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Abstract
Future multicore processors will be heterogeneous, be increasingly
less reliable, and operate in dynamically changing operating condi-
tions. Such environments will result in a constantly varying pool
of hardware resources which can greatly complicate the task of
efficiently exposing a program’s parallelism onto these resources.
Coupled with this uncertainty is the diverse set of efficiency met-
rics that users may desire. This paper proposes Varuna, a system
that dynamically, continuously, rapidly and transparently adapts
a program’s parallelism to best match the instantaneous capabili-
ties of the hardware resources while satisfying different efficiency
metrics. Varuna is applicable to both multithreaded and task-based
programs and can be seamlessly inserted between the program and
the operating system without needing to change the source code of
either.

We demonstrate Varuna’s effectiveness in diverse execution en-
vironments using unaltered C/C++ parallel programs from vari-
ous benchmark suites. Regardless of the execution environment,
Varuna always outperformed the state-of-the-art approaches for the
efficiency metrics considered.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming - Parallel programming; D.3.4
[Programming Languages]: Processors - Run-time environments

General Terms Design, Experimentation, Measurement, Perfor-
mance

Keywords Autotuning, parallel programming, performance porta-
bility, performance tuning, run-time optimization

1. Introduction
Although multiprocessors are now pervasive, efficiently executing
parallel programs on them continues to be a challenging prob-
lem due to the complex and dynamic interplay between the pro-
gram and the host system. Efficient execution requires optimum
use of resources, as defined by a desired efficiency metric, to per-
form the program’s work. Leaving resources underutilized is inef-
ficient. So is contention-causing overutilization. Matching a pro-
gram’s work to microarchitectural dynamic resource capabilities
(the resource’s capacity to serve a request, given its current load)
is non-trivial since neither the program’s demands nor the resource
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capabilities remain constant. A parallel program’s demands may
change across phases or when its computations vie for resources.
Resource capabilities, often specific to a system, may vary due to
a variety of reasons. Thus, efficient execution requires dynamically
and continuously matching the program’s exposed parallelism to
the instantaneous resource capabilities.

As the computing landscape evolves, at a phenomenal pace,
growing system diversity is likely to pose further challenges to
efficient execution. Microarchitectural diversity is growing since
computing devices across the spectrum, from the low end (mo-
bile devices) to the high end (servers), employ rapidly evolving
role-specific microarchitectures. Within a system, dynamic diver-
sity will arise from a variety of sources, including hardware de-
fects, process variability, dynamic voltage and frequency scaling,
dynamic techniques to handle power, etc. The growing popularity
of multiprogrammed systems, e.g., mobile devices and cloud ser-
vices, will increase the diversity of co-located programs. Further,
the dynamic diversity is likely to change rapidly during a program’s
execution. Accounting for the static diversity for portability, and the
dynamic diversity for efficiency will be difficult for programmers,
and perhaps even for the OS. A diverse range of efficiency metrics,
e.g., time, resource consumption and power budgets, will further
compound the problem. As a greater number of programmers de-
velop applications for such systems, an automated approach that
treats the system as a black box is needed.
Existing Work. Current automated approaches to optimize a pro-
gram’s parallel execution fail to take a comprehensive view of the
prevailing programming methods and the system diversity as sum-
marized in Table 1. Some proposals require programs be rewritten
from scratch using their own APIs that are not widely adopted [28–
30]. Others [10, 11, 33, 34] that work with existing APIs are ap-
plicable only to task-based programming models [7, 15, 32]. Most
of the approaches [10, 11, 34] can handle only data parallel pro-
grams and the ones that propose to tackle arbitrary programs re-
quire compiler or programmer support [29, 30, 33]. Importantly,
none of these techniques are applicable to arbitrary multithreaded
programs. Some proposals prevent only underutilization [7, 15, 32].
Others can also prevent overutilization, but of only some resources,
may require compiler support or offline profiling, and may be in-
effective in multiprogrammed environments [10, 11, 23, 34]. Fur-
ther, these approaches use hill-climbing search heuristics to find the
right operating point, and hence may fail to react swiftly to chang-
ing conditions. Moreover, they optimize only for performance and
do not take into account other efficiency metrics, such as resource
consumption. We believe that a system that is applicable to both
arbitrary multithreaded and task-based programs without altering
existing design flows, takes a holistic view of the system, can react
swiftly to the changes in dynamic operating conditions, and can op-
timize for diverse efficiency metrics will find a broader utility and
yield higher efficiency.



Proposal Continuous
Adaptation

Multi-
programming
Support

Compiler/
Programming-
Model Support

Speed Arbitrary
Programs

Resource-
Agnostic

Model-
based
Search

Diverse
Metrics

Code
Changes

Parcae[30],DoPE[29] yes yes yes/yes slow no yes no no/yes* yes
PD[33] yes yes no/yes slow no yes no no yes

Curtis-Maury[10, 11] no no yes/yes slow no no no no yes
TT[23] no no yes/yes slow no no no no yes

FDT[34] no no no/yes rapid no no yes no yes
Pthreads[1],TBB[32],

Cilk[15],OMP[7]
no no no/yes none no no none no yes

Varuna [This paper] yes yes no/no rapid yes yes yes yes no

Table 1. Related work as applied to parallelism adaptation.*DoPE supports different metrics whereas Parcae does not.

Proposed Solution. In this paper, we propose Varuna, a runtime
system that dynamically, continuously and transparently adapts a
program’s parallelism to best match the dynamic hardware re-
source capabilities and the program’s characteristics, while opti-
mizing diverse efficiency metrics. Varuna employs a novel, holistic
and resource-agnostic scalability model based on Amdahl’s law to
estimate changes in efficiency during a program’s execution (§ 3).
It then uses formulae, derived from the model, to rapidly determine
the optimum degree of parallelism (DoP), i.e., the optimum num-
ber of hardware threads, to employ for different efficiency metrics
and automatically guides the execution to the computed DoP.

Varuna is compiler and programming model independent. It re-
tains the existing programming abstractions and can be applied
to both task-based and multithreaded parallel programs. Further,
it requires no changes to the program or the OS, and can tackle
arbitrary parallel programs that use standard APIs. We demon-
strate Varuna for the more widely used parallel programming APIs,
Pthreads [1], and Intel Thread Building Blocks (TBB) [32].

To facilitate program/OS-agnostic adaptation, Varuna employs
a novel primitive called a virtual task (vtask). Vtasks decouple
program-level parallelism, expressed as software threads in mul-
tithreaded programs and tasks in task-based programs, from hard-
ware threads. They are progress-aware entities and give Varuna the
flexibility needed to transparently regulate a program’s parallel ex-
ecution, without hampering its forward progress (§ 4).

We evaluated Varuna in two different execution environments,
isolated and multiprogrammed, using unaltered C/C++ Pthreads
and TBB programs from various standard benchmark suites. Two
different efficiency metrics, (i) execution time, and (ii) resource
consumption, were considered. Two different real hardware plat-
forms with different microarchitectural resource capabilities were
used. Experimental results show that Varuna reduced the execution
time on an average by 15% in the isolated environment and 33% in
the multiprogrammed environment for the execution time metric.
The concomitant energy savings were 31% and 32%, respectively.
For the resource consumption metric, Varuna saved the consump-
tion cost by 84% and 90% in isolated and multiprogrammed envi-
ronments, respectively, while reducing the execution time by -1%
and 14%, respectively.
Paper Organization. The rest of the paper is organized as follows.
§ 2 presents an overview of Varuna. § 3 describes Varuna’s ana-
lytical model. § 4 discusses Varuna’s adaptive parallel execution.
Then, in § 5, we present our detailed evaluation and results for the
two different environments. § 6 reviews related work before § 7
concludes.

2. Varuna: Overview
If a program’s workload can be perfectly divided into equal sized
parallel computations that do not interact, and can be executed on
a system with unlimited resource capabilities that do not change,
one may expect linear speedups as more hardware resources are

employed to execute the program. In practice, however, a program’s
parallel region is not perfectly parallelizable, computations often
interact with each other, and resource capabilities in the system are
unknown, limited and can dynamically change. The confluence of
these factors typically leads to two types of non-algorithmic effects
which can impact a program’s efficiency unintuitively.

First, they can dynamically increase the latency of a compu-
tation, causing artificial sequentialization. Artificial sequential-
ization can lead to slowdowns, sometimes worse than sequential
execution, and can arise from a plethora of sources, including con-
tention to software resources (e.g., locks) and shared hardware re-
sources (e.g., last level cache, memory and disk bandwidth, SMT
core, etc.), memory effects (e.g., false sharing and processor affin-
ity), cache coherence delays, cache interference due to multipro-
gramming, TLB misses and page faults, loss of resources due to
power and reliability management techniques, load balancing and
scheduling overheads, among others.

Second, they can dynamically decrease the latency of a compu-
tation, causing artificial acceleration. Artificial acceleration can
lead to superlinear speedups and can arise primarily due to caching
effects resulting from different memory hierarchies on modern pro-
cessors. For example, as a program uses more processors, the total
cache available to it also increases. With more cache, the proces-
sors can collectively accommodate more instructions and data and
reduce the memory access time, causing a computation to finish
faster than expected.

In practice, these two effects often occur in unison and the op-
timum point at which a program must operate depends on which
of the two dominates and by how much. Statically determining
this point is hard because these effects can occur at different times
and due to different reasons. For example, they can take hold for
the entire program, or only during parts of it when the program
changes phases, or when co-located applications occupy or release
resources, or when the resources go offline or come online. Further,
the combination of these effects are different for different microar-
chitectures. Within a microarchitecture, the combination can vary
dynamically and differently across runs, impacting the program’s
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Figure 1. Varuna’s strategy.



efficiency unintuitively, especially in multiprogrammed environ-
ments. Therefore, to achieve efficient parallel execution, a dynamic
and responsive parallelism optimization strategy, which takes ad-
vantage of artificial acceleration and mitigates artificial sequential-
ization, is needed.

Implementing such a strategy requires: (i) detecting changes in
the system’s operating conditions, (ii) quantifying the aggregate
impact of the non-algorithmic effects, (iii) determining the opti-
mum point of operation, and (iv) guiding the program’s execution
to that point by altering its degree of parallelism (DoP), as depicted
in Figure 1. For overall efficiency, the above process needs to be
repeated periodically, as a program executes, to assess and react to
changes.

Expecting common programmers to deploy such a complex
strategy can severely hamper their productivity. Deploying this in
the OS will necessitate changes in both the OS and the program,
and a tighter integration of the two, something that is going to be
challenging in future computing environments, such as cloud com-
puting, with potentially several complex software layers between
them.

Varuna is a runtime system that implements the above strategy
with no modifications to the program, the OS or any other entity.
It comprises two components, shown in Figure 2: an Analytical
Engine, and a Parallelism Manager. The two components and
their operations are summarized next.
Analytical Engine. The Analytical Engine (AE) continuously
monitors changes in the operating conditions using hardware per-
formance monitoring units, models the program’s dynamic execu-
tion behavior to estimate the non-algorithmic effects, and deter-
mines the optimum DoP. The high-level operations of the AE are
as follows:

1. Establish the relationship between the program’s instantaneous
DoP, instantaneous performance and the non-algorithmic ef-
fects.

2. Using this information, determine the optimum DoP, Popt, for
a given efficiency metric.

3. Passively monitor the program performance for changes, as the
parallelism manager employs Popt parallelism for the program.

4. Go to step 1 if the operating conditions change.

To establish the relationship between the program’s instanta-
neous DoP, instantaneous performance and the non-algorithmic ef-
fects, the AE employs a novel, holistic and resource agnostic scal-
ability model. It uses the model to dynamically determine the opti-
mum DoP for two different efficiency metrics, execution time and
resource consumption. These details are described in §3.
Parallelism Manager. The Parallelism Manager (PM) automati-
cally regulates the execution of program’s parallel computations to
match the DoP determined by the AE. To achieve this requires the
following four capabilities:

• Ability to decouple program-level parallelism (software threads
or tasks) from hardware threads so that the DoP can be changed
dynamically without altering the program or the OS,

• Ability to transparently pause long running computations when
decreasing the DoP, and resume and/or migrate them when
increasing the DoP,

• A mechanism to balance the remaining workload in the pro-
gram while altering the DoP, and

• A mechanism to ensure that the program’s forward progress is
not affected while regulating the DoP (critical for programs
using synchronization objects, such as locks and conditional
variables, to manipulate shared data).
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Figure 2. Varuna’s system architecture.

To realize the above capabilities, the PM deploys a primi-
tive called a virtual task (vtask). Vtasks abstract hardware threads
into logical cooperative tasks [2, 4] to which a program’s com-
putations, that comprise the program’s software threads/tasks are
mapped. The vtasks, in turn, are dynamically scheduled onto hard-
ware threads. Each vtask maintains the state of the current compu-
tation mapped on to it using contexts (described in § 4), allowing
the PM to transparently pause/resume/migrate a computation by
saving/restoring its corresponding vtask’s context. It also includes
the state necessary for the PM to ensure the computations’ forward
progress even as their execution is regulated. More details on vtasks
are given in §4.

Figure 2 summarizes the PM’s operations. As a parallel pro-
gram begins to execute and starts making its thread create or
task spawn requests, a Vtask Generator (VG) transparently inter-
cepts these requests, nullifies them and creates vtasks instead. The
VG then reassigns the thread’s/task’s parameters (pointer to actual
computation and its arguments) onto vtasks and enqueues them into
a vtask pool. A Resource Mapper (RM) then assigns the vtasks
from the vtask pool, to the dynamically varying pool of hardware
threads, as determined by the Analytical Engine. The RM is also re-
sponsible for dynamically controlling the execution of vtasks (sus-
pending, resuming and migrating) as well as ensuring a program’s
forward progress. These details are described in §4.

3. Analytical Engine
The Analytical Engine (AE) models the non-algorithmic effects,
using Amdahl’s law, to understand the dynamic relationship be-
tween artificial sequentialization, artificial acceleration, and the
achieved performance. We present the model, and derive from it
the optimum DoP formulae for two efficiency metrics: MIN(time),
which minimizes the execution time, and MIN(consumption),
which minimizes the CPU consumption-execution time product.
These are two popular pricing models employed in cloud-based
services. The former, time-based pricing, used in Amazon’s EC2
and Microsoft’s Azure, gives a program a fixed number of cores
and charges for how long they are used; thus minimizing execution
time is important. In the latter, consumption-based pricing, used by
VMware, the pricing depends on the average number of cores and
the duration of their use.

3.1 Modeling Non-algorithmic Effects
According to Amdahl’s law, the speedup S(P ) of a program, whose
serial execution time is T (1), comprising a parallel region tp, and
a serial region ts, when employing a DoP of P , is:

S(P ) =
T (1)
tp
P

+ ts
; where T (1) = tp + ts (1)
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Figure 3. Speedup (σ(P )) and qc(P ) trends of ReverseIndex and
Barneshut on Opteron.

Amdahl’s law ignores the non-algorithmic effects and assumes
that the parallel region is perfectly parallelizable, i.e., speedup in
the parallel region is P . In reality, the parallel region can incur
artificial sequentialization and benefit from artificial acceleration.
Further, both effects vary wrt P . To account for these effects, let
tq(P) be the additional time incurred due to artificial sequentializa-
tion and tc(P) be the time saved due to artificial acceleration, when
employing a DoP of P . Then the new speedup, S′(P ), is:

S′(P ) =
tp + ts + tq(1)− tc(1)
tp
P

+ ts + tq(P )− tc(P )
(2)

Since we are concerned with the net impact of the non-
algorithmic effects, we combine the two quantities, tq(P ) and
tc(P ) into tqc(P ) = tq(P ) − tc(P ). Equation 2 captures the
impact of non-algorithmic effects on a program’s overall perfor-
mance, which includes both parallel and serial regions. However,
we are only concerned with the impact of these effects when the
program is executing in parallel, i.e., P > 1, since they arise only
in the parallel region. Therefore, tqc(1) is zero. Further, the term
ts can be eliminated, since it is applicable only to the serial region
(when P = 1). Accordingly, for the speedup, σ(P ), obtained in
the parallel region, Equation 2 becomes:

σ(P ) =
tp

tp
P

+ tqc(P )
=

1
1
P
+

tqc(P )

tp

, where P > 1 (3)

Let qc(P ) =
tqc(P )

tp
. From Equation 3 it follows that:

qc(P ) =
1

σ(P )
− 1

P
(4)

qc(P ) provides insights into how the execution of the program’s
parallel region is influenced by the current operating conditions.
A positive qc(P ) signifies artificial sequentialization, a negative
qc(P ) signifies artificial acceleration, and a zero value indicates
perfect speedups. An increase in qc(P ) with an increase in P in-
dicates that artificial sequentialization is dominating, whereas a de-
crease in qc(P ) indicates that artificial acceleration is dominat-
ing. A stable qc(P ) indicates that these factors are not influenc-
ing the program’s scalability. Further, when increasing parallelism
from P1 to P2, if qc(P2) > qc(P1) and qc(P2) > 1

P2
, then

σ(P2) < σ(P1), i.e., the increase in artificial sequentialization
due to the increase parallelism has resulted in performance degra-
dation.

Figures 3(a) and 3(b) illustrate these aspects. They plot the
measured speedup, σ(P) (primary vertical axis), and the computed
qc(P ) (secondary vertical axis) for two of our programs, Rever-
seIndex and Barneshut, respectively, with varying DoP (P ), on one
of our experimental platforms, Opteron (details are provided in §5).
ReverseIndex processes files and places significant demands on the

disk bandwidth. Even modest attempt at parallel execution results
in disk contention, indicated by the higher and increasing values of
qc(P ). Between P = 2 and P = 3, the program scales even if
qc(P ) increases, because qc(P ) is less than 1

P
. But when P ex-

ceeds 3, qc(P ) exceeds 1
P

, resulting in slowdown.
Barneshut is highly scalable and has few contention concerns.

In contrast to ReverseIndex, Barneshut exhibits opposite trends in
qc(P ). When the parallelism increases, not only does the number
of processors change but also the cumulative size of the caches.
As the total available cache size increases, more of Barneshut’s
working set fits in it, reducing the memory access time. This causes
qc(P ) to reduce, providing additional speedup from P = 2 to
P = 8. Even when qc(P ) remains relatively constant, from P = 8
to P = 16, Barneshut continues to speed up. Hence stable or
decreasing qc(P ) indicates that additional parallelism is likely to
improve performance.

By computing qc(P ) from measured σ(P) (speedup of the par-
allel region) and using these observations, we can determine the
optimum DoP for the above-mentioned efficiency metrics, as de-
scribed next.

3.2 Optimizing for MIN(time)
We can obtain the optimum DoP, Popt t that minimizes the exe-
cution time (the inverse of σ(P)) of the parallel region by simply
differentiating Equation 3 wrt to P and equating it to zero as fol-
lows:1

d 1
σ(P )

dP
= − 1

P 2
+
dqc(P )

dP
= 0 ;Popt t =

√
1

dqc(P )
dP

(5)

where dqc(P )
dP

is the rate of change of qc(P ) or the gradient of
the qc(P ) curve at a given P . Note that Equation 5 is applica-
ble only when dqc(P )

dP
is positive, as in the case of ReverseIndex

(Figure 3(a)). A negative or zero dqc(P )
dP

, however, as in the case
of Barneshut (Figure 3(b)), indicates that the program is benefit-
ing from more parallelism. Hence, as many resources as possible,
Pmax, may be allocated to the program. Amending Equation 5 with
boundary conditions we get:

Popt t =


√

1
dqc(P )

dP

if dqc(P )
dP

> 0

Pmax if dqc(P )
dP

≤ 0

(6)

To apply Equation 6 as an online metric, the AE needs to
compute qc(P ), dqc(P )

dP
, and Pmax dynamically.

To determine qc(P ), AE needs to compute σ(P) empirically
(Equation 4), and this requires computing a baseline performance
for the parallel region. To do this, whenever the program (re-)enters
a parallel region (indicated by either thread(task) create or
thread(task) barrier calls), the AE sets P = 1 for a pre-
defined time period (100ms in all our experiments2), monitors its
execution and establishes a baseline performance (Perf(1)). The
exact quantity to represent performance depends on the type of
the program. For example, for mobile class programs, Instructions
per Second (IPS) is a good measure. For server class programs,
Requests Per Second (RPS) is a suitable measure. In this paper,
we use IPS to represent performance. We make a fair assumption
that spin-locks in program code are rare and that users use standard
synchronization interfaces to access their critical sections. Spin-

1 For the purpose of this derivation, we assume that P is a continuous
variable, although, in reality, it is discrete.
2 We chose this interval to also capture OS context switching overheads.



locks can occur in the OS and we avoid this issue by not counting
the OS instructions.

Once the baseline performance is measured, AE switches the
DoP to P , allows the program to run for 100ms and measures its
performance (Perf(P )). σ(P ) can then be obtained by dividing
Perf(P ) by Perf(1). The AE substitutes this value in Equation 4
to obtain qc(P ).

To obtain estimates of dqc(P )
dP

, the AE uses linear regression,
based on the ordinary least squares estimation, on a subset of qc(P )
values. The alternative, sweeping through all the values of P , to
obtain the corresponding qc(P ), and from these to compute dqc(P )

dP
,

may not be an effective solution, especially when the operating
conditions change frequently. Although linear regression may lead
to errors, our experiments (§5) and residual analysis [24] show that
it is adequate and leads to better results than the state-of-the-art
adaptive methods, which resort to time-consuming iterative search
strategies.

Based on our experiments for 1 < P ≤ 24 (our experimental
platforms have a maximum of 24 hardware contexts), linear regres-
sion using data for three parallelism configurations (in addition to
P = 1 for which qc(1) = 0) gave sufficiently accurate estimates
of dqc(P )

dP
3. Hence, we restrict our measurement to three points (P1,

P2 and P3) in order to make quick decisions. In §5, we demonstrate
that this approach is sufficient to make informed decisions to arrive
at the optimum configuration.

The AE computes performance at three different DoPs, P1 = 2,
P2 = N

2
and P3 = N , where N is the maximum number of

processing resources in the system. σ(P1/P2/P3) can then be ob-
tained by dividing the corresponding performance measures by the
baseline performance. The AE verifies that these values are indeed
greater than one. Otherwise, it will switch to sequential execution.
These values are substituted in Equation 4 to get qc(P1/P2/P3),
which are then used to obtain dqc(P )

dP
by applying the least square

method. The AE then computes Popt t by substituting dqc(P )
dP

in
Equation 6. If dqc(P )

dP
is negative, Pmax is simply set to N .

3.3 Optimizing for MIN(consumption)
To find the optimum parallelism, Popt c, that minimizes the re-
source consumption cost, we want to minimize the product P ×

1
σ(P )

. Similar to the first metric, Popt c can be obtained by simply
differentiating P × 1

σ(P )
wrt P , and then equating it to zero. In the

interest of space, we present the final equation below:

Popt c =


− qc(P )

dqc(P )
dP

if qc(P )
dqc(P )

dP

< 0

Pmin if dqc(P )
dP

> 0 & qc(P ) > 0

Pmax if dqc(P )
dP

≤ 0 & qc(P ) ≤ 0

(7)

A negative qc(P )
dqc(P )

dP

indicates net artificial acceleration and hence

efficient resource consumption (Figure 3(b)). In this case Popt c is
computed using the formula − qc(P )

dqc(P )
dP

. qc(P )
dqc(P )

dP

will yield multiple

values depending on the value of P . The AE picks the one with
minimum value of qc(P )

dqc(P )
dP

since it signifies the least contention

and hence most efficient consumption of resources. If both dqc(P )
dP

and qc(P ) are positive, the program is not scaling due to artificial
sequentialization, and hence the resources are not being consumed
efficiently (Figure 3(a)). In this case, minimum resources, Pmin,
are allocated to the program. If both dqc(P )

dP
and qc(P ) are zero or

negative, the program is scaling linearly or superlinearly and hence,
as many resources as possible, Pmax, may be allocated to it.

3 Higher values of P may require more data for accurate estimates.

dqc(P )
dP

and qc(P ) are computed dynamically using the same
methodology described in § 3.2. If dqc(P )

dP
> 0 & qc(P ) > 0,

Pmin is simply set to 1. If dqc(P )
dP

≤ 0 & qc(P ) ≤ 0, Pmax is set
to N .

3.4 Monitoring, Recalibrating and Periodic Diversification
Once Popt is determined for the desired efficiency metric, the AE
conveys the DoP value to the PM. It then enters into a passive
monitoring mode where it periodically monitors the performance
with Popt parallelism until its value changes by more than a pre-
defined threshold (10% in our experiments). At this point, the AE
switches the DoP to 1 and repeats the process described in § 3.2 to
recalibrate Popt. To ensure that the parallel execution is not trapped
in a local optimum, the AE, while in passive monitoring mode,
periodically diversifies (at 3s granularity in our experiments) by
switching the DoP to 1 and repeating the search for a new Popt with
different, randomly chosen, P1 and P2 values. Our experiments
showed this scheme to be adequate.

4. Parallelism Manager
The Parallelism Manager (PM) receives the Popt value from the AE
and uses it to control the number of inflight computations. To be
able to continuously and transparently alter the number of concur-
rent computations, the PM maps units of computation designated
for parallel execution, a task in task-based parallel programs, or a
thread in multithreaded programs, to vtasks. Vtasks are closest in
spirit to fibers [2], an implementation of cooperative tasks in the
Windows OS, but with three key differences. First, vtasks preserve
the same programming semantics as that of threads/tasks and re-
quire no additional programming effort to create and manage their
scheduling and context switches, providing the flexibility to trans-
parently control their execution, whereas fibers must be explicitly
created and managed by the program. Second, the primary use of
vtasks is to control program-level parallelism to match the vary-
ing number of hardware threads, whereas, the primary use of fibers
is to avoid excessive OS thread context switching. Finally, vtasks
are progress-aware entities. Their contexts include additional state
needed to ensure forward progress of programs while controlling
their execution. Using fibers as is for Varuna’s objectives can ham-
per a program’s forward progress (§ 4.3).

As the program executes, the PM maintains a pool of vtasks.
When the AE increases the DoP, the PM assigns more vtasks from
the vtask-pool to the hardware threads. When the AE decreases
the DoP, the PM suspends executing vtasks and returns them to
the vtask-pool until they can be resumed later. To perform such
control, the PM maintains the state of each vtask, tracks its status,
and schedules its execution. Since concurrent computations can
interact through shared state, care is needed to ensure their forward
progress, especially in multithreaded programs. We discuss these
aspects next.

4.1 Vtask Context
To enable suspension and resumption of a vtask, similar to an
OS thread, each vtask contains a vtask context block (VCB). The
VCB contains the following state: (1) a call stack to maintain
the activation records of functions invoked from the vtask, (2)
a Program Counter (PC) that specifies the address of the next
instruction in the vtask control flow to be executed, (3) user-level
registers that contain data generated by the vtask computation, (4)
a Stack Pointer (SP) that points to the next entry in the vtask’s call
stack, and (5) a user mode mutex counter that contains the number
of mutex variables currently acquired by the vtask computation
when executing in user mode.
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Figure 4. Vtask operations.

The first four quantities are the standard elements necessary to
save an execution’s state. The user mode mutex counter is needed
to ensure forward progress of programs when varying the number
of inflight vtasks (§4.3). To implement the call stack, we employ
an approach inspired from Goldstein, lazy threads [17], originally
proposed to reduce the overheads of nested parallel function calls.
The strategy supplies each vtask with a stacklet — a linear stack
that stores the activation records of functions invoked by computa-
tions mapped on to the vtask. To suspend a vtask, the PM saves all
user-level registers and the PC on the vtask’s stacklet, so that the
stacklet is a self-contained record of the context state. To resume
the vtask, the PM restores registers from the stacklet.

4.2 Managing Vtasks
Figure 4(a) depicts the state transition diagram the PM uses to
manage vtasks, from their creation to destruction. When a vtask is
created by the Vtask Generator (VM) (Figure 2), it is in an inactive
state. A vtask moves to an active state when the Resource Mapper
(RM) assigns it for execution, either when the DoP is increased
or when a current hardware thread becomes free. To decrease the
DoP, the RM pre-empts excess vtasks when they reach a safe point
(discussed in § 4.3), transitions them to a blocked state, and moves
them back to the vtask pool. Safe point pre-emption is necessary
to ensure a vtask’s forward progress (§ 4.3). When decreasing DoP,
the RM moves vtasks to a blocked state in the order in which they
arrive at the safe point. A vtask is also moved to a blocked state
when it arrives at a barrier and the barrier condition is not satisfied.
When assigning vtasks for execution, the RM prioritizes vtasks
that have waited the longest, to ensure fairness. Finally, if a vtask
finishes its assigned quota of work, it transitions to a destroy state
before its state is destroyed.

To efficiently schedule vtasks, the RM employs a Cilk-style
work stealing scheduler [15]. At the start of the program execu-
tion, the RM creates a pool of hardware threads, one per hard-
ware context allocated to it by the OS. A double-ended work queue
(deque) is then assigned to each thread in the system. A thread
schedules vtasks for execution by queuing them in its work deque.
Each thread seeks vtasks from its own deque, failing which it steals
from someone else’s deque. The RM uses lazy task creation [26]
to avoid memory explosion when creating vtasks. It also uses a
randomized task-stealing policy to balance the load across the exe-
cuting threads.

4.3 Ensuring Forward Progress
Vtasks are cooperative tasks and are not pre-emptively scheduled,
unlike threads. Tasks in task-based programs are usually indepen-
dent, and can run to completion without communicating with each

other. This, however, may not be the case with threads in multi-
threaded programs. Hence, arbitrarily pausing/resuming a vtask’s
execution in a multithreaded program can potentially affect the for-
ward progress of other vtasks. A vtask’s progress can be affected
when it is waiting on: (1) a mutex lock held by a blocked vtask,
or (2) a signal from a blocked vtask (e.g., a consumer computation
waiting to receive data from a producer computation, in a producer-
consumer style program).
Handling Blocked Mutexes. To avoid forward progress issues due
to blocked mutexes, the RM pauses a vtask only when it reaches
a safe point in its execution. A safe point is a control point in the
vtask execution flow at which the vtask is currently executing in
user mode and does not hold any user mode mutex locks.

Ensuring that a vtask is executing in user mode is necessary to
avoid suspending the vtask after acquiring a kernel-level (spin)lock.
Utilizing the fact that the OS will release all kernel locks before
returning to user-level, the RM can monitor all switches between
user-level and kernel-level. However, such monitoring is hard as it
requires modifying the OS calls or requires prediction mechanisms
based on monitoring privileged instructions [35]. Instead, the RM
takes a much simpler approach. It suspends a vtask only if it reaches
one of the following synchronization points in the control flow:
before or after a mutex lock or unlock, respectively, after reaching a
barrier, and before or after a conditional wait or signal, respectively.
These points are guaranteed to be free of kernel-level locks. If none
of the above points are reached, the RM simply waits until the vtask
completes its execution.

Ensuring that a vtask is not suspended when holding any user-
level mutex locks is necessary to avoid unsafe pre-emptions when
in user mode. For example (Figure 4(b)), if a vtask holds a user-
level lock, L1, and is suspended when it was attempting to acquire a
second user-level lock, L2, other vtasks waiting for L1 cannot make
any forward progress. To address this problem, each vtask main-
tains a count of the number of mutexes it has currently acquired in
a user mode mutex counter. It increments the counter when acquir-
ing a user-level lock and decrements it when releasing the same.
The RM leverages this information and ensure that a vtask is never
suspended until its counter becomes zero.

Many multithreaded programs have few safe points since these
programs seldom synchronize. Hence they provide few opportuni-
ties to control the parallel execution of vtasks. In such cases, more
safe points can be created by spawning more vtasks than the ac-
tual number of hardware contexts. (Note that task-based programs
already create many more tasks than actual hardware threads, nat-
urally achieving this.) We observe that many multithreaded pro-
grams are generally written to take the number of threads as an
argument, which is used to divide the work into as many indepen-
dent portions at run-time. Hence spawning more threads, similar to
tasks, is as simple as altering the command line argument to the
program. As we demonstrate in §5, spawning a high number of
vtasks in Varuna does not have the same overheads as spawning a
high number of threads, due to the following reasons: (1) vtasks are
userspace objects and hence the cost of switching between them is
extremely low, (2) the RM employs lazy vtask creation [26], which
avoids memory explosion.
Handling Blocked Signals. Signaling is another way threads in
multithreaded programs communicate with each other (task-based

#S #HC SMT Freq. Cache Mem. LK
Opteron-8350 4 16 no 2.1GHz 16M 16G 3.4.4
Xeon E5-2420 2 24 yes 1.9GHz 15M 32G 2.6.32

Table 2. Machine configurations. S: Sockets, HC: Hardware Con-
texts, SMT: Simultaneous Multi-Threading, and LK: Linux Kernel.



Program Characteristics Opteron Xeon Xeon-Time(s)
T/V# DoP

(time)
DoP
(con)

T/V# DoP
(time)

DoP
(con)

Isolated Multi-
programmed

1 2 3 4 5 6 7 8 9 10
Barneshut[22] Barriers 10K/10K(16) 16(16) 10(10) 10K/10K(24) 24(24) 20(20) 16.2 75.4

Canneal[8] Atomics & barriers 96/96(16) 16(16) 10(10) 96/96(24) 24(24) 5(5) 89.1 165
Dedup[8] Pipeline-parallel 16/16(16) 16(16) 8(8) 24/24(24) 24(24) 16(16) 14.2 55.1

Fluidanimate[8] Locks & barriers 64/64(16) 16(16) 10(10) 64/64(24) 24(24) 16(16) 62.5 94.5
Histogram[31] OS locks 1024/1024(16) 1(1) 1(1) 1024/1024(24) 1(1) 1(1) 15 23

Bzip2[16] Pipeline-parallel 1566/16(16) 16(16) 11(11) 1566/24(24) 24(24) 20(20) 23.2 56.2
RE[5] Locks 100K/100K(16) 8(8) 1(1) 100K/100K(24) 12(12) 1(1) 33.1 65.6

ReverseIndex[31] Disk-intensive 78371/16(16) 3(3) 1(1) 78371/24(24) 16(16) 1(1) 72.3 130.1
Swaptions[8] Data-parallel 384/384(16) 16(16) 10(10) 384/384(24) 24(24) 23(23) 86.7 135.2

WordCount[31] Parallel-reduction 256/256(16) 16(16) 9(9) 256/256(24) 24(24) 20(20) 3.2 6.4
X264[8] Pipeline-parallel 512/512(16) 16(16) 9(9) 512/512(24) 24(24) 19(19) 89.1 127.3

Blackscholes[8] Data-parallel 10K/10K(16) 16(16) 9(9) 10K/10K(24) 24(24) 22(22) 36.3 87.5

Table 3. Programs used in experiments and key operational data for different multithreaded versions. T/V#=Thread/vtask count
for PT FG/Varuna configurations with default PT CG count in parantheses. DoP(time/con)=Optimum DoP dynamically chosen for
MIN(time/consumption) by Varuna with the best static DoP in parantheses.

programming models usually do not support signaling). If a compu-
tation’s execution is dependent on another, there are two generic ap-
proaches to mitigate starvation among computations which are not
executing concurrently: (1) avoid pre-empting a computation that
is responsible for producing the signal/data to other computations,
or (2) pro-actively pre-empt an executing computation in favor of
executing a more productive computation. While the first approach
is more efficient, it requires precise information about the producer,
which is not readily available from the existing multithreaded ab-
stractions. Hence, to avoid starvation issues due to blocked signals,
the RM takes the second approach. Everytime a vtask invokes a
cond wait call, if there are more vtasks in the vtask pool waiting
to be scheduled for execution, the RM suspends the current vtask,
enqueues it at the tail of the vtask pool and schedules the oldest
vtask in the vtask pool in the former’s place. In this way, each com-
municating vtask gets a slice of the resource to execute, avoiding
starvation and potential deadlock situations.

Currently, the RM can automatically ensure forward progress
when programs use standard synchronization APIs exported by
programming models such as Pthreads and TBB. If the program
uses spin loops or home-grown synchronization primitives, the
RM requires programmers to identify the call sites to the runtime.
Automatically determining these primitives is a subject of future
work.

5. Evaluation and Results
To evaluate Varuna’s efficacy we applied it to threaded and task-
based programs, optimizing them for execution time and resource
consumption. We tested under two execution environments, iso-
lated and multiprogrammed, on two stock multiprocessor machines
with different microarchitectures. We report the total execution
time, the energy consumed and the resource consumption cost for
each program, along with the harmonic mean (HM) for the entire
benchmark set, when optimizing for both the metrics. In the ex-
periments, we sought to assess the following: (1) Varuna’s over-
heads, (2) benefits of applying vtasks to unmodified threaded and
task programs, (3) further benefits of applying adaptive optimiza-
tion to them, (4) effectiveness in highly dynamic operating con-
ditions, and (5) agility in responding to changes. We present key
results that highlight the major trends from our extensive experi-
ments.
Machines, Benchmarks and Baselines. Table 2 provides the de-
tails of the two machines used in the evaluation. To demonstrate
Varuna’s generality, we present results of select programs from dif-

ferent suites that exhibit different characteristics. Table 3 shows the
list of threaded programs (column 1) we used along their charac-
teristics (column 2). We used large input sizes for each applica-
tion obtained from their respective suites (not shown). The base-
line threaded versions use the fast NPTL Pthreads library (provided
with the Linux kernels). To test Varuna with task-based programs,
we applied Varuna to five TBB programs (Barneshut, Histogram,
Bzip2, RE, and ReverseIndex).

We also compared Varuna to two recent proposals: Feedback
Diven Threading (FDT) [34] and Parcae [30]. FDT and Parcae are
adaptive approaches applicable only to task-based programs. FDT
can adapt to contention for locks and memory bandwidth. Parcae is
more general, but optimizes for only one metric, execution time. It
uses a hill climbing search method to adapt to dynamic changes. We
faithfully implemented FDT mechanisms and a Parcae-like search
heuristic in the TBB runtime. Note that neither Parcae nor FDT
can be applied to threaded programs. Hence we compare them with
Varuna only for task-based programs.
Compilation Options. To operate with Varuna, the Pthreads and
TBB baseline programs were simply re-linked with a -lvaruna
flag, instead of -lpthread and -ltbb, respectively. We compiled
all the applications (for Pthreads, TBB and Varuna) with GCC 4.4.3
using -O3 optimization and the architecture flag, -march=native.
Varuna automatically detects the number of hardware contexts in a
system and uses it as the default number of hardware threads.
Configurations. The results to follow in the next section show
data for the configurations listed in Table 4. All data for a given
experiment are normalized to PT CG, which serves as the base case
for comparison, and hence is not shown in the figures. Columns 3
and 6 in Table 3 list the thread and vtask count for the PT FG and
Varuna configurations, for the two platforms, Opteron and Xeon,
respectively. The higher thread/vtask values are chosen based on
the input size and are spawned by giving a different parameter to the
command line; the source code is left untouched. The task count for
the TBB versions are same as PT FG. For multithreaded versions
of Dedup, Bzip2 and ReverseIndex we did not spawn a higher
number of vtasks as they are already written with enough periodic
safe points and dynamic load balancing capabilities. To measure
the instantaneous IPS needed to compute qc(P) in the scalability
model, we used the PAPI library APIs [27]. Energy was measured
using a Wattsup meter to which the experimental machines were
connected.
Results Exposition. The exposition of the results is grouped along
the lines of the execution environments, isolated and multipro-



Config. Description
PT CG Pthreads programs compiled with -lpthread with the

default number of threads
PT FG Pthreads programs compiled with -lpthread executing

with a higher number of threads (spawned by changing
the command line argument)

TBB TBB programs compiled with -ltbb with default num-
ber of tasks and threads

Parcae [30] State-of-the-art adaptive scheme implemented in TBB
FDT [34] State-of-the-art adaptive scheme implemented in TBB

V base Pthreads programs compiled with -lvaruna with adap-
tation capability disabled (number of threads fixed to de-
fault value and never varied during runtime)

V PT T Pthreads programs compiled with -lvaruna optimized
for MIN(time)

V PT C Pthreads programs compiled with -lvaruna optimized
for MIN(consumption)

V TBB T TBB programs compiled with -lvaruna optimized for
MIN(time)

V TBB C TBB programs compiled with -lvaruna optimized for
MIN(consumption)

Table 4. Different configurations used in experiments.

grammed. The first tests Varuna’s basic capabilities (§ 5.1). The
second stress tests Varuna in a range of highly dynamic, multipro-
grammed operating conditions (§ 5.2).

5.1 Isolated Environment
An isolated environment is one in which each program is the only
benchmark program running on our experimental platforms.
Varuna overheads.
Result 1. Varuna’s vtask capability incurs negligible overheads
(V base).

Figure 5 shows the results of threaded programs on the Xeon
(although not shown, trends on the Opteron are similar). V base
incurs no noticeable overheads as compared to PT CG despite cre-
ating a large number of vtasks for several programs (Table 3, col-
umn 6). This is because vtasks are userspace objects and have neg-
ligible creation and preemption overheads. For some of the pro-
grams (Barneshut, Dedup, Swaptions and Wordcount), V base ac-
tually improved performance. This is because these programs ex-
hibit irregular memory access patterns and V base is able to im-
prove their efficiency by applying: (i) lazy vtask creation (which
avoids memory explosion), and (ii) fine-grained dynamic load bal-
ancing via randomized work-stealing. V base reduces the execu-
tion time (Figure 5(a)) and energy consumption (Figure 5(b)) as
compared to PT CG on average (HM) by 6% and 3%, respectively,
on the Xeon. On the Opteron, it reduces execution time and energy
on average (HM) by 5% and 2%, respectively (not shown).
Result 2. PT FG does not benefit programs as does V base.

Although PT FG creates fine-grained work like V base, it de-
grades performance in most cases as compared to PT CG as shown
in Figure 5. This is due to the high overheads involved in creating a
large number of OS threads. Since each thread seeks OS resources,
large number of threads can create contention, e.g., in Barneshut
due to frequent barrier synchronization, in Histogram due to page
table lock contention [9] and in RE due to memory exhaustion.
Optimizing MIN(time).
Result 3. Varuna further improves time and energy efficiency of
threaded programs that exhibit contention to shared resources
(V PT T) .
Result 4. Varuna is platform and resource-agnostic and can handle
contention to any hardware/software resource.
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Figure 5. Execution time and energy comparison of threaded pro-
grams on the Xeon.

Result 5. Varuna does not degrade efficiency of non-contending
programs.

Three of our threaded benchmark, ReverseIndex, Histogram
and RE exhibit contention for shared resources. For them, as the
DoP(time) columns 4 and 7 in Table 3 show, Varuna (V PT T)
chooses a DoP far less than the maximum (e.g., 3, 1 and 8, re-
spectively on the 16-core Opteron) to alleviate the contention.

ReverseIndex exhibits significant disk activity and hence its
performance depends on the parallelism that the disk bandwidth
can handle. The best parallelism point for ReverseIndex is different
on different machines. On the Xeon, it scales up to 16 threads,
whereas on the Opteron it does not scale beyond 3 (Figure 3(a)).
As shown in Figure 5, V PT T reduces ReverseIndex’s execution
time and energy by 6% and 34%, respectively, on the Xeon, and
2% and 2%, respectively, on the Opteron (not shown), as compared
to PT CG. Reductions in execution time are modest because the
performance of this benchmark does not degrade significantly for
higher thread counts wrt the best DoP. The energy savings are
greater on the Xeon since with V PT T, some processors are idle
and are put into deep sleep states, a feature that is not available in
the Opteron.

Histogram scales poorly due to contention to the page table.
Anything beyond the sequential execution degrades its perfor-
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Figure 6. Execution time and energy comparison of task-based
Varuna, TBB, Parcae and FDT on the Xeon.
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Figure 7. Resource consumption cost on the Xeon.

mance. It is an example of a likely future scenario, where an ex-
ternal software component causes contention, over which the pro-
grammer has no control. By dynamically adapting the number of
hardware threads, V PT T is able to reduce its execution time and
energy by 26% and 57%, respectively, on the Xeon and 20% and
20%, respectively, on the Opteron (not shown).

RE, a packet de-duplicating program, has abundant packet-level
parallelism but has a lock protected hash table that each packet must
access serially. The program incurs degradation both in execution
time and energy beyond a thread count of 8 on the Opteron and
12 on the Xeon (Table 3, columns 4 and 7). V PT T reduces
the execution time and energy consumption by 22% and 27%,
respectively, on the Xeon and by 8% and 12%, respectively, on
the Opteron (not shown). Thus, Varuna can handle contention to
different resources.

For non-contending programs, V PT T incurs negligible perfor-
mance degradation (less than 1%), primarily on the Opteron (not
shown), due to the overheads associated with varying the number
of threads.

V PT T reduces the execution time and energy consumption as
compared to PT CG on average (HM) by 11% and 18%, respec-
tively, across all the programs on the Xeon. On the Opteron, it re-
duces execution time and energy on average (HM) by 9% and 10%,
respectively.
Handling task programs.
Result 6. Varuna is as effective for task programs as it is for
threaded programs.
Result 7. Varuna outperforms state-of-the-art approaches that are
applicable only for task programs.

Figure 6 shows Varuna’s (V TBB T) time and energy efficiency
for the MIN(time) metric when applied to the unmodified TBB
programs, on the Xeon. It also compares the results with Parcae
and FDT, two of the recent adaptive approaches. FDT employs
a resource-specific mechanism to detect and avert contention. It
can detect contention to locks (RE), however, it cannot detect con-
tention to either the disk bandwidth (ReverseIndex) or the page
table (Histogram). While Parcae improves performance and en-
ergy consumption of all contending programs (RE, ReverseIndex,

Histogram), its slow hill climbing search-based approach degrades
time and energy efficiency of non-contending programs (Barneshut
and Bzip2) over PT CG baseline. Varuna, on the other hand, due
to its holistic and quick adaptation, improves over PT CG on an
average (HM) by 15%, and outperforms FDT by 8% and Parcae
by 14%. The average energy savings are even higher, 31% over
PT CG, 23% over FDT and 21% over Parcae.
Optimizing MIN(consumption).
Result 8. Varuna can better optimize for the resource consumption
metric than the state-of-the-art approaches.

Recall that resource consumption is the product of the aver-
age number of hardware threads used by the program and its total
execution time. Figure 7 shows the resource consumption cost of
both threaded and task programs. On an average (HM), V PT C
reduces the consumption cost by 84% for multithreaded programs
over PT CG and outperforms V PT T by 15% (Figure 7(a)). For
task programs, V TBB C, on an average, reduces the consump-
tion cost by 93% and outperforms V TBB T by 14% (Figure 7(b)).
FDT and Parcae are unable to optimize for this metric. Parcae, sim-
ilar to V TBB T, applies its MIN(time) adaptation, which inciden-
tally also improves resource consumption, but only to some extent.
V TBB C outperforms Parcae by 38% and FDT by 68%.

Figures 5 and 6 also show the time and energy efficiency when
Varuna (V PT C and V TBB C) optimizes for MIN(consumption)
metric. When compared to V PT T (V TBB T), V PT C
(V TBB C) degrades the execution time and energy consumption
of several programs. This is because the MIN(consumption) met-
rics essentially permits use of a resource only if it is effectively
utilized. For example, it picked a DoP of 10 for Barneshut on the
Opteron because the program speeds up linearly up to 10 threads,
beyond which the gains are only sub-linear (Figure 3(b)). Even a
trivial increase in parallelism of histogram, RE and ReverseIndex
increases the contention to resources. When applied for this met-
ric, Varuna throttles back their DoP to 1 (Table 3, columns 5 and
8). For threaded programs, on an average, V PT C degrades the
execution time and energy consumption by 12% and 18%, respec-
tively, as compared to V PT T. However, the average degradation
is significantly lower than PT CG, 1% in execution time and 2%
in energy. For task programs, V TBB C incurs 9% degradation in
execution time over PT CG. However, it saves the average energy
consumption by 12%.
Parallelism Determination Accuracy.
Result 9. Varuna always finds the best DoP regardless of the metric
and platform under consideration.

When adaptive optimization is applied, Varuna determines the
DoP as per the MIN(time) and MIN(consumption) metrics. Table 3,
columns 4 and 5 show the DoP for the Opteron, and columns 7
and 8 for the Xeon, for the two metrics, respectively. For both the
machines and metrics, Varuna does as well as the best static DoP
(shown in parantheses), which is determined by performing a full
static thread sweep.

5.2 Multiprogrammed Environment
To evaluate Varuna in multiprogrammed environments, we con-
sider three scenarios: (i) the first introduces a high degree of vari-
ability in resource capabilities, (ii) the second creates a highly mul-
tithreaded, oversubscribed environment with high context switch
rates, and (iii) the third creates an environment with benchmarks
with different resource demands. Experiments show that:
Result 10. Varuna continuously assesses and adapts parallelism to
dynamically changing conditions.
Result 11. Varuna responds much faster to changing conditions
than the state-of-the-art approaches and consequently performs
better for both the metrics.
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Figure 8. Comparison of search heuristics

Result 12. Varuna improves performance in the presence of both
adaptive and non-adaptive mix of co-scheduled programs.

PT FG results for these experiments are not shown since they
were poor (as was also the case in §5.1).
Adapting to Variabilities in Resource Capabilities. In this sce-
nario, we co-scheduled the benchmark programs with variable in-
stances of a highly cache- and memory-intensive program from the
SPEC2006 suite, mcf, on the Xeon. Specifically, we launched one
instance of mcf with our program and then added up to seven more
mcf instances, one at a time, at 2s granularity. We then reduced the
instances, by killing them one at a time, also at 2s granularity, un-
til the count reached one, and repeated the above process until our
program completes.

Figure 8(a) shows Varuna adapting Barneshut’s DoP to opti-
mize for the MIN(time) metric in response to the demands placed
by the varying number of mcf instances. The X-axis shows time
incremented in 100ms. There are two vertical axes: the primary
shows instantaneous speedup and the secondary shows instanta-
neous DoP. From t=8 to t=20, Barneshut executes with DoP=22.
At this point, there is only one co-scheduled instance of mcf. A
change in speedup at t=20 indicates that the resource capability
has changed due to the launch of a new mcf instance. At t=21,
Varuna reacts to the change by breaking out of the passive moni-
toring loop and restarts the search to assess the new optimum DoP.
It computes the speedups at DoP=2, DoP=12, and DoP=24 (Xeon
has 24 contexts) to compute dqc(P )

dp
and the new DoP. At t=28,

Varuna determines and establishes the new DoP to 20, and enters
the passive monitoring mode until it detects another change, e.g., at
t=40. Thus, Varuna continuously alters the parallelism to best suit
the dynamic variations in the execution environment.

Note that in Figure 8(a), there is no single best operating point
for Barneshut unlike in the isolated environment. FDT cannot han-
dle this scenario as it assumes static operating conditions and does
not have the ability to continuously adapt. It identifies the optimum
DoP, typically once at the beginning of the program or at the incep-
tion of every user-defined phase, and fixes that value for the rest of
the program/phase.

Figure 8(b) shows the adaptation using a Parcae-like search for
the same scenario. It begins to determine the optimum DoP at t=5,
like Varuna, but since it searches for the optimum by iteratively
trying different DoPs, it is unable to find the optimum immediately.
In this case, at t=20 it is still searching, when the operating con-
ditions change (due to the new mcf instance), causing it to restart
the search to adapt to the new conditions. As the figure shows, an
iterative search strategy can take longer to adapt to the conditions,
and if the conditions change rapidly, they may be far less effective
than Varuna.

Table 3 (columns 9 and 10) presents the execution times
achieved by the PT CG programs in this environment against the
isolated environment, on the Xeon. As it can be seen, all the PT CG
programs in this environment incur significant degradation (aver-
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Figure 9. Execution time of threaded programs when scheduled
with dynamically varying instances of mcf on the Xeon, relative to
PT CG running in the same environment (Table 3, column 10).

age of 1.93x). This is because of the additional contention caused
by the co-scheduled mcf instances not only to the shared resources,
but also to processing cores and private caches.

Figures 9 and 10(a) present the execution times achieved for
threaded and task-based programs, respectively, by Varuna relative
to PT CG for this multiprogrammed scenario (Table 3, column 10).
Energy savings are not presented since their trends looked similar
to the corresponding execution times. V PT T (V TBB T) reduces
the execution time of threaded (task) programs on an average by
26% (33%) as compared to PT CG. As compared to PT CG in the
isolated environment (Table 3, column 9), V PT T limits the aver-
age degradation to 1.47x. V TBB T outperforms FDT and Parcae
by 30% and 20%, respectively. Unlike in the isolated environment,
V PT C (V TBB C) reduces the average execution time by 14%
(25%) over PT CG and is only 12% (12%) slower than V PT T
(V TBB T). This is because, in this environment, a program re-
ceives fewer resources, due to sharing of resources with other pro-
grams, and hence the optimum DoPs computed by these metrics
are not far apart.

Figures 11 and 10(b) present the resource consumption cost
achieved by Varuna for threaded and task-based programs, respec-
tively, relative to PT CG. V PT C (V TBB C) reduces the aver-
age (HM) consumption cost for threaded (task) programs by 90%
(95%) over PT CG. However, it outperforms V PT T (V TBB T)
only by 6% (5%) since their optimum DoPs are similar. As in
the isolated environment, Parcae’s MIN(time) adaptation inciden-
tally improved the resource consumption cost by 60% over PT CG.
However, Varuna (V TBB C) outperforms FDT and Parcae by 92%
and 35%, respectively.
Adapting to Contention Due to Excessive Threads. In this sce-
nario, we successively launched 8 instances of our benchmark pro-
grams, with the same input, on the Opteron. Each instance creates
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Figure 10. Execution time and resource consumption cost of task-
based programs when scheduled with dynamically varying in-
stances of mcf on the Xeon.



0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1.1"

Bar
nes

hut
"
Bzi
p2"

Can
nea

l"
De
dup

"

Flu
ida

nim
ate

"

His
tog

ram
" RE"

Rev
ers

eIn
dex

"

Sw
apI

ons
"

Word
Cou

nt"
X26

4"

Bla
cks

cho
les
"

HM
"

Re
la
I
ve
"c
on

su
m
pI

on
"c
os
t" V_base" V_PT_T" V_PT_C"

Figure 11. Resource consumption cost of threaded programs when
scheduled with dynamically varying instances of mcf on the Xeon.

16 threads (maximum number of cores on that machine), A total
of 128 threads execute simultaneously in the platform, effectively
oversubscribing the system. An oversubscribed system increases
the context switch rate of threads (due to reduction in the allotted
time quanta per thread) which can lead to erratic program behav-
ior. For example, it may destroy the cache locality of a given thread
if the thread cannot be scheduled on the same core on which it
last ran, potentially degrading its performance. It may also increase
the contention to lock variables and create starvation in producer-
consumer style programs (Bzip2, Dedup and X264).

Figure 12 presents the execution time achieved by Varuna for
the threaded programs, when optimized for MIN(time) metric, rel-
ative to PT CG. Unlike PT CG, which tries to allocate resources
to all 128 threads at the same time, V PT T reduces the number
of threads employed for each instance individually, thereby avoid-
ing unnecessary context switches and hence its negative impact. It
reduces the execution time on an average by 11% over PT CG. Un-
like the previous scenarios, V base degrades the execution time for
some of the programs as compared to PT CG. This is due to the
interference caused by excessive context switching to its runtime
data structures.
Benchmarks with Different Resource Demands. Next we evalu-
ate Varuna’s effectiveness when different benchmarks with differ-
ent resource needs are co-scheduled. In the interest of space, we
present two case studies, without any figures.

In the first study, one instance each of Barneshut and Blacksc-
holes are launched simultaneously on the Xeon, each spawning 24
threads. Both the benchmarks can scale up to the maximum number
of hardware contexts on this platform and have no contention to any
of the resources when executed in isolation. But when these bench-
marks are co-scheduled, they have to contend for processing cores
and their corresponding private caches. Compared to the baseline
which relies on OS scheduling, Varuna reduces the execution time
of Barneshut instances and Blackscholes by 5% and 18%, respec-
tively, and the overall energy consumption by 18% for MIN(time).
For MIN(consumption), Varuna reduces the resource consumption
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Figure 12. Execution time when 8 instances of the same thread
program are scheduled together on the Opteron.

cost of Barneshut and Blackscholes by 11% and 29%, respectively.
In the baseline case, the OS time multiplexes the total 48 threads in
an arbitrary fashion. Varuna avoids this multiplexing by ensuring
that the total number of threads that the benchmark employs does
not exceed the number of available cores.

In the second study, we successively launched one instance of
ReverseIndex and one instance of Barneshut on the Xeon. As seen
in §5.1, ReverseIndex does not scale beyond 16 threads (Table 3,
column 7) when executed in isolation on the Xeon, due to disk
contention. Co-scheduling such a program with other programs
can degrade the execution efficiency of all, due to non-optimum
use of resources. This is what we observed with PT CG. Unlike
the baseline case in which ReverseIndex attempts to use all the
cores, Varuna uses only 16 cores for MIN(time) and 1 core for
MIN(consumption), while leaving the remaining unused. The co-
located Barneshut is then free to use the unused resources, thereby
improving its efficiency. This judicious sharing of resources helps
Varuna to reduce the execution time of Barneshut and ReverseIndex
by 67% and 10%, respectively, and the overall energy consumption
by 14% for MIN(time). For MIN(consumption), Varuna reduces
the consumption cost of Barneshut and ReverseIndex by 21% and
71%, respectively.

6. Related Work
Several recent proposals dynamically vary the degree of parallel
execution from within the program. We have summarized these
proposals in § 1(Table 1). We discuss some more related work in
this section.

Dynamically adapting a program’s parallelism has been widely
studied in the OS community [3, 6, 12, 14, 25]. However, these
techniques require a two-level scheduler necessitating changes in
both the OS and the program. Moreover, these techniques primarily
focus on preventing processor underutilization due to blocking I/O
or synchronization and have not dealt with contention to microar-
chitectural resources, such as, caches and memory bandwidth.

Several papers have proposed microarchitectural techniques to
alleviate the negative impacts of contention to shared hardware re-
sources, such as shared cache and memory, in a multiprogrammed
environment. These techniques [19–21] mostly rely on partitioning
the shared resources amongst the different programs or slow down
the execution speed of the program [13, 18]. They are orthogonal
to Varuna and can be deployed with Varuna.

7. Conclusions and Future Work
In this paper, we proposed Varuna, a system that provides a compre-
hensive solution to optimize a program’s parallel execution. Varuna
takes a principled approach to modeling a program’s scalability
and uses it to dynamically, continuously and rapidly adapt a pro-
gram’s parallelism in dynamically changing conditions. Varuna is
compiler/programming model independent. It requires no source
code/OS modifications and is applicable to arbitrary threaded and
task-based programs, due to its vtask mechanism. Further, it can op-
timize a program’s execution for two different metrics, MIN(time)
and MIN(consumption). For the MIN(time) metric, Varuna re-
duced the execution time on an average by 15% in the isolated
environment and 33% in the multiprogrammed environment. The
concomitant energy savings are 31% and 32%, respectively. For
the MIN(consumption) metric, Varuna saved resource consumption
cost by 84% and 90% in isolated and multiprogrammed environ-
ments, respectively. While Varuna was evaluated in the context of
two optimization metrics, we believe it can be easily extended to
support additional metrics, such as Watts, perf/W, perf/J, etc. and
can also be extended to model contention to heterogeneous systems



comprising of accelerators and I/O devices. We plan to investigate
these aspects as part of our future work.
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