum of each epoch was normalized to logarithmic scale

to linearize these multiplicative effects. Since the fluctuates of

drowsiness level with cycle lengths were longer than 4 min

[13], [14], the alertness level was smoothed using a causal 90-s

square moving-average filter advancing at 2-s steps to eliminate

variance at cycle lengths shorter than 1–2 min.

C. Correlation Analysis

In order to find the relationship between the brain activities

and the subject’s alertness level and to extract the effective fre-

quency bands of drowsiness related components, we computed

the correlation coefficient between two time courses of the alert-

ness level index and the concurrent power changes at each fre-

quency of the ICA components by using the Pearson correlation

coefficient to form a correlation spectrum as follows:

...
...

. . .
...

(2)

and

(3)

where is the time series of the alertness level index,

is the time-frequency series of the th ICA component,

is the time stepping size in 2 s, and is the frequency index

. and are the expected value of

and .

D. Adaptive Feature Selection Mechanism

In order to automatically select the drowsiness related fea-

tures, an adaptive feature selection mechanism based on the

correlation coefficients between log bandpower of the drowsi-

ness related components and the subject’s alertness level index

(SALI) is proposed.

We use the correlation spectra of subject 2 as an example to

illustrate the proposed adaptive feature selection mechanism

(Fig. 4). First, we compute the correlation coefficient between

two time series in alertness level index and the concurrent

changes in the ICA power spectrum at each frequency band

(1–60 Hz in 33 ICA components) by (2). Then, we sort the

correlation coefficients in each row vectors of matrix Corr
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Fig. 3. Scalp topographies and the corresponding log bandpower spectra of all ICA components.

Fig. 4. Using subject 2 as an example to illustrate the adaptive feature selection mechanism. Note that the band power of ICA component 8 between 9 and 13 Hz
and component 17 between 7 and 11 Hz are selected as input feature of the estimators.

by descending order so that each element in the first column

of is the maximum correlation coefficient of the row it

belongs to. is the corresponding index matrix of . After

summing the first five elements in each row of SC, we get

the vector. According to , which is the sorted version

of , we can find that the averaged correlation coefficients

of two most drowsiness-related ICA components of subject 2

are 0.93 and 0.88. Referring to the index matrix , these two

components are ICA components 8 and 17 and their selected

frequency bands are 9–13 and 7–11 Hz, respectively.

E. ICAFNNs

An ICAFNN [25] shown in Fig. 5 was developed and

performed as the alertness level estimator in the study. The

ICAFNN is a novel FNN and it can construct itself with an

economic network size, and the learning speed as well as the
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Fig. 5. Five layers of ICAFNN performing the functions of input clustering,
fuzzy-rule reasoning, and parameter/structure learning.

modeling ability [25]. This five-layered network realizes a

fuzzy inference system (FIS) of the following form:

and and

(4)

where the current input data vector is is

the number of input dimension, is a fuzzy set, is the

center of a symmetric membership function on , and is

a consequent parameter. The functions of each layer are illus-

trated as follows.

Layer 1: It only transmits input values to the next layer

directly.

Layer 2: In this layer, the output from Layer 1 is projected

into the independent axes obtained by the on-line ICA mixture

model such that

(5)

where , and are the basis matrix and

mean vector, respectively, determined by the on-line ICA mix-

ture model [25], and is the number of

clusters at time .

With the choice of non-Gaussian membership function, the

operation performed in this layer is

and (6)

where is inputs to node in layer 2, is an integration func-

tion provides the node input for this node, the is propor-

tional to super-Gaussian or sub-Gaussian, and the node output

is a function of its node input

(7)

where denotes the activation function. These notations will

be used in the following equations. With the transformation of

input coordinates, rule format in (4) should be modified as

and

and

(8)

where the th element of is the trans-

formation matrix for rule , and are the newly generated

input variables and it is called the sources in ICA.

The linguistic implication is now implicated by the new

variable , which is a linear combination of the original vari-

ables. It is observed that the membership functions cover distri-

bution of transformed data well such that a single fuzzy rule can

associate the transformed region with its output region (conse-

quent) properly.

Layer 3: A node in this layer represents one fuzzy rule and

performs precondition matching of a rule. Here, we use the fol-

lowing AND operation for each Layer-2 node

and (9)

The output of a Layer-3 node represents the firing strength of

the corresponding fuzzy rule.

Layer 4: This layer is called the consequent layer. Two types

of nodes are used in this layer as shown in Fig. 5. The node

denoted by a blank circle is the essential node representing a

fuzzy set of the output variable. As to the shaded node, each

node in Layer 3 has its own corresponding shaded node in Layer

4. One of the inputs to a shaded node is the output delivered from

Layer 3 and the other inputs are the input variables from Layer

1. Combining these two types of nodes in Layer 4, we obtain

the whole function performed by this layer as

and

(10)

where is the center of output membership function

and is the corresponding parameter.

Layer 5: Each node in this layer corresponds to one output

variable and acts as a defuzzifier with

and (11)

Two types of learning—structure and parameter learning

are used concurrently for constructing the ICAFNN [25]. The

on-line ICA mixture model is used to realize the precondi-

tion and consequent structure identification of the proposed

FNN. For the parameter learning, the parameters of the linear

equations in the consequent parts are adjusted by the back-

propagation rule to minimize a given cost function and the

parameters in the precondition part are adjusted by the on-line



2474 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 11, NOVEMBER 2006

Fig. 6. Alertness level estimates for training/testing sessions of subject 2, based on a linear regression model (dot line, top panels) with subband log power of
ICA components at 8–12 Hz, over plotted against actual driving performance time series for the session (solid line). The correlation coefficient between the two
time series is r = 0:91 in the training session and r = 0:89 in the testing session. Bottom panels show the results in the same subject based on ICAFNN, the
correlation coefficient between the two time series (dot and solid lines) increase to 0.989 in the training session, and 0.94 in the testing session, respectively.

ICA mixture model. There are no rulesin this network ini-

tially. They are created dynamically as learning proceeds upon

receiving on-line incoming training data by performing the

following learning processes simultaneously: 1) input/output

space partitioning; 2) construction of fuzzy rules; 3) optimal

consequent structure identification; 4) parameter identification.

In the above, learning processes steps 1)– 3) belong to the

structure learning phase and step 4) belongs to the parameter

learning phase [25].

IV. RESULTS AND DISCUSSION

A. Adaptive Feature Selection

According to Fig. 2, after ICA training and spectral analysis

for each ICA components, we computed the spectral correla-

tions between changes in the ICA log subband power spectrum

and alertness level index. We then applied the proposed AFSM

(Section III-D) to automatically select the features for drowsi-

ness estimation. The selected features for five different subjects

are shown in Table I. The features selected by the method in [19]

are also included in Table I for comparison. As can be seen, two

methods might select different components.

In general, the drowsiness-related regions are mainly in the

parietal and occipital lobes. In [19], the optimal frequency bands

were selected according to the correlation coefficients between

ICA power spectra and drowsiness index and iteratively testing

TABLE I
COMPARISONS OF FEATURES SELECTED BY THE METHOD IN [19] AND THE

AFSM CORRESPONDING TO DIFFERENT SUBJECTS

by the linear regression model (LRM). On the contrary, the

proposed AFSM is developed for one-path selection of effec-

tive frequency bands and the ICA components for realizing an

on-line alertness monitoring system. In order to compare the

performance of these two feature selection methods, the features

are used as inputs of the linear regression models for driver’s
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TABLE II
COMPARISONS OF DIFFERENT ALERTNESS LEVEL ESTIMATION APPROACHES

INCLUDING LINEAR REGRESSION MODELS (LRM) USING THE FEATURES

SELECTED BY THE METHOD IN [19], BY AFSM, AND THE ICAFNN MODEL

USING THE FEATURES SELECTED BY AFSM FOR FIVE DIFFERENT SUBJECTS

alertness level estimation, as shown in Table II. The mean corre-

lation between actual alertness level time series and within-ses-

sion estimation by using the features selected by AFSM is 90%,

whereas the mean correlation coefficient between actual alert-

ness level and cross-session estimation is 86.6%. The average

performance of the AFSM is closed to the performance using

the optimal features. It can also be found that some testing re-

sults are better than the performance of the training sessions

due to the repeatedly testing procedure. Fig. 6 shows the es-

timated alertness level of training/testing sessions of subject 2

obtained by the linear regression model with the feature selected

by AFSM technique. These results demonstrate that the feature

selected by the one-path selection method AFSM can also reach

excellent performance in estimating driving error without the re-

peatedly testing process.

The performance of the proposed ICA-based AFSM is also

compared favorably to the principle component analysis (PCA)

based approach developed in [18] that used 50 PCA components

as the input features of the linear regression model for drowsi-

ness estimation. The mean correlation coefficient between ac-

tual alertness level and cross-session estimation of the PCA-

based method is for the same 10 sessions.

B. EEG-Based ICA-Mixture-Model-Based Fuzzy Neural

Networks (ICAFNN) for Driver Alertness Estimation

In this study, we fed the features selected by AFSM into

the ICAFNN for subject’s alertness level estimation. The ICA

weight matrices obtained from the training sessions were used to

spatially filter the features in the testing sessions so that training/

testing data were processed in the same way before feeding to

the estimation models for the same subject. Fig. 6 shows that

the estimated and actual alertness level index of training/testing

sessions of subject 2 matched well with the actual alertness level

( % in the training session and 94% in the testing ses-

sion, respectively). Table II (bottom row) summarizes the per-

formance of alertness level estimation obtained by the ICAFNN

model across ten sessions of five subjects. The mean correla-

tion between actual and estimated alertness level time series

is %, whereas the mean correlation coefficient in

cross-session testing is %.

V. CONCLUSION

In this study, an adaptive EEG-based drowsiness estimation

technology that combines ICA, power-spectrum analysis,

AFSM, and ICAFNN is proposed to continuously, indirectly

estimate/predict fluctuations in human alertness level indexed

by alertness level measurement, expressed as deviation between

the center of the vehicle and the center of the cruising lane in

a virtual-reality based driving environment. The AFSM can

automatically select effective features based on the correlation

analysis between the power spectra of drowsiness related

components and the driving errors. The proposed ICAFNN can

accurately estimate driver’s individual alertness level using ten

sub-band power spectra of two ICA components selected by

AFSM. The computational methods developed in this study

can lead to on-line monitoring of human operators’ cognitive

state in attention-critical settings.
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