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Adaptive Ensemble-Based
Electrochemical-Thermal-Degradation State

Estimation of Lithium-Ion Batteries

Yang Li, Member, IEEE, Zhongbao Wei, Senior Member, IEEE, Binyu Xiong, Member, IEEE

and D. Mahinda Vilathgamuwa, Fellow, IEEE

Abstract—A computationally efficient state estimation
method for lithium-ion (Li-ion) batteries is proposed based
on a degradation-conscious high-fidelity electrochemical-
thermal model for advanced battery management systems.
The computational burden caused by the high-dimensional
nonlinear nature of the battery model is effectively eased
by adopting an ensemble-based state estimator using the
singular evolutive interpolated Kalman filter (SEIKF). Unlike
the existing schemes, it shows that the proposed algorithm
intrinsically ensures mass conservation without imposing
additional constraints, leading to a battery state estimator
simple to tune and fast to converge. The model uncertainty
caused by battery degradation and the measurement errors
are properly addressed by the proposed scheme as it adap-
tively adjusts the error covariance matrices of the SEIKF.
The performance of the proposed adaptive ensemble-based
Li-ion battery state estimator is examined by comparing
it with some well-established nonlinear estimation tech-
niques that have been used previously for battery electro-
chemical state estimation, and the results show that ex-
cellent performance can be provided in terms of accuracy,
computational speed, as well as robustness.

Index Terms—Adaptive estimation, electrochemical state
estimation, lithium-ion (Li-ion) battery, singular evolutive
interpolated Kalman filter.

NOMENCLATURE

Symbol:

A Electrode plate area (m2).

CT Battery thermal capacitance (J/K).

Ds Solid-phase diffusivity (m2/s).

F = 96, 485 C/mol. Faraday constant.

L Thickness of a domain.

Iapp Applied charging current (A).

In Current due to the total molar flux (A).
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M Order of the submodel for solid-phase diffusion.

N j Number of control volumes. j ∈ {pos, sep, neg}.

N tot Total number of control volumes.

QT Heat generation (W).

RT Battery thermal resistance (K/W).

Rg = 8.3145 J/(mol·K). Universal gas constant.

Rp Radius of solid particle (m).

Rct Charge-transfer resistance (Ω).

RSEI Solid-electrolyte interphase film resistance (Ω).

SOC State of charge.

SOH State of health.

T , Tamb Battery and ambient temperatures (K).

Ue Electrolyte diffusion overpotential (V).

U ref
sr Reference voltage of the side reactions (V).

Uss Equilibrium potential of an electrode (V).

Vbat Battery terminal voltage (V).

ce Electrolyte concentration (mol/m3).

cs Solid-phase average concentration (mol/m3).

c̃s Solid-phase concentration difference (mol/m3).

css Solid-phase surface concentration (mol/m3).

cs,max Solid-phase maximum concentration (mol/m3).

jn Total molar flux [mol/(m2· s)].

jint Intercalation molar flux [mol/(m2· s)].

jsr Side reaction molar flux [mol/(m2· s)].

kdeg Degradation coefficient.

k0 Electrode reaction constant [m2.5/(mol0.5· s)].

m, n Ensemble size, system order.

nLi
s,tot Amount of cyclable lithium [mol/(m2)].

t0a Transference number.

u Input variable.

ηct Charge-transfer (intercalation) overpotential (V).

ηsr Side-reaction potential (V).

ηSEI,N SEI side-reaction potential at the separa-

tor/negative electrode boundary (V).

δR Forgetting factor for measurement covariance.

εs, εe Solid-phase and electrolyte volume fractions.

Vector and Matrix:

0, 1, I Zero matrix, unity matrix, identity matrix.

A, C Transformation matrix, Matrix square root of A.

Ke Ensemble Kalman gain.

P State covariance matrix.

Q Process noise covariance matrix.

R Measurement noise covariance matrix.

T A matrix with full rank and zero column sums.

1



U, S, V Singular value decomposition of A−1.

ǫ Residual vector.

v,n Process and measurement noise vectors.

w̄, W̃ Weight vector, weight matrix.

x,X State vector, state ensemble matrix.

x̄, X̃ Mean and perturbation matrix of state ensemble.

y Unmeasurable output vector.

z,Z Measurement, measurement ensemble matrix.

z̄, Z̃ Mean and perturbation matrix of measurement

ensemble.

Subscript:

i Control volume index. i ∈ {1, 2, · · · , N tot}.

k Discrete time index. k ∈ {0, 1, · · · }.

0 Initial value.

0%, 100%Value at SOC = 0% or SOC = 100%.

Superscript:

neg, pos Negative electrode, positive electrode.

sep Separator.

+, − Posterior estimate, prior estimate.

p Ensemble member index. p ∈ {1, 2, · · · ,m}.

q State variable index. q ∈ {1, 2, · · · , n}.

I. INTRODUCTION

L
ITHIUM-ION (Li-ion) battery has become the leading

electrochemical energy storage technology due to its

salient advantages of high power and high energy densities,

low self-discharge rate, favorable modularity, and recent rapid

decline in cost. It has been widely adopted in modern industrial

applications such as in smart grids with a high penetration of

renewables and electrified vehicles [1]. The increasing need

for higher safety and longer service life of Li-ion battery

that is amenable to a wider operating range has lead to

some extensive research efforts to develop advanced battery

management systems (ABMSs) [2].

In an ABMS, monitoring the health- and safety-related

internal states, such as the lithium-ion concentrations, side-

reaction potentials, internal temperature, cell strain, gas e-

mission, as well as the internal resistance of the battery, is

of primary importance to achieve safe, reliable, and efficient

operation of the battery systems. Nevertheless, it is difficult

to physically measure these internal states in practice based

on the prevailing sensor technology. Hence, electrochemical

state estimation techniques, that have been developed with the

external measurements of terminal voltage, applied current,

and surface temperature of the battery, have received growing

research attention in recent years. These techniques usually

rely on physics-based models which are established based on

underlying electrochemical principles. The information on the

internal states can be utilized for designing health- and safety-

aware battery charging control [3] and energy management [4],

in contrast to using conventional empirical battery models such

as a lumped-parameter equivalent circuit model (ECM) [5] or

data-driven techniques [6] to develop such battery control and

management schemes.

Described by partial differential algebraic equations (P-

DAEs), the rigorous physics-based model of the Li-ion bat-

teries, namely the pseudo two-dimensional (P2D) model,

was originally developed for Li-ion battery design but can

hardly be implementable in real-time control systems due to

its prohibitively high computational cost [7]. To overcome

such a difficulty, extensive research efforts have been made

to simplify the distributed-parameter physics-based models.

Early research on estimating the battery state of charge (SOC)

with nonlinear estimators has been constructed using the single

particle model (SPM) and its improved versions, where the in-

fluence of the nonuniformity in the electrode is ignored. These

include the extended Kalman filter (EKF) with the SPM [8],

unscented Kalman filter (UKF) with an enhanced SPM adding

the electrolyte dynamics [9], backstepping observer based on

an SPM enhanced with electrolyte dynamics [10], moving

horizon estimation with the enhanced SPM that captures

electrolyte [11] and thermal [12] dynamics, and co-estimation

of SOC and state of health (SOH) using particle filter (PF)

[13]. However, electrode uniformity assumption is held only

under low to medium current rates, and it can be largely

violated under today’s high-power and high-energy battery

charging conditions. In addition, the extended operating range

can lead to a significant nonuniform degradation behavior in

the electrode [14], which cannot be captured by the above

electrochemical state estimators for accurate battery health

state monitoring.

To better predict the local performance of an electrode,

various electrochemical state estimators are designed with

simplified P2D models based on the EKF [15], the UKF

[16], and the PF [17], with the incorporation of nonuniformity

of the electrode. However, the computational complexities of

these state estimators are in the order O(n3), where n is the

system order [18]. Such battery state estimation techniques are

saddled with high computational costs for online operation due

to the large n of the electrochemical models with spatially

distributed states and parameters. High-performance proces-

sors and parallel computing techniques need to be adopted

to obtain reasonable computational efficiency [16]. However,

this solution is not cost-effective for most real-time system-

s where the computational resources are primarily selected

for low-order ECM-based battery management. In order to

substantially reduce the computational burden, an efficient

electrochemical battery state estimator is designed based on

the ensemble Kalman filter (EnKF) [19], where a physics-

based equivalent circuit network reformulated from the P2D

model is efficiently solved. In the EnKF, the sequential Monte

Carlo method is applied to the conventional Kalman filter.

Since the large-size n-by-n covariance matrix approximated

with a low-rank (n-by-m) ensemble matrix, the computational

burden can thus be significantly lightened [20].

It is worth noting that the computational superiority of the

EnKF to conventional algorithms, such as EKF and UKF, only

exists under the condition m≪ n, leading to a very small m
in the battery electrochemical state estimator under investi-

gation. As the statistical characteristics may not be correctly

represented with a small set of randomly perturbed samples

in the EnKF, the performance of the battery estimator can
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be significantly lowered and it may even cause a divergence

due to the undersampling issue [21]. In this work, as the

first contribution, we address the problem by bridging an

ensemble-based square-root state estimation technique and a

high-dimensional physics-based model. The problem-causing

perturbed measurement is avoided and the capability of the

ensemble-based battery state estimator to track the battery

SOH is demonstrated for the first time with the incorporated

battery degradation phenomena.

Although it is well-recognized that the performance of most

nonlinear state estimation algorithms significantly depends

on the method of choosing the estimator parameters, in the

existing works it is rarely discussed in relation to physics-

model-based battery state estimation. As most systematic

and empirical parameter tuning methods in the literature are

usually application-dependent with certain assumptions on

the system model, e.g., EKF and UKF, their applicability to

the present problem for battery state estimation is unknown.

In this regard, the proposed ensemble-based battery state

estimator offers a robust and fast initialization process that

only needs a simple parameter tuning procedure. In addition,

we prove that mass conservation is intrinsically guaranteed in

the proposed ensemble-based battery state estimator. Hence,

the additional steps to impose constraints on mass conservation

are avoided. These steps are necessary for enhancing the

estimator convergence in the existing works. This leads to

simpler implementation and reduced computational burden.

Furthermore, the information of uncertainties is assumed

known in the previous work [19], possibly being identified

offline and obtained from sensor specification. However, in

practice, the error covariances can be changed due to various

factors such as battery aging and faults of the measurement

devices. The use of constant covariance matrices during the

lifetime of the battery can result in substantial estimation errors

and even filtering divergence. Recent studies have investigated

adaptive filtering schemes for battery electrochemical state

estimator based on EKF [22] and UKF [22], [23] suitable

for low-order systems. A proposed ensemble-based method to

efficiently incorporate adaptiveness into the battery estimator

with high-dimensional physics-based model forms another

contribution of the present investigation.

II. ELECTROCHEMICAL-THERMAL-DEGRADATION

MODEL OF LI-ION BATTERY

A. P2D Model With Thermal Dynamics

The P2D model of Li-ion batteries was established based

on the porous electrode theory and the concentrated solution

theory [7]. It is a general modeling framework for a Li-

ion cell with the sandwich-like structure with three domains,

namely the positive electrode (i.e., the cathode, denoted by

“pos”), the negative electrode (i.e., the anode, denoted by

“neg”), and the separator (denoted by “sep”). The lithium ions

are stored in a number of assumed spherical particles in the

solid phase of the electrode, and the transport of the lithium

ions during charge/discharge would cause the variation of the

concentrations in the particles as well as in the electrolyte. A

set of tightly coupled and highly nonlinear PDAEs are used to

Iapp

External Source/Load

0

in,N +

− 

+

− 

+

− ...

...

Φs,i

Vbat

x

0 Positive Electrode

...

...

...

...

Uss,i

RΣ,i

Φe,i

Ue,i

In,i

+

− 

+

− 

+

− 
+

− 

+

− 

Section i

...

...

...

+

− ...

...

...

+

− 

Ue,N

Uss,N

In,N

ηct,N

+

− 

+

− 

+

− 

Φs,N

Φe,N
RSEI,N

Rct,N

0

x x

0 SeparatorL
pos Negative ElectrodeL

sep
L

neg

(a)

css,i

jn,i Tamb QT

(d)

cs,i T

M ‒ 1 
Concentration 

Diff. Terms

(b)

+

− 

S
o

li
d

 
P

h
a

s
e

E
le

c
tr

o
ly

te

TQT
jn,i css,i

......

(c)

............

Ref.

ce,N 

jn,N 

Δxi

jn,i

ce,i

jn,i ce,i T

TΣsr jsr,i

jint,i
+ − + − 

Rp,i /3

RT

CT

Fig. 1. Equivalent circuit representation of physics-based model of a Li-
ion battery cell, including the subcircuits that describe (a) mass transport
in a solid particle, (b) heat transfer, (c) charge transport in the electrolyte,
and (d) mass transport in the electrolyte.

describe the cell behaviors in the horizontal axis (x-direction)

on the macro scale as well as the pseudo radial axis on the

micro scale. A thermal model can be readily incorporated into

the P2D framework to form a coupled electrochemical-thermal

model, denoted by the P2D-T model in this work.

B. A Reduced-Order Electrochemical-Thermal Model

A transmission-line-like equivalent circuit as depicted in

Fig. 1 can be used to illustrate the structure of the P2D-T mod-

el. The subcircuit in Fig. 1(c) was obtained by applying the fi-

nite volume method along the x-direction. The domains of the

positive electrode, separator, and negative electrode are divided

into N pos, N sep, and N neg control volumes, respectively. The

subscript i ∈ {1, 2, · · · , N tot} indicates the local quantities at

the ith control volume, where N tot = N pos + N sep + N neg

is the total number of control volumes. This reduced-order

model (ROM) will be briefly explained next and the physical

meanings of the symbols are provided in the Nomenclature.

In Fig. 1(c), Vbat is the terminal voltage and Iapp is the

applied current. In each section i, the diffusion of the lithium

species in the solid phase is modeled by an M th-order equiva-

lent circuit shown in Fig. 1(a), where cs,i and css,i represent the

volumed-averaged and the surface concentrations, respectively.

The battery SOC can be calculated using all cs,i in the negative

electrode, i.e.,

SOC(t) =

1
N neg

N tot∑
i=N pos+N sep+1

cs,i(t)− cneg

s,0%

cneg

s,100% − cneg

s,0%

(1)

The voltage sources Uss,i and Ue,i in Fig. 1(c)

are concentration-dependent nonlinear functions: the open-
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circuit potential (OCP) Uss,i = f iOCP(css,i) is determined

by the active material of the electrode, and Ue,i =
(2RgTt

0
a/F ) ln (ce,i/ce0) is associated with the electrolyte

concentration ce,i governed by the diffusion subcircuit in

Fig. 1(d). The battery temperature T is described by a lumped

heat transfer model as shown in Fig. 1(b), where the generated

heat QT is calculated as the total power losses generated

from the equivalent circuit in Fig. 1(c) and T also affects

the parametric values of the circuit elements in Figs. 1(a), (b)

and (d). In addition, the molar flux source jn,i in Fig. 1(a) and

Fig. 1(d) is proportional to the branch current In,i in Fig. 1(c).

The readers are referred to previous works such as [19],

[24] for detailed information on this coupled electrochemical-

thermal ROM.

C. Model Extension With Degradation

The battery model presented in Section II-B describes the

intercalation/de-intercalation processes of a Li-ion battery cell

during charging and discharging. Since the performance of Li-

ion batteries can degrade gradually over time, an extension of

the model is required for monitoring aging-related behaviors

and designing battery health management strategies.

In this work, the loss of lithium inventory (LLI) due to

side reactions, as a consequence of solid-electrolyte interphase

(SEI) film growth and lithium plating (LiP) in the negative

electrode, is considered the major degradation mode that

affects the battery SOH [25]. The SOH is thus associated with

the amount of total cyclable lithium nLi
s,tot in the solid phase

of the electrodes, calculated by

nLi
s,tot(t) =

εpos
s Lpos

N pos

N pos∑

i=1

cs,i(t) +
εneg
s Lneg

N neg

N tot∑

i=N pos+
N sep+1

cs,i(t) (2)

SOH(t) =
nLi
s,tot(t)

nLi
s,tot0

(3)

where nLi
s,tot0 is the amount of the cyclable lithium at the

beginning of life (BOL) of the battery cell.

To incorporate the degradation behaviors, in Fig. 1(a), the

total molar flux jn,i is considered as the sum of the intercala-

tion molar flux jint,i and all side reaction molar fluxes Σsrjsr,i.

Each side reaction molar flux jsr,i has a complex nonlinear

functional relationship φsr,i(·) with the local variables (See.

e.g. [14], [26], [27]), generally expressed as

jsr,i(t) = φsr,i(ηsr,i(t), T (t), css,i(t), ce,i(t), · · · ) (4)

ηsr,i(t) = Uss,i(t) +Rct,iIn,i(t)− U ref
sr (5)

∀i ∈ {N pos +N sep +1, · · ·N tot}, ∀sr ∈ {SEI,LiP, · · · }, where

ηsr,i is the side reaction potential (SRP), U ref
sr is side reaction

reference voltage, Rct,i = RgT/[F
2k0,iAc

0.5
e,i c

0.5
ss,i(cs,max,i −

css,i)
0.5] is the charge-transfer resistance as shown in Fig. 1(c).

The SRP ηsr,i at the separator/negative electrode boundary

is an important variable to monitor as its magnitude affects

the side reaction rate. Note that the sum of all local side

reactions Σsrjsr,i is always negative. According to Fig. 1(a), the

condition Σsrjsr,i(t) < 0, ∀t > 0 causes continuous reductions

in the solid-phase concentration cs,i, and thus both nLi
s,tot and

SOH will gradually decrease over time according to (2) and

(3) as the result of LLI.

However, it is difficult to accurately describe all the side

reactions with φsr,i(·) and efficiently solve the complex aging

model coupled with the circuit model presented in Fig. 1. A

simple degradation model is thus adopted based on the fact

that side-reaction-induced degradation has ignorable effects on

battery performance during a short period of time (e.g. in one

hour). Usually, the magnitude of jsr,i is much smaller than

that of jn,i, and the resulting LLI is thus small. It will be

sufficiently reasonable to assume that

Σsrjsr,i(t) = −kdeg (6)

∀i ∈ {N pos + N sep + 1, · · ·N tot}, where 0 < kdeg ≪ 1 is a

small positive coefficient explained as the average of the side

reaction rates across the electrode. kdeg will be estimated as a

slowly-varying state in this work.

D. Model Summary

After being discretized in the time domain with the time step

of ∆t, the ROM extended with degradation can be expressed

in a discrete-time state-space form [19],

xk = F(xk−1, uk,∆t) + vk (7a)

zk = H(xk, uk) + nk (7b)

yk = L(xk, uk) (7c)

where the subscript k = t/∆t is the discrete time index. F(·),
H(·), and L(·) are nonlinear operators for the process, measur-

able output, and unmeasurable output, respectively. The state

vector x = [(cpos
s )

⊤
, (cneg

s )
⊤
, (ce)

⊤
, (c̃s)

⊤
, T, kdeg]

⊤

∈ R
n

consists of all the local concentrations and battery temper-

ature augmented with the degradation coefficient kdeg, and

the system order is n = M(N pos + N neg) + N tot + 2.

Here, c
pos
s ∈ R

N pos

and c
neg
s ∈ R

N neg

consist of the local

volume-averaged concentrations cs,i in the positive and the

negative electrodes, respectively, ce ∈ R
N tot

consists of the

local electrolyte concentrations ce,i in Fig. 1(d), and c̃s ∈
R

(M−1)(N pos+N neg) contains the local concentration difference

terms as indicated in Fig. 1(a). The model input is the current

u = Iapp, and the measurements include the battery voltage and

ambient temperature, i.e., z = [Vbat, Tamb]
⊤. The uncertainties

of the process and the measurements are also considered

in (7) by introducing the normally distributed error vectors

v ∼ N (0,Q) and n ∼ N (0,R), respectively. Furthermore,

the unmeasurable output vector y includes SOC, SOH, SRPs,

etc. These variables are of interest for health-aware battery

management diagnosis and control, and all of them can be

explicitly expressed as functions of the state vectors and the

input current by solving the circuit model.

III. ADAPTIVE STATE ESTIMATION USING SINGULAR

EVOLUTIVE INTERPOLATED KALMAN FILTER

In this section, an ensemble-based electrochemical state

estimator is designed to observe the high-dimensional internal

states of the Li-ion batteries using the ROM summarized in

Section II-D. The proposed battery state estimator is based
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on the singular evolutive interpolated Kalman filter (SEIKF),

a square-root type filtering algorithm originally introduced

by Pham et al. for oceanographical studies [28], [29]. We

reformulate the SEIKF based on the algorithm described in

[30], with notations being modified to provide better readabil-

ity for the battery management community. In an ensemble-

based method, an n-by-m state ensemble matrix is used to

approximate the n-by-n covariance matrix, defined as

X̂k := [x̂
(1)
k , x̂

(2)
k , · · · , x̂(m)

k ] ∈ R
n×m.

Each column of the state ensemble matrix, called an ensem-

ble member, is a sample estimate of the n-dimensional state

vector defined in Section II-D. The ensemble mean x̄k and

ensemble perturbation matrix X̃k are defined as follows.

x̄k :=
1

m

m∑

p=1

x̂
(p)
k (8a)

X̃k := X̂k −
m︷ ︸︸ ︷

[x̄k, x̄k, · · · , x̄k] . (8b)

A. Initialization

The battery state estimator is first initialized by choosing a

proper initial state ensemble X̂+
0 := [x̂

+(1)
0 , x̂

+(2)
0 , ..., x̂

+(m)
0 ].

The element in the qth row and the pth column in X̂+
0 is

X̂
+(q,p)
0 =





c
pos(p)
s0 , ∀q ∈ Spos

s

c
neg(p)
s0 , ∀q ∈ Sneg

s

ce0, ∀q ∈ Se
T0, q = n− 1
kdeg0, q = n
0 otherwise

(9)

where Spos
s := {1, 2, · · · , N pos}, Sneg

s := {N pos+1, · · ·N pos+
N neg}, and Se := {N pos +N neg +1, · · · , N pos +N neg +N tot}
are the index sets for the elements in c

pos
s , c

neg
s , and ce,

respectively. It assumes that the solid-phase concentration

states in X̂+
0 uniformly covers an estimated range of SOC

from SOCmin
0 to SOCmax

0 as shown in Fig. 2, i.e.,

SOC
(p)
0 = SOCmin

0 + (p/m)(SOCmax
0 − SOCmin

0 ) (10a)

c
pos(p)
s0 = (cpos

s,0% − cpos

s,100%)SOC
(p)
0 + cpos

s,100% (10b)

c
neg(p)
s0 = (cneg

s,100% − cneg

s,0%)SOC
(p)
0 + cneg

s,0% (10c)

∀p ∈ {1, 2, · · · ,m}. In addition, the initial electrolyte con-

centration ce0 is a known battery parameter determined by

the electrolyte characteristics, the initial battery temperature

T0 is measurable using a temperature sensor, and the initial

degradation coefficient kdeg0 can be set as follows. Within a

time period ∆τ , according to Fig. 1(a), the change in the solid-

phase concentration ∆cs,i caused by Σsrjsr,i is obtained by

∆cs,i =
3

Rip
(Σsrjsr,i)∆τ = − 3

Rneg
p
kdeg0∆τ (10d)

According to (2) and (3), this reduction in concentration

leads to the decrease of nLi
s,tot and SOH, i.e.,

∆SOH =
∆nLi

s,tot

nLi
s,tot0

=
εneg
s Lneg

nLi
s,tot0

∆cs,i (10e)
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Fig. 2. Initial setting of solid-phase concentrations in state ensemble.

With (10d) and (10e), kdeg0 can be calculated according to

the rate of change of the SOH (∆SOH/∆τ )

kdeg0 =
∆SOH

∆τ

nLi
s,tot0

εneg
s Lneg

Rneg
p

3
(10f)

B. Prediction Step

Based on the previous-step ((k − 1)th) posterior state

ensemble matrix X̂+
k−1 := [x̂

+(1)
k−1 , x̂

+(2)
k−1 , ..., x̂

+(m)
k−1 ], the

current-step (kth) prior state ensemble matrix X̂−

k :=

[x̂
−(1)
k , x̂

−(2)
k , ..., x̂

−(m)
k ] is predicted by forwarding each en-

semble member according to the state equation (7a). Thus,

x̂
−(p)
k = F(x̂

+(p)
k−1 , uk,∆t) + v̂

(p)
k ∀p ∈ {1, 2, · · · ,m} (11)

where the process noise v̂
(p)
k is drawn from normal distribution

N (0, Q̂k) i.i.d..

C. Update Step

The purpose of the update step of an ensemble-based filter

is to assimilate the latest measurements zk to obtain the

posterior state ensemble X̂+
k := [x̂

+(1)
k , x̂

+(2)
k , ..., x̂

+(m)
k ]. For

both EnKF and SEIKF, a measurement ensemble Ẑk :=
[ẑ

(1)
k , ẑ

(2)
k , ..., ẑ

(m)
k ] is generated. Each member of Ẑk is ob-

tained according to (7b), i.e.,

ẑ
(p)
k = H(x̂

−(p)
k , uk) ∀p ∈ {1, 2, · · · ,m} (12a)

Similar to (8), the ensemble mean and ensemble perturba-

tion matrix of Ẑk can be defined by

z̄k =
1

m

m∑

p=1

ẑ
(p)
k (12b)

Z̃k = Ẑk −
m︷ ︸︸ ︷

[z̄k, z̄k, · · · , z̄k] . (12c)

In the EnKF, the member of the posterior state ensemble

X̂+
k is obtained by

Ke,k =
X̃−

k Z̃
⊤

k

m− 1

(
Z̃kZ̃

⊤

k

m− 1
+ R̂k

)−1

(13a)

x̂
+(p)
k = x̂

−(p)
k +Ke,k(zk + n

(p)
k − ẑ

(p)
k ) (13b)
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∀p ∈ {1, 2, · · · ,m}. Here, Ke,k is ensemble Kalman gain,

and n
(p)
k ∼ N (0, R̂k) is the pseudo measurement perturbation

intentionally added to obtain the correct error covariance. The

ensemble mean x̄+
k , calculated from X̂+

k , is considered the

estimate of the system state and used to calculate the output

vector according to (7c).

The ensemble size m should be large enough to correctly

represent the error characteristics when the pseudo measure-

ment perturbation is randomly generated in the update step in

the EnKF. In contrast, perturbed measurements are not used in

the SEIKF. Instead, X̂+
k is calculated by updating the ensemble

mean x̄+
k and the ensemble perturbation matrix X̃+

k separately,

and both are considered linear transformations of the prior

counterparts, i.e.,

x̄+
k = x̄−

k + X̃−

k w̄k (14a)

X̃+
k = X̃−

k W̃k (14b)

where the weight vector w̄k and the weight matrix W̃k are

calculated according to

w̄k = TAk(ẐkT)⊤R̂−1
k (zk − z̄k) (14c)

W̃k =
√
m− 1TCkΩ

⊤

k . (14d)

and T ∈ R
m×(m−1) is a static matrix with full rank and zero

column sums, given by

T =

[
Im−1

01×(m−1)

]
− 1

m

[
1m×(m−1)

]
(14e)

where I, 0, and 1 represent the identity matrix, zero matrix,

and unity matrix, respectively, with the subscripts being the

matrix dimensions. Multiplying an ensemble matrix by T

simply calculates the corresponding ensemble perturbation

matrix and then removes its last column.

In (14c) and (14d), Ak ∈ R
(m−1)×(m−1) is a transformation

matrix and Ck is a matrix square root of Ak, obtained by

Ak =
[
(m− 1)T⊤T+ (ẐkT)⊤R̂−1

k (ẐkT)
]−1

(14f)

A−1
k = UkSkV

−1
k (14g)

Ck = Uk(Sk)
−

1

2U⊤

k . (14h)

where (14g) is the singular value decomposition of A−1
k .

Furthermore, in (14d), Ωk ∈ R
m×(m−1) is a matrix with its

columns being orthonormal and orthogonal to unity vector. A

method to obtain Ωk is presented in Appendix A.

D. Adaptive Adjustment of Covariance Matrices

The covariance matrices Rk and Qk are usually known

exactly and they are affected due to degradation and faults

of both the battery and its measurements. A method to online

adjust the covariance matrices in the SEIKF-based battery state

estimator is proposed in this subsection.

First, the measurement error covariance matrix Rk can

be estimated using measurement residual [31]. A general

definitation is used here [32], i.e.,

Rk = E
[
nkn

⊤

k

]
= E

[
ǫkǫ

⊤

k

]
+P+

zz,k (15)

where E[·] represents the expected value, ǫk is the residual and

P+
zz,k is the residual covariance. To approximate the expected

value, a small forgetting factor 0 < δR ≪ 1 is used here to

prevent short-term fluctuation in the estimated results, i.e.,

R̂k+1 = (1− δR)R̂k + δR

(
ǫkǫ

⊤

k +P+
zz,k

)
. (16)

In the SEIKF, the residual and the residual covari-

ance can be readily approximated using ensemble Ẑ+
k :=

[ẑ
+(1)
k , ẑ

+(2)
k , ..., ẑ

+(m)
k ], i.e.,

ẑ
+(p)
k = H(x̂

+(p)
k , uk) ∀p ∈ {1, 2, · · · ,m} (17a)

ǫk = zk − z̄+k (17b)

P+
zz,k =

1

m− 1

(
Z̃+
k

)⊤
Z̃+
k . (17c)

where z̄+k and Z̃+
k are the mean vector and perturbation matrix

of Ẑ+
k , respectively.

On the other hand, the model error covariance matrix Qk

is defined by

Qk = E
[
vkv

⊤

k

]
. (18)

According to (7a) and (14a), the process noise can be

estimated by

v̂k = x̄+
k −F(x̄+

k−1, uk,∆t) = x̄+
k − x̄−

k = X̃−

k w̄k. (19)

To obtain the expected value in (18), a similar procedure can

be adopted to smooth Q̂k using a forgetting factor. However, it

demands additional computational resource to process Q̂k with

dimension n-by-n, for use in the next time-step. As will be

shown in the latter sections, the fluctuation in Q̂k has ignorable

effects on the short-term performance of the SEIKF. Hence, the

need for smoothing Q̂k can be avoided by the approximation:

Q̂k+1 =
(
X̃−

k w̄k

)(
X̃−

k w̄k

)⊤
. (20)

IV. DISCUSSION ON ADAPTIVE ENSEMBLE-BASED

BATTERY STATE ESTIMATOR

A. Computational Requirement

In the SEIKF, only an n-by-m ensemble matrix X̂+
k needs

to be maintained and evolved. The leading cost in the SEIKF

is in the order of O(nm+ nm2) to perform (14a) and (14b)

when m ≪ n. On the contrary, for EKF- and UKF-based

algorithms, both the mean x̄+
k of the state estimate and the

n-by-n covariance matrix P̂+
k need to be dealt with, and their

leading costs are in the order of O(n3) [18]. Also, the SEIKF

is advantageous over EKF as there is no need to perform

sequential linearization, in which calculating a set of large-size

Jacobian matrices online can be extremely heavy for the highly

nonlinear coupled battery model. Hence, the SEIKF algorithm

is much more computationally efficient to implement than the

widely adopted stochastic nonlinear filtering algorithms such

as EKF and UKF.

The behavior of the SEIKF and EnKF for nonlinear models

is examined and compared in [29], where it is found that the

SEIKF can be more efficient than the EnKF because a smaller

ensemble could be used to achieve comparable estimation

errors [33]. Although more equations are used in the update
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step of the SEIKF compared to the EnKF, as can be seen

from Section III-C, since the dimensions of the matrices such

as Ak, Ck, T, and Ωk are low, the additional computational

requirement to execute (14c)–(14h) overhead is small.

B. Parameter Tuning

The ensemble size m is the only parameter to be determined

for the SEIKF- and the EnKF-based estimators. Starting from

m = 2, different tests can be carried out by increasing m
until the filters converge fast and the RMSE of the estimated

SOC is less than, e.g., 1%. Also, the initial guess of the SOC

range is set to SOCmax
0 = 1 and SOCmin

0 = 0 for both the

SEIKF and EnKF. Such a tuning process for ensemble-based

algorithms requires some minimal manual effort.

Compared with the ensemble-based techniques presented

above, the tuning procedure of the UKF is much more com-

plex. In order to maintain the conciseness of the present work,

the detailed formulation of the UKF is not provided here but

the reader is referred to various works such as [16], [23], [34].

The parameters to be tuned include the initial mean state vector

x̂0 ∈ R
n, the initial posterior error covariance P̂0 ∈ R

n×n,

as well as three scaling parameters κ, α, and β. Due to the

complexity of the electrochemical battery model, how to select

the parameters to guarantee the optimal estimator performance

has not been explicitly discussed in the relevant works, e.g.

[16], [23]. In this work, the scaling parameters are set to κ = 0,

α = 0.001, and β = 2, as recommended in [34], and the initial

error covariance is set to P̂0 = (x̂0−x0)(x̂0−x0)
⊤, although

in practice the ground truth x0 is usually unknown.

C. Constraint on Mass Conservation

The UKF-based battery electrochemical state estimator suf-

fers from the issue of slow convergence and even filter

divergence, especially when the estimated error of the initial

state is large. This phenomenon is the consequence of the

loss of mass conservation in the conventional UKF algorithm,

and a general remedy is to impose a constraint on the total

mass into the algorithm [16], [23]. In the present study,

this is achieved by modifying the posterior state estimate

x̂+
k = [x̂

+(1)
k , x̂

+(2)
k , · · · , x̂+(n)

k ]⊤ obtained in the update step

of the UKF. Specifically, denoting the new posterior state

estimate by x̂+
new,k = [x̂

+(1)
new,k, x̂

+(2)
new,k, · · · , x̂

+(n)
new,k]

⊤, its qth

element x̂
+(q)
k,new is calculated as

x̂
+(q)
new,k =





x̂
+(q)
k × nLi

s,tot,k

n̂Li
s,tot,k

, ∀q ∈ Spos
s ∪ Sneg

s

x̂
+(q)
k , otherwise

(21)

where nLi
s,tot,k is the total mass calculated according to (2) with

the unmodified posterior estimate x̂+
k , while n̂Li

s,tot,k represents

the estimated total mass that is equal to nLi
s,tot0 at the BOL and

is decreased due to capacity fade.

For the SEIKF-based estimators, we find that the constraint

on the mass conservation is intrinsically preserved and there

is no need to add the modification step such as (21). In other

words, the condition (2) is guaranteed for each member of

the posterior state ensemble matrix X̂+
k in the kth time step,

Vötsch Technik 
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Fig. 3. Experimental setup.
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Fig. 4. Comparison of the P2D-T model and experimental measure-
ments under the CC-CV charge and CC discharge protocol: (a) Terminal
voltage. (b) Battery temperature.

as long as the member of the previous-step posterior state

ensemble matrix X̂+
k−1 satisfies (2). The proof is provided in

Appendix B. This advantageous feature of the SEIKF reduces

the complexity of the battery estimator design.

V. ILLUSTRATIVE EXAMPLES

In this section, experimental results and numerical study

will be provided to validate the proposed electrochemical

state estimator for the Li-ion batteries based on the adaptive

SEIKF. The full-order P2D-T model was implemented in

COMSOL Multiphyiscs 5.3a, and the ROMs and the state

estimation algorithms were implemented in MATLAB R2016a

environment. All the simulated results were obtained on a 64-

bit Windows 10 on a PC with Intel Core 2 Q9400 @ 2.67GHz

processor and 8GB RAM with sampling time ∆t = 1 s.

A. Model Validation and Comparison

Experiments were conducted on a 2.6-Ah 18650 high-

energy NMC/graphite battery cell to validate the benchmark

P2D-T model. The experimental setup shown in Fig. 3 com-

prises an Arbin battery tester with current/voltage measure-

ments, a thermal chamber for ambient temperature regulation,

and a workstation for user-machine interface and data acqui-

sition. The range of the current and voltage sensors inside

the test bench are 10 A and 5 V, while the measurement

error limits for voltage and current are both within 0.05%.

The acquired high-accuracy experimental data including the

load current and terminal voltage are collected at 1 Hz. The

cell was cycled with constant-current constant-voltage (CC-

CV) charge and CC discharge protocol with different current

7



3.5

4

4.5

V
b
a
t
(V
)

0

0.01

0.02

0.03

A
b
s.
E
rr
.
of

V
b
a
t
(V
)

295

300

305

310

315

T
(K
)

P2D-T

ROM (9,3,9)

ROM (6,2,6)

ROM (4,1,4)
0

0.2

0.4

0.6

A
b
s.
E
rr
.
of

T
(K
)

0 500 1000 1500

Time (s)

-0.4

-0.2

0

2
S
E
I;
N
(V
)

0 500 1000 1500

Time (s)

0

0.005

0.01

0.015

A
b
s.
E
rr
.
of
2
S
E
I;
N
(V
)

(d)

(a) (b)

(c)

(e) (f)
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rates, between the maximum voltage of 4.2 V and the cut-

off voltage of 2.7 V. The maximum current limit is 2C for

this high-energy type cell according to the specifications. The

ambient temperature of the battery is maintained at 25.5◦C,

i.e., Tamb = 298.65 K.

The electrochemical model parameters used in this study

are given in Table I. First, the OCP function for the graphite

negative electrode was obtained from [35], and the OCP

function of the NMC positive electrode was fitted as the

sum of measured open-circuit voltage and the OCP of the

negative electrode. Sensitivity analysis was next conducted

based on voltage and temperature measurements. Most of the

material-dependent parameters and/or the parameters with low

sensitivities to input variation were obtained from the literature

[36], and the remaining parameters were identified using the

genetic algorithm (GA) as described in [37]. The measured

cell voltage and temperature are compared in Fig. 4 with the

simulation results using the P2D-T model. Clearly, the P2D-

T model reproduces the battery dynamics with high fidelity

over a wide operating range. As the suitability of the P2D-T

model for accurately representing the characteristics of Li-ion

cells with different types of chemistries has been extensively

demonstrated in the literature, the repetitive experimental

validation process is not presented.

Since it is difficult to measure the internal variables such as

the concentrations and reaction overpotentials in real-time, we

follow the common practice in the literature, e.g. [12], [22],

[23], by using the above experimentally-verified model as a

benchmark to further compare the ROM of the Li-ion battery

presented in Section II-B. A modified Federal Urban Driving

Schedule (FUDS) test profile was chosen as the input current.

The original maximum current rate is 1C and the magnitude
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Fig. 6. Accuracy of the ROM with different control volumes. (a) Errors of
terminal voltage and SRP at the sep/neg boundary. (b) Errors of battery
temperature.

TABLE I
ELECTROCHEMICAL PARAMETERS OF LI-ION BATTERY MODEL

Symbol pos sep neg

Rp
a 5× 10−6 – 5× 10−6

L a 55.8× 10−6 25× 10−6 88.0× 10−6

εe a 0.45 – 0.5
εs a 0.55 – 0.5
ce0 a 1200
t0a

a 0.637
Ds

b 1.1× 10−14 – 9.96× 10−15

cs,max
b 78, 552 – 35, 900

k0 b 8.7× 10−12 – 1.1× 10−11

cs,0%
b 74, 836 – 319

cs,100%
b 35, 348 – 27, 859

CT
b 30.1

RT
b 10.0

OCP of positive electrode (NMC) c :

Uss,i = f i
OCP(θ := css,i/c

pos
s,max) = 3.844 exp(−( θ−0.3419

0.2176
)2)

+ 2.845 exp(−( θ−0.6332
0.2026

)2) + 2.643 exp(−( θ−0.8753
0.1786

)2)

+ 0.9075 exp(−( θ−0.9683
0.06277

)2) + 0.3364 exp(−( θ−0.9016
0.0721

)2)

OCP of negative electrode (Graphite) d :

Uss,i = f i
OCP(θ := css,i/c

neg
s,max) =

0.1397 + 0.6892 exp (−49.2036θ) + 0.4190 exp (−254.4θ)−

exp (49.979θ − 43.379)− 0.02822 tan−1(22.523θ − 3.6533)−

0.01308 tan−1(28.348θ − 13.4396)

a From [36]. b Identified using GA. c Fitted. d From [35].

of the profile is amplified by a factor of 8. Different control

volume numbers, denoted by the triple (N pos, N sep, N neg), are

used to evaluate the accuracy and the computation speed of the

ROMs, so that a set of suitable control volume numbers can

be selected for the state estimator. For simplicity, we select

N neg = N pos and N sep ≈ (1/3)N pos. The order of solid-phase

diffusion model is selected as M = 2. The simulated terminal

voltage Vbat, battery temperature T , and the SEI-related SRP

at the sep/neg boundary (denoted by ηSEI,N ), as well as their

absolute errors to the P2D-T model, are shown in Fig. 5. The

root-mean-square errors (RMSEs) and the maximum absolute

errors (MaxErrs) are plotted against the number of control

volume of the positive electrode N pos in Fig. 6.

Unsurprisingly, the model accuracy increases as the number

of control volumes increases in both terms of RMSEs and

MaxErrs. The selection of the number of control volumes

depends on the requirement of model accuracy for specific
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applications and the affordable computational overheads. In

this work, we consider that the model shall be sufficiently

accurate if the MaxErrs of the simulated terminal voltage and

battery temperature are lower than the standard deviations

(SDs) of corresponding measurement errors. Suppose the

SDs of the voltage sensor and the temperature sensor are

σV = 10 mV and σT = 0.1 K, respectively, by observing

Fig. 6, we find that N pos = N neg = 6 is suitable to be

used for designing the electrochemical-thermal model-based

state estimators, with the system order being n = 40. The

improvement in model accuracy by further increasing of the

number of control volumes does not bring benefits in practice

due to the presence of measurement errors.

B. Comparison of UKF, EnKF, and SEIKF

In this subsection, the performance of the proposed SEIKF-

based battery electrochemical state estimator is compared with

the nonlinear state estimation algorithms including the EnKF

and the UKF. In this case, as a benchmark, a degradation

model proposed in [26] with accelerated aging behaviors is

used to represent the capacity fade phenomenon as described

in (4) and (5), but it is not considered in the design of the state

estimator (i.e., kdeg in (6) is set to zero). The modified FUDS

profile used in Section V-A with the maximum 8C current

was repeated twice for the comparison. Based on the testing

procedure described in Section IV-B, it is found that m = 3 is

the minimum ensemble size for the SEIKF to avoid numerical

instability in the present investigation based on the selected

current profile, and the same m is selected for the EnKF

to compare the accuracy of the estimation algorithms. The

reference battery external measurements and internal variables

are obtained using the benchmark P2D-T model implemented
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in COMSOL, with the initial SOC being SOC0 = 0.95.

Two SOC values were used for initializing the UKF: One

was initialized with the true SOC (ŜOC0 = SOC0 = 0.95),

and the results are considered the optimal benchmark for the

evaluation of the accuracy of the estimation. For the other case,

the state vector mean x̂0 of the UKF was initialized with a

deviation of 30% on the true SOC, i.e., ŜOC0 = 0.65, so that

the convergence of the algorithms can be evaluated. In this

case, the error covariance matrices are assumed known and

constant: R̂k = R1 = diag([σ2
V , σ

2
T ]) = diag([0.012, 0.12])

and they correspond to the voltage and temperature sensors

described in Section V-A. Q̂k = Q1 is a diagonal matrix

and each element equals 1× 10−4. SOC, battery temperature,

SEI potential at sep/pos boundary, and corresponding errors

compared to the P2D-T model are shown in Fig. 7 and the

performance is summarized in Table II.

TABLE II
COMPARISON OF UKF-, ENKF-, AND SEIKF-BASED BATTERY

ELECTROCHEMICAL STATE ESTIMATORS

UKF EnKF SEIKF

ŜOC0 0.95 0.65 – – –

[SOCmin
0 , SOCmax

0 ] – – [0, 1] [0, 1] [0.94, 0.96]
RMSE of SOC (%) < 0.1 0.6 0.4 0.2 < 0.1

RMSE of T (K) 0.4 0.8 1.8 0.4 0.4
MaxErr of T (K) 1.5 1.8 8.7 1.7 1.5

RMSE of ηSEI,N (mV) 1.2 2.3 2.4 1.6 1.3
Convergence Time (s) – 138 3 3 3

CPU Time (s) 66.2 66.2 6.1 6.7 6.7

First, it can be observed that the convergence time of the

UKF-based estimator is long if the initial estimate error is

large, whereas both the ensemble-based estimators, including

the EnKF and the SEIKF, converge rapidly within only a few

seconds, thanks to the robust ensemble initialization process

presented in Section III-A. The computational burden of the

UKF-based estimator is heavy: The CPU time of the UKF is

about 9− 10 times longer than the ensemble-based methods.

This is mainly because a large-size matrix with the dimension

n×(2n+1) = (40×81) has to be processed for the unscented

transform in the UKF [34].

Compared to the EnKF, the SEIKF provides a considerable

improvement in estimation accuracy. This can be seen from

the estimation errors of SOC, temperature, and SEI potential

as shown in Figs. 7(b), (d), and (f), respectively. These

variables are important for designing safety- and health-aware

battery management strategies. Furthermore, as can be seen
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Fig. 9. Comparison of the state estimation results using the non-
adaptive SEIKF and the adaptive SEIKF: (a) Voltage, (b) battery and
ambient temperatures, (c) estimation error of SRP, and (d) estimation
error of battery temperature.

from Fig. 7(c), the EnKF produces an unacceptable erroneous

estimate of the temperature, and the MaxErr of the temperature

estimate is about 8.7 K. In fact, the proposed SEIKF-based

estimator has achieved the accuracy close to the UKF with

improved capability for fast convergence, more robust to initial

error, while the computational requirement is significantly

reduced. The high accuracy of the SEIKF-based estimator

can also be verified with increased confidence in the initial

SOC range. For example, by choosing SOCmax
0 = 0.96 and

SOCmin
0 = 0.94, the simulated performance using SEIKF is

closer to the UKF initialized with true SOC, as shown in Fig. 7

and Table II.

In addition, as discussed in Section IV-C, the proposed

SEIKF-based battery estimator is mass conservative and thus

advantageous over the UKF-based battery state estimator

where the step (21) is needed. To demonstrate the benefit,

SOC, amount of cyclable lithium, and SOH of the cell are

calculated according to (1)–(3) and compared in Fig. 8. It

can be seen that the unconstrained UKF-based estimator does

not converge to the true states, and the incorporation of the

constraint on mass conservation can indeed speed up the

process. It can be seen from Fig. 8(b) that during this short

period of time, although the side reactions lead to capacity fade

and SOH reduction, the influence on battery characteristics

is insignificant and the performance of the proposed SEIKF-

based battery state estimator has not been affected.

C. Comparison of Adaptive SEIKF, Non-Adaptive SEIKF,

and Adaptive UKF

In this subsection, the performance of the adaptive SEIKF-

based battery state estimator is evaluated by comparing it with

a non-adaptive SEIKF and an adaptive UKF. In this case, the

same degradation model as used in Section V-B is adopted

to describe the battery capacity fade behavior as explained in

Section II-C. In contrast to the previous case, in the design

of the state estimator, the degradation coefficient kdeg in

(6) is monitored and updated to track the slow degradation

dynamics. The forgetting factor was tuned using the trial-and-

error method and selected as δR = 0.005 for both the adaptive

SEIKF and adaptive UKF, which will be described later. The

effects of the adaptiveness of the state estimator is two-fold.

First, varying measurement covariance is introduced to signify

the uncertainty in measurements due to sensor faults: The SD

of the voltage measurement increases from σV = 10 mV

to 100 mV, and the SD of the temperature measurement

increases from σT = 0.1 K to 1 K, both at t = 1500 s.

To evaluate the robustness of the estimator, the initial σV and

σT were assumed unknown and set to half of the true values.

The performance of the estimators are compared in Fig. 9,

and the estimated σ2
V and σ2

T using the adaptive SEIKF is

compared with the ground truth in Figs. 10(a) and (b). It can

be seen that with the proposed adaptive SEIKF algorithm, the

estimation errors of both the SRP and the battery temperature

are effectively reduced compared to the case with the non-

adaptive SEIKF. With the adaptive scheme, the RMSEs of

SRP and temperature estimations have been reduced by 42%
from 4.3 mV to 2.5 mV, and by 85% from 1.3 K to 0.2 K,

respectively. The MaxErr of battery temperature estimation is

limited around 1.0 K, whereas the non-adaptive scheme leads

to a MaxErr of 3.3 K. The accuracy of the adaptive SEIKF is

observed to be close to the adaptive UKF with much reduced

computational load: By introducing the adjustment procedures

of the covariance to the SEIKF, the CPU execution time

increases slightly from 6.7 s to 7.5 s, and the corresponding

CPU time for the adaptive UKF is 81.2 s.

Second, the model error due to battery degradation is

effectively monitored but not considered negligible. Although

in Section V-B, it is shown that treating the SOH as constant in

the short term has ignorable effects on the estimate accuracy of

fast dynamics, these small changes on battery degradation will

accumulate over the long term. Since the augmented state kdeg

is a positive parameter and dynamically estimated, as shown

in Fig. 10(c), the slow reduction behavior in the SOH was

well-captured by the proposed adaptive SEIKF based state

estimator. In contrast, the non-adaptive SEIKF is affected by

the faulty signal of the sensors, which causes incorrect estimate

on battery aging. For the adaptive UKF, since the constraint

(21) has to be imposed, the degradation behavior cannot be

properly captured but remains at as constant.

Note that the forgetting factor δR determines the accuracy

of the results and it should be properly selected. The effects

of different δR on the performance of the adaptive SEIKF-

based battery state estimator are shown in Fig. 11. It can be

seen from Fig. 11(a) that a small δR (e.g., 0.001) will lead

to a slow response to the changes in the measurement errors,

while Fig. 11(b) shows that a large δR (e.g., 0.02) can cause

difficulty in correctly tracking the degradation behaviors. The

relationships between the δR and RMSEs in Fig. 11(e) indicate

that although adopting δR = 0.01 can achieve the minimum

RMSEs for SOC and T , the corresponding SOH estimation

error is much larger than δR = 0.005. By selecting δR =
0.005, the performance is optimal in terms of SOH estimation,

and at the same time, acceptable estimation accuracy of SOC

and T can be obtained.
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VI. CONCLUSIONS

An ensemble-based state estimator using the singular evo-

lutive interpolated Kalman filter (SEIKF) is designed to mon-

itor the internal states of a lithium-ion cell considering the

distributed-parameter nature of the electrochemical devices. A

partial differential-algebraic equation based electrochemical-

thermal model is discretized spatially using the finite volume

method along the electrode width directions. The resulting

high-order system model can be used to precisely predict the

internal behaviors of the lithium-ion battery cell regardless

of the operating conditions even though it is computationally

unaffordable with the existing nonlinear state estimation algo-

rithms. With the intrinsic mass conservation and simple param-

eter tuning procedure, the proposed SEIKF-based battery state

estimator is shown to be superior in estimating the internal

distributed states compared to the well-established UKF in

terms of computational complexity, and advantageous over the

EnKF in terms of accuracy. The uncertainties in the model due

to degradation and measurement errors are properly addressed

by adaptively adjusting the covariance matrices.

As one of the Kalman-filter-based nonlinear state estimation

techniques, the optimality of the SEIKF relies on the Gaussian

assumption for the filtering density function. Hence, further

improvement on non-Gaussian conditions should be consid-

ered in our future work. Techniques to select the optimal for-

getting factors in the proposed adaptive filtering scheme will

be investigated. More sophisticated degradation models will

also be incorporated for enhanced health-related information

monitoring. Such accurate acquisition of the internal battery

states provides important health and safety information for the

design of some advanced health- and safety-aware charging

control strategies.

APPENDIX A

CALCULATION OF MATRIX Ωk

The matrix Ωk in (14d) can be determined by the following

recursive method with m iterations [28]. Denote ψ the iteration

number, thus

1) Iteration ψ = 1: Randomly set Ω(1) = 1 or −1, with

equal probability.

2) Iterations ψ = 2, 3, · · · ,m−1: First, initialize a random

vector a(ψ) = [a1, a2, · · · , aψ]⊤ ∈ R
ψ of unit norm.

Next, calculate the Householder matrix associated with a(ψ)

H(a(ψ)) := Iψ×ψ − 1

|aψ|+ 1
a(ψ)a(ψ)

⊤

(A.1)

where a(ψ) = [a1, a2, · · · , aψ−1, aψ + sign(aψ)]
⊤.

Then use the first ψ−1 columns of the Householder matrix

H(a(ψ)), denoted by H∗(a(ψ)), to compute Ω(ψ) ∈ R
ψ×ψ as

Ω(ψ) = [H∗(a(ψ))Ω(ψ−1),a(ψ)] (A.2)

3) Iteration ψ = m: With a(m) = (m−1/2)1m×1, the final

Ωk is obtained via

Ωk = Ω(m) = H∗(a(ψ))Ω(m−1). (A.3)

APPENDIX B

PROOF OF MASS CONSERVATION IN THE SEIKF

For the convenience of notation, the mass conservation

condition (2) can be expressed by

k⊤xk = nLi
s,tot,k (B.1)

where k ∈ R
n is a coefficient vector. It can be readily shown

that, if each member of an ensemble Xk follows (2), the

ensemble mean x̄k and ensemble perturbation matrix X̃k must

satisfy the following conditions:

k⊤x̄k = nLi
s,tot,k (B.2)

k⊤X̃k = 01×n (B.3)

Assume each member of the posterior state ensemble X̂+
k−1

in the (k − 1)th time step is mass conservative, i.e.,

k⊤x
+(p)
k−1 = nLi

s,tot,k ∀p ∈ {1, 2, · · · ,m} (B.4)

Since the battery model is mass conservative, by forwarding

the model according to (11) and ignoring the model error, each
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member of the prior state ensemble is also mass conservative.

This gives

k⊤x
−(p)
k = k⊤x̄−

k = nLi
s,tot,k ∀p ∈ {1, 2, · · · ,m} (B.5)

k⊤X̃−

k = 01×n (B.6)

Left multiplying (14a) and (14b) by k⊤, and considering

(B.5) and (B.6) yields

k⊤x̄+
k = k⊤x̄−

k + k⊤X̃−

k w̄k = k⊤x̄−

k = nLi
s,tot,k (B.7)

k⊤X̃+
k = k⊤X̃−

k W̃k = 01×n (B.8)

This proves that each member of the posterior state ensem-

ble X̂+
k in the kth time step is also mass conservative.
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