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Abstract

We construct efficient estimators of the identifiable parameters in a
regression model when the errors follow a stationary parametric
ARCH(P) process. We do not assume a functional form for the
conditional density of the errors, but do require that it be symmetric
about zero. The estimators of the mean parameters are adaptive in the
sense of Bickel [2]. The ARCH parameters are not jointly identifiable
with the error density. We consider a reparameterisation of the
variance process and show that the identifiable parameters of this

process are adaptively estimable.



1. INTRODUCTION

We consider the problem of obtaining efficient estimators of the
identifiable parameters in the following linear regression model where

the errors are conditionally heteroskedastic according to an ARCH(P)

process:

_ AT .y = .
Y, = B X, P+ u ; u=eo ; (1.1)
c°=a+%cu , t=1,2,..,T. (1.2)

t - J t-}

This specification of the error process was originally suggested in
Engle [10], and was employed there to model UK inflation rates. It has
been used in countless empirical studies — see the survey papers of
Engle and Bollerslev [12] and Bollerslev, Chou and Kroner [7] for
references.

The ARCH specification rationalizes two well established empirical
regularities about financial and macroeconomic time series. When C
j=1,2,..,P are all positive, the process Uf is positively serially
dependent. This is an important feature: many financial and
macroeconomic time series are characterized by episodic bursts of
volatility followed by more tranquil periods. Uncertainty about future
events — and the consequent risk to investors — varies over time yet
typically is closely related to previous assessments of uncertainty.

In addition, even when €, are i.i.d normal, the unconditional
distribution of the innovation u, will be leptokurtic by virtue of the

mixing that random ¢ induces. This is consistent with the findings of



many researchers — e.g. Mandelbrot [28] and Gallant et al [17] - who
have found that the distribution of stock returns tends to have
heavier tails than the normal.

A number of generalizations of the ARCH specification are given in
Engle and Bollerslev [12} and Bollerslev, Chou, and Kroner [7]. Recent
research has focused on Generalized ARCH and Integrated GARCH models —
see Bollerslev [5] and Lumsdaine [27], on exponential ARCH/GARCH
models — see Geweke [18) and Nelson [30], and on semiparametric
ARCH/GARCH modelling — see Engle and Gonzalez-Rivera [13] and Whistler
[45]. A number of authors have proposed alternatives to the ARCH
paradigm. In particular, Spanos [39] and Shephard ([38] highlight
deficiencies in the ARCH modelling appreoach and suggest alternatives.

In this paper we are concerned with the senmiparametric approach.
Specifying a parametric model for the density of £, imposes strong
restrictions on the data generation process, especially when the
normal distribution is used. Although Bollerslev [5] and Weiss [44]
show that the Gaussian (Pseudo) Maximum Likelihood Estimator
(hereafter the PMLE) of GE(BT,a,cT)T, where cs(cl,cz,..,cP)T, is vT
consistent asymptotically normal under quite general conditions on the
error density f, this estimator is inefficient for non-normal f’s.
With the large sample sizes available for financial data one ought to
be able to do better.

Engle and Gonzalez-Rivera [13] consider a semiparametric extension
of (1.1) and (1.2). They retained the linear relationship (1.2) yet
allowed f(.) to be of unknown form. They used nonparametric estimates

of the score function of € to estimate the parameters of a GARCH



process. They report monte carlo simulation results that suggest
improvements for this method over the Gaussian PMLE when the true
error distribution was non-normal.

We examine further this semiparametric model. The issues we address
here are twofold. Firstly, what is the information bound for
estimation of @ when no parametric structure is assumed for the error
density? In particular, is this an adaptive situation — can one in
principle estimate © as well when f is unknown as when it is known?
Secondly, is it possible to construct an estimate of & that achieves
the information bound asymptotically?

Bickel [2] gives a necessary condition for adaptation in the
context of a semiparametric model Pem' where 6 is a finite
dimensional parameter and G is an infinite dimensional nuisance
parameter: the scores for € must be orthogonal to the tangent space
for G. In particular, the scores for 6 must be orthogonal to the
scores for the scalar parameter T for each parameterization G(.;t) of
G(.).

This orthogonality condition is satisfied in a number of
semiparametric models. In particular, Bickel [2] shows that the
information bound for estimating the slope parameters in a linear
regression is the same whether or not the error density is known.
Kreiss [21,22] extends these results to a time series context. He
shows that it is possible to estimate the identifiable parameters of a
stationary invertible ARMA model adaptively in the presence of an
unknown error density. His results are considerably easier to derive

when the error distribution is symmetric.



Engle and Gonzalez-Rivera [13] examined the performance of their
semiparametric estimator when the true error density was either t5 or
gamma distributed. They found that although the estimator generally
ocoutperformed the Gaussian PMLE, it appeared to be considerably less
efficient than the MLE. They suggested that the semiparametric
estimator was not adaptive even when the error density was symmetric.

In this paper, we consider only the situation where the unknown
error density is symmetric about zero. We find that under the
specification (1.1) and (1.2) the mean parameters g can be estimated
adaptively when the error density is unknown, while the parameters
(a,c,f) are not jointly identifiable. To deal with the identifiability

problem we reparameterise (1.2) as

P
af(e) = e% 1 +J§17Juf--1]' (1.3)

This parameterization separates the overall scale effect (ea) from the
relative effects measured by 7}, j=1,2,..,P. We find that the
parameter « has zero information when f is unknown, while the scores
for 72(11,72,..,7P)T are orthogonal to the tangent space for the
unknown error density — i.e. 7 is in principle adaptively estimable.
We construct an estimator of the identifiable parameters and show that
our estimator is asymptotically equivalent to the MLE, and hence is
adaptive. To establish the asymptotic properties of our estimator we
use the methodology developed in Le Cam [25], Bickel [2], Kreiss
[21,22] and Swensen [43].

Engle and Gonzalez-Rivera [13] employ a different approach to



ensure semiparametric identifiability — they normalize the variance of
f to be one. This introduces a nonlinear constraint on the class of
allowable error densities which is difficult to incorporate in
information bound calculations. It is not clear whether this approach
will give rise to adaptively estimable parameters other than 8,
although the preliminary calculations presented in Steigerwald [41)]
suggest it may not.

The paper is structured as follows. In Section 2 we examine whether
Bickel’s orthogonality condition heolds in the original ARCH model and
in our reparameterisation. In Section 3 we state our assumptions. In
Section 4 we establish the fundamental LAN property for our
reparameterised ARCH model. In Section 5 we establish properties of
linearised MLE’s of the unknown parameters when the error density is
known. In Section 6 we construct an estimator that does not require

knowledge of the error density and is adaptive. Section 7 concludes.

2. IS ADAPTIVE ESTIMATION POSSIBLE?

2.1 The Location Scale Model

We first review the theory developed in Bickel et al [3] concerning

information bounds in semiparametric models in the context of the

location scale model

Y = u + g0,



where £ is distributed symmetrically about zero with density f. When f

is known, the scores for the unknown parameters (u,c) are

nt

e (e)= - oL () = o7l () ; L _(e)= -0 [elle)+1) = o7l (e)

M f 1 A f 2 *
These scores are mutually orthogonal when f is symmetric about zero.
In this case, the information bounds for estimating u and ¢ when f is

known are given by f:rzll(f)"1 and a"?Ia(f)'1 respectively, where
- 2 _ 2
I,(f) = Ef¥,(e)7], I (f) = E[¥,(e)"],

We verify Bickel’s orthogonality condition using the following
heuristic argument. Suppose that f is parameterized by a scalar
parameter T such that f£(.;t) is symmetric about zero for all T, and
let ft(.'t) denote the partial derivative of f(.;t) with respect to t.

Since f(.;t) is symmetric about zero for all rt,

. i Ll 3THE)~F£(.;T)
ft(.,t) = Lim 5

620

is also symmetric about zero. The score function for © in the

parametric model Pe, where 9=(u,o,r)T, is Et, where

. £
L () = 5 (€),

and is therefore symmetric about zero. Furthermore, £, is orthogonal

to ¢ and the information bound for estimating u in the presence of

Ty



the unknown parameter T is I1(f) — knowledge of T provides no useful
information about u. Since the parameterization was arbitrary, we
conclude that knowledge of the error density f is irrelevant as far as
estimation of u is concerned. However, the parameter ¢ is not
identifiable without further restrictions on f.

Suppose that instead of the natural parameterization (g,0) one had
parameterized the model by ({,n), where (=(u+o)/2 and n=(u—-o) /2. In
this case, the scores for { and for m are both correlated with those
for T, and one might conclude that this was not an adaptive
situationz. We suggest that the ARCH model manifests this phenomenon —
in (1.2) each of the parameters a and . j=1,2,..,p gives information

about scale.
2.2 Engle’s ARCH Model

We now examine the ARCH model defined by (1.1) and (1.2). Let X, be
a X by 1 vector of fixed regressors, and suppose that €, is i.i.d,
zero mean, with density f symmetric about zero. Let (BT,a,dﬁTs¢,
where c=(c1,c2,..,cP)T and let the zero subscript denote the true
parameter value where necessary. Furthermore, suppose that the initial
conditions Yo=(co,..,ch,a§,.,ai*) are observed, and let fo(Yo;¢)
denote the unconditional density of Y .

The sample log likelihood £(Yo,y1,..,yT;¢) for the ARCH model (1.1)

and (1.2) can be written as

T T
£ = log £,(Y i¢) + I log f(e () = 5 I loglo: ()1,
t=1

t=1



where

P
£ (#) = (v,~B'%)/0.($) ; 0.(8) =a+Tcly -8

Xt_
)=t 1

We shall assume that the process af(¢0) is stationary, and that fO
makes a vanishingly small contribution to the asymptotic properties of
the MLE. We focus our attention on the conditional likelihood that

drops f . Let o¢(¢) (o B,o denote the K+P+1 vector of period

ta'otc)
t contributions to the sample scores of the conditional 1likelihood,

and let 8 16 (ETB,

. T
Ic)'r' where 8T¢(¢)Et§1at¢(¢). Then

. T . .
Lg(8) = = L {0,(8)7%¥,(c,(8)) + W (8)W, (€, (4))}= £ 0 (8) + Lo (B),

t=1
where

- - ) 2
wi(¢) = }Elclx"i(yt'i Bx, /o (¢ J

(¢},

i}
1
ne-1o

tht.l

and

L8 =y, - B'x_)/0t(e).

Both W, (¢) and crf(m depend only on the past. Similarly,

. T .
Lo(®) = 3 T ¥,(c (0)V,(9) ;i (8 =

t=1

T
L (e ()0 (#)7°

Nlr-

where vt=(v 'V ,..,th)T, and

1t 2t



T 2, 2 .
= th-J) /ot(¢)’ )=1,2,..,P

which also depends only on the past.
To investigate whether Bickel’s orthogonality conditions are met in
the ARCH model we proceed heuristically as in Section 2.1. Suppose

that f is parameterized by a scalar parameter t. In this case

fr

T
£TI = t§1 f (ct)'

f

where fI(.) is symmetric about zero. Although %82 is an even function

of €, it is orthogonal to L since W, is independent of €, and is

mean zero, Err and ETB are mutually orthogonal. Thus there is no
efficiency loss from not knowing T. Since we only exploit symmetry in
obtaining this orthogonality, this result carries over to the
semiparametric model. One should be able to construct adaptive
estimates of B, provided one can estimate the score functions wi
suitably well.

This orthogonality does not hold for the remaining parameters,

since ¢ £

ra’ trot and £Tt are in general correlated. We argue that this

correlation is a manifestation of the fact that we cannot separately
identify (a,c,f). Before discussing information bounds in this model
we must deal with this issue,
We reparameterize the ARCH process according to (1.3), i.e.
P

oi(e) = e’[2 +j§1'arj(yt_1 - 8% )

2

Iy



where 6=(8",a,7")", and 7= (v,,7, ,--,7) - Now let 29(9)‘): 2,6(8),
t=1

T ,T

where ae(e) (°B'°ux'°t ) and £ 6= (zTB, 0‘,t‘.'w) . Then
. T 1 -
tg(®) = - L {0, ()% ¥,(c,(8)) + W (8)¥,(c,(0))) (2.1)
= 8,(8) + L 5.(8),
where
P T P
w (e = -J)zjlvjxt_ ( - Bx_)/o (8) = -j): v X, W, J(6').
G 8y =1 + 5 T 2 6y = ~2 .
o (8) = J)Elr (¥, "B, (&) = (v, )/05(8) ;
while
. 1 T . 3 T -
baf®) = 3 L¥,(5,(0)) 5 &, () = = LV, (e (007 (o), (2.2)
where

. (8) = (v, -B'x_)°/5.(8), 3=1,2,..,P.

Notice that ol(eofq, Gt(eo), and ;l(eo) are all stationary ergodic
processes, and are all bounded from above when o >~ and 7Ja0,
j=1,2,..,P.

The efficient score function for y in the presence of unknown a,

obtained by projecting ZT7 onto 8ra' is

10



- . - L ] T
* _ 2 -1 _ 1 ~ = .
TY £77 E[erveTa]{Etara}} £Td - 2t§1w2(ct)(vt vy i

—_— -~ K 3 ' ] .
where v=E[vt]. Now £T7 is orthogonal to any score function ETt, where

for £(.;t) any parameterization of the symmetric function f£(.).
Therefore, the information bound for estimating ¥ is the same whether
or not £ is known. Under suitable regularity conditions we should be
able to estimate y adaptively.

In the sequel we construct an estimator of (BT,':T)T that achieves

the information bound provided that f is symmetric about zero.
REMARK: Consider the exponential ARCH model:

log[ai] = o +

Yy r(e
3 b

1

t_Jcrt_J) p (2.1)

T B

where r(.) is a known function, see Nelson [30]. If E(r’(e0,)]1=0, the
scores for B are orthogonal to those for f. In this case, we argue in
Appendix I that both B and 7 are in principle adaptively estimable,
although see Bickel and Ritov (3] for a cautionary tale in this

regard.

11



3. ASSUMPTIONS

Although (1.2) and (1.3) generate the same family of probability
measures, the relevant parameter spaces differ. To avoid any ambiguity
we shall restrict our attention to parameterization (1.3). We use the

following conditions.

Al. The random variables {ct} are i.i.d., with absolutely continuous

Lebesgue density f, where f({x}>0 VxeR.

Let the score functions, wl and wz be defined as follows:

v (x) = £ o0 ;w0 =xen,

where %f*’z(x)f'(x) is the quadratic mean derivative of f(x)'?, i.e.

1
2
buil

Lim = 7 [ £(x+m)"? - £(x)"% - 2 £7%(x)£7 (x)1%ax = 0. (3.1)

n|

We do not assume that f is necessarily differentiable everywhere in
the usual sense, although the following assumptions restrict the lack

of smoothness that can be permitted.

A2. The density f has finite Fisher information for both scale and

location parameters,

0 < I(f) =L Y (x)’f(x)dx < w ; 0 < I(f) = Jy (x)’f(x)dx < w.

12



A3.The score functions, wi i=1,2, satisfy the following conditions:

(1) § (¥, ((x+m)/(1+5))-¢ (x)}’f(x)dx » O as m,s » 0, i=1,2,
(2) m*wl((x+m)/(1+s))f(x)dx > -I(f) as m,s » 0,

(3) J s*wz((x+m)/(1+s))f(x)dx > ~I(f) as m,s » 0,

(4) J s'1w1((x+m)/(1+s))f(x)dx >0 as m,s » 0,

(5)J mqwz((x+m)/(1+s))f(x)dx = 0 as m,s = 0.

REMARK: These are essentially second derivative conditions, and are
satisfied by a large class of densities: for example, the normal, the
GED distribution considered in Nelson [30], and the Laplace
distribution. Conditicn A3(1) is an obviocus extension of condition
A5(1) in Kreiss [21], while condition A3(2) is condition A5(ii) of

Kreiss [21].

REMARK: Lind and Roussas {26] establish in a more general context that
quadratic mean differentiability assumptions such as (3.1) and A3

imply Cramer’s conditions (see Cramer [9]), p500).

A4: The error density also satisfies:
1) The density f is symmetric about zero,
2) Ix‘f(x)dx<w,

3) ij(x)‘f(x)dx<m, j=1, 2.

13



K*P*1 that satisfies

A5, The parameter space ® is an open subset of R
various restrictions such that
(1) The process {crf}':=l is bounded below by a constant ¢>0.
(2) The process {af}':=1 is strictly stationary and ergodic.

(3) The process {of}‘:=1 satisfies E[O:]<w.

REMARK: A sufficient condition for AS5(1) to heold is that

7120, 1220, ..,‘J’P’—'O.
Nelson and Cao [32] show that these conditions can be weakened
somewhat. Primitive conditions on a« and ¥ and on the distribution of
the white noise error that imply assumption A5(2) are given in Nemec
and Linnell [33]). Similar conditions are given in Nelson [31], Sampson
[37] and Bougerol and Picard [8) for the GARCH(1,1) model. Condition

A5(3) also requires substantial restrictions on the parameter space as

discussed in Bollerslev [5] and Milhoj [29].

For any 6€@, let P be the joint probability measure of a sample
r

e
{yt,xt}id. In the sequel, unless otherwise stated, we let 5 denote

convergence in probability under P g while o, (.) and OP(.) will
o

also hold under PTB . Likewise, » denotes weak convergence of the
'To

associated probability measure under Pre . We make an additional

0

assumption:

14



A6, The density fb(Yo;e) is continuous in probability: let

172 K+P+1
h

6f=90+T' , and assume that for any heR and Veoe®

- p -
£.(Y,;6,) 5 £ (¥ ;6) as Tsw.

We assume throughout that the K by 1 vector of explanatory
variables x are strictly exogenous, and we therefore condition our

inference on {xt}zﬂ. Define the sequence of K by K matrices

T
MT(s) = {mT(s)Jk} =T°7 xx ., s=0,1,2,.,P.

t=s+1

We make the following assumption about the regressors:

Bl. The matrix MT(O) converges to a finite limit M(0), where M(0) is

strictly positive definite.

REMARK: This assumption on the regressors could be relaxed to allow
trending regressors, for example, by assuming Grenander’s conditions.
In this case, we must replace the VT norming of our estimator by a

suitable matrix as in Swensen [43].

Finally, we shall assume that there exists a VT consistent
estimator ér of 6. Recall that a=e® and cj=ea11, j=1,2,..,P. Weiss
[44]) and Lumsdaine [27] give conditions under which least squares
estimators and Gaussian PMLE’s of the parameters a and ¢ are VT
consistent., A delta method argument can then be used to establish the

VT consistency of the resulting estimators of 6. These authors impose

15



additional moment conditions of various types.
4. LOCAL ASYMPTOTIC NORMALITY

In this section, we establish that the log-likelihood ratio of the
ARCH model (1.1) and (1.3) satisfies the Local Asymptotic Normality
(LAN) condition defined in Theorem 1 below. This condition, introduced
in Le Cam [23], controls the behavior of the log-likelihood ratio in a
small neighborhocod of the true value, requiring that in large samples
it be approximately quadratic in a neighborhood of the true parameter.
This regularity is essential when establishing the properties of the
Newton-Raphson estimators we consider in later sections.

Le Cam [23], Swensen [42,43), and Roussas [36] give conditions
under which the log-likelihood ratio of a general stochastic process
satisfies the LAN condition. These conditions have been verified for
stationary invertible ARMA processes in Kreiss [21], and for linear
regression models with autoregressive errors in Swensen [43]. This
latter result was extended by Steigerwald [40] to linear regression
models with ARMA errors. Generalizations of this concept to Locally
Asympﬁotically Mixed Normal (LAMN) considered in Swenson [42] have
found applications in the theory of nonstationary processes — see
Phillips [34}.

The parameters of interest in the above examples are all location
parameters. In the ARCH model, parameters that determine the scale of
the process are also of interest. We verify the conditions of Swensen

[42] below, using some modifications of the argument presented in

16



Swensen [43].
We first establish some notation. Define the sguare root of the

likelihood ratio A to be

fD(Y H )] iz ¥ f(e (e))o (6 ) 12

A(6_,0) = [f_(y_-g_)‘) RNSICNCII O

The log likelihood ratio, is defined as

.
A (85,8) = 1ogif (¥,i8) /£,(¥,i6))} + 2 T 1og 9,(8,,6)

where
£(c,(8))0, (8,) .
¢ (6,,9) = [f(c CH ))0' (e) .

/25
172,

Let S o(8)=T""%¢ =

d’ﬁpbe , where 8 are defined in (2.1) and
t-—

(2.2). Furthermore, let S B BI+STBZ' Sm' and Sw denote the

corresponding subvectors. We now define the information matrix.

Definition: Let the information matrix Jee(eo) be the probability

limit under P of the observed information matrix

1,6
)

T
= T'1}=: °t9(90)°te‘eo’T'

era(eo)
t=1

The matrix Jee(eo) exists by Al, A2, A4, A5, and Bl; it is strictly

positive definite3 under A4(b) and A5(3) — see Weiss [44], Lemma 3.2.

It has the following structure:

17



JBB ) 4]
Joo = | 0 Tuy Tya (4.1)
Ja?’ JTF
where
JBB = { gBB1I1(f) + 93321 (£} } M(0) = JBBI + JBBZ'
s . = 1 . - 1 q
Jaa ry g (f) / wa zg7712(f) H Jd7 n gawIa(f)'
while
P
9.5p,(6) = 0. (8)7 ; g gq.(8) = Lo CRNCIR
- — <~ < T — opd
taa(e) =1 ; Jeyy = Vt(e)Vt(e) ; tav(e) = v (8),

and gJ=Eeo[gU(eo)3 for each j.
With these definitions we now state the main theorem of this

section.

Theorem 1 (Local Asymptotic Normality) Assume that A1-A6 and Bl hold,

K+P+1
. Then

and let 6T=60+T'“?h for any heR
1) A(6,6_) - h'S_(6 ) + sh'J__(6,f)h 5 0 , as Tow
T 0T T8' "0 2 88’ "o’ ' '

2) S.(8,) » N(0,Tg5(8,,£)),

REMARK: The asymptotic normality of Sr“%) under PTe is easy to
"o

establish because {ate(eo)}t=1 is a sequence of martingale differences

18



with uniformly bounded variances — Bollerslev and Wooldridge [6]

establish a similar result when the Gaussian likelihood is employed.

REMARK: The LAN condition is straightforward to verify when Cramer
like differentiability conditions are assumed on the log-likelihood
function — see Lind and Roussas [26]. We establish this result under

weaker smoothness conditions.

We now outline how Theorem 1 is proved. The iid location scale
model considered in Section 2.1 satisfies the LAN condition. In this
case, joint quadratic mean differentiability of the square root of the
likelihood ratio is sufficient for the LAN condition to hold, as is
discussed in Appendix II. To show that this condition holds for the
ARCH model requires a conditioning argument.

Let h=(h;,ha,h;)T, then

(e +8 )
et(GT) = - T’tuz’
(1+HTJ)
where
s, = (B, = B)'X/0,(8) i m , = (0.(8)) ~ 0.(6,)) /0L (8,)
T,t T Tof TtV ol T Tt tr T t' o t* o'”
Substituting for af(eT) we obtain
_ om-l/2 -1 T
BT’t = T N tht,
-2 ; 2 2 T
n'r,t = at { a'r - a‘o + I [(CJT-cjo)et-jat-j . 2cj0xt-j(BT-BO)et-Jat—j

j=1

19



+ o (B-R) X, X[ (B-B)) = 2(c,=c )x| (B -8 )¢

t-J t-j T 0 ] Jjo -J T O t-jat—j

+(e,mc ) (BB,) ' (B-8) 1},

tj tj

2_ 2 -
where al—at(eo), €, ct(eo).
Both GTt and L depend only on the regressors and on the past.

In addition, we show in Lemma 1.2 of Appendix II that

T
2 2 2 2
};1 (m,; + 8, <c<e; 1f?fT(n*--T + 8, 1) =k(T) =0,

where k(T) is a deterministic sequence. Thus Ct(eT) is close to € .
Therefore, the log-likelihood ratio should be well behaved in a
neighborhood of the true parameter value.
Let {Es: 1=s=x} be the increasing family of sigma fields such that
T, T .
§£={xt,dbq,db€,..,do}, where dt=(yt,xt) . For convenience sake we

define the following quantities

f(e (8,))o,(8,)
T,b f(e (& 7)o (6)

172 1; 2 = 2 1/2hTAw(e )'

X

~1 T T =T ~T. T
where A1t=(at xt,O,..,O) ' A2t=(wt:1;Vt) ’ At=(A1t.'A2t)' and

w=(w1,w2)T. The iid vector ¥ (¢} has diagonal covariance matrix I,
where I=diag{Il(f),Iz(f)}, while the uniformly bounded K+P+1 by 2
random matrix A depends only on the past and on the nonstochastic
x’s, and therefore is independent of w(ct). The random variable ?.._r

¥

is the (total) quadratic mean derivative of X, .-

The following proposition is given in Swensen [43], we verify these
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conditions in Appendix IIX.

Proposition 1: Assume that the following conditions are satisfied.

Then the conclusions of Theorem 1 hold.

T T
2 . 2 .
1) tEE(xT:t-ZT:‘) » 0 ; 2) Sl,gp E{tEIZT't} < @ ;

T
P . 2 P T .
3) Max 121 30 ; 4) tglzr,t» h'T g(8)h > 0 ;

1 P .
> E'ﬁml > 0; 6) E[Z_ I

T,t tql = 0.

2
5) §1E[ZT,t1(|ZT,t|

t=

Therefore, the LAN property holds for the ARCH model (1.1) and
(1.3). This property has two consequences. Fabian and Hannan [14] show
that if the log likelihood ratio satisfies the LAN condition, the
Local Asymptotic Minimax bound, is achieved by estimators equivalent
to the MLE. We discuss this further in the next section.

A second consequence of Theorem 1 is that the sequence of
are contiguous in the sense of

probability measures P, and P g

’97 0

Roussas [35] definition 2.1, p7. This means that we can interchange
the two measures when we make statements about convergence to zero in

probability: for any event A, we have Rre (A)=0 if and only if
T

P g (A)=0. The estimators we consider are constructed from OLS

'“o
residuals. The significance of the contiguity property is that it
enables us to proceed, in many respects, as if we had the true errors

instead of these residuals.
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5. ESTIMATION OF € WHEN THE ERROR DENSITY IS KNOWN.

Subject to regularity conditions, the MLE of 6, when £ is known is vT
consistent asymptotically normal with covariance matrix Jeg(eo)*. In
this section we verify that a two step estimator based on an initiail
VT consistent estimator is asymptotically equivalent to the MLE, and
is therefore efficient. The precise notion of efficiency that is
appropriate here is the Locally Asymptotically Minimax (LAM) criterion
of Fabian and Hannan [14] to which paper we refer the reader for a
proper definition of this concept. This property is not violated by
‘superefficient’ estimators unlike the Cramer-Rac lower bound, see
Hajek [16]. An alternative efficiency property is that the MLE has the
minimal covariance matrix amongst all uniformly asymptotically normal
estimators.

We make the following definition:

Definition: A seguence of estimates, §T, of 90 is asymptotically

efficient if it is asymptotically equivalent to the MLE, i.e.
- _ -1
VT(6.-8,) = Jgg(6,, 1) S.g(8,) + 0,(1).

For technical reasons we shall restrict ourselves to discretised

estimators:

Definition: For any sequence of estimators §T define the discretised

estimator ér to be the nearest vertex of {9 : a=n'”?(i1,iz,..,ip), iJ
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integers}.

This restriction was employed by Le Cam [25], Bickel [2], and Kreiss
[21]. The reason for introducing this concept is that using
discretised estimators we can establish the validity of the
Newton—Raphson type estimators without introducing additional
differentiability or boundedness assumptions. Kreiss [21] Lemma 4.4
establishes that for any sequence of random variables qT(e) if
q1(91)=°p(1)' where IVT(BT-BO)ISC for some constant c>0, then
qT(§¥)=op(1) for any discrete and VT consistent estimator 5}.
Therefore, we can restrict our attention to nonstochastic sequences
GT.

We now consider estimation of Jeg" There are a number of possible

consistent estimators: for example, the outer product of the sample

scores J where 5} is any discrete and vT consistent estimator

ree(ar) '

of 8. Alternatively, we can expleoit the known structure of Jg Let

e.

ETGG be given by (4.1) with M(0) replaced by MT(O), ¥ replaced by ?},

and §j replaced by EJ, where

for 3} a VT consistent discrete estimator of 8,-

To establish the efficiency of our Newton-Raphson estimator defined
below we need to establish that our estimator of Jee is consistent.
This is the content of the following theorem which is proved in

Appendix II:
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Theorem 2: Let 5} be a discrete VT consistent estimator of 6. Then

J}es(er'f) is consistent.

We also establish that the following asymptotic linearity holds so
that we can approximate the estimator by a function linear in iid

random variables.

Theorem 3: (Asymptotic Linearity): Assume that Al1-36 and B1 hold and

K+P+1

let eT=90+T—“qh, for any heR Then

S.g(8;) = 8,5(8)) = - Jg (8 ,£)VT(8.-6 ) + o (1).

This is proved in Appendix II. We are now able to establish the main

result of this section.

Theorem 4: Let éT be a discrete and VT consistent estimator of 60, and

assume that Al1-A¢ and Bl hold. Let

s~ _ = -1/2= = -1 -
6, =8 + T T (6,£)7S (6).
Then eT is efficient.

Therefore, the linearised MLE of 6 is asymptotically efficient for

a very broad class of densities f. Theorem 4 follows because

~ _ - - — - -1 -
VI(0,-6)) = VT(8.-6) + T o (8,£)7's (8
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VT(8_-6.) + Jee(eo)"sm(éT) + 0,(1)

by Theorem 2

VT (8 -6,) + Jee(eo)"[ S,(8,) = Jg(8,)VT(B ~6,)]1 + o, (1)

by Theorem 3

Jee(eo)“sw(eo) + 0,(1).

The results of Theorem 4 complement the existing asymptotic theory
for parametric GARCH models described in Weiss [44], Bollerslev and
Wooldridge [6] and Lumsdaine [27]). These authors establish asymptotic
theory for estimators derived from Gaussian PML and least squares

criteria.

6. ESTIMATION OF 6 WHEN THE ERROR DENSITY IS UNKNOWN.

We have assumed up to now that the error density is known. We now
relax this assumption and construct an estimator that utilizes a
consistent estimator of the unknown density.

The first problem we must face is that a and f cannot be separately
identified. We can either fix a and let f be unrestricted, or we can
estimate a and rescale our estimate of £ so that it has unit variance.
We assume that a is 0, and is therefore not estimated. We redefine &
so that 6=(8 ,7") eR .

For convenience we estimate the unknown score function using the
Xernel method with a normal density function. Undoubtedly, other
kernels could be used, and indeed other nonparametric estimation

techniques — such as nearest neighbor, splines, or penalized
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likelihood — see Bickel et al [3].
For any b=b(T) let ¢(x;b) denote the density function of a
N(0,b(T)) random variable evaluated at x. For any & we estimate the

symmetric error density f by the leave-one-out estimate

T
= z(r}-__i_) X {¢(X+CB(9) ib) + ¢(x-—es(e) ;ib)} t=1,2,..,T
s=1

¥t

£, (%i8)

This estimator of f is symmetric by construction. As in Bickel {2] and
Kreiss [22] we trim out excessive contributions to our estimator. We

estimate ¢1 by aTt' where

-~

E fb(T) t(X;e) = dT
r )
" . - b't‘ - 3 AI [} < p -
wnt(x,e) ;—- (x;8) if lfb(T“t(x,e)i = chb”)J(x,e)
b,t -
IxI--eT
=0 else.

We also define I”(e,f), where

2 ‘“_-1T" cAv2.y "_-1T "
1,8, 5)=T" T, (c,(8)i0)7i1,(8,£)=T"L (& (8)¥; (2, (8) j8)+11°.

The sample scores are estimated by STB(G)=5731(6)+5132(6)' and

Srr(e)' where

~ _ 1728 -1 2 .
S;g,(6) = - T 210t{9) x ¥, (€, (8);8) ;

T R _
- TVL (e (0)¥, (£, (8);0)+1]F (O) ;

STBZ(Q) =1
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~

- _ 1,,-1/ T ~ . oyt =
S.,(8) = - 3T zltet(e)wm(et(e),e>+1]tvt(e)-v(e)1,

N

T
while v(8) is estimated by V(a)=Tq£ Gt(e). In proving Theorem 5 and 6
t=1

below, we also utilize a form of sample splitting for QTW(G) similar
to that contained in Bickel [2]. This is purely for technical
convenience and is not recommended for applications.

We require the bandwidth and trimming sequences to satisfy the

following condition:
*
Condition C : Assume that b(T),c(T),d(T), and e(T) satisfy

1) b(T), d(T) = 0, c(T), e(T) = =,

2) b(T}c(T) » 0, Tbh(T)3c(T) %e(T)™? s w.

The additional restriction on the bandwidth sequence is required when
estimating the score function wa(.). With these conditions we

establish the following theorem in Appendix II.

-1/2

Theorem 5: Let 6 =6 +T"'°h, for any heR™", and assume that A1-46 Bl

and C* hold. Then

~

STG(BT) - STQ(BT) = op(l)‘

~ ~

Furthermore, Lm(ﬁ},f) are consistent estimators of Ij(f) for j=1,2.

' * -
The information bound for 7y in the presence of unknown « is J771'
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where

_ 1= _ =
vy = Iy Janoton =39y -9

aydoy) T (E) = 3 T, T (6).

\ *
We therefore estimate JBB and J?? by

-~ A
-~ ~

3108 BrrE) = {Tgg,Ipy (Bred) + Tgg,1,,(8,,£) 1M, (0).

N

(e.rrf) - IITZ(QT'f)g'J”I'

We now establish the main result of the paper:

Theorem 6: Assume that A1-A6, Bl and condition C* holds. Furthermore,

let 5} be a discretised vT consistent estimator of 8. Let

-1/2% - % -15 -
r 17T a8 f) Sig(81),

>
]
@I

Then

~

1) Joge(8,) = Tg5(8,,£) + o, (1),
-1
2) \/'r(aT-ao) = Jee(eo,f) S.g(8,) + o,(1).

Therefore,

V’T(éT-Bo) > N(0,3 (8, 1)),
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for all densities f that satisfy our conditions. Furthermore,
J}ee(ér,f)d'is a consistent estimator of the asymptotic variance of
the adaptive estimator which can be used to form confidence intervals

or carry out hypothesis tests.

7. CONCLUSIONS

We have shown how to construct estimates of the identifiable
parameters in an ARCH model when the error density is of unknown
shape. We have shown that our estimates are adaptive; they have the
same asymptotic distribution as the MLE based on the true density. The
only substantive restriction we require on the error density is that
it be symmetric about zero.

We expect that a number of extensions of these results are
possible. Firstly, the assumption of symmetry could be relaxed as in
Bickel [2] and Kreiss [22], although it is not known whether 7 is
adaptively estimable in this case. Secondly, an extension to the GARCH
model of Bollerslev [5] should be straightforward following the
results of Lumsdaine [27]. It should also be possible to allow the
bandwidth parameter b(T) to be data dependent justifying standard
cross validation methods for bandwidth choice. Finally, the conditions
on our regressors could no doubt be relaxed to allow for trending
regressors as well as to include lagged dependent variables.

Bickel’s orthogonality condition also holds for the Exponential

ARCH model defined in (2.1), provided r(.) is a symmetric function. In
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this case we should be able to obtain adaptive estimates of the
identifiable parameters, although it remains to provide initial
estimates of ¥ that are VT consistent for any error density.
Furthermore, establishing stationarity of the process for given r(.)
is not a trivial problem.

We employed a number of techniques to establish the asymptotic
theory of our estimator: sample splitting, trimming, and
discretisation. In practice, it may be necessary to trim out the score
function estimates, but it is generally agreed — see Hsieh and Manski
[20] and Bickel [2] — that sample splitting is unnecessary and
undesirable as far as implementing the procedure is concerned.

Our results appear to contradict the simulation evidence of Engle
and Gonzalez-Rivera [13] who found a substantial information loss when
going from the MLE to the semiparametric estimator, but in fact our
analysis predicts this should happen in their parameterization. In
their parameterization, the ARCH/GARCH variance parameters all contain
information about scale. Since Kknowledge of the error density conveys
valuable information about overall scale, one does indeed suffer an
information loss when estimating these parameters - see Steigerwald
f41]. However, the relative effects that are captured by our

parameterization are adaptively estimable.
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APPENDIX I

Consider the Exponential ARCH model

P
o + Y 7 r(e
j=1 ?

log[a;] e iTecy)

where r(.) is a known function. This specification differs from that

in Nelson [30] in that the innovations are

_ - r
€oeyTey = Yoy ~ B %y

which do not depend on a or ¥. The scores in this model are

T
ETB - -t§1{at(9)-1xtw1(st(e)) + wt(e)wz(st(e))} - 181 * 21'32'

where

P
ijxwr’(y_ - BXx_).

and

LM R
n~1 4

T
= -1 L (e (ONr, i by = 53 L ¥,(2,(0)),

TY
where r =(r, ,r_ ,¢+,T )T and
t wf e T !

_ - al .
rjt(e) - r(yt-j th-j)' ] 1,2,..,P.
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Provided E[r'(etat)]=0, the scores for B are orthogonal to those for «
and 7, and to any symmetric function of €. In this case, the

efficient score function for ¥ in the presence of unknown « is

tk

T
" -gtgiwztet(e))(rt - E[r,]),

which is orthogonal to any symmetric function of e.. In this case, «
is unidentifiable when f is unknown, while both 8 and ¥ are adaptively

estimable provided VT consistent initial estimates of 7 can be found.
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APPENDIX 11
Proof of Theorem 1.

Our treatment is very similar to Swensen [42,43] and Steigerwald [40].
The main difference arises in verifying the quadratic mean
differentiability of the log likelihood ratio. We discuss this point
below.

We now verify conditions 1)-6) given in proposition 1. Recall that

ZT,t. =VT—1/2{ nltwi(et) + nzth(ct) b

where . depend linearly on the fixed regressors {x,_ j=1,2,..,P}

Jl

and on the bounded random variables o?, v., and {ﬁbd, j=1,2,..,P}

t!
which are all measurable with respect to 5&1'
Condition 6 is satisfied by Al. Condition 2 holds by virtue of

assumptions Bl, A2 and A4. For example,
-1l T -2 2 -2 -1l T
T t)glhﬂxtxthBE[ot wl(et) ] = E[crt ]Ii(f)T t)=:1h’3:-ctxth8,
which is bounded by assumption Bl.
Conditions 3), 4) and 5) can be verified exactly as in Swensen
[43]. Without loss of generality, m, can be treated as deterministic
constants obeying Lemma 1.2 below, since the bounded random variables

on which they depend can be factored out. Then 3) follows, since in

particular:
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T2 Max Injth(et)l o,
1=4sT

because

T
Pr['r'”fg?:rinjtwa(et)i > 8] = G'ZT'z);_‘lnth[wz(et)zl(Irrjtgbz(et)|>61/T),

by Dvoretzky’s inequality, see Hall and Heyde [19], Lemma 2.5. This
latter quantity tends to zero with T. Condition 4) follows by a) and
b) below, where

P

T
=1 2 2
> .
a) Ttglnjtwj(et) 2V, >0

T
This follows because T 3y n

twj(et) is asymptotically normal — see
t=1

J
Swensen [43]. Asymptotic normality is itself a consequence of the
following negligibility condition
T 2 ,-1 2
[ ¥ U Max 7, = 0,
t=1 15¢sT
which is satisfied by Lemma 1.2 below. The constants Vj are readily
calculated.
P

T
b) T} m m¥ (€)Y, (g) 3 0.
t=1

This follows since
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T T
Pri UL MM, (e)¥,(e) > 8] S TUL MLm ELY, (e) W, (e,

by Markov’s inequality. Since

4.1/2 4,172

E[V (c,)%,(c)°) = ELv () 1°E¥,(£)")° < o,

by Cauchy-Schwarz and A4(3).

Condition 5) can be verified exactly as in Swensen [43].

We now verify condition 1). Firstly, we need some background on
quadratic mean differentiability. Let € be a random variable defined
on the probability space (f,3,P), with Lebesque density f. Then define

the stochastic process {(e;t) on (Q,3,P), where t=(8,7), and

172 /2

Ce;T) = [£((e+8)/(1+m)"?)/(£(e) (1+m) %) V2.

We verify the following lemma below:

Lemma 1.1: Assume that Al and A2 hold. Then {(€;T) is jointly
quadratic mean differentiable at any (&,n), where m>-1. In other
words, there exists a vector process dC(s;t)=(d§1,dC2)T such that for
any u=(m,s)T»O

Lim E{ (m+s°)V?[g(e;8+m, n+s) - L(€;8,m) - u'dl(e;8,m)]) » 0,

m, =20

independently of the path (m,s)»0.
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This concept was introduced in Le Cam [25]. Joint gquadratic mean
differentiability implies marginal g.m.d, and we define dCl(E;T) and

dcz(e;t) as satisfying

Lim E{ m [{(c;8+m,m)~C(e;8,m)] - AL (£;8,m))° » 0,
mn=0

Lim E{ s [{(€:8,n+8)~C(e78,m)] - AL (£;8,m))}° » 0,

=30

where
f’ c+8 -2
af (e;T) = C(e;T)g(—————3) (1+n) H
1 f (1+n)u2
1 £+5 £r e+8 -1
ag (e;T) = ~C(e;T)5{ ( Y#( ) + 1}y (1+m)
Cz 2 (1+'n)1/2 f (1+11)V2

It remains to show quadratic mean differentiability for the

regression model with ARCH errors. We have to show that

T
2
t)=:1E(X_l_’"-Z_l_..t) = 0,

We establish (El) and (E2) below which together imply this:

T * = T
(E1) L E(X_ -2Z_ )0 ; (E2) %
t=1 =

E(Z. ~Z© )2
T,t CT,t o ( T, ) =0

t 7T,t

where

1 T

L

zv = -t &l vy, £, = (5.2
2 T, t t T,t 2 T,t

T,t T, t

We first show (E2).
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2

T
E T (2, -2; ) LT (0, hgX, )2(hgx, )7)]
= J kK

T,t "T,t t-k
t=1 'l!‘ 1
-1 - 2
+T 4T t§1 }J: G ch) (x hB) E{ €, _ Jat s
4 - 2
+ E[o "] TZ: )k: (€,=C,1) (€4C, )(hB vy) (hB X, )

2

}

o-c )c (h

1 Btj) (hBtk)

where g is a constant reflecting the number of times we expanded out a
sum of sguares, while the O(Tq) remainder term we did not specify

arises from the approximations

1% -1 =a - a +0(TYH ;
T o
= &% - - -1
[ cJo = e o('arjT wm) + 7{Jo(aT ao) + O(T 7).
Therefore,

because for example

)==>0

by Lemma 1.2.

We now show (El). Since €, is independent of both aTt and Ny v WE
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T
have to show that LEXE[L&t]gO, where
t=1 ’

= . - - 1T 2
LLt = [ [C(c,snt,nnt)] 1 2§LtW(e)] f(e)de.

We use the following lemma:

Lemma 1.2: There is a constant c and a deterministic sequence k(T )»0

such that

T
Max (n. + 8; ) =k(T) ; L (7

+5:t)<c<w.
15t =T t !

T, t
Define the following family of neighborhoods of zero:

B(k) = { (5,m): (n° + &%) < x }.

A2 )% Sup {8077 [Z(esa,m) - 1 - 1eTu(e) 1P (e)de ).
t=1 ’ B (k)

Since k(T)=»0, I=0 as required. -
Proof of Theorem 2

Since {gu(eo)}l: is a bounded stationary ergodic process, we have

1

T
T")=: 9,,(8,) % 3,(8,)
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by the erqodic theorem — see for example Hall and Heyde [19] p281l.It
is easy to verify that in each case there is a positive constant X and

a neighborhood Ne of 60 on which

0

T
-1 < -
(E3) T ti:,lg”(e‘) - gtj(ez)l = K lle1 ezll,

for large T. For example, consider gU(9)=wiz(e). In this case
[0,°(8))- 0.°(8,)] = o, %(6)n_,

for any sequence 6 such that VT(GT-GO) stays bounded. Therefore,

T T
-1 -2 -2 < _ -1
|T£1{U‘ (6,)- o °(6,)11 = llo - 8 ll |Tt§1at!'

where {at} is a deterministic sequence derived from {nTt}, and

T
T} a, | is bounded.
t=1

It follows that

T
UL (9,,(8) - 9,,(8)) > 0,
t=1

where §T is a discrete VT consistent estimator of 6,, and 3199(5},f)

is consistent. g
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Proof of Theorem 3: Firstly, we write
S1g(8r) = S;9(8,) + Jgg(6,, £)VT(8,76) = Q0(8)) = Qa(8.) + Yre(6r)

where
T

RV _
Qq(6) =T f}:l{atete) Eg [0,9(8) 13, ,1},

is a standardized sum of martingale differences with respect to 5bd'

and
Y _(6.) = T-I/ZE E 6.l + J .. (6 ,£)V
'1‘6( 'r) - t=1{ eo[“ce( 'r) é}t-1] 99( o’ ) T(BT—eo)'

where EGO[ate(eo) Iﬁt_1]=0. We show

(E4) Qg(8)) = Q(8,) = o, (1) ; (E5) Y ,(8) = o, (1),

T T ,T =
where QTG-(QTB'QTG'QTT) » and QTB-Q731+QTBZ.

Proof of E4
We establish that QTB(GT)-QTB (8,) . Q. (6.)-Q (6, and
Qrv(er)-orv(eo) are op(l).

By the triangle ineguality

E{llQTB(BT)-QTB(GO)IIZ} s
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2E{11Q, g, (6,)-Q 5, ()1} + 2E{llQ g, (6) -0 o, (8)IF}.

ﬁT,t= Ut(eT)-lxtwl(ct(eT)) - Eeo[ot(er)-lxtht(ct(er))Ist-1] - “;1’&""1(80'

Then

T
E{“QTBi(eT)-QrBI{QO)Hz s T'Y E(s. o 7,
1

o T, b T,t

since YT {9_ } is a martingale difference sequence with respect to

5v4' Furthermore,

T
1'% Eflls, o7 11 = 2liall + 20BIl,
l’.=1 + )

where

T
A= T-:gixtszeo{at(eT) '1w1(st(6T)) - a;1w1(ct)}2'

and

T
_ m-t T -1 2
B=1T t);‘,lnn:t:«:tEeo{O't(eT) E(y (g (8.)) 15,,1}

We can bound llall by 2HAJI+2HAJ|, where

-IT T -2 2 R
A, = 1L xX[(Bg {0,(6) "1V, (£, (61)) ¥, (61} ;

T
A = T'L xX.Eg {{o,(8)) " -07" 1y, () }°1.
t=1 o]

41



Since G£(39_2 is eventually bounded from above by some &8<x, we have

for large T
(E6) o, (6) (¥, (g (8))) - ¥ (g)1° = 8[¥, (c,(8)) - ¥ (¢))°

Furthermore, ¥ (¢,) is independent of 021 and ai(eTYd, because

these latter quantities depend only on the past. Therefore,

-1 -1 2 _ -1 -1,2
(E7) Eq {(0,(8))7" = o), ()} = I()E, ((a, (87 = )7}

Together, (E6) and (E7) imply that we have to estimate the norms of

the following matrices

T T
P— T _ 2, ., _ -1 T -1__-1.2
Al = TTtgixtxtE{wl(ct(eT)) v (e} Al = Il(f)T?tglxtxtE{ot(eT) A A

Since

-1 -1.2
(E8) Max Ee [Gt(GT) - at] l] =0,
15tsST 0

by Lemma 1.2, and

1r2

(E9) B[Sy, ((e+s )/ (1+n ") - ¥ ())f(e)de] =

Sup  J{¥,((e+8)/(1+m)"%) - y (£)}°E(e)de » O,
B(k)
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then HA;H, HA;H 0.

Similarly, B=0 because

T
-1 2
T Eg (E[V,(c,(0,))13, 1) =

sup {I{y, ((e+8)/(1+n)*)£(e)de}” » ©
B(k)

by A3(4).

Since GS(ST), GS(GT), and crg(eT)"1 are eventually bounded, the same

reasoning can be applied to show that

2
E{”Qrsz(er) - QrBa(eo)”} » 0,
2
E{llQ  (6.) = Q (8,)1}" »0,
2
E(llo,, (8,) - Q. (6)I1}" = 0 .
Proof of E5
We first examine the terms due to f. We have to show that

T
-1/ _ N
T i§1590[°t5;(91)t5v4] + Tae VI(B, - B) = o,(1), 3=1,2,

This amounts to showing that

T
-1/ — 1=
T t§=1E[at8j(9_r)] = JBBJhB + o(l), J=1,2.
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We examine Yn' the argument for Iﬁ is the same, and is omitted.

We have

Eg [oyg: (01 13,,] = o (87 xS ¥ ((e48, )/ (1+n. )F)E(e)ge.

Therefore,

T
L B, (0,) X 0¥, ((e48, )/ (4ny ) Y2 £ (e)de-1""%0 x x(hgT, (£) ]

T
= 1T V%L E[(0,(6,) 7% S0 ((e+8_ )/ (1+n_ ) *)E(e)de -
t=1 ’ ’
-1/2 -2 T
T (o, (8,) xtxthBII(f)]l

T
+ 1'1*1)::1 (af(eT) -ozz)xtx:hBIi (£)11.

Using the argument given in Theorem 2,

T
-1 -2 -2 T P
HT‘tgl(at(eT) o )x x> 0.

By the eventual boundedness of o't(el_)"1 the first term is less than

~1/ T 172 -1/72 -1 T
IT zixtE[J‘wl((c+6T,t)/(1+nT’t) yE(e)de - T % x x{hoT ()11,

1A

T
-1/ -1 172 -i/2 -1 T
IT fglfa-;,txtsupé (0¥, ((e+8) / (1+m) ) £ () de-T" %0 "% xh, I (£) 11,

T B (k)

< |17} [xtxzhso‘;l sup 187 [fy, ((e+8)/(1+4m)"*)£(e)de + I (£)1l » 0
t=1 Bl(k)

by A3(2). m
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Proof of Lemmas

1.1) Swensen [42] Lemmas 3 and 4 p.56-57 establish that assumptions

Ala) and A2 are sufficient to guarantee that the related process

~—

E(eit) = (£((c+u) /o) /of(e)]"?

is jointly differentiable in quadratic mean Vu,c for ¢>0. We change

1/2

variables from o to (1+n)”2. Since (1+x) is continucus in x the

result follows. g

1.2) Assumption Bl implies that:

T
T T,-1 -1 T
1) Max x (I xx ) x =0 ; 2) T Max xx = O,
t t t t t t
15+ =T t=1 1S+ =T

see Wu [46)], Lemma 3. Expand out 82 +n? using the triangle

T, T,t
-2 2 2

. X . -1 -2
inequality. Since o c:rtczt_jo't_J and crtet_ja‘t__j are bounded, they

can be factored out of the expression. Then for example,

-2 T 4 -1 T 2 .2
T°Max (h,x ) = [T Max (hy,x ) 1 =» 0,
1=tsT B7t-) 1=5¢=<T Bt
-2l T 1 -1 T 2 o1 T 2
T t)=:1 (tht_j) =T 1:1?; (tht_J) T t);l (tht_J) 2 0.

The result follows. g
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Proof of Theorem 5:

All calculations below are carried out under the measure P g by
T

contiguity the convergence to zero in probability alsc holds under

Pre . Now consider
Yo

N 2 <
EIISTB(GT)-STB(BT)H =

~ 2 »~ 2
2EHSTBl(eT)-sTB1(eT)II + ZEIISTBZ(GT)-STsz(BT)ll .

By construction th(x;eT) is antisymmetric about zero, i.e.

-~

Vo (o%i6)) = = ¥ (Xi6)),

for all x. Therefore, as in Kreiss [21] and Bickel [2] we obtain
-~ T ~

ElIS... (8.)-S_, (6.)1P= T7'Y x x'E[c, (8.) 2/{y. (x;6.)-¥ (x}}°f(x)dx]
TB}‘ T 81 T oy vt t T T, "7t 1 !

and because f.rt(BT)"2 is bounded for large T, we can apply directly the

results of Kreiss [21]. We have

Max EI{@Tt(x;BT) - wi(x)}zf(x)dx = 0.
1=t=T !

Therefore,
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ElIS_g (8))

2
181 (eT)H 2 0.

- STB1

\ - 2 .
To establish the same for EHSTBa(eT)-STﬁz(eT)H we must exploit the
functional form of ﬁt. The estimated scale score — y_, (x%;6,)x+l — is
symmetric in both x and cbﬂ(eT) for any j, while ﬁt is antisymmetric
in ct_1(9T), l.e.

W (~e, _,(8)) = - W(e _(6)).

Therefore, the cross products drop out

o a7 0 . - - . -— -

E[W;Ws{ctes{wtt(et:eT) wl(et)}{wns(es,eT) y (e )}l = 0,

and

a 2_ 1 - ~ T " . 2.2
E“s'rﬁz(e'r)-s'rﬁz(e'r)“ =T tglE[wt(er)Wt(er) ]I{wT't(x,eT)—wl(x)} X f(x)dx

By a minor modification of Kreiss’ [21] arguments we can establish

that

o . - 2 2
(E10) Max Eq [J{¥,  (xi€;) = ¥, ()} XLx)dx] = O,

via a sequence of standard arguments collected below in Lemmas

5.1-5.5. Therefore, since
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T
Ty E[wt(eT)wt(er)T] < M,
t=1

for some M<w, the result follows.

Notice that Kreiss’s argument does not require any sample
splitting. However, when we examine the estimated scores for 7y, we are
unable to exploit symmetry properties and the argument becomes
considerably more involved. We adopt a form of sample splitting in
order to provide a simple proof. We split the sample into two
sub—samples

I, ={t:t=1,2,..,7} ; I = {t: t=T+1,..,T},

where

TI(T)gm;T1/T¢OasT=m.

The first sub-sample is used to estimate the score function wl(x),
while the remaining observations are used to construct the estimator.
In this case

-~

A _ ol - ~ -
S.,(6)) = S.(6) =T zx £, (8,) (¥, (e,(8)))-¥ (¢, (8.))) (V,(8)-V ),
2

A

where V(GT)=T4E Gt(eT). For economy of notation, we drop the 6.
tel
2

argument. We have
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A

Y

S, = T'°0 { e, (b, () - ¥ (e NF, -7 ) )

T
4 tel
2

1/2 ,— — -1 -
FTUV - MITTL e (0, (2,) - ¥ (e ),
2

=71 + II.

But GtJV is zero mean and independent of et(aTt(et)-wi(et)), and

hence

BTV e (0, (8) = ¥ (e ) (T, = T ) IF) =

Since

tel
2
T'L E{e, (¥ (g) - ¥ (e,))(V, - ¥V )}
tel ’
2
Gt is bounded, if (5.1) holds then I=op(1) as required. The

second term II is 0,(1) because

~

E1l) T °(V - V) = 0,(1),

E12) TVL €, (¥, (e} - ¥,(g,)) = o (1),

tel
2

by (E10).

We

now establish the fundamental property (E10). Let

£(x) =T ¢(x - y;b)f(y)dy ; ¥ (x) = -ff(x).

By repeated addition and subtraction, we get that
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5P, (xi8) = ¥, () (x)ax

A " f
s 3 { DX (xi8)) = ¥ (8 [ (x) 177y E (x) ax

~ f f
+ 0, (xie) [g (017F = 9 00 13" (017 (x) ax

£ £ ,
L 1270 1P E° (0] - 3001y E(x)ax ).
b

1/2 1/2,2

= 3 X%, (x;8)°18, (0 - £00) "1 %ax

a_~ . - 2
+3 8 XY (x78)) = ¥ (%) ]°f, (x)dx

fl

+ 37 xz[ —:/Z(x) - £
f f

b

[

2
I/z(x) 1 dx.

The second term is essentially a ‘variance’ term, while the remaining
terms are ’‘biases’.

The following lemmas are, apart from the factor xa, identical to
Lemmas 6.5 and 6.6 proved in Kreiss [21]

Lemma 5.1 For each xeR, there are constants xo and K1 such that

Eer[xzf;l(x){gﬁ,t(x‘er) - fb(x)}zl = f;ﬁ%TT{xoxz + K1X4T-1)}.
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Lemma 5.2 For each xR, there are constants Kb and Ki such that

E. (£ (x)x°{f! (x:0.) ~ £/(x)}°}s — L (K x® + K x'T}.
GT b b,t T b b(T)3T 0 1 }

Lemma 5.3: As Taw»

fl

2.1
I x [;1/2

b

’ 2
1/2(:{)] dx = o(l1).

(x} -

L W L)

This holds because

5oy (0% (x)X%dx < Ty, () E(x)x%ax < w,

since I <. Therefore, we can apply dominated convergence. g
Lemma 5.4: Provided Th(T)’c(T)e(T)>s0,

2 " . - 2 —
Max By £ X[ (xi6) - ¥, 001, (0dx = oL .

This is the same as Lemma 6.8 in Kreiss [21]) apart from the additional

factor of x2 and some constants. We have

19,  (xi8) = ¥, (0)1°F (%)

F. ) ~

B f.o B o
2[x— (x) = — (X)L (%) + 2[— (%) - —(x) £ (x).

f £ f f

B, t b b b
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>

’ ’
b, t b,t

(x) 3£, (%) = (=200 1%, () - £, (01 ()7

b,t b b,t

L

= c(MP?E, () - £, (1%, (07,

we can apply Lemmas 5.1 and 5.2 above, after truncating the integral

according to the sets

The proof is exactly the same as Kreiss [21].g

Lemma 5.5: Provided b(T)c(T )=0,

Max By { J{x%> (x;8.) [VE (x) - VE(x)]%dx} = o(1)
1=t=<T T ?
Sincenaitsc(T)a, this random variable is bounded by

e(T)® Mx*[VE (x) = VE(x)]1%ax} = O(b(T)’c(T)?),

by Bickel [2] Lemma 6.3. It is o(1) provided b(T)c(T)=0. g
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ENDNOTES

1. I would like to thank Paul Ruud, Tom Rothenberg, Doug Steigerwald,

and Peter Bickel for helpful discussions.

2. Another example of this phenomenon is the linear regression model
with intercept when the errors are allowed to be asymmetric about
zero. At first blush, the scores for the slope parameters are not
orthogonal to the tangent space for f. Bickel [2] shows that one must
first project the slope scores orthogonally to the scores for the
intercept. The identifiable parameters — the slopes — are adaptively

estimable in this case.

3., Lumsdaine [27] also establishes the positive definiteness of
Jee(eo)‘ She dispenses with assumption AS5(3) at the cost of

strengthening A4(2).



	Adaptive Estimation in ARCH Models
	Recommended Citation

	tmp.1604087064.pdf.8xTBK

