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Abstract—Microgrid (MG) is a promising component for future

smart grid (SG) deployment. The balance of supply and demand
of electric energy is one of the most important requirements

of MG management. In this paper, we present a novel frame-

work for smart energy management based on the concept of
quality-of-service in electricity (QoSE). Specifically, the resident

electricity demand is classified into basic usage and quality usage.

The basic usage is always guaranteed by the MG, while the quality
usage is controlled based on the MG state. The microgrid control

center (MGCC) aims to minimize the MG operation cost and

maintain the outage probability of quality usage, i.e., QoSE, below
a target value, by scheduling electricity among renewable energy

resources, energy storage systems, and macrogrid. The problem

is formulated as a constrained stochastic programming problem.
The Lyapunov optimization technique is then applied to derive

an adaptive electricity scheduling algorithm by introducing the

QoSE virtual queues and energy storage virtual queues. The pro-
posed algorithm is an online algorithm. We derive several “hard”

performance bounds for the proposed algorithm, and evaluate its

performance with trace-driven simulations. The simulation results
demonstrate the efficacy of the proposed electricity scheduling

algorithm.

Index Terms—Distributed renewable energy resource, Lya-

punov optimization, microgrids, smart grid, stability.

I. INTRODUCTION

S MARTGRID (SG) is a modern evolution of the utility gen-

eration and delivery system. SG enhances the traditional

power grid through computing, communications, networking,

and control technologies throughout the processes of electricity

generation, transmission, distribution and consumption. The

two-way flow of electricity and real-time information is a char-

acteristic feature of SG, which offers many technical benefits

and flexibilities to both utility providers and consumers, for

balancing supply and demand in a timely fashion and improving

energy efficiency and grid stability. According to the U.S. 2009

Recovery Act [2], an SG will replace the traditional system

and is expected to save consumer cost and reduce America’s

dependence on foreign oil. These goals are to be achieved by

improving efficiency and spurring the use of renewable energy

resources.
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Microgrid (MG) is a promising component for future SG

deployment. Due to the increasing deployment of distributed

renewable energy resources (DRERs), MG provides a local-

ized cluster of renewable energy generation, storage, distribu-

tion and local demand, to achieve reliable and effective en-

ergy supply with simplified implementation of SG functionali-

ties [3], [4]. A typical MG architecture consists of DRERs (e.g.,

wind turbines and solar photovoltaic cells), energy storage sys-

tems (ESS), a communication network (e.g., wireless or power-

line communications) for information delivery, an MG central

controller (MGCC), and local residents. The MGCC controls

the MG operation and exchanges information with local resi-

dents, ESSs, and DRERs via the information network. There is

a single common coupling point with the macrogrid. When dis-

connected, the MG works in the islanded mode and DRERs and

ESSs provide electricity to local residents. When connected, the

MG may purchase extra electricity from the macrogrid or sell

excess energy back to the market [5].

The balance of electricity demand and supply is one of the

most important requirements in MG management. Instead of

matching supply to demand, smart energy management matches

the demand to the available supply using direct load control or

off-peak pricing to achieve more efficient capacity utilization

[3]. In this paper, we develop a novel control framework for

MG energy management, exploiting the two-way flows of elec-

tricity and information. In particular, we consider two types of

electricity usage: i) a pre-agreed basic usage that is “hard”-guar-

anteed, such as basic living usage, and ii) extra elastic quality

usage exceeding the pre-agreed level for more comfortable life,

such as excessive use of air conditioners or entertainment de-

vices. In practice, residents may set their load priority and pref-

erence to obtain the two types of usage [6]. The basic usage

should be always satisfied, while the quality usage is controlled

by the MGCC according to the grid status, such as DRER gen-

eration, ESS storage levels and utility prices. The MGCC may

block some quality usage demand if necessary. This can be im-

plemented by incorporating smart meters, smart loads and ap-

pliances that can adjust and control their service level through

communication flows [5].

To quantify residents’ satisfaction level, we define the outage

percentage of the quality usage as Quality of Service in Elec-

tricity (QoSE), which can be interpreted as the reliability level

for the quality usage for residential users [7]. This reliability

metric is specified in the service contracts similar to [8] and will

be guaranteed by the proposed electricity energy management

algorithm. The MGCC adaptively schedules electricity to keep

the QoSE below a target level, and dynamically balance the load

demand to match the available supply.

In this paper, we investigate the problem of smart energy

scheduling by jointly considering renewable energy distribu-

tion, ESS management, residential demand management, and
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utility market participation, aiming to minimize the MG op-

eration cost and guarantee the residents’ QoSE. The MGCC

may serve some quality usage with supplies from the DRERs,

ESSs, and macrogrid. On the other hand, the MG can also sell

excessive electricity back to the macrogrid to compensate for

the energy generation cost. The electricity generated from re-

newable sources is generally random, due to complex weather

conditions, while the electricity demand is also random due to

the random consumer behavior, and so do the purchasing and

selling prices on the utility market. It is challenging to model

the random supply, demand, and price processes for MG man-

agement, and it may also be costly to have precise, real-time

monitoring of the random processes. Therefore, a simple, low

cost, and optimal electricity scheduling scheme that does not

rely on any future information of the supply, demand, and price

processes would be highly desirable [9], [10].

We tackle the MG electricity scheduling problem with a Lya-

punov optimization approach, which is a useful technique to

solve stochastic optimization and stability problems [11], [12].

This technique has also been used to solve energy management

problems in [13] and provided online solutions with perfor-

mance bounds. Motivated by the seminal work, we first adopt

the concept of virtual queues as in prior work [13] and intro-

duce two virtual queues: QoSE virtual queues and battery virtual

queues to transform the QoSE control problem and battery man-

agement problem to queue stability problems. Second, we de-

sign an adaptive MG electricity scheduling policy based on the

Lyapunov optimization method and prove several deterministic

(or “hard”) performance bounds for the proposed algorithm. The

algorithm can be implemented online because it only relies on

the current system status, without needing any future knowledge

of the energy demand, supply and price processes. The proposed

algorithm also converges exponentially due to the nice property

of Lyapunov stability design [14]. The algorithm is evaluated

with trace-driven simulations and is shown to achieve signif-

icant efficiency on MG operation cost while guaranteeing the

residents’ QoSE.

The rest of the paper is organized as follows. We present the

system model and problem formulation in Section II. An adap-

tive MG electricity scheduling algorithm is designed and ana-

lyzed in Section III. Simulation results are presented and dis-

cussed in Section IV. We discuss related work in Section V.

Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

1) Overview: We consider the electricity supply and con-

sumption in an MG. We assume that the MG is properly

designed such that a portion of the electricity demand related

to basic living usage (e.g., lighting) from the residents, termed

basic usage, can be guaranteed by the minimum capacity of

the MG. There are randomness in both electricity supply (e.g.,

weather change) and demand (e.g., entertainment usage in

weekends). To cope with the randomness, the MG works in

the grid-connected mode and is equipped with ESSs, such

as electrochemical battery, superconducting magnetic energy

storage, flywheel energy storage, etc. The ESSs store excess

electricity for future use.

Fig. 1. The system model considered in this paper.

The MGCC collects information about the resident demands,

DRER supplies, and ESS levels through the information net-

work. When a resident demand exceeds the pre-agreed level, a

quality usage request will be triggered and transmitted to the

MGCC. The MGCC will then decide the amount of quality

usage to be satisfied with energy from the DRERS, the ESSs, or

by purchasing electricity from the macrogrid. The MGCC may

also decline some quality usage requests. The excess energy can

be stored at the ESSs or sold back to the macrogrid for com-

pensating the cost of MG operation. For brevity, we consider a

time-slotted system. The time slot duration is determined by the

timescale of the demand and supply processes.

2) Energy Storage System Model: The system model is

shown in Fig. 1. Consider a battery farm with independent

battery cells, which can be recharged and discharged. We

assume that the batteries are not leaky and do not consider the

power loss in recharging and discharging, since the amount is

usually small. This assumption can be relaxed by applying a

constant percentage of loss to the recharging and discharging

processes. For example, if we consider constant charging and

discharging loss ratios, we may add a constant percentage on the

battery dynamics as ,

where . This would not affect the following analysis

and algorithm development. For brevity, we also ignore the

aging effect of the battery and the maintenance cost, since the

cost on the utility market dominates the operation cost of MGs.

Let denote the energy level of the th battery in time

slot . The capacity of the battery is bounded as

(1)

where is the maximum capacity, and is

the minimum energy level required for battery , which may

be set by the battery deep discharge protection settings. The

dynamics over time of can be described as

(2)

where and are the recharging and discharging en-

ergy for battery in time slot , respectively. The charging and

discharging energy in each time slot are bounded as

(3)
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In each time slot , and are determined such that

(1) is satisfied in the next time slot.

Usually the recharging and discharging operations cannot be

performed simultaneously, which leads to

(4)

3) Energy Supply and DemandModel: Consider residents

in the MG; each generates basic and quality electricity usage

requests, and each can tolerate a prescribed outage probability

for the requested quality usage part. The MGCC adaptively

serves quality usage requests at different levels to maintain the

QoSE as well as the stability of the grid. The service of quality

usage can be different for different residents, depending on in-

dividual service agreements.

Let be the average quality usage arrival rate, and a

prescribed outage tolerance (i.e., a percentage) for user . The

average outage rate for the quality usage, , should satisfy

(5)

At each time , the quality usage request from resident is

units, which is an i.i.d random variable

with a general distribution and mean .1 The average rate is

. We assume that the users in

the MG are rational through the help of smart meters and smart

facilities. The average quality usage request rate of the user is

specified in the user’s contract. The DRERs in the MG generate

units of electricity in time slot . can offer enough ca-

pacity to support the pre-agreed basic usage in the MG, which

is guaranteed by islanded mode MG planning. The electricity is

transmitted over power transmission lines. For brevity, we as-

sume the power transmission lines are not subject to outages and

the transmission loss is negligible. Let be the pre-agreed

basic usage for resident in time slot , which can be fully

satisfied by , i.e., , for all . In ad-

dition, some quality usage request may be satisfied if

. Let be the energy allo-

cated for the quality usage of resident . We have

(6)

We define a function to indicate the amount of

quality usage outage for resident , as .

Then the average outage rate can be evaluated as

.

The MGCC may purchase additional energy from the macro-

grid or sell excess energy back to the macrogrid. Let

denote the energy purchased from the macrogrid and

the energy sold on the market in time slot ,

where and are determined by the capacity of the

1The Lyapunov optimization method that is used later to solve this problem,
is also robust to non-i.i.d. requests (i.e., when a denied demand is requested at a
later time). Interested readers can find detailed proofs for the non-i.i.d. case in
[15], [16]

transformers and power transmission lines. Since it is not rea-

sonable to purchase and sell energy on the market at the same

time, we have the following constraints

(7)

To balance the supply and demand in the MG, we have

(8)

4) Utility Market Pricing Model: The price for purchasing

electricity from the macrogrid in time slot is per

unit. The purchasing price depends on the utility market

state, such as peak/off time of the day. We assume finite

, which is announced by the utility

market at the beginning of each time slot and remains constant

during the slot period [17]. We assume is independent to

the amount of energy to be purchased in that time slot.

If the MGCC determines to sell electric energy on the utility

market, the selling price from the market broker is denoted by

in time slot , which is also a stochastic

process with a general distribution. We also assume is

known at the beginning of each time slot and independent to the

amount of energy to be sold on the market. We assume

, and for all . That is, the

MG cannot make profit by greedily purchasing energy from the

market and then selling it back to the market at a higher price

simultaneously.

B. Problem Formulation

Given the above models, a control policy

is designed to minimize

the operation cost of the MG and guarantee the QoSE of the

residents. We formulate the electricity scheduling problem as

(9)

As in [13], we assume temporarily that the limit of (9) is well

defined by the proposed policy. The operator can

be used to capture the limit bound for more general scenarios

[15], and the following derivation and results will hold true sim-

ilarly. Problem (9) is a stochastic programming problem, where

the utility prices, generation of DRERs, and consumption of res-

idents are all random. The solution also depends on the evolu-

tion of battery states. It is challenging since the supply, demand,

and price are all general processes.

1) Virtual Queues: Inspired by prior work [13], we adopt the

notation of virtual queues in the problem formulation. We first

adopt a battery virtual queue that tracks the charge level

of each battery :

(10)

where

is a constant for the trade-off between

system performance and ensuring the battery constraints. This
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constant is carefully selected to ensure the evolution of the

battery levels always satisfy the battery constraints (1), which

will be examined in Section III-C. The virtual queue can be

deemed as a shifted version of the battery dynamics in (2) as

(11)

These queues are “virtual” because they are maintained by the

MGCC control algorithm. Unlike an actual queue, the virtual

queue backlog may take negative values.

We next introduce a conceptual QoSE virtual queue ,

whose dynamics are governed by the system equation as

(12)

where .

Theorem 1: If an MGCC control policy stabilizes the QoSE

virtual queue , the outage quality usage of resident will

be stabilized at the average QoSE rate .

Proof: According to the system (12), we have

(13)

Summing up the inequalities in (13), we have

(14)

Dividing both sides by and letting go to infinity, we have

Note that is finite. If is rate stable by a control

policy , it is finite for all . We have

, which yields due to the definitions

of and .

2) Problem Reformulation: With Theorem 1, we can trans-

form the original problem (9) into a queue stability problemwith

respect to the QoSE virtual queue and the battery virtual queues,

which leads to a system stability design from the control theo-

retic point of view. We have a reformulated stochastic program-

ming problem as follows.

(15)

Theorem 1 indicates that QoSE provisioning is equivalent to sta-

bilizing the QoSE virtual queue , while stabilizing the vir-

tual queues (11) ensures that the battery constraints (1) are satis-

fied. We then apply Lyapunov optimization to develop an adap-

tive electricity scheduling policy for problem (15), in which the

policy greedily minimizes the Lyapunov drift in every time slot

to push the system toward stability. Note that following the

reformulation and Lyapunov optimization framework in [13],

[29], the solution of the reformulated problem (15) approxi-

mately solves the original problem (9). But we will show that

the solution derived in the following has bounded optimality as

given in Theorem 4.

C. Lyapunov Optimization

We define the Lyapunov function for system state

with dimension as follows, in which

and .

(16)

which is positive definite, since when

and . We then define the conditional

one slot Lyapunov drift as

(17)

With the drift defined as in (17), it can be shown that

(18)

where

is a constant. and are

replaced by the virtual queue dynamics (11) and (12). Since

and are known at time slot , they can be

explicitly taken out of the expectation operation. The

derivation of (18) is given in Appendix A.

To minimize the operation cost of the MG, we adopt the

drift-plus-penalty method [12]. Specifically, we select the con-

trol policy to mini-

mize the bound on the drift-plus-penalty as:

(19)

where is defined in Section II-B1 for the

trade-off between stability performance and operation cost

minimization. In (19), the new objective function jointly

considers battery and QoSE stability (the first term) and MG

cost minimization (the second term) under the condition of

current system states. The parameter is a nonnegative con-

stant to provide the performance tradeoff of the two terms. If

, it corresponds to the pure system stability problem
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by minimization the Lyapunov drift (17). Generally, we select

for weighting the cost minimization term

in control decision, which provides a tradeoff between cost

minimization and stability.

Given the current virtual queue states and ,

market prices and , available DRERs energy ,

and the resident quality usage request , the optimal policy

is the solution to the following problem.

(20)

Since the control policy is only applied to the last three

terms of (20), we can further simplify problem (20) as

(21)

which is a mixed-integer optimization problem and can be

solved based on observations of the current system state

.

III. ELECTRICITY SCHEDULING ALGORITHM

A. Properties of Optimal Scheduling

With the Lyapunov penalty-and-drift method, we transform

problem (15) to problem (21) to be solved for each time slot.

We have the following properties for the optimal scheduling.

The proofs of the Lemmas are provided in Appendices B–D.

Lemma 1: The optimal solution to problem (21) has the fol-

lowing properties:

1) If , we have ,

a) If , the optimal solution always

selects ; if , the optimal

solution always selects .

b) If , the optimal solution al-

ways selects ; if

, the optimal solution always selects

.

2) When , we have ,

a) If , the optimal solution always

selects ; if , the optimal

solution always selects .

b) If , the optimal solution

always selects ; if

, the optimal solution always selects

.

Lemma 2: The optimal solution to the battery management

problem has the following properties:

1) If , the optimal solution always selects

.

2) If , the optimal solution always selects

.

Lemma 3: The optimal solution to the QoSE provisioning

problem has the following properties:

1) If , the optimal solution always selects

.

2) If , the optimal solution always

selects .

Lemma 1 provides useful insights for simplifying the algo-

rithm design, which will be discussed in Section III-B. The in-

tuition behind these lemmas is two-fold. On the ESS manage-

ment side, if either the purchasing price or the selling price

is low, the MG prefers to recharge the ESSs to store ex-

cess electricity for future use. On the other hand, if either

or is high, the MG is more likely to discharge the ESSs to

reduce the amount of energy to purchase or sell more stored en-

ergy back to the macrogrid. On the QoSE provisioning side, if

either or is high and the quality usage is low,

the MG is apt to decline the quality usage for lower operation

cost. On the other hand, if either or is low and

is high, the quality usage are more likely to be granted by pur-

chasing more energy or limiting the sell of energy.

B. MG Optimal Scheduling Algorithm

In this section, we present the MG control policy

to solve problem (21). Given the current virtual queue state

, market prices and , quality usage

and available energy from the DRERS for serving

quality usage, problem (21) can be decomposed into the fol-

lowing two linear programming (LP) sub-problems [since one

of and must be zero, see (7)].

(22)

(23)

In sub-problem (22), we set if ,

and if according to Lemma 1.

Also, if , we set ; other-

wise, we reset constraint (6) to a smaller search space of

. We take a similar approach for

solving sub-problem (23) by replacing with . Then
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we compare the objective values of the two sub-problems and

select the more competitive solution as the MG control policy.

The complete algorithm is presented in Algorithm 1.

C. Performance Analysis

The proposed scheduling algorithm dynamically balances

cost minimization and QoSE provisioning. It only requires cur-

rent system state information (i.e., as an online algorithm). The

algorithm is also robust to non-i.i.d. and non-ergodic behaviors

of the processes (see, e.g., [18], [13]).

Theorem 2: The constraint on the ESS battery level ,

, is always satisfied for all and .

Proof: From the battery virtual queue definition (10), the

constraint is equivalent to

We assume all the batteries satisfy the battery capacity con-

straint at the initial time , i.e., ,

for all . Supposing the inequalities hold true for time , we then

show the inequalities still hold true for time .

First, we show .

If ,

then with from Lemma 2, we

have

. If , then the largest value is

. For any , we

have

It follows that .

Next, we show . Assuming

, then from Lemma 2,

we have . It follows that

If , following (10), we have

Therefore, we have . Thus the

inequalities also hold true for time .

It follows that is satisfied under the

optimal scheduling algorithm for all , .

Theorem 3: The worst-case backlogs of the QoSE virtual

queue for each resident is bounded by

, for all , . Moreover, the worst-case average

amount of outage of quality usage for resident in a period

is upper bounded by .

Proof: i) We first prove the upper bound . Initially,

we have . Assume that in time slot

the backlog of the QoSE virtual queue of resident satisfies

. We then check the backlog

at time and show the bound still holds true.

If , following Lemma 3, the optimal sched-

uling for the quality usage of resident satisfies

. From the virtual queue dynamics (12), we have

If , we have

; otherwise, it follows that

.

If , we have

. If , we have

;

otherwise, we have .

Thus we have . The

proof of the QoSE virtual queue backlog bound is completed.

ii) Consider an interval with length of . Sum-

ming (12) from to , we have

. It follows that

Theorem 4: The average MG operation cost under the

adaptive electricity scheduling algorithm in Algorithm

1, , is bounded as , where is the

optimal operating cost of the original problem (9) and

.

Proof: From Theorem 2, the battery capacity constraints

is met in each time slot with the adaptive control policy. Take

expectation on (2) and sum it over the period :

Since , we divide both sides by and

let go to infinity, to obtain

(24)

Consider the following relaxed version of problem (9).

(25)
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Since the constraints in problem (25) are relaxed from that in

problem (9), the optimal solution to problem (9) is also fea-

sible for problem (25). The solution of (25) does not depend

on battery energy levels. Let the optimal solution for problem

(25) be and the cor-

responding object value is . According to the proper-

ties of optimality of stationary and randomized policies [19],

the optimal solution satisfies and

.

We substitute solution into the right-hand-side of the

drift-and-penalty (19). Since our proposed policy minimizes the

right-hand-side of (19), we have

The second inequality is due to the stationary and randomized

policy [19], , ,

, , and . Taking expectation and sum

up from 0 to , we obtain

The second inequality is due to the nonnegative property of

Lyapunove functions. Divide both sides by and let

go to infinity. Since the initial system state is finite, we

have

.

It is worth noting that the choice of controls the optimality

of the proposed algorithm. Specifically, a larger leads to a

tighter optimality gap. However, from the proof of Theorem

2, is limited by , which ensures the feasibility of the

battery constraints. This is actually a similar phenomenon to

the so-called performance-congestion trade-off [19]. Through

the definition of (see Section II-B1), it can be seen that

if we invest more on the individual storage components for a

larger ESS capacity, the proposed algorithm can achieve a better

performance (i.e., a smaller optimality gap).

The proposed algorithm solves the relaxed drift-plus-penalty

problem (21), and its solution is suboptimal. However, we

proved that the optimality gap of the solution is bounded by

. It is also worth noting that all the performance bounds

of the proposed algorithm are deterministic, which provide

“hard” guarantees for the performance of the proposed adap-

tive scheduling policy in every time slot. Unlike probabilistic

approaches, the proposed method provides useful guidelines

for the MG design, while guaranteeing the MG operation cost,

grid stability, and the usage quality of residents.

IV. SIMULATION STUDY

We demonstrate the performance of the proposed adaptive

MG electricity scheduling algorithm through extensive simula-

tions. We simulated an MG with 500 residents, where the elec-

tricity from DRERs is supplied by a wind turbine plant. We use

the renewable energy supply data from the Western Wind Re-

sources Dataset published by the National Renewable Energy

Laboratory [20]. The ESSs consists of 100 PHEV Li-ion battery

packs, each of which has a maximum capacity of 16 kWh and

the minimum energy level is 0. The battery can be fully charged

or discharged within 2 hours [21].

The residents’ pre-agreed power demand is uniformly dis-

tributed in [2 kW, 25 kW], and the quality usage power is uni-

formly distributed in [0, 10 kW]. The MG works in the grid-

connected mode and may purchase/sell electricity from/to the

macrogrid. The utility prices in the macrogrid are obtained from

[22] and are time-varying. We assume the selling price by the

broker is uniformly random and below the purchasing price in

each time slot. The time slot duration is 15 minutes. The MGCC

serves a certain level of quality usage according to the adap-

tive electricity scheduling policy. The QoSE target is set to

for all residents. The control parameter is ,

unless otherwise specified.

A. Algorithm Performance

We first investigate the average QoSEs and total MG opera-

tion cost with default settings for a five-day period. We use the

MATLAB LP solver for solving the sub-problems (22) and (23).

For better illustration, we only show the QoSEs of three ran-

domly chosen users in Fig. 2. It can be seen that all the average

QoSEs converge to the neighborhood of 0.08 within 200 time

slots, which is close to the MG requested criteria . In

fact the proposed scheme converges exponentially, due to the in-

herent exponential convergence property in Lyapunov stability

based design [14].

We also plot the MG operation traces from this simulation in

Fig. 5. The energy for serving quality usage from the DEREs

are plotted in Fig. 5(a). It can be seen that the DRERs generate

excessive electricity from slot 150 to 200, which is more than

enough for the residents. Thus, the MGCC sells more electricity

back to the macrogrid and obtains significant cost compensa-

tion accordingly. In Fig. 5(b), we plot the traces of electricity

trading, where the positive values are the purchased electricity

(marked as brown bars), and the negative values represent the

sold electricity (marked as dark blue bars). The MG operation

costs are plotted in Fig. 5(c). The curve rises when the MG pur-

chases electricity and falls when the MG sells electricity. From

slot 150 to 200, the operation cost drops significantly due to
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Fig. 2. Average QoSEs for resident 1, 2, and 3 .

Fig. 3. Energy levels of three Li-ion batteries .

profits of selling excess electricity from the DEREs. The oper-

ation cost is $418.10 by the end of the period, which means the

net spending of the MG is $418.10 on the utility market.

We then examine the energy levels of the batteries in Fig. 3.

We only plot the levels of three batteries in the first 50 time slots

for clarity. The proposed control policy charges and discharges

the batteries in the range of 0 to 16 kWh, which falls strictly

within the battery capacity limit. It can be seen that the amount

of energy for charging or discharging in one slot is limited by

2 kWh in the figure, due to the short time slots comparing to

the 2-hour fully charge/discharge periods. For longer time slot

durations and batteries with faster charge/discharge speeds, the

variation of the energy level in Fig. 3 could be higher. However,

Theorem 2 indicates that the feasibility of the battery manage-

ment constraint is always ensured, if the control parameter

satisfies .

We next evaluate the performance of the proposed adaptive

control algorithm under different values of control parameter

. For different values , the

QoSEs are stabilized at 0.081, 0.061, and 0.055, and the total

Fig. 4. QoSEs for three residents with different service contracts
.

operation cost are $418.10, $625.69, and $717.75, respectively.

We find the QoSE decreases from 0.081 to 0.055, while the

total operation cost is increased from $418.10 to $717.75, as

is decreased. This demonstrates the performance-conges-

tion trade-off as in Theorem 4: a larger leads to a smaller ob-

jective value (i.e., the operating cost), but the system is also pe-

nalized by a larger virtual queue backlog, which corresponds to

a higher QoSE. On the contrary, a smaller favors the resident

quality usage, but increases the total operation cost. In practice,

we can select a proper value for this parameter based on the MG

design specifications.

It would be interesting to examine the case where the resi-

dents require different QoSEs. We assume five residents with a

service contract for lower QoSEs.We plot the average QoSEs of

three residents with in Fig. 4. Resident 1 prefers

an outage probability , while residents 2 and 3 require

an outage probability . It can be seen in Fig. 4

that resident 1’s QoSE converges to 0.015, while the other two

residents’ QoSEs remains around 0.063.

B. Comparison With a Benchmark

We compare the performance of the proposed scheme with

a heuristic MG electricity control policy (MECP) (as a bench-

mark). In MECP, the MGCC blocks quality usage requests

simply by tossing a coin with the target probability. We use

in the simulations. If there is sufficient electricity

from the DRERs, all the quality usage requests will be granted

and the excess energy will be stored in the ESSs. If there is still

any surplus energy, the MGCC will sell it to macrogrid. If there

is insufficient electricity from the DRERs, the ESSs will be

discharged to serve the quality usage requests. The MGCC will

purchase electricity from macrogrid if even more electricity

is required. Finally, with a predefined probability, e.g., 0.5 in

the following simulation, the MG purchases as much energy as

possible to charge the ESSs.

We run 100 simulations with different random seeds for a

seven-day period. We assume in the first five days the resident

behavior is the same as previous default settings. In the last two
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Fig. 5. MG operation traces of the proposed algorithm for the 5-day period.

days, we assume the residents are apt to request more electricity

(e.g., more activities in weekends). In the last two days the res-

ident pre-agreed basic usage power demand is uniformly dis-

tributed from 5 kW to 35 kW. The quality usage power is uni-

formly distributed from 0 to 20 kW.

We find that the proposed algorithm earns $947.27 from the

utility market (with 95% confidence interval [950.65,943.89]).

The profit mainly comes from the abundant DRER generation

in the last two days. MECP only earns $379.74 from the market

(with 95% confidence interval [387.96, 371.52]), which is

60% lower than that of the proposed control policy. We also

find that the QoSEs under the proposed control policy remains

about 0.025, which is lower than the criteria . This

is because there are a sudden price jump from $27/MWh to

$356/MWh in the afternoon of the last day. This sharp incre-

ment increases eight times and decreases the value of

. Due to the performance-congestion trade-off, the QoSEs

become smaller (lower than MECP’s 0.03 level).

V. RELATED WORK

Microgrid is a new grid structure to group DRERs and local

residential loads. In [4], the authors review the MG structure

with distributed energy resources. In [23], the integration of

random wind power generation into the power grid for cost ef-

fective operation is investigated. In [24], the authors propose

a useful online method to discover all available DRERs within

the microgrid in the islanded mode and compute a DRER access

strategy. The problem of optimal residential demand manage-

ment is studied in [25], aiming to adapt to time-varying energy

generation and prices, and maximize user benefit. In [26], the

authors investigate energy storage management with a dynamic

programming approach. The size of the ESSs for MG energy

storage is explored in [27].

Stochastic optimization is an important mathematical tool

for resource allocation. In [28], three stochastic approxima-

tion methods are proposed to compute the optimal base-stock

levels. The iteratively converged optimality is proved. Lya-

punov optimization is a useful stochastic optimization method

[11]. It integrates the Lyapunov stability concept of control

theory with optimization and provides an efficient framework

for solving schedule and control problems. It has been widely

used and extended in the communications and networking

areas [11], [12]. In two recent work [13], [29], the Lyapunov

optimization method is applied to jointly optimize power pro-

curement and dynamic pricing. In [13], the authors investigate

the problem of profit maximization for delay tolerant con-

sumers. In [29], the authors study electricity storage manage-

ment for data centers, aiming to meet the workload require-

ment. Both of the work are designed based on a single energy

consumption entity model.

In this paper, we investigate a novel smart energy manage-

ment system for MGs based on the concept of QoSE, which is

different from above work. By jointly considering multiple res-

idents, ESSs and utility market participation, the adaptive elec-

tricity scheduling policy is designed with Lyapunov optimiza-

tion for ensuring the quality of service of the electricity usage

and minimizing the MG operation cost. This work is inspired by

the prior work on Lyapunov optimization and in particular, the

work that utilize this technique for renewable energy allocation

to delay tolerant consumers [13]. Some of the proofs follow the

generic Lyapunov optimization approach, such as defining the

Lyapunov drift and the drift-plus-penalty method [12].

VI. CONCLUSION

In this paper, we developed an online adaptive electricity

scheduling algorithm for smart energy management in MGs

by jointly considering renewable energy penetration, ESS

management, residential demand management, and utility

market participation. We introduced a QoSE model by taking

into account minimization of the MG operation cost, while

maintaining the outage probabilities of resident quality usage.

We transformed the QoSE control problem and ESS manage-

ment problem into queue stability problems by introducing the

QoSE virtual queues and battery virtual queues. The Lyapunov

optimization method was applied to solve the problem with

an efficient online electricity scheduling algorithm, which

has deterministic performance bounds. Our simulation study

validated the superior performance of the proposed approach.

In this work, we focused on the microgrid operation on the

energy market and the energy scheduling in the MG, but did

not consider the daily pattern of electricity demand and price.

It would be interesting to exploit such daily pattern to extend

the proposed algorithm by modeling the interaction between

delayed requests and future prices under the demand response

strategy in the future work.
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APPENDIX A

DERIVATION OF EQUATION (18)

With the drift defined as in (17), we have

where

is a constant.

APPENDIX B

PROOF OF LEMMA 1

Proof: In part 1) of Lemma 1, if , we have

according to (7). The objective function of

problem (21) becomes

.

We first prove Lemma 1-1a). If , we as-

sume . Then we have according to (4).

Accordingly, the object function is transformed to

The above inequality is due to and

. The

last expression shows, given the assumption , we

may find another feasible electricity allocation scheme

, which can achieve

a smaller objective value by choosing and

. This contradicts with the assumption . Thus, we

prove that when , under the situ-

ation .

We then prove the second part of Lemma 1-1a). It follows

(4) that if . Then the objective function

becomes

The above inequality is due to

and

. The last expression

shows, given the assumption , we may

find another electricity allocation scheme with
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,

which can achieve a smaller objective value by choosing

and . This contradicts with the

assumption . We thus prove that when

, under the situation ,

which completes the proof of Lemma 1-1a).

We next prove Lemma 1-1b). For the first part, if

, we assume . Fol-

lowing (20) and , we have

The above inequality is due to and the

assumption . The last equality shows,

given the assumption , we may find an-

other electricity allocation scheme with

and

, which can achieve a smaller objective value. This

contradicts with the previous assumption. Thus, we have

.

For the second part of Lemma 1-1b), assume for

. It follows (7) that . The

objective function (20) can be written as

The first inequality is due to and

the assumption . The second inequality is due to the

non-negativity of and . The last equation shows,

given the assumption , we may find another elec-

tricity allocation scheme with and

, which can achieve a

smaller objective value. This contradicts with the previous as-

sumption. Thus, we have , which completes the proof

of Lemma 1-1b).

In part 2) of Lemma 1, if , we have

according to (7). The objective function (21) becomes

. We can prove part 2) with a similar approach

as in the case of part 1. The detailed proof is omitted for

brevity.

APPENDIX C

PROOF OF LEMMA 2

Proof: Since and , we

have when , and when

according to Lemma 1-1). Similarly, since

and , we obtain

when , and when

according to Lemma 1–2)

Since and , we conclude

that if , the optimal solution always select

. If , the optimal solution always

select . The proof is completed.

APPENDIX D

PROOF OF LEMMA 3

Proof: The proof directly follows Lemma 1 and is similar

to the proof of Lemma 2. We omit the details for brevity.
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