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Abstract

A general methodology for noise reduction and contrast
enhancement in very noisy image data with low dynamic
range is presented. Video footage recorded in very dim light
is especially targeted. Smoothing kernels that automatically
adapt to the local spatio-temporal intensity structure in the
image sequences are constructed in order to preserve and
enhance fine spatial detail and prevent motion blur. In color
image data, the chromaticity is restored and demosaicing of
raw RGB input data is performed simultaneously with the
noise reduction. The method is very general, contains few
user-defined parameters and has been developed for effi-
cient parallel computation using a GPU. The technique has
been applied to image sequences with various degrees of
darkness and noise levels, and results from some of these
tests, and comparisons to other methods, are presented. The
present work has been inspired by research on vision in noc-
turnal animals, particularly the spatial and temporal visual
summation that allows these animals to see in dim light.

1. Introduction

1.1. Biological Inspiration

In order to survive in habitats with high competition for
resources and the threat of predation, many animals have
evoloved a nocturnal lifestyle. To be able to navigate and
forage during the hours of darkness, these animals have de-
veloped excellent vision at light levels where humans are
practically blind, even though the optical properties of their
eyes are in many cases inferior to those found in the eyes of
humans. It is therefore interesting to study the visual sys-
tems of these animals to gain insight into the mechanisms
that permit these impressive visual capabilities.

A characteristic of visual systems in nocturnal animals
is the highly developed ability to sum the visual signal lo-
cally in space and time to increase signal strength and im-
prove the reliability of intensity estimations. This summa-
tion mechanism is adaptive and becomes more pronounced
at lower light levels, but comes at the cost of lower spa-
tial and temporal resolution. The summation can either take
place at the receptor level or higher up in the visual pathway.

The relative amount of spatial and temporal summation
depends on the specific needs and lifestyles of the animal
in question. Nocturnal animals that move fast and need to
react to high speed events, e.g. flying moths, require good
temporal resolution, therefore favoring spatial summation
over temporal summation. In contrast, in nocturnal animals
that move slowly temporal summation is favoured in order
to maximize spatial resolution. Warrant [25] constructed
a model for visual signal processing in animals that can be
used to find the optimal extents of spatial and temporal sum-
mation that maximize visual performance at a given light
intensity and image velocity. This biological mechanism of
adaptive spatio-temporal smoothing was the initial inspira-
tion for the work presented in this paper.

1.2. Image Processing Objective

Modern digital cameras still rely on a single exposure
time and on imaging sensors that possess photo elements of
uniform sensitivity. This often results in underexposed dark
areas in the obtained images. The problem is especially
pronounced in video cameras where the exposure time is
limited to prevent motion blur. Most people have probably
experienced this problem when shooting a movie either in-
doors or within a scene where the intensities vary by several
orders of magnitude.

If we simply try to amplify the dark areas, uniformly or
by a non-linear intensity transformation (tone mapping), the

1

978-1-4244-1631-8/07/$25.00 ©2007 IEEE



low signal-to-noise ratio (SNR) in these areas will become
very apparent. There are a number of sources of noise in a
camera, c.f . [19, 1], including photon shot noise and readout
noise, which together constitute the main problems. In this
work we aim to enhance very dark image sequences that
have an extremly low SNR.

To reduce the noise significantly we apply adaptive
spatio-temporal intensity smoothing. For every pixel in the
image sequence a specific summation kernel is constructed
which adapts to the local spatio-temporal intensity struc-
ture. This kernel is then used to calculate a weighted mean
in the neighborhood of the current pixel. Instead of apply-
ing a combination of pure spatial and pure temporal sum-
mation, as in the model of Warrant, we view the three di-
mensional spatio-temporal space symmetrically and shape
and direct the kernels according to 3D intensity structure.
By doing this, we find an optimal way of smoothing the in-
tensities, while preserving, and even enhancing, important
object contours and preventing motion blur.

After the noise has been efficiently reduced, the intensi-
ties are transformed using tone mapping, implemented by a
contrast limited version of histogram equalization, in order
to spread out the intensities more uniformly and widen the
dynamic range of the darker areas.

The algorithm works very well on color image data and
maximally restores the original chromaticity values as seen
in brighter lighting, along with the luminance. When deal-
ing with raw color image data obtained in a Bayer pattern,
the interpolation to a three-channel RGB image is done con-
currently with the spatio-temporal smoothing.

The implementation of the algorithm is quite simple and
is very well suited for parallel processing on a graphic
processing unit (GPU). In this way the complete process-
ing can, at time of writing, be performed interactively, with
approx. 7 fps, on a 360x288 pixels color image sequence.

2. Related Work

There exist a multitude of noise reduction techniques
that apply spatio-temporal weighted averaging for noise re-
duction purposes. Many authors have additionally realized
the benefit of trying to reduce the noise by filtering the se-
quences along motion trajectories in spatio-temporal space
and in this way, ideally, avoid motion blur and unneces-
sary amounts of spatial averaging. These noise reduction
techniques are usually referred to as motion-compensated
(spatio-)temporal filtering. In [11], means along the motion
trajectories are calculated while in [29] and [16] weighted
averages, dependent on the intensity structure and noise in
a small neighbourhood, are applied. In [21], so-called lin-
ear minimum mean square error filtering is used along the
trajectories. Most of the motion-compensated methods use
some kind of block-matching technique for the motion es-
timation that usually, for efficiency, employs rather few im-

ages, commonly 2 or 3. However, in [21], [29] and [6]
variants using optical flow estimators are presented. Draw-
backs of the motion-compensating methods is that the fil-
tering relies on a good motion estimation to give a good
output, without excessive blurring. The motion estimation
is especially complicated for sequences severely degraded
by noise. Different approaches have been applied to deal
with this problem, often by simply reducing the influence
of the temporal filter in difficult areas. This, however, often
leads to disturbing noise at for example object contours.

An interesting family of smoothing techniques for
noise reduction are the ones that solve an edge-preserving
anisotropic diffusion equation on the images. This ap-
proach was pioneered by Perona and Malik [17] and has
had many successors, including the work by Weickert [26].
These techniques have also been extended to 3D and spatio-
temporal noise reduction in video, c.f . [24] and [13]. In
[24] and [27], the so-called structure tensor or second mo-
ment matrix is applied in a similair manner to our approach
in order to analyze the local spatio-temporal intensity struc-
ture and stear the smoothing accordingly. The drawbacks of
techniques based on diffusion equations include the fact that
the solution has to be found using an often time-consuming
iterative procedure. Moreover, it is very difficult to find a
suitable stopping time for the diffusion, at least in a gen-
eral and automatic manner. These drawbacks make these
approaches in many cases unsuitable for video processing.

A better approach is to apply single-step structure-
sensitive adaptive smoothing kernels. The bilateral filters
introduced by Tomasi and Manduchi [23] for 2D images
falls within this class. Here, edges are maintained by cal-
culating a weighted average at every point using a Gaussian
kernel, where the coefficients in the kernel are attenuated
based on how different the intensities are in the correspond-
ing pixels compared to the center pixel. This makes the
local smoothing very dependent on the correctness in inten-
sity in the center pixel, which cannot be assumed in images
heavily disturbed by noise.

An approach that is closely connected to both bilateral
filtering, and to anisotropic diffusion techniques based on
the structure tensor, is the structure-adaptive anisotropic fil-
tering presented by Yang et al. [28]. In our search for an op-
timal strategy to apply spatio-temporal summation for noise
reduction in low light-level video, we naturally settled for
this approach. Since our current methodology is an exten-
sion of this technique we will present it in detail in Section
3. For a study of the connection between anisotropic diffu-
sion, adaptive smoothing and bilateral filtering, see [2].

Another group of algorithms connected to our work are
in the field of high dynamic range (HDR) imaging, c.f .
[12, 20] and the references therein. The aim of HDR imag-
ing is to alleviate the restriction caused by the low dynamic
range of ordinary CCD cameras, i.e. the restriction to the



ordinary 256 intensity levels for each color channel. Most
HDR imaging algorithms are based on using multiple ex-
posures of a scene with different settings for each expo-
sure and then using different approaches for storing and
displaying this extended image data. However, the HDR
techniques are not especially aimed at the kind of low-light
level data which we are targeting in this work, where the
utilized dynamic range in the input data is in the order of 5
to 20 intensity levels and the SNR is extremely low.

Surprisingly few published studies exist that especially
target noise reduction in low light-level video. Three recent
examples are the above-mentioined method by Bennett and
McMillan [3], the technique presented by Lee et al. [14]
and the approach by Malm and Warrant [15]. In [14], very
simple operations are combined in a system presumably de-
veloped for easy hardware implementation in e.g. mobile
phone cameras and other compact digital video cameras. In
our tests of this method, which we comment on in Section
6.1, it is evident that this method cannot handle the high
levels of noise which we target in this work.

The approach taken by Bennett and McMillan [3] for low
dynamic range image sequences is more closely connected
to our technique. Their virtual exposures framework in-
cludes the bilateral ASTA-filter (Adaptive Spatio-Temporal
Accumulation) and a tone mapping technique. The ASTA-
filter, which changes to relatively more spatial filtering in
favour of temporal filtering when motion is detected, is in
this way related to the biological model of Warrant [25].
However, since bilateral filters are applied, the filtering is
edge-sensitive and the temporal bilateral filter is addition-
ally used for the local motion detection. The filters apply
novel dissimilarity measures to deal with the noise sensitiv-
ity of the original bilateral filter formulation. The filter size
applied at each point is decided by an initial calculation of a
suitable amount of amplification using tone mapping of an
isotropically smoothed version of the image. A drawback of
the ASTA-filter is that it requires global motion detection as
a pre-processing step to be able to deal with moving camera
sequences. The sequence is then warped to simulate a static
camera sequence. The succeeding tone mapping approach
proposed by Bennett and McMillan is further discussed in
Section 4. We have implemented the complete virtual expo-
sures framework and will compare our propsed method to
this approach in Section 6.1.

In [15], we observed the usefulness of applying the struc-
ture tensor for single-step adaptive spatio-temporal smooth-
ing for noise reduction in low light-level video. However,
the technique presented there requires a pre-processing step
consisting of foreground-background segmentation in the
style of Stauffer and Grimson [22] for static camera se-
quences. Further, similar to the approach of Bennett and
McMillan, it requires an ego-motion estimation to deal with
moving camera sequences.

In this paper we generalize the ideas from [15] so that
the adaptive spatio-temporal smoothing is applied in a uni-
form way for both static and moving sequences, without
the need for any pre-processing step. This simple structure
makes our approach ideal for efficient parallel implemen-
tation on a GPU. Additionally, an approach for sharpening
of the most important features is suggested to prevent over-
smoothing. In contrast to [15], we here also target color
input data. Raw color input data is interpolated from the
Bayer pattern simultaneously to the adaptive smoothing.

3. Adaptive Spatio-Temporal Smoothing

We will now review the structure-adative anisotropic im-
age filtering by Yang et al. [28] and present our modifica-
tions and extensions to improve its applicability and make
it suitable for our low-light level vision objective.

The method computes a new image fout(x), by apply-
ing at each spatiotemporal point x0 = (x′

0, y
′
0, t

′
0), a kernel

k(x0, x) to the original image fin(x) such that:

fout(x0) =
1

µ(x0)

∫ ∫ ∫
Ω

k(x0, x)fin(x)dx , (1)

where

µ(x0) =
∫ ∫ ∫

Ω

k(x0, x)dx (2)

is a normalizing factor. The normalization makes the sum of
the kernel elements equal to 1 in all cases, so that the mean
image intensity doesn’t change. The area Ω over which the
integration, or in the discrete case, summation, is made is
chosen as a finite neighborhood centered around x 0.

Since we want to adapt the filtering to the spatiotempo-
ral intensity structure at each point, in order to reduce blur-
ring over spatial and temporal edges, we calculate a kernel
k(x0, x) individually for each point x0. The kernels should
be wide in directions of homogeneous intensity and nar-
row in directions with important structural edges. To find
these directions, the intensity structure is analyzed by the
so-called structure tensor or second moment matrix. This
object has been developed and applied in image analysis in
numerous papers e.g. by Jähne and co-workers [10]. The
tensor Jρ(x0) is defined in the following way:

Jρ(∇f(x0)) = Gρ � (∇f(x0)∇f(x0)
T ) , (3)

where

∇f(x0) =
[

∂f
∂x′

0

∂f
∂y′

0

∂f
∂t′0

]T

(4)

is the spatiotemporal intensity gradient of f at the point x0.
Gρ is the Gaussian kernel function

Gρ(x) =
1
µ

e
− 1

2 ( x′2+y′2+t′2
ρ2 )

, (5)



where µ is the normalizing factor. The notation � means
elementwise convolution of the matrix ∇f(x0)∇f(x0)

T in
a neighborhood centered at x0. It is this convolution that
gives us the smoothing in the direction of gradients which
is the key to the noise insensitivity of this method.

Eigenvalue analysis of Jρ will now give us the strutural
information that we seek. The eigenvector v1 corresponding
to the smallest eigenvalue λ1 will be approximately paral-
lell to the direction of minimum intensity variation while
the other two eigenvectors are orthogonal to this direction.
The magnitude of each eigenvalue will be a measure of the
amount of intensity variation in the direction of the corre-
sponding eigenvector. For a deeper discussion on eigen-
value analysis of the structure tensor see [8].

The basic form of the kernels k(x0, x) that are con-
structed at each point x0 is that of a Gaussian function,

k(x0, x) = e−
1
2 (x−x0)

T RΣ2RT (x−x0) , (6)

including a rotation matrix R and a scaling matrix Σ. The
rotation matrix is constructed from the eigenvectors v i of
Jρ,

R =
[
v1 v2 v3

]
, (7)

while the scaling matrix has the following form,

Σ =




1
σ(λ1) 0 0

0 1
σ(λ2) 0

0 0 1
σ(λ3)


 . (8)

The function σ(λi) is a decreasing function that sets the
width of the kernel along each eigenvalue direction. The
theory in [28] is mainly developed for 2D images and mea-
sures of corner strength and of anisotropism, both involving
ratios of the maximum and minimum eigenvalues, are there
calculated at every point x0. An extention of this to the 3D
case is then discussed. However, we have not found these
two measures to be adequate for the 3D case since they give
too much focus on singular corner points in the video in-
put and to a large extent disregards the linear and planar
structures that we want to preserve in the spatiotemporal
space. For example, a dependence of the kernel width in
the temporal direction on the eigenvalues corresponding to
the spatial directions does not seems appropriate in a sta-
tic bakground area. We instead simply let an exponential
function depend directly on the eigenvalue λ i in the current
eigenvector direction vi in the following way,

σ(λi, x0) =
{

∆σe−
λi
d + 2

5 + σmin, λi > 2d/5
σmax, λi ≤ 2d/5

(9)

where ∆σ = (σmax − σmin), so that σi attains its maxi-
mum σmax below λ = 2d/5 and asymptotically approaches
its minimum σmin when λ → ∞. The parameter d scales

the width function along the λ-axis and has to be set in re-
lation to the current noise level. Since the part of the noise
that stems from the quantum nature of light, i.e. the pho-
ton shot noise, depends on the brightness level, it is signal-
dependent and the parameter d should ideally be set locally.
Future research will be focused on an adaptive strategy for
setting this parameter automatically. However, it has been
noticed that when the type of camera and the type of tone
mapping is fixed, a fixed value on d usually works for a
large part of the dynamic range. When changing the cam-
era and tone mapping approach, a new value of d has to be
found for optimal performance.

When the widths σ(λi, x0) have been calculated and the
kernel subsequently constructed according to 6, equation 1
is used to calculate the output intensity fout of the smooth-
ing stage in the current pixel x0.

3.1. Considerations for Color

The discussion so far has dealt with intensity images.
We will here discuss some special aspects of the algorithm
when it comes to processing color images.

In applying the algorithm to RGB color image data one
could envision a procedure where the color data in the im-
ages are first transformed to another color space including
an intensity channel, e.g. the HSV colour space, c.f . [7].
The algorithm could then be applied unaltered to the in-
tensity channel, while smoothing of the other two channels
could either be performed with the same kernel as in the in-
tensity channel or by isotropic smoothing. The HSV image
would then be transformed back to the RGB color space.

However, in very dark color video sequences there is of-
ten a significant difference in the noise levels in the different
input channels: for example the blue channel often has a rel-
atively higher noise level. It is therefore essential that there
is a possibility to adapt the algorithm to this difference. To
this end, we chose to calculate the structure tensor Jρ, and
its eigenvectors and eigenvalues, in the intensity channel,
which we simply define as the mean of the three color chan-
nels. The widths of the kernels are then adjusted seperately
for each colour channel by using a different value of the
scaling parameter d for each channel. This gives a clear im-
provement of the output with colors that are closer to the
true chromaticity values and with less false color fluctuta-
tions than in the above mentioned HSV approach.

When acquiring raw image data from a CCD or CMOS
sensor, the pixels are usually arranged according to the so-
called Bayer pattern. It has been shown , c.f . [9], that it is
efficient and suitable to perform the interpolation from the
Bayer pattern to three seperate channels, so-called demo-
saicing, simultanously to the denoising of the image data.
We apply this approach here, for each channel, by setting
to zero the coefficients in the summation kernel k(x0, x)
corresponding to pixels where the intensity data isn’t avail-



able and then normalizing the kernel. A smoothed output is
then calculated for both the noisy input pixels and the pixels
where data are missing.

3.2. Sharpening

The structure tensor is surprisingly good at finding the
direction of motion in very noisy input sequences. How-
ever, in some cases the elongation of the constructed sum-
mation kernels can be slightly misaligned with the motion
direction. In these cases the contours of the moving objects
can be somewhat blurred. As an alternative to our standard
adaptive smoothing approach we propose the addition of
some high-boost filtering to sharpen up these contours. The
high-boost filter is defined as 3x3x3 tensor with the value
-1 in all elements except the center element which has the
value 27A − 1, c.f . [7]. We have attained the best results
using A = 1.2. If the filter is applied after the complete
smoothing process we will run into problems of negative
values and rescaling of intensities, which will give a global
intensity flickering in the image sequence. We instead pro-
pose that, at each point x0, the constructed smoothing ker-
nel k(x0, x) is filtered with the high-boost filter yielding
a new kernel k̂. The kernel is then normalized so that its
coefficients add up to 1. In this way, application of the con-
structed kernels k̂(x0, x) will add some sharpening at the
most important spatial and temporal edges together with the
general adaptive smoothing.

4. Tone Mapping

The adaptive smoothing of the input data presented
above reduces the noise in the low-light level data, but the
images are still just as dark as in the unprocessed input data.
The next step is to apply an amplifying intensity transfor-
mation such that the dynamic range of the dark areas is in-
creased while preserving the structure in brighter areas, if
such areas exist. The procedure of intensity transformation
is also commonly referred to as tone mapping. The tone
mapping could actually be performed either before or after
the noise reduction, with a similair output, as long as the
scaling parameter d for the smoothing kernels is choosen to
fit the current noise level.

In the virtual exposures method of Bennett and McMil-
lan [3], a tone mapping procedure is applied where the ac-
tual mapping is a logarithmic function similar to the one
proposed by Drago et al. [5]. The tone mapping procedure
also contains additional smoothing using spatial and tem-
poral bilateral filters and an attenuation of details, found by
the subtraction of a filtered image from a non-filtered image.
We instead choose to do all smoothing in the seperate noise
reduction stage and here concentrate on the tone-mapping.

The tone mapping procedure of Bennett involves several
parameters, both for the bilateral smoothing filters and for

changing the acuteness of two different mapping functions,
one for the large scale data and one for the attenuation of
the details. These parameters have to be set manually and
will not adapt if the lighting conditions change in the im-
age sequence. Since we aim for an automatic procedure we
instead opt for a modified version of the well-known proce-
dure of histogram equalization, c.f . [7]. Histogram equal-
ization is parameter-free and increases the contrast in an im-
age by finding a tone mapping that evens out the intensity
histogram of the input image as much as possible. However,
for many images histogram equalization gives a too extreme
mapping, which for example saturates the brightest intensi-
ties so that structure information here is lost. We therefore
apply contrast limited histogram equalization as presented
by Pizer et al. in [18], but without the tiling that applies
different mappings to different areas (tiles) in the image. In
the contrast limited histogram equalization, a parameter, the
clip-limit β, sets a limit on the derivative of the slope of the
mapping function. If the mapping function, found by his-
togram equalization, exceeds this limit the increase in the
critical areas is spread equally over the mapping function.

After the noise reduction and tone mapping steps there
may still be a need for further contrast enhancment since
the adaptive smoothing has a tendency to squeeze the in-
tensities into the central part of the dynamic range, so that
the peripheral intensity values are scarcely used. This ef-
fect can be alleviated by setting, say, the 0.1 percent of the
pixels with the lowest intensity values to zero, which might
amount to pixels with intensities values up to between 50
and 75 of 256, and then stretching the colormap uniformly.
Applying the same procedure for the brightest part of the in-
tensity range is usually not a good idea, since there are often
small bright details, such as a single lamp, that will have a
clear change in appearance from the input to the output after
such an operation.

5. GPU implementation

The filtering using the summation kernels k(x0, x) is
an inherently parallelizable task for which the graphics
processing units of modern graphics cards are very well
suited. We have implemented the whole adaptive enhance-
ment methodology as a combined CPU/GPU algorithm.

All image pre- and postprocessing is performed on the
CPU. This inludes image input/output and the tone map-
ping step. The histogram equalization, which implements
the tone mapping, requires summation over all pixels. This
computation is not easily adapted to a GPU, as the summa-
tion would have to be done in multiple passes. However, as
these steps constitute a small amount of the execution time,
a simpler CPU implementation is adequate here.

The most expensive parts are the calculation of the struc-
ture tensor, including the gradient calculation, the elemen-
twise smoothing, and the actual filtering, or summation,



which we perform entirely on the GPU. To calculate the
gradients we upload n frames of the input sequence to
the graphics card as floating-point 2D textures, and per-
form spatial gradient computations on each of these. Next
we take temporal differences of each successive frame and
use the resulting gradient to compute the structure ten-
sor for each pixel in each frame. Using the seperability
of the Gaussian kernel, we then compute the isotropically
smoothed tensor for each frame. Typically these filtering
steps are performed using filter sizes of up to 7x7x7 pixels.
For the normalization of the filter, the alpha channel is used
to store the sum of the filter weights.

The smoothing kernels are then computed in a fragment
program on the GPU. This involves finding the eigenval-
ues and eigenvectors of the structure tensor, which can be
done efficiently in a single pass on modern GPUs. The ker-
nel coefficients are temporarily stored as textures and the
final spatiotemporal summation is performed, similarly to
the isotropic pre-pass, in multiple 2D passes. As the filter
kernels are unique for each pixel, the filter weights are re-
computed on the fly during the filtering process.

In summary, by exploiting the massively parallell archi-
tecture of modern GPUs, we obtain interactive frame rates
on a single nVidia GeForce 8800-series graphics card. For
some sample RGB sequences, we obtain the following com-
putational times (in ms):

Resolution
CPU Tensor Spatiotemporal

computations computation smoothing
360 × 288 14 37 95
1024 × 768 150 265 702

These timings assume an isotropic pre-smoothing with
kernels of size 73 pixels, and adaptive spatiotemporal
smoothing with filter kernels as large as 133 pixels.

6. Results

We have tested our complete enhancement method on a
variety of grayscale and color image sequences, differing in
resolution and light level, obtained by both consumer grade
and machine vision cameras. The tested input sequences
include movies obtained by stationary cameras as well as
by moving cameras. The method overall gives strikingly
clean and bright output, considering the bad quality of the
input data.

In Figure 1 one frame of a color sequence obtained by
a Sony DCR-HC23 hand-held consumer camera is shown.
The upper left image shows the original dark sequence. The
resolution of this clip is 360×288 pixels. On the upper right
hand side, the tone mapped image is shown, utilizing the
contrast limited histogram equalization described in Sec-
tion 4. The image shown in the lower left corner is taken
from the sequence after our extended adaptive smoothing
approach in Section 3 has been applied. The smoothing de-

Figure 1. Upper left: One frame of the original sequence. Upper
right: Tone mapped version. Lower right: After noise reduction.
Lower left: After intensity stretching.

Figure 2. Upper left: One frame the of original sequence. Upper
right: Tone mapped version. Lower right: After noise reduction.
Lower left: After intensity stretching.

creases the contrast somewhat, but this degradation is au-
tomatically alleviated by the stretching procedure discussed
at the end of Section 4. The result after this step is shown in
the panel in the lower right corner of Figure 1.

Figure 2 shows the algorithm at work on a 351×201 gray
level sequence taken by a moving camera. The camera used
is a Sony XC-50 machine vision camera. As the camera
moved, a person walked from left to right in the scene. The
algorithm has no problem in smoothing the intensity in the
best possible way for these different motions, and the walk-
ing person is well preserved. The method also preserves the
sharp edges on the buildings while there is large amounts of
smoothing in the homogeneous areas.

In Figure 3 we have applied the algorithm to another se-
quence obtained by the Sony XC-50 camera. The resolution
here is 151 × 181 pixels. In this figure, one should espe-



(a) (b) (c)

(d) (e)

Figure 3. (a) One frame of the original sequence. (b) Tone mapped
version. (c) After noise reduction. (d) After noise reduction with
sharpening. (e) Noise reduced and tone mapped result using Ben-
nett’s method.

cially notice the result in panel (d) of applying the sharpen-
ing approach as described in Section 3.2, compared to the
standard version in panel (c).

6.1. Comparison to other methods

We have compared our method mainly to three other re-
lated methods.

Firstly, we implemented the low-light level enhancement
method presented by Lee et al. [14]. In this method, Pois-
son noise is removed in stationary areas by calculation of
the median in a small spatial neighborhood. So-called false
color noise is removed by either choosing the intensity value
of the current pixel value or the value of the preceding corre-
sponding pixel, depending on a simple measure of the vari-
ance in a neighborhood of the pixel. We have implemented
this method and tested it on the same sequences as presented
in the last section. However, for the very low light levels
that we are dealing with here, and the high noise levels that
this implies, the output of the method of Lee et al. were
visually very visually disappointing, since for instance, the
median calculations in a small neighborhood leave heavy
flickering in the output.

For a related noise reduction approach, we have imple-
mented the adaptive weighted averaging (AWA) filter of
Özkan et al. [29], where a weighted mean is calculated
within a spatio-temporal neighborhood along the motion
trajectories in the sequence. The motion trajectories are cal-
culated using optical flow estimation. For this task, we used
the optical flow method suggested by Bruhn et al. [4]. How-
ever, the heavy noise in our test sequences results in poor
estimations of the optical flow and this leads to excessive
smoothing in the output of the AWA algorithm. Moreover,
much of the noise is left unaffected at the contours of mov-

ing objects in the scene.
The competing method which gave the best output on our

dark noisy test sequences was the virtual exposures method
as proposed by Bennett and McMillan [3], which was de-
scribed briefly in Section 2. An output image from this
smoothing and tone mapping algorithm is shown in panel
(e) in Figure 3. Since this sequence is obtained by a sta-
tionary camera, the virtual exposure method mostly here
results in temporal filtering which removes a large part of
the heavy noise in the input sequence. However, the output
isn’t as spatially smooth as the output of the method pre-
sented in this paper, as shown in panel (c) and (d). Also, the
contrast enhancment achieved by the tone mapping is very
dissapointing in this case. We suspect that this is due to
the fact that Bennett’s tone mapping approach uses seperate
processing of the low and high frequency parts of the input
data which isn’t optimal for the extreme levels of noise that
we are dealing with here.

7. Conclusions

In this paper we have presented a methodology for adap-
tive enhancement and noise reduction for very dark image
sequences with very low dynamic range. The approach
is very general and adapts to the spatiotemporal intensity
structure in order to prevent motion blur and smoothing
across important structural edges. The method also includes
a sharpening feature which prevents the most important ob-
ject contours from being over-smoothed. Most parameters
can be set generally for a very large group of input se-
quences. These parameters include: the clip-limit in the
contrast-limited histogram equalization, the maximum and
minimum widths of the filtering kernels and the width of
the isotropic smoothing of the structure tensor and in the
gradient calculations. However, the scaling parameter for
the width function has to be adjusted to the noise level in
the current sequence. The best approach when applying
the method to color images has been discussed, which in-
cludes demosaicing from the Bayer pattern in raw input
color data simultanuously to the noise reduction. We have
implemented the method using a GPU and achieved inter-
active performance. For very noisy video input data, which
is the result of filming in very low light levels, the method
presented here outperforms (in terms of output quality) all
competing methods that we have come across.
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