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ABSTRACT Hidden details and lack of image contrast can be attributed to limited user experience, poor

device quality, environment settings during image acquisition, and illumination. To address these problems,

techniques based on histogram equalization (HE) have been frequently used to reduce these problems and

to improve image contrast. However, the resultant images obtained by techniques often appear unnatural

possibly due to washed-out effects and unwanted artifacts. This study proposes a new technique called

adaptive entropy index histogram equalization (AEIHE) that belongs to the local sub-class of HE-based

contrast enhancement techniques. AEIHE initially divides the image into three sub-images to enhance and

highlight its local details. Each of these sub-images uses a different contextual region and clip limit based

on the richness of their information and their structure, both of which are adaptively determined by AEIHE.

A new parameter called Entropy-Index is then used to ensure the high information richness of the resultant

sub-imagewhile preserving its structure. AEIHE guarantees the production of an excellent resultant image by

combining enhanced sub-images. Quantitative evaluations of 819 images show that AEIHE has successfully

produced excellent resultant images with improved contrast, highlighted local details, and minimized effects

of artifacts and unwanted noise. Therefore, AEIHE has a high application potential in the medical imaging,

machine vision, and industrial domains.

INDEX TERMS Histogram equalization-based technique, histogram entropy, histogram clip limit, window

size.

I. INTRODUCTION

Many image capturing devices, such asmobile phones, digital

cameras, and security cameras, have been developed over

the past decades and are commonly used by humans for

personal, documentary, satellite, medical, and scientific use.

However, the quality of images captured by these devices

remains subjective and depends on several factors, such as

illumination, user experience, and quality of camera lenses.

In this case, poor illumination, contrast, and noise in image

can all affect image quality. Therefore, image enhancement

plays a crucial role in image processing, a process that

involves image segmentation, features extraction, and image

type classification, among others. Image segmentation pre-

serves the important regions in an image and extracts homo-

geneous regions that contain few objects, such as the sky,

sea, and wall [1]. Improvement techniques are thus designed
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to achieve optimum conditions and to obtain images with

excellent visuality by enhancing their contrast or maintaining

their brightness [2].

Contrast improvement is important in image quality assess-

ment and has been widely applied in medical, satellite, and

military images, among others [3]. The intensity of pixels

in an image is modified by using contrast enhancement

techniques, and the imparity between the foreground and

background regions is increased in the process [4]. The tech-

niques used for improving image contrast can be classified

into (i) frequency and (ii) spatial domains [3]. Those tech-

niques in the frequency domain enhance the image in three

steps, namely, (i) by calculating the Fourier transform of the

original image, (ii) manipulating the transform coefficients,

and (iii) applying inverse Fourier transform to produce the

resultant image. The transform coefficients are manipulated

by using either discrete cosine transforms (DCTs) or the

discrete wavelet transforms (DWTs) [5]. The advantages of

using frequency domain techniques lie in their capability to
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reduce the computational time and preserve the frequency

composition of the original image. However, these techniques

also have the following disadvantages: (i) they are purely

subjective because during the enhancement process, deter-

mining the values of optimum parameters greatly depends on

user experience, and (ii) they are incapable of simultaneously

enhancing all regions of an image [5].Meanwhile, many tech-

niques in the spatial domain have been developed, including:

(i) histogram equalization (HE), (ii) gray-level grouping, and

(iii) unsharp masking [5], [6].

A. HISTOGRAM EQUALIZATION

Histogram equalization (HE) technique, an image

enhancement technique in the spatial domain, HE operates

andmanipulates the pixel intensity of images directly without

converting them to another domain (i.e., frequency domain).

The HE technique redistributes the image intensity evenly

across the entire range of the gray levels to enhance the image

contrast. The intensities are redistributed by (i) combining

multiple gray levels with few probabilistic densities into a

single gray level, and (ii) increasing the gap between two

gray-level neighbors with high density. This technique has

two sub-classes, namely, (i) conventional histogram equal-

ization (CHE) and (ii) hybrid histogram equalization [7]. The

CHE sub-class is further subdivided into (i) global histogram

equalization (GHE), (ii) bi-sub-imaging histogram equal-

ization (BSHE), (iii) multi-sub-imaging histogram equaliza-

tion (MSHE), (iv) weighted histogram equalization (WHE),

(v) local histogram equalization (LHE), and (vi) exposure

region histogram equalization (ERHE).

1) GLOBAL HISTOGRAM EQUALIZATION

GHE is the first sub-class of CHE, it increases the con-

trast of an entire image. This simple, effective enhancement

technique [8] redistributes the bins density and extends the

gray-level dynamic range to enhance the image contrast in

comprehensive mode [8]. Moreover, GHE uses the cumula-

tive density function (CDF) of an image as its basic level for

contrast enhancement [8]. This technique is frequently used

in tracking, and real-time applications due to its simplicity,

efficiency, and processing time [3]. Nevertheless, the resul-

tant images are washed out due to the shifting effect of the

original image mean value [9], [10]. Moreover, GHE tech-

nique is unable to retain the information of the original image

due to the high-frequency concentration at certain gray levels

that predominate at the other low-frequency levels, such as

small regions and the background. These disadvantages gen-

erate contradictory limits at certain levels and detailed losses

at other low levels [11]. Dynamic clipped histogram equaliza-

tion (DCLHE) is a technique used in the GHE sub-class that

improves images with poor contrast [12]. This technique ini-

tially eliminates the zero density of intensity levels from the

image histogram. Afterward, the non-zero density gray levels

are clipped with a minimal histogram value. Finally, CHE is

eventually applied to enhance contrast. According to [12],

DCLHE can maintain the entropy of an image and produce

a uniform distribution of the gray level. However, DCLHE

cannot maintain image brightness and is only effective for a

limited range of histogram gray levels.

2) BI SUB-IMAGING HISTOGRAM EQUALIZATION

BSHE is the second sub-class of CHE that overcomes

the disadvantage of GHE in preserving illumination by

creating two sub-histograms from the original image his-

togram. Various versions of BSHE, including brightness-

preserving bi-histogram equalization (BBHE) [13], dual

sub-image HE (DSIHE) [14], minimal mean brightness

error bi-histogram equalization (MMBEBHE) [15], Otsu-

based BBHE bi-histogram equalization (OBBHE) [16],

entropy-based bi-histogram equalization (EBBHE) [16],

bi-histogram-equalization-based three plateau limits

(BHE3PL) [17], and range-limited bi-histogram equalization

(RLBHE), have been developed [18]. BBHE and DSIHE

retain image brightness by creating two sub-histograms

based on the mean and median values of the original

histogram, respectively. MMBEBHE technique explores a

threshold value that acquires the minimum brightness error

(MBE) to divide the image histogram. Similar to GHE,

these techniques suffer from high-frequency dominance if

the sub-histogram contains several dominant levels that may

produce a resultant image with unwanted noise that cannot

be maintained [12], [19]. MMBEBHE also suffers from a

long processing time [19]. OBBHE and EBBHE use Otsu

and entropy based on the histogram threshold of an image.

The resulting images from these techniques are superior over

those produced by BBHE, DSIHE, and MMBEBHE given

their ability to preserve image brightness. However, these

techniques suffer from an inefficient improvement in image

contrast [20]. According to [17], BHE3PL can produce an

excellent resultant image with superior image quality. As

another technique that uses Otsu, RLBHE [18] divides the

histogram of an image into two sub-histograms, separates

the background from the foreground, and preserves the

image brightness. However, RLBHE washes out the image

details [21].

3) MULTI SUB-IMAGING HISTOGRAM EQUALIZATION

The MSHE is the third sub-class of CHE that can be

further subdivided into recursive mean separate histogram

equalization (RMSHE) [22], recursive sub-image his-

togram equalization (RSIHE) [23], median–mean-sub-image

based clipped histogram equalization (MMSICHE) [24],

and adaptive thresholding-based sub-histogram equalization

(ATSHE) [25]. Similar to DSIHE, RMSHE and RSIHE use

the mean and median values as their thresholds, respec-

tively, but in recursive mode and are able to preserve image

brightness through multiple decompositions. However, the

repeating decomposition process of these techniques extends

the processing time and amplifies noise due to the manual

selection of the recursive level (r) based on visual judge-

ment. If the r-level is substantially high, then only negli-

gible improvements in the image will be observed. Similar

VOLUME 9, 2021 6403



S. H. Majeed, N. A. M. Isa: Adaptive Entropy Index Histogram Equalization for Poor Contrast Images

to BBHE, MMSICHE computes the mean value to create

four sub-histograms of the original histogram by setting

the value of 2 to the recursive level. Afterward, similar

to DSIHE, MMSICHE computes the median value to clip

each sub-histogram. CHE is then applied on these sub-

histograms. Meanwhile, ATSHE initially computes the peak

signal-to-noise ratio (PSNR) value to count the number of

sub-histograms at each stage and then uses the standard devi-

ations and mean values to obtain the thresholds. ATSHE then

uses the median value of the histogram to clip and enhance

the image contrast. While this technique can preserve the

brightness of images with poor illumination, ATSHE suffers

from the following limitations: (i) manually counting the

amount of iterations extends the processing time and results

in negligible improvements; (ii) certain regions of the image

are washed out, thereby resulting in ambiguous details; and

(iii) this technique has only been tested on a limited number

of images.

Dynamic histogram equalization (DHE) [26] and

brightness preserving dynamic histogram equalization

(BPDHE) [9] have been proposed to prevent histogram com-

pression, washout, and other notable over-enhancement prob-

lems. DHE divides the histogram of the original image into

multiple sub-histograms depending on the local minima value

until no dominant segment is observed in any of these sub-

histograms. However, the image produced by this technique

suffers from an overbrightness problem despite comprehen-

sively maintaining the image details [9]. Meanwhile, BPDHE

divides the image histogram by using the local maximum and

Gaussian filter. While this technique effectively addresses

the excessive brightness produced by DHE, BPDHE also

creates sub-histograms of different ranges. Few of these sub-

histograms show limited gray-level ranges, whereas the other

sub-histograms have large gray-level ranges. Several sub-

histogram ranges can lead to a non-uniform improvement in

an image [9].

Quadrants for dynamic histogram equalization

(QDHE) [27] technique has been proposed to retain

over-enhancements in contrast and noise amplification and

produces an image with detailed preservation. After dividing

the histogram into several sub-histograms, QDHE computes

for the mean value of each sub-histogram to adjust the clip-

ping value. A new dynamic range is then formed by using the

DHE feature from the resultant sub-histograms. Meanwhile,

adaptively raising the value of histogram equalization HE

(AIVHE) [28] prohibits serious changes in the PDF image

by redistributing the original PDF. However, one downside

of AIVHE lies in its parameter specification, which requires

manual human intervention [28]. By contrast, entropy-based

dynamic sub-histogram equalization (EDSHE) [29] was pro-

posed to address the drawbacks of RMSHE by measuring the

entropy value for each recursive layer and then comparing this

value with the initial value. Unfortunately, EDSHE produces

uncounted artifacts in the resultant image and requires a

longer processing time compared with CHE and RMSHE.

4) WEIGHTED HISTOGRAM EQUALIZATION

WHE techniques modify the image histogram to regulate the

improvement rate of the dominant gray level. These tech-

niques may preserve the image details by transforming or

clipping the histogram levels and eliminating the dominance

of high-frequency histogram levels.

Dominant gray levels have lesser weight than the original

histogram after the modification stage, thereby resulting in

minimal improvements in the resultant image captured by

WHE compared with those obtained by the three aforemen-

tioned CHE sub-classes. The contrast enhancement tech-

niques developed under WHE include modified histogram

equalization for contrast enhancement (MHE) [11], weighted

threshold histogram equalization (WTHE) [30], recursively

separated and weighted histogram equalization for brightness

preservation and contrast enhancement (RSWHE) [31], range

limited weighted histogram equalization (RLWHE) [4], edge

preservation local histogram equalization (EPLHE) [32], a

logarithmic law-based histogram modification scheme for

naturalness image contrast enhancement [33], a bi-histogram

modification method for images with non-uniform illu-

mination and low contrast [34], image enhancement via

sub-image histogram equalization based on mean and vari-

ance (MVSIHE) [19], weighted average multi-segment his-

togram equalization (WAMSHE) [35], andHigh SpeedQuan-

tile Based Histogram Equalization for Brightness Preserva-

tion and Contrast Enhancement (HSQHE) [36].

MHE is designed to prevent the formation of artifacts in

RMSHE, DSIHE, and BBHE and to improve the appearance

of the resultant image. This technique alters the histogram of

the original image and then applies CHE to enhance contrast.

However,MHEhas the following disadvantages: (i) obtaining

the optimal parameter value is highly subjective, thereby

complicating the achievement of the optimum improvement

result; and (ii) reducing the high-frequency histogram level

can lead to loss of information. WTHE modifies the PDF

values of the original image and then applies CHE on the

modified PDF. This technique can also be adapted to the

over-enhancement process. Despite its high speed, WTHE is

unable to maintain the brightness of the image, which in some

cases produces unwanted artifacts.

RSWHE is divided into RSWHE-M and RSWHE-Dwhere

RSWHE-M computes the mean value to divide the his-

togram similar to RMSHE but in recursive mode, whereas

the latter the RSWHE-D divides the histogram by using the

same median value as the RSIHE but in recursive mode.

These sub-histograms are then altered by using a normal-

ized power-law distribution function. Afterward, conven-

tional HE is applied to all sub-histograms. RSWHE-M and

RSWHE-D achieve a remarkable brightness conservation

and a considerable improvement in contrast, but the resul-

tant image contains unwanted artifacts due to the loss of

several image details [4], [12], [28]. In addition, RLWHE

is designed to control contrast improvement and maintain

image brightness. This technique is quick and can be used
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in real-time applications. To reduce intra-class variance, two

sub-histograms are created from the original image his-

togram. The PDF is then weighted and modified for each sub-

histogram, and CHE is used to limit the brightness of each

sub-histogram. Adaptive gamma correction is then applied to

improve the information richness of the image and prevent

the introduction of unwanted artifacts. At the last processing

stage, a homographic filter is used to reduce the effects of

artifacts. The of EPLHE argued that partially over-loaded

sub-imaging HE (POSHE) cannot retain the edges of the

image objects; in case that the sub-image is a member of

zero-textured regions. Then the information richness of that

region would be minimal, and the CDF values would demon-

strate inadequate changes, which could lead to over- and/or

under-enhancement problems [32]. The EPLHE technique

solves the improvement issue by dividing the original image

into non-overlapped and equally sub-images and then using

SOBEL operator to calculate the proportion of gradients in

sub-images. The SOBEL operator is a powerful tool for

detecting the edge of the object. EPLHE then applies bilat-

eral Bezier-curve-based histogram equalization (BBCHE) to

control the enhancement quality and reduce the computation

time [37]. In BBCHE, each sub-image should be subdivided

into two regions (bright and dark regions), with each region

having two control point sets per region. BBCHE generates

a smooth CDF that enhances the dark region and slightly

decreases the bright region and then produces a weight set-

ting proportional to each sub-image gradient information.

Afterward, BBCHE generates weights that are proportional

to each sub-image gradient information. All CDFs are then

combined by weight. The disadvantage of EPLHE is that

the sub-imaging process varies according to the size of the

input image. In this case, EPLHE still preserves brightness in

dark regions, thereby resulting in unpreserved image details.

Moreover, the quantitative parameters are insufficient to mea-

sure the quality of the resultant image and to evaluate the

performance of EPLHE.

A logarithmic-law-based histogram modifying the tech-

nique for natural image contrast was proposed in order to

retain the pleasant aspect of an image by modifying its

histogram in two stages [33]. The first stage employs an

additional-based method to solve the histogram pit prob-

lem, whereas the second stage uses a logarithmic-law-based

approach to overcome the histogram spike problem [33].

Afterward, CHE is employed to improve the contrast of the

entire image. A local fine-tuning of the image is eventu-

ally performed by using DCT. However, this technique is

unable to preserve image brightness, which may create dark

regions in an image [34]. The technique proposed in [33]

has three stages. First, a Gaussian low-pass filter is applied

to avoid noise amplification and to extract illumination from

the image. Second, the resultant image is divided into bright

and dark regions by using a median in the threshold calcu-

lation, and the histogram of both regions is altered. Specifi-

cally, the dark region is moved to the segmentation threshold

to increase brightness, whereas the bright area is moved

to the maximum value between the mean to the medium

to prevent insignificant resultant image appearances. Third,

the histogram of each region is cut off to be updated and

redistributed in accordance with the change function. While

this technique can reduce noise amplification, preserve image

details, and enhance image entropy value, the resultant image

has some blurred parts and artifacts.

MVSIHE uses three adaptive thresholds based on mean

and variance to divide the histogram of the original image

into four segments. Each of these segments is then modi-

fied and equalized by using CHE. This technique combines

the improved segments and then normalizes them to reduce

interference and intensity saturation. MVSIHE also creates a

resultant image without introducing its artifacts and retains

its mean brightness. However, MVSIHE is unable to retain or

highlight details in white regions (i.e., the fourth section of

the histogram, which is unable to highlight hidden details)

and has a long processing time. Another technique called

WAMSHE divides the histogram of the image into multiple

sub-histograms and then equalizes each sub-histogram [35].

This technique preserves the mean image brightness and

reduces unwanted noise and artifacts. Moreover, the HSQHE

technique divides the histogram of the image into equal num-

ber of sub-histograms by using the parameter quantile (q).

Then, each quantile will be normalized, modified and equal-

ized individually. After that, the whole histogram is normal-

ized then equalized and produce the resultant image. If the

number of intensities in the quantile is less, then the local

details and regions in this sub-histogram may produce an

unwanted artifacts and distortion in the image. Furthermore,

setting the optimum value of q is too subjective and requires

a highly user experience.

5) LOCAL HISTOGRAM EQUALIZATION

LHE, as the fifth sub-class of CHE, was developed to

overcome the limitations of GHE. LHE can be applied to

modify and enhance small gray-level regions and maintain

image details bypassing the overall pixels of an image. For

example, an image of 640 × 480 image pixels must be

equalized with a histogram 307200 times. The techniques

under this sub-class include adaptive histogram equalization

(AHE) [8], contrast-limited adaptive histogram equalization

(CLAHE) [38], POSHE [39], cascaded multistep binomial

filtering histogram equalization (CMBFHE) [40], adaptive

image enhancement method using contrast limitation based

onmultiple layers (BOHE) [41], and iterated adaptive entropy

clip limit histogram equalization (IAECHE) [5]. The AHE

technique addresses the non-uniform illumination drawback

of GHE by handling all image pixels and generates an image

with homogenous brightness [8]. However, this technique

has a long computation time, amplifies noise, and produces

an image with an unnatural appearance [39]. In some cases,

CLAHE, POSHE, and CMBFHE also produce images with

poor appearance and noise effects [42], [43]. POSHE also

demonstrates minimal improvements in computing time [39].
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The authors in [41] claimed that POSHE improves the

local information and reduces image noise in multiple stages.

POSHE applies fast BOHE to achieve multilayer improve-

ments of different window sizes created by the original image.

For fast BOHE windows, if the size of the original image

is M×N, then the possible window sizes are M/2×N/2,

M/4×N/4, and M/8×N/8. The noise in all windows is min-

imized by using a contrast-limited technique. Fast BOHE

is then applied to achieve improvements in each window.

Afterward, the output is divided into small regions, which are

then used to maintain local details through the fusion process.

This technique is subject to a few disadvantages, including

its (i) long computational time, (ii) inability to preserve the

structure of the original image, and (iii) failure to improve the

brightness of the resultant image. IAECHE divides an image

into multiple blocks and uses the peaks from the histogram

of these blocks to calculate the clip limit value [5]. Addi-

tionally, IAECHE computes the clip limit in an adaptive and

iterative process to obtain the best clip limit value. Afterward,

the enhanced blocks are combined to produce the resultant

image. However, IAECHE has two drawbacks, namely, (i) its

long processing time, and (ii) its inability to guarantee the

optimal clip limit value.

6) EXPOSURE REGION HISTOGRAM EQUALIZATION

ERHE is the sixth CHE sub-class whose main concept is to

divide the histogram into separate regions. ERHE aims to

improve the illumination of images based on various regions

and generate non-over-enhanced or under-enhanced output

images. Some techniques that are used to maintain image

brightness, especially for non-uniform illumination images,

include exposure-based sub-image histogram equalization

(ESIHE) [44], mean-based bi-histogram equalization plateau

limit (mean-BHEPL) [45], median-based BHEPL (median-

BHEPL) [45], adaptive bi-histogram equalization (ABHE)

algorithm [45], and exposure-region-based multi-histogram

equalization (ERMHE) [46].

The ESIHE technique uses an exposure threshold to divide

the image histogram into two regions and then clips both

of these sub-histograms with the mean gray level. These

sub-histograms are then equalized by CHE. While this tech-

nique preserves image details and improves contrast, ESIHE

does not work properly with images comprising several

exposure regions. BHEPL and ABHE adapt to ESIHE by

working with two areas of exposure (i.e., over- and under-

exposure). However, these techniques do not operate in

the normal exposure region. ERMHE addresses this multi-

exposure region problem (i.e., over-, normal, and under-

exposure) and produces an image with enhanced brightness

protection and reduced noise. However, one region may be

smaller than the other, and a high-density dominant problem

is observed over low frequencies of gray levels, thereby

causing information loss in some sections. The basic concept

or approach of all CHE sub-class techniques is illustrated in

Fig. 1.

B. HYBRID HISTOGRAM EQUALIZATION

Solving real-world optimization problems is often consid-

erably challenging, but many applications that deal with

these problems are available. One main source of opti-

mization algorithms is nature itself, which has inspired

many researchers to obtain solutions to real-world prob-

lems. These algorithms are referred to as nature-inspired-

based optimization algorithms (NIOA) [20]. In some cases,

the obtained solution may not be the optimal one [47]. The

important role of NIOA in computational intelligence, arti-

ficial intelligence, and machine learning has been recently

proven [20]. HE-based image enhancement techniques have

been expressed as optimization problems, and NIOAs have

shown an efficient performance in addressing these problems.

The NIOAs algorithms can be classified into

(i) evolution-, (ii) swarm-, (iii) physics-/chemistry-, and

(iv) human-based algorithms. Those algorithms under the

evolution-based category are based on the natural evolution of

life. Some of these algorithms include the genetic algorithm

(GA) [48], differential evolution (DE) [49], and genetic

programming [50]. Meanwhile, those techniques under the

swarm-based category are inspired by the social life and

behavior of animal groups. These techniques include par-

ticle swarm optimization (PSO) [51], artificial bee colony

(ABC) [52], ant colony optimization [53], firefly algo-

rithm [54], and social spider optimization [55]. Those algo-

rithms under the physics-/chemistry-based category are based

on physics and chemistry laws and include simulated anneal-

ing [56] and gravitational search algorithm [57]. Human-

based algorithms are based on human lifestyle, behavior, and

social life and include harmony search [58] and imperialist

competitive algorithm [59]. These optimization algorithms

aim to maximize/minimize the fitness functions, such as

by computing the entropy, PSNR, absolute mean brightness

error (AMBE), energy, and contrast. Therefore, the fitness

function is the main term for solving optimization problems.

These algorithms also do not require specific information

about the problem and are equipped with global and local

search components to obtain optimal results. Given these

features, NIOAs are efficient and powerful algorithms for

solving problems in the image processing field, such as

image enhancement, image segmentation, classification, and

clustering. Several NIOAs have been hybridized with HE in

the field of image enhancement to improve image contrast

and preserve brightness such as [21], [60]–[67]. For instance,

the authors in [60] hybridized PSO with CLAHE to enhance

mammogram images. The objective function of PSO is to

obtain the best entropy value and edge information. Mean-

while, the authors in [21] optimized the parameterized bi-

thresholded HE by computing the entropy value in real-coded

GA for brain magnetic resonance images (MRI). The authors

in [61] hybridized the cuckoo search algorithm particle with

OBBWTHE to obtain a quality index based on local variance

and fractal dimension as multi-objective functions for mam-

mogram images. The authors in [62] hybridized the ABC

algorithm with MTHE to maximize entropy as the fitness
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FIGURE 1. Illustrates the enhancement stages of the CHE sub-class.

function for histopathology images. The authors in [63] com-

puted PSNR as an objective function to the firefly algorithm

hybridized with OBBWTHE, EBBWTHE, and CLAHE for

medical images. The authors in [64] maximized entropy by

using PSO hybridized with gamma-correction-based HE for

satellite images. The authors in [65] maximized entropy by

hybridizing PSOwith local-entropy-weightedHE for infrared

images. The authors in [66] proposed a combination of the

differential evolution and whale optimization algorithms to

enhance image contrast. In this technique, the fitness function

is treated as a combination of image entropy and image edge

intensities. However, quantitative assessments were applied

only on a limited number of images. The authors in [67]

proposed a method based on the swarm of slap folks that

obtains the best fitness function by computing the percentage

entropy of an image with other edge intensities and that of

the PSNR of an image. They claimed that this method can

produce an excellent image with a balanced contrast and

maintained brightness. However, this method suffers from the

following drawbacks: (i) obtaining the optimum value takes

up much time, and (ii) this method uses subjective parameters

depending on user experience. Figure. 2 illustrates the HE-

and the hybrid HE-based contrast enhancement techniques

that have been proposed in the literature to address the

limitations of these techniques.

Overall, there are several drawbacks to CHE and hybrid

sub-classes. Specifically, the image produced by techniques

under the GHE sub-class suffers from washout and loss

of details. These techniques are therefore unsuitable for

important applications, such as for medical and astronomi-

cal images. Meanwhile, techniques under the LHE sub-class

require a long computational time, produce unwanted arti-

facts, and corrupt image brightness. The techniques under

the BSHE and MSHE sub-classes suffer from a long com-

putational time and face challenges in finding the opti-

mal sub-imaging level. The techniques under the WHE
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FIGURE 2. HE division and sub-classes.

sub-class are unable to preserve the image details and infor-

mation in high-frequency dominant regions. The ERHE sub-

class suffers from washed-out details in large spans, and the

hybridized techniques with optimization algorithms suffer

from long computational time and face difficulties in set-

ting the optimum parameter values for computing the fitness

function.

The abovementioned issues motivate this study to propose

a new LHE technique for enhancing image contrast. The

proposed technique aims to highlight the local details and

enhance the information richness of the original image while

preserving its structure. Despite belonging to the LHE sub-

class, the proposed technique guarantees a uniform or even

contrast distribution over the resultant image by adjusting all

parameters adaptively and automatically. This objective con-

trast enhancement technique reduces the subjective effects

of users while maintaining the image structure. In addition,

a new approach for the local enhancement sub-class will

be introduced to enhance the local image details without

amplifying noise or producing unwanted artifacts.

Six quantitative assessments, namely, (i) AMBE,

(ii) discrete entropy (DE), (iii) structure similarity index

measurement (SSI), (iv) contrast improvement index (CII),

(v) PSNR, (vi) and root mean square error (RMSE), are used

to evaluate and compare the proposed technique with other

state-of-the-art techniques and to evaluate the quality of its

resultant image.

II. CONTRAST LIMITED ADAPTIVE HISTOGRAM

EQUALIZATION

CLAHE is a LHE technique that was initially developed to

improve low-contrast medical images [44]. This technique

divides the original image into tiles or blocks that represent

non-overlapping contextual areas. Two parameters, namely,

clip limit (CL) and window size (WS), are used to con-

trol the degree of contrast enhancement and the quality of

the resultant image. The brightness of the resultant image

greatly depends on the CL value, where a large CL value

will flatten the histogram of an image. By contrast, the

dynamic gray level range increases along with decreasing

WS, thereby reducing the image contrast. The original his-

togram is clipped for each contextual area, and the remain-

ing pixels are redistributed over the entire gray-level range.

Furthermore, the new histogram differs from the original

one because the maximum intensity for all gray levels can-

not exceed the CL value. Despite its advantages over GHE

and AHE, CLAHE suffers from some significant drawbacks.

First, CLAHE equally enhances the contrast of the back-

ground and foreground regions, thereby resulting in the high

contrast of both regions in the resultant image. In other
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words, CLAHE not only enhances the significant details of

foreground regions but also the unsignificant and unwanted

details of the background regions. Poor resultant images

may be produced when unwanted noises are present in the

background regions. By enhancing these unwanted noises,

unnatural and unpleasant resultant images may be produced

as shown in Fig. 3.

FIGURE 3. A noisy and unnatural image of CLAHE technique [5].

Second, the computation time in enhancing and producing

the resultant image varies due to the differences in the size of

the input image and the number of contextual regions, both

of which are needed for the manipulation and enhancement

of gray levels and for the preservation of details over the

entire image. Figure. 4 illustrates the time-consuming process

of enhancing six different images using CLAHE. This illus-

tration proves that various images require different computa-

tional times, with some images requiring only a few seconds

to create the resultant image and others requiring a longer

computational time.

Another drawback of CLAHE lies in its manual determina-

tion of WS and CL, which highly depends on the knowledge

and experience of users. These users often refer to a general

concept where a large CL can produce flat pixel distributions

over the entire histogram, thereby producing noisy images,

and a small CL barely improves the image contrast. Various

images usually require different CL settings. Therefore, users

should be familiar with both CLAHE and the original image

features to produce the best resultant image. Table 1 shows

the effect of setting various CL values in CLAHE [2]. Thus,

the WS value also affects the natural look of the resul-

tant image. Setting a small WS value generally leads to

limited local image detail preservation with a low level of

noise amplification, whereas a large value preserves the local

TABLE 1. Resultant PSNR using CLAHE technique with different clip limit
value and block size of 10 × 10.

details but can amplify noise in the resultant image, thereby

producing an unnatural resultant image. Table 2 presents the

effects of various WS values [2]. Using the default values

of CLAHE parameters may also lead to an over-enhanced

contrast, which in turn will lead to the unpleasant appearance

of the resultant image as shown in Fig. 5. Over-enhancement

problems can be observed at many regions of the resultant

image as shown in Fig. 5(b). Some over-enhanced regions are

highlighted by blue squares in the figure. Therefore, choosing

the optimum parameter value is crucial in enhancing image

contrast by using CLAHE.

TABLE 2. Resultant PSNR using CLAHE technique with clip
limit = 0.05 and various WS value.

III. PROPOSED ADAPTIVE ENTROPY INDEX HISTOGRAM

EQUALIZATION METHODOLOGY

This study hypothesizes that obtaining a resultant image

with good quality depends on the capability of an adaptive

and automated strategy or approach to highlight information

richness and details and to preserve the image structure.

Accordingly, the proposed adaptive entropy index histogram

equalization (AEIHE) technique aims to achieve the optimum

entropy and optimum similarity index between the original

and resultant image values. Achieving optimum entropy will

enhance the information richness and details of an image,

whereas obtaining the optimum similarity index will pre-

serve the optimum image structure, thereby generating a

good resultant image and controlling the over-enhancement

problem faced by the conventional CLAHE.

To test this hypothesis, an image enhancement using

AEIHE is performed in three stages, namely, (A) division of

the original image into sub-images, (B) parameters initializa-

tion and optimization, and (C) construction of the resultant

image. AEIHE introduces three new approaches to overcome

the drawbacks of the conventional CLAHE and to produce

a resultant image with clear local details, well-preserved
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FIGURE 4. Processing time to produce resultant image by using conventional CLAHE technique (a) 0.8 second, (b) 2.35 seconds,
(c) 1.64 second, (d) 3.26 seconds, (e) 1.86 second, (f) 3.26 seconds [5].

structure, and optimum contrast enhancement. These new

approaches include the (i) adaptive calculation of the opti-

mum clip limit (CLFACTOR), (ii) adaptive setting of the

optimum window size (WS), and (iii) introduction of a new

image quality factor (i.e., Entropy-Index). The first two

approaches are introduced to overcome the limitation of the
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FIGURE 5. Example of resultant image produced by the CLAHE using the
default parameters’ values (a) Original image (b) the resultant image.

subjective process applied in the conventional CLAHE to

obtain the optimum values for both parameters, whereas the

Entropy-index is introduced as a fitness function to be ful-

filled by AEIHE to realize the optimum image enhancement

performance.

An image usually contains two main regions, namely,

the foreground (or region of interest (ROI)) and the back-

ground. AEIHE assumes that an image can be divided into

the left, center, and right regions (here in after referred to as

left, center, and right sub-images).

The foreground regions or ROIs containing the most num-

ber of image details are assumed to be located at the center

of the image, while the left and right sub-images refer to

the background regions. Therefore, in the first stage, AEIHE

divides the input image into these three sub-images.

In the second stage, the histogram of these sub-images is

determined and used as an input to the whale optimization

algorithm (WOA) [3] along with various WS values to obtain

the optimum CLFACTOR and WS. The WOA algorithm is

a nature-inspired meta-heuristic optimization algorithm that

mimics the social behavior of humpback whales to obtain the

optimum solution to different problems by using the bubble-

net hunting strategy (for additional information on the WOA

algorithm, the reader can refer to [3]). The obtained optimum

values for each sub-image are then applied to the conventional

CLAHE to enhance the sub-images and to obtain the best

resultant sub-images. In the third stage, the three enhanced

sub-images are combined to form the resultant enhanced

image. Figs. 6 and 7 present the process design and the

working flowchart of AEIHE, respectively. The following,

sub-sections A, B, and C explain the first to third stages,

respectively.

A. DIVISION OF THE ORIGINAL IMAGE INTO SUB-IMAGES

AEIHE initially divides the input image into several

sub-images to magnify the local information richness and

simultaneously preserve the local structure of the input

image. This approach aims to address the drawback of global

enhancement, that is, executing an enhancement process over

the entire image by using its global characteristics while

ignoring its local characteristics. However, ignoring these

‘‘dominant’’ local characteristics can distort the image struc-

ture and amplify noise (for cases where the image is greatly

affected by unwanted noise) in the resultant image. In the

first stage, AEIHE assumes that the main ROIs are located

at the center of the image, which will be the main focus of

the enhancement process, and that the background regions

are located at the left and right sides of this image, which

are assumed to be less important than the ROIs. Therefore,

the details, information richness, and image structure in ROIs

can be properly enhanced.

The division procedure depends on the image dimensions

(i.e., width (W) and height (H)). The width of the left

sub-image is set within 25% of the whole image from its

leftmost side, whereas the width of the right sub-image is

set within 25% of the whole image from its rightmost side.

The remaining width of the image (i.e., 50% at the center

of the image) is set as the width of the center sub-image.

All sub-images are of the same height as the original image.

Therefore, the sizes of the left, center, and right sub-images

are (H, W/4), (H, W/2), and (H, W/4), respectively. For

example, assume that the dimension of the input image is

(600,900) pixels. In this case, the size of the left and right

sub-images is (600,225) pixels, whereas that of the center

sub-image is (600,450) pixels. Fig. 8 presents the process of

dividing the original image into three sub-images, whereas

Figs. 9 (a), (b), and (c) present the coordinates of these sub-

images, respectively.

B. PARAMETERS INITIALIZATION AND OPTIMIZATION

After the image division stage, all sub-images are individually

enhanced and given their specific optimumCLFACTOR andWS

values, which are independent of each other. Obtaining the

optimum input values for CLAHE is a subjective issue that

requires experience and skill from users.

Therefore, to reduce human intervention and dependency,

AEIHE applies the WOA algorithm to automatically and

adaptively obtain the optimum values of both CLFACTORand

WS. The block diagram and pseudocode for applying

the WOA algorithm are shown in Figs. 10 and Fig. 11,

respectively.
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FIGURE 6. Process design of the proposed AEIHE technique.

The inputs for the WOA algorithm include the histogram

of the sub-image and four predetermined WS values (i.e.,

which are set as initial WS values). AEIHE assumes that the

contextual regions (i.e., represented byWS) can be adaptively

set to one of four even values, namely, 4, 6, 8, and 10, and

the other even values outside this range are neglected. These

four values are chosen based on the following pre-analyzed

criteria: the division of the sub-image into two windows (i.e.,

WS= 2) will barely enhance the contrast and the local details,

and a higher value (i.e., WS = 12 and above) will divide the

sub-image into a large number of contextual regions, which

can lead to over-enhancement. Based on the histogram of

the sub-image and the WS values that are used as inputs

in the WOA algorithm, six main parameters are identified

at this stage, namely, best_Entropy-Index, best_CLFACTOR,

best_WS, CLFACTOR,WS, and Entropy-Index. The exploration

and exploitation search mechanisms of WOA are used to

determine the optimized gray level from the input histogram

of a sub-image. Afterward, CLFACTOR is computed as

CLFACTOR =
H (j)

∑L−1
i=0 H (i)

i, j = 0, 1, 2, 3 . . . L − 1 (1)

whereH (j) and
∑L−1

i=0 H (i) refer to the number of pixels of the

selected (optimized) gray level j and the total number of pix-

els of the sub-image histogram, respectively, and CLFACTOR
is the normalized clip limit whose value is within the range of

[0,1]. Consider a simple histogram of one arbitrary sub-image

containing several gray-level intensities, namely, 10, 25, 40,

76, 134, 205, and 236, as shown in Fig. 12.

TABLE 3. Example of the CLFACTOR values of selected gray levels.

In addition, assume that the number of pixels for these gray

levels is 100, 260, 500, 314, 484, 74, and 268, respectively.

This histogramwill then be applied as an input in theWOA to

determine the optimized gray level intensities. Based on the

histogram shown in Fig. 12, assume that the optimized gray

levels obtained from the WOA algorithm are 10, 40, and 205.

Afterward, the CLFACTOR is computed by using Equation (1),

and the results are tabulated in Table 3. Each CLFACTOR value

is then combined with all WS values (i.e., 4, 6, 8, and 10)

and applied to CLAHE to perform the contrast enhancement

process. To ensure that the WOA algorithm will produce

the optimum CLFACTOR value, a new fitness function called

Entropy_Index is introduced to this algorithm. This function

is computed as

Entropy− Index = Entropy× SSI (2)

where Entropy and SSI refer to the richness of information

in the image and the similarity index of the structures of the

original and resultant images, respectively.
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FIGURE 7. Flowchart of the proposed AEIHE technique.

According to Equation (2), the Entropy-Index fitness func-

tion is specifically devised to enhance and highlight the

local details and information richness of a sub-image without

distorting its structure. Highlighting and enhancing local

details and information richness are ascertained by the

parameter Entropy, whereas preventing the distortion of the

sub-image structure is ascertained by the parameter SSI.

Therefore, the WOA algorithm indirectly requires high
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FIGURE 8. Division of an input image into three sub-images (i.e., left, center and right
sub-images).

FIGURE 9. Pixels coordinates for (a) left sub-image, (b) center sub-image, and (c) right sub-image.

Entropy and SSI values to obtain the best or highest

Entropy-Index value. A high Entropy value ensures that the

local details and information richness are highlighted and

enhanced, whereas a high SSI value ensures that the sub-

image structure is not distorted. Table 4 shows the level (i.e.,

low, medium, and high) of Entropy-Index value that can be

derived from four different combinations of Entropy and SSI

levels (i.e., low and high).

To further demonstrate the idea of obtaining the

best_Entropy-Index of all sub-images, the computed

CLFACTOR values for all sub-images are tabulated in Table 5,

and each of these values will be combined with four WS val-

ues. As indicated by the pseudo code of the WOA algorithm

in Fig. 11, each Entropy-Index value will be compared with

the best_Entropy-Index value, and the largest value will be

stored as the new best_Entropy-Index value along with its

corresponding CLFACTOR and WS as the best_CLFACTOR and

TABLE 4. Level of Entropy-Index for different combinations between
Entropy and SSI.

i

best_WS, respectively. Entropy-Index ensures that improving

the information details of the enhanced image will not affect

the image structure by preserving the maximum value of

SSI as the main parameter in the fitness function. Only the

combination of high Entropy and high SSI values will fulfill
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FIGURE 10. Block diagram of the WOA algorithm to produce the optimum CLFACTOR and WS values.

FIGURE 11. Pseudo code of the WOA algorithm to produce the optimum CLFACTOR and WS values.

the maximum fitness function requirements of the WOA

algorithm. Table 5 shows that the left sub-image has the

best_Entropy-Index value with WS and CLFACTOR values

of 4 and 6.720, respectively, the center sub-image has the

best_Entropy-Index value by adopting a WS value of 6 and

a CLFACTOR value of 7.214, and the right sub-image has the

best_Entropy-Index value by adopting a WS value of 8 and a

CLFACTOR value of 4.893. The optimum or best values will be

used as input parameters for the conventional CLAHE in the

next stage to enhance all sub-images and produce the final

resultant image.

C. CONSTRUCTION OF THE RESULTANT IMAGE

After obtaining the best_CLFACTOR and best_WS in the sec-

ond stage, both of these values are used as input parame-

ters to the conventional CLAHE to enhance the contrast of
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TABLE 5. The relationship between WS, Entropy-Index, and CLFACTOR for
simulation data. (Note: The bolded values represent the best values).

FIGURE 12. Example of histogram of an arbitrary sub-image.

each sub-image. Using the best_CLFACTOR and best_WS

values associated with the best_Entropy-Index value can pro-

duce an enhanced sub-image with an optimum contrast and

local detail enhancement, preserved structure, and minimum

amplification of unwanted noise. These optimum enhanced

sub-images are combined in the dimension process, which

is similar to the division process. In other words, the left

sub-image is combined with the center sub-image, which

in turn is combined with the right sub-image to form the

resultant enhanced image. Fig. 13 illustrates the pseudo-code

of AEIHE.

IV. CONTRIBUTION OF AEIHE TECHNIQUE

Section III has stated that the proposed AEIHE technique is

an adaptive version of the conventional CLAHE. The distri-

bution of gray level intensities is not homogenous throughout

FIGURE 13. Pseudo code of the proposed AEIHE technique.

the entire range of an image with non-uniform illumination,

which can result in the low contrast of local details in some

regions. Therefore, AEIHE divides this image into three

sub-images and applies adaptiveCLFACTOR andWS values for

each sub-image until the best contrast enhancement result is

achieved. This technique aims to enhance local details and

achieve a high level of information richness. AEIHE also

ensures the enlargement of low-intensity distribution to the

entire gray-level intensity range of a sub-image, the produc-

tion of the best local details, and the preservation of the image

structure.

AEIHE also ensures the production of best-enhanced

images without artifacts, unwanted noise, and under- and

over-enhancement. This technique uses the new image qual-

ity factor (i.e., Entropy-Index) to highlight the hidden details

and preserve the image structure. AEIHE also ensures the

enhancement of the local details in an image and produces an

enhanced contrast across its entire area. The clip limit andWS

values for each sub-image are calculated adaptively. The clip

boundary of the sub-image is initially calculated in iterative

mode, and the optimum value is used to produce the enhanced

sub-image. The optimum value of the clip is then combined

with the iterative value.

Table 6 shows that AEIHE does not inherit the disadvan-

tages of the conventional CLAHE based on the following

justifications:

i. AEIHE achieves local enhancement by applying an

enhancement process on the sub-images. Meanwhile,

the conventional CLAHE applies a global enhancement

process that can produce over- and under-enhancement

problems as reported in previous works [2], [4], and [5].

ii. AEIHE automatically and adaptively determines the val-

ues of parameters. Meanwhile, the conventional CLAHE

manually computes these values by trial and error, which

is subjective to the skills and knowledge of users and

is very time consuming. In some cases, this subjective

process may also generate poor values that can lead to

a poor enhancement result. AEIHE reduces this subjec-

tivity problem and the amount of time needed to obtain
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TABLE 6. Comparison between the proposed AEIHE and the CLAHE techniques.

the optimum values by applying the WOA technique.

AIEHE also follows an adaptive process in determining

the parameter values for different images.

iii. AEIHE preserves the structure of an image, highlights

its local details, and achieves an optimum contrast

enhancement by introducing a new fitness function

called Entropy-Index, which is not available in the con-

ventional CLAHE.

Based on the abovementioned criteria, AEIHE is expected

to produce better resultant images compared with state-of-

the-art techniques, especially the conventional CLAHE.

V. DATASETS AND EVALUATION METRICS

A test is conducted on 1 standard image and 819 sam-

ple images to evaluate the performance of AEIHE. The

selected images include 1 Lena image, 241 images from

the Pasadena-Houses 2000 dataset (size: 1760 × 1168) [68],

450 images from the faces 1999 dataset (size: 896×592) [69],

and 89 images from the DIARETDB1 dataset (size: 1500 ×

1100) [70]. These dataset images are collected from the

databases of Image Processing Place, California Institute

of Technology, and Standard Diabetic Retinopathy and are

chosen based on the large range of information available in

these images and their ROI distribution. This study exam-

ines the capabilities of AEIHE by conducting a real med-

ical case study focusing on chromosome images. A total

of 39 chromosome images (size: 1376×1024) were collected

from Advanced Medical and Digital Images, Universiti Sains

Malaysia. For analysis purposes, this study focuses only on

grayscale images, and the tested techniques are applied in the

spatial domain and are derived from the conventional HE.

AEIHE is compared with 11 state-of-the-art techniques,

namely, DCLHE [12],MVSIHE [19], HSQHE [36], GHE [8],

CLAHE [38], BBHE [13], POSHE [39], BPDHE [9],

RSWHE [31], the technique proposed in [34], and

IAECHE [5], which are selected on the following bases:

(i) AEIHE and these techniques work in the spatial domain

and are derived from the conventional HE; (ii) the selected

techniques follow the same concept as AEIHE, in which the

input image is divided into sub-images before its enhance-

ment; (iii) the selected techniques can preserve or enhance

the image details; and (iv) MVISHE, [11], DCLHE, and

IAECHE are the latest HE-based contrast enhancement tech-

niques that have been published in 2017, 2018, 2019, and

2020, respectively.

Qualitative and quantitative analyses are conducted to

evaluate the performance of AEIHE. These analyses focus

on (i) contrast-enhancing capabilities, (ii) image bright-

ness, (iii) preservation of information, (iv) image structure,

and (v) naturalness of an image. The qualitative evaluation

focuses on the visual quality of the resultant images, which

are visually inspected for their over-enhancement, contrast

improvement, and naturalness. This subjective assessment

aims to confirmwhether these images have improved contrast

and appearance andwhether their details and naturalness have

been maintained without introducing artifacts [13]. The noise

level of the input image should be lowered or at least pre-

served throughout the enhancement process. Overall, visual

assessment is an effective quality measure used for evaluating
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the performance of AEIHE [13]. DE, AMBE, PSNR, CII,

SSI, and RMSE are quantitative evaluation factors that are

used to evaluate AEIHE by using various HE-based derived

techniques.

DE is used to calculate the richness of information con-

tained in an image [13]. A high entropy value means that

the image contains rich and valuable information. DE can be

calculated as follows:

DE = −

L−1
∑

l=0

p (l) .log2(p (l)) (3)

where p(l) denotes the PDF of the image histogram, l repre-

sents the intensity level in the image histogram, and AMBE

represents the capability of AEIHE to maintain the mean

image brightness [12]. AMBE can be calculated as the mean

difference in brightness between the original and resultant

images:

M (O) =
1

NM

∑N

n=1

∑M

m=1
O(n,m) (4)

M (R) =
1

NM

∑N

n=1

∑M

m=1
R(n,m) (5)

AMBE = |M (O) −M (R)| (6)

where N and M are the rows and columns of the image,

respectively, and M (O) and M (R) are the mean brightness

values of the original and the resultant image.

PSNR, which evaluates the improvement between the

resultant and the original images, calculates the degree of

degradation based on mean square error (MSE) [14]:

MSE =
1

NM

N
∑

n=1

M
∑

m=1

[Ii (n,m) − Io (n,m)] 2 (7)

PSNR = 10 log10

(

(Max(Ii))2

MSE

)

(8)

where (Max(Ii))2, N , and M refer to the maximum gray-

level intensity of the original image Ii, its rows, and its

columns, respectively, and Ii(n,m) and Io(n,m) refer to the

intensity values of the original and resultant image pixels,

respectively. MSE is used to compute for the mean difference

in the intensities of the original and resultant images. Degra-

dation shows a positive relationship with MSE value, that is,

a large degradation value indicates a higher degradation in

the enhanced image than in the original image. Equations (7)

and (8) indicate that PSNR is inversely related to MSE (i.e.,

PSNR can reach its maximum value with the minimumMSE

value) [15].

CII evaluates the percentage of contrast improvement in

the enhanced image compared with that in the original image

and can be expressed as follows [16]:

CII =
Cenhanced

COriginal
(9)

where Cenhanced and Coriginal denote the average contrast

values for the ROIs in the improved and original images,

respectively. The image contrast can be computed as

C =
m − a

m + a
(10)

where m and a refer to the mean gray levels of the object in

the image and the surrounding region, respectively.

SSI indicates the similarity between two images. The value

of this parameter should be within the range of [0,1]. An SSI

value of 1 indicates that the image structure is not distorted

and that the resultant image maintains its original structure.

By contrast, a difference is observed between the structures

of the original and resultant images when the SSI value is 0.

A large SSI value generally indicates a perfect, unmodified

image structure [9]. SSI can be computed as

µa =
1

T

∑T

i=1
Ai µb =

1

T

∑T

i=1
Bi (11)

σ 2
a =

1

T − 1

∑T

i=1

(

Ai− A
)2

σ 2
b =

1

T − 1

∑T

i=1

(

Bi− B
)2

(12)

SSI (a, b) =
(2µaµb + c1)(2σab + c2)

(µ2
a + µ2

b + c1)(σ 2
a + σ 2

a + c2)
(13)

where µa and µb represent the averages of images a and b,

σ 2
a and σ 2

b represent the variances of these images, and c1 and

c2 are small constants in the equation.

RMSE denotes the root MSE between the input and

enhanced resultant image. RMSE shows an inverse relation-

ship with the quality of the resultant image. In other words,

a low RMSE value indicates that the resultant image has a

higher quality and lower distortion in its details and informa-

tion compared with the input image [8], [33]. RMSE can be

computed as

RMSE =

√

∑i=N
i=1

∑j=M
j=1 (A (i, j) − B(i, j))2

N ×M
(14)

where i and j refer to the image rows and columns, and N ,M ,

A(i, j), and B(i, j) denote the rows and columns of the input

and resultant images.

The proposed AEIHE technique and all the compared tech-

niques were implemented on Intel i5 2.5 GHz, RAM 16G,

SSD hard disk and by using MATLAB R2019a.

VI. RESULTS AND DISCUSSION

Qualitative and quantitative analyses are performed to

demonstrate the capability of AEIHE. This technique

is compared with 11 state-of-the-art techniques, namely,

DCLHE [12], MVSIHE [19], HSQHE [36], GHE [8],

CLAHE [38], BBHE [13], POSHE [39], BPDHE [9],

RSWHE [31], the technique proposed in [34], and

IAECHE [5], all of which have been implemented by using

their optimum parameters as suggested by their respective

authors. The results of the qualitative analysis are presented

and discussed by using one standard image and one image

from each dataset (i.e., Pasadena-Houses 2000, faces 1999,

DIARETDB1, and chromosomes datasets) as presented in
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TABLE 7. Quantitative evaluation of Lena image. (Note: The bold and underline fonts refer to the best and second-best values, respectively.)

Figs. 14, 16, 19, 22, and 24, respectively. The images

from these datasets are labelled Lena, Pasadena01, Faces01,

DIARETDB101 and Chromosomes01. Fig. 15 presents the

magnified region of the Lena image, Figs. 17 and 18 show

two magnified areas of Pasadena01, Figs. 20 and 21 present

the magnified areas of Faces01, and Fig. 23 displays the

magnified area of DIARETDB101. The quantitative results

for these five images as tabulated in Tables 7 to 11 are

used to support the qualitative assessment. The bold and

underlined numbers in these tables indicate the best and

second-best results, respectively. Table 12 presents the aver-

age results for the quantitative analyses of all tested datasets,

and Table 13 presents the results of the computational time

analysis.

The results of the qualitative analysis for the Lena image

as obtained by AEIHE and the other techniques are shown

in Fig. 14. For further analysis, the magnified area of the

resultant Lena image as indicated by the blue box is shown

in Fig. 15. DCLHE and MVSIHE barely enhance the image,

especially the details of the woman’s hat and hair, as shown

in Figs. 14(b) and (c), respectively. These techniques are also

unable to address the darkness in the image as shown in

the face and wall regions behind the woman. The magnified

blue region clearly shows that the resultant images of both

DCLHE and MVSIHE suffer from blur effects, which can

lead to the dimming or deletion of local details as shown

in Figs. 15(b) and (c), respectively. The resultant image of

HSQHE suffers from unwanted artifacts and texture distor-

tion, especially on the shoulder and face of the woman.

In other words, HSQHE is unable to enhance and improve

the local image details as shown in Fig. 14(d). Further-

more, the texture of the hat in the magnified blue area is

not properly highlighted and has a poor visual appearance

as shown in Fig. 15(d). The resultant images of GHE and

BBHE in Figs. 14(e) and 14(g), respectively, are affected

by unpleasant appearance and over-brightness problems.

In addition, the magnified areas of these images as shown

in Figs. 15(e) and 15(g) prove that GHE and BBHE are

also affected by the brightness problem, which leads to the

vanishment of the hat’s details.

The resultant image obtained by CLAHE suffers from

an over-enhancement problem as shown in Fig. 14(f),

whereas those obtained by POSHE and BPDHE, as shown

in Figs. 14(h) and (i), respectively, are affected by unwanted

artifacts as can be observed in the area above the hat and on

the woman’s face and shoulder. The details of the woman’s

hair are also distorted. The magnified areas of these images

reveal that some image details have gone missing, thereby

highlighting the limitation of these techniques in improving

and enhancing the local details of images.

The resultant Lena image obtained by RSWHE shows

distorted details and unwanted artifacts on the right side

and on the shoulder of the woman as shown in Fig. 14(j).

The resultant magnified image is affected by the darkening

and vanishment of details problems as shown in Fig. 15(j),

both of which result in the unnatural appearance of the

image. By contrast, the resultant image produced by the

technique proposed in [33] as shown in Fig. 14(k) faces

an over-brightness or over-enhancement problem as can be

clearly observed in the shoulder area and from the unnatural

appearance of the woman’s hair. AEICHE is slightly able to

preserve the brightness of the image and improve its local

details as shown in Fig. 14(l). The magnified region in this

image shows that AEICHE is slightly capable of improving

the local details of the hat. Figs. 14(m) and 15(m) prove

that AEIHE can produce better resultant images. AEIHE also

successfully preserves the image brightness and highlights

its local details, especially the lip, hair, and face regions of

Lena and the texture of the hat. The resultant images are

very natural and pleasant to the human eye. The capability

of AEIHE in improving and preserving the richness of infor-

mation in the image is reflected in its second highest DE

value as tabulated in Table 7. Although CLAHE obtains the

highest DE, the qualitative analysis shows that this technique

suffers from the over-enhancement problem, which corrupts

the image details. This problem is successfully addressed by
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FIGURE 14. Resultant image of Lena after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE, (f) CLAHE, (g) BBHE,
(h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

AEIHE. In addition, AEIHE obtains the lowest RMSE and

the third highest PSNR, thereby proving that this technique

is not sensitive to noise effects.

The qualitative analysis results for the Pasadena01 image

are shown in Fig. 16. Two magnified regions, as represented

by the blue and red boxes in Figs. 17 and 18, are considered

for further qualitative analysis. The resultant image obtained

by DCLHE, MVSIHE, and HSQHE as shown in Figs. 16(b),

(c), and (d) reveal that these techniques barely enhance the

image, specifically its local details, such as the grass in front

of the house, the lines of the brick wall, the leaves of the trees,

and the pavement in front of the main entrance to the house.

DCLHE, MVSIHE, and HSQHE have also failed to improve

the image brightness, and certain local and small details have

been dimmed. Furthermore, the resultant images obtained

by these techniques show distortions on the upper left and

right sides of the sky. The blue magnified region shows that

the details of the window curtain, window frame, and brick

borders as shown in Figs. 17(b), (c), and (d) have not been

preserved by these techniques. From the magnified region of

the resultant image as denoted by red, one can see that the

left side of the house is blurred and that the details of the tree,

including its leaves and branches, can barely be discerned as

shown in Figs. 18(b), (c), and (d), respectively. Four other

state-of-the-art techniques, namely, GHE, CLAHE, BBHE,

and POSHE, produce unnatural and unpleasant resultant
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FIGURE 15. Magnified red boxed area of Lena after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE, (f) CLAHE,
(g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

images, especially POSHE. The resultant images obtained

by these techniques suffer from unwanted artifacts and dis-

tortions as clearly observed in the sky region as shown

in Figs. 16(e) to (h). The magnified areas of these images as

denoted by blue (Figs. 17(e) to (h)) and red (Figs. 18(e) to (h))

further justify the poor enhancement performance of these

techniques. The resultant images obtained by BPDHE and

RSWHE show slight enhancements as can be seen from the

main entrance of the house and the details of its left side.

However, the trees behind the house are not clear and have not

been properly highlighted, thereby proving that these tech-

niques are not suitable for improving local image details as

shown in Figs. 16(i) and (j). Moreover, the bricks surrounding

the window and the curtain in the blue magnified area shown

in Figs. 17(i) and (j) have been improperly enhanced, and

the details of the house wall and trees in the red magnified

area shown in Figs. 18(i) and (j) have not been effectively

restored.

The resultant image obtained by the technique proposed

in [34] is blurred, which leads to the dimness of local

details, such as the grass in front of the house, the left

side of the house, and the pavement of the main entrance,

as shown in Figs. 16(k), 17(k), and 18(k). The resultant image

in Fig. 16(l) highlights the ability of IAECHE to improve

the image better than the other techniques. This finding can

also be justified by the blue and red magnified regions shown

in Figs. 17(l) and 18(l), respectively. However, small regions,

such as the pavement at the main entrance and the trees on

the right side of the image, suffer from over-enhancement.

Specifically, some details of the pavement have vanished,

and the leaves of the trees are over-brightened. The resul-

tant image obtained by AEIHE has a natural appearance

and brightness. This technique also demonstrates its ability

to enhance and highlight local details, such as the grass in

front of the house and the pavement at the main entrance.

Fig. 16(m) shows that the resultant image has limited to

no blur or over-brightness problems, thereby validating the

ability of AEIHE to facilitate a consistent and balanced redis-

tribution of image pixels. In addition, the blue magnified

area in the resultant image shows that AEIHE can enhance

and highlight local details, such as those of the curtain,

the window frame, and the lines between the bricks, all of

which have been successfully outlined with clear edges. The

enhancement of these small regions is not affected by any

unwanted noise or artifacts as shown in Fig. 17(m). The red

magnified area in the resultant image obtained byAEIHE also

shows better improvements without the effects of artifacts as

compared with those obtained by the other techniques. For

instance, Fig. 18(m) shows that the fence rods and trees in the

resultant image obtained by AEIHE are visually clearer and

more visible to the human eye compared with those obtained

by the other techniques.

The qualitative analysis results for AEIHE are strongly

supported by the findings of the quantitative analysis as

shown in Table 8. AEIHE obtains the second-best DE value

and the best SSI value, thereby indicating that this technique

can highlight the information details in an image andmaintain

its structure much better than the other techniques.
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FIGURE 16. Resultant image of Pasadena01 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE,
(e) GHE, (f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.
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FIGURE 16. (Continued.) Resultant image of Pasadena01 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE,
(d) HSQHE, (e) GHE, (f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed
AEIHE.

FIGURE 17. Magnified blue boxed area of Pasadena01 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE,
(f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

In addition, by having the best PSNR value, AEIHE can

reduce the effect of unwanted noise. The results of the quali-

tative and quantitative analyses also justify that AEIHE pro-

duces the best Pasadena01 image among all techniques.

Faces01 is a close-up image taken in an indoor envi-

ronment. This image has poorly illuminated regions with

hidden local details. Similar to Pasadena01, the resultant

images obtained by DCLHE, MVSIHE, and HSQHE have
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FIGURE 18. Magnified red boxed area of Pasadena01 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE,
(f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

TABLE 8. Quantitative evaluation of Pasadena01 image. (Note: The bold and underline fonts refer to the best and second-best values, respectively.)

barely been improved. Specifically, these techniques have not

improved the brightness of the image, which has led to a dim

resultant image as shown in Figs. 19(b) to (d), respectively.

In addition, white spots are observed on the surface area of

the resultant image obtained by MVSIHE. These techniques

also fail to highlight local and hidden details in the magnified

areas (Figs. 20(b), (c), and (d) and Figs. 21(b), (c), and (d)).

These regions suffer from poor illumination and brightness

improvements, and the bottles on the shelves cannot be dis-

cerned as shown in Figs. 20(b), (c), and (d). Similar results

can be observed from the red magnified region of this image

due to poor contrast as shown in Figs. 21(b), (c), and (d). The

resultant images obtained by GHE, POSHE, and BPDHE suf-

fer from over-brightness, hence explaining themissing details

on the woman’s face as shown in Figs. 19(e), (h), and (i).

The blue (Figs. 20(e), (h), and (i)) and red magnified areas

(Figs. 21(e), (h), and (i)) of these images also show that the

texture and details of the woman’s hair and the naturalness

of the chair on the left side have not been retained by these

techniques.

Figs. 19 to 21 show that the resultant images obtained

by CLAHE, BBHE, and the technique proposed in [34]

suffer from over-enhancement, hence making these images

unpleasant to the human eye (see (f), (g), and (k) of these

figures). This problem can also be clearly observed from

the red magnified areas, which show an improper brightness

(Figs. 21(f), (g), and (k)). Among the 11 state-of-the-art

techniques being compared, only RSWHE, IAECHE, and
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FIGURE 19. Resultant image of Faces01 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE, (f) CLAHE, (g) BBHE,
(h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.
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FIGURE 19. (Continued.) Resultant image of Faces01 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE,
(f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

AEIHE obtain resultant images without (or nearly with-

out) poorly illuminated or over-enhanced areas, especially

on the woman’s face, as shown in Figs. 19(j), (l), and (m),

respectively. These techniques also successfully highlight

local details on the image as shown in the blue and red

magnified areas. The image details and contrast are also

enhanced, and the brightness is improved without ampli-

fying noise and adding unwanted artifacts as shown in

Figs. 20(j), (l), and (m) for the blue magnified area and

Figs. 21(j), (l), and (m) for the red magnified area. AEIHE

obtains the best SSI and RMSE values for the Faces01 image

as presented in Table 9. These results support the find-

ings of the qualitative analysis that favor AEIHE as the

best technique. These SSI and RMSE values also show that

AEIHE is highly capable of enhancing image contrast, pro-

ducing an excellent resultant image, preserving the image

structure, and reducing the effect of unwanted noise. AEIHE

also obtains the second-best DE value among the compared

techniques and a remarkable PSNR value, hence highlighting

its ability to produce signal values without amplifying noise

during the enhancement process.

The resultant images and the blue magnified region of

the resultant DIARETDB101 images obtained by the com-

pared techniques are shown in Figs. 22 and 23, respec-

tively. The resultant images obtained by DCLHE and the

proposed technique in [34] do not show any improvements,
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FIGURE 20. Magnified blue boxed area of Faces01 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE,
(f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

TABLE 9. Quantitative evaluation of Faces01 image. (Note: The bold and underline fonts refer to the best and second-best values, respectively.)

and some local details have not been highlighted as shown

in Figs. 22(b) and (k). This case is particularly observed in

the magnified area shown in Figs. 23(b) and (k), where

the details and contrast of the veins and other local details

are not improved. Meanwhile, the resultant images obtained

by MVSIHE, HSQHE, GHE, CLAHE, BBHE, POSHE,
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FIGURE 21. Magnified red boxed area of Faces01 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE, (f) CLAHE,
(g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

TABLE 10. Quantitative evaluation of DIARETDB101 image. (Note: The bold and underline fonts refer to the best and second-best values, respectively.)

BPDHE, and RWSHE suffer from over-enhancement that

leads to over-brightness as shown in Figs. 23(c) to (j), respec-

tively. Among these techniques, POSHE produces the worst

resultant image with unsmooth texture and obvious over-

enhancement problems as shown in Fig. 22(h). Meanwhile,

BBHE and RWSHE obtain the second and third worst resul-

tant images as shown in Figs. 22(g) and (j), respectively.

The over-enhancement problem faced by these eight tech-

niques can be clearly observed from the magnified area of the

resultant DIARETDB101 image as shown in Figs. 23(c) to (j).

Awashout problem (which leads to an improper enhancement

of image details) can also be observed from this magnified

area.

The resultant images obtained by IAECHE and AEIHE are

much clearer than those obtained by the other techniques as

shown in Figs. 22(l) and (m) and Figs. 23(l) and (m), respec-

tively. The local details have been enhanced without facing an

over-enhancement problem or the effects of unwanted noise
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FIGURE 22. Resultant image of DIARETDB101 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE,
(f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.
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FIGURE 22. (Continued.) Resultant image of DIARETDB101 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE,
(e) GHE, (f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

or artifacts. These techniques also demonstrate their ability to

control the natural brightness of the image. The eye’s texture

and veins can be clearly observed. The quantitative analysis

results in Table 10 indicate that AEIHE outperforms IAECHE

in terms of SSI and RMSE. However, AEIHE only obtains the

second-best DE and PSNR values. These findings indicate

that AEIHE successfully enhances the information richness

and details of the resultant image (i.e., the best DE value),

preserves its structure (i.e., the best SSI value), and is less

sensitive to the effects of noise (i.e., the best RMSE value

and second-best PSNR value).

The resultant Chromosomes01 images obtained by the

compared techniques are shown in Fig. 24. A visual

observation of those images obtained by DCLHE, CLAHE,

the proposed technique in [34], and IAECHE reveal only a

slight enhancement as shown in Figs. 24(b), (f), (k), and (l),

respectively. The bonding patterns of the chromosomes are

not properly enhanced; thus, the structural details of the

chromosomes cannot be observed. Meanwhile, the resultant

images obtained by HSQHE, BPDHE, and RSWHE show

changes in their background region color (from bright to dark)

as can be seen in Figs. 24(d), (i), and (j), respectively. The

resultant images obtained by GHE and POSHE suffer from

the darkening of chromosome bonds, thereby resulting in

poor image quality and unrecognizable chromosome details

as shown in Figs. 24(e) and (h), respectively.
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FIGURE 23. Magnified blue boxed area of DIARETDB101 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE,
(e) GHE, (f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

TABLE 11. Quantitative evaluation of Chromosomes01 image. (Note: The bold and underline fonts refer to the best and second-best values, respectively.)

Among the compared state-of-the-art techniques,

MVSIHE and AEIHE obtain the resultant images with the

best contrast. The contrast of the resultant image obtained

by AEIHE is slightly lower than that of the image obtained

by MVSIHE. However, AEIHE effectively preserves and

highlights the bonding and chromosome structures as

supported by the results of the quantitative analysis

in Table 11, which reveal that AEIHE obtains the best SSI and
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FIGURE 24. Resultant image of Chromosomes01 after applying with (a) Original image, (b) DCLHE, (c) MVSIHE, (d) HSQHE, (e) GHE,
(f) CLAHE, (g) BBHE, (h) POSHE, (i) BPDHE, (j) RWSHE, (k) technique from [34], (l) IAECHE, (m) Proposed AEIHE.

DE values among all techniques. This technique can therefore

preserve the structure of the chromosome image, which is

important for enhancing contrast and retaining the bonding

patterns of the chromosome structure for medical diagnosis

purposes.

In addition to the sample images, the average quantitative

assessment of the proposed AEIHE technique for all the

819 images is calculated and compared to the other tech-

niques. Asmentioned, 241 images from the Pasadena-Houses

2000 dataset (size: 1760 × 1168) [68], 450 images from
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TABLE 12. Average quantitively evaluation. (Note: The bold and underline fonts refer to the best and second-best values, respectively.)

the faces 1999 dataset (size: 896 × 592) [69], 89 images

from the DIARETDB1 dataset (size: 1500 × 1100) [70],

and 39 images from the chromosome dataset (size: 1376 ×

1024) are used, and the results are presented in Table 12.

AEIHE has been proven to be highly capable of enhancing

the information richness and details of images as reflected in

its best DE values for the Pasadena-Houses 2000 dataset and

the second-best average DE values for the faces 1999 dataset.

AEIHE has also been proven to be less sensitive to the

effects of noise and obtains the best average RMSE and

PSNR values for the DIARETDB1 dataset, the best average

RMSE value for the chromosome dataset, and the second best
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TABLE 13. Average time consuming.

average PSNR value for the Pasadena-Houses 2000 dataset.

The introduction of Entropy-Index improves the capability

of AEIHE in preserving image details as reflected in its

second-best average SSI value for the DIARETDB1 and

chromosome datasets. The results of the qualitative and quan-

titively analyses favor AEIHE as an excellent HE-based tech-

nique for enhancing image contrast. AEIHE has successfully

produced resultant images with favorable contrast improve-

ments, information richness and details, and excellently pre-

served structure with minimal effects from noise, unwanted

artifacts, and over-enhancement.

This study further analyzes and evaluates the performance

of AEIHE via a computational time analysis, and the results

are shown in Table 13. GHE, BBHE, DCLHE, and MVSIHE
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are capable of completing the enhancement process within a

short period. By contrast, AEIHE requires the longest compu-

tational time due to its implementation of iteration processes

in obtaining the optimum parameter values. However, despite

this limitation, the visual and quantitative analyses have

proven that AEIHE is highly capable of producing excellent

and natural resultant images with high image quality values.

Therefore, with further improvements, especially a reduced

computational time, AEIHE shows great potential to be used

for enhancing image contrast in non-real-time applications.

VII. LIMITATIONS AND FUTURE WORK

In the present days image processing applications can be

classified into real-time and non-real-time applications, with

the former requiring the application of image processing

techniques that are computationally fast and have short

execution times, such as video streaming, outland drones

patrol, and military applications. By contrast, non-real time

applications, such as medical imaging and using personal

cameras, do not highly depend on time when processing

images but rather focus on the production of optimum results.

Although the available approaches for real-time applications

can rapidly produce outputs, in some cases, these approaches

demonstrate poor performance and are unable to produce the

optimum results, whereas the approaches for non-real time

applications may consume a high processing time yet can

produce the optimum results in some cases. The proposed

AEIHE is specifically designed for non-real-time applica-

tions and focuses on obtaining optimum resultant images that

are natural and pleasant to the human eye with enhanced

local details, preserved structure, and low sensitivity to noise

effects.

After its capabilities has been proven in this study, future

work should focus on improving and modifying AEIHE in

order for this technique to be used in real-time applications.

To do so, future studies may adaptively identify the optimum

WS value in order for AEIHE to automatically test each

pre-determined WS value (which can consume much time

when donemanually). Another possible direction for improv-

ing AEIHE is introducing an adaptive procedure to divide

the input image into multiple sub-images. Three possible

ideas can be implemented. First, AEIHE should be able to

adaptively identify the optimum number of sub-images to

be created. Second, the improved AEIHE should also be

able to adaptively identify the size of each sub-image. Third,

the improved AEIHE technique should be applied to the RGB

images and enhance the color images.

VIII. CONCLUSION

This paper proposes an adaptive version of the conven-

tional CLAHE technique to enhance image contrast in the

spatial domain. The proposed technique, called AEIHE,

is specifically designed to produce images with high con-

trast, clear local details, and preserved structure. A new

assessment parameter called Entropy-Index is also introduced

to obtain the best entropy and structural similarity values.

This parameter is used as a fitness function for theWOAalgo-

rithm to obtain the best clip limit value for the conventional

CLAHE. AEIHE is tested on 819 images from 4 datasets,

and its performance is compared with that of 11 state-of-

the-art techniques. The qualitative and quantitative analysis

results prove that AEIHE outperforms the other techniques

and may produce natural images. The high DE value obtained

by AEIHE demonstrate its capability of enhancing images

and producing a high level of information, particularly local

image details. AEIHE can also maintain the natural bright-

ness of images and produce a high information signal without

any unwanted noise and artifacts. Overall, AEIHE is capable

of enhancing the contrast, detail, and structure of images,

thereby highlighting its potential to be applied in the machine

vision, medical imaging, and industrial fields.
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