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Abstract-In a recent work we recast the problem of estimating 
the minimum eigenvector (eigenvector corresponding to the min- 
imum eigenvalue) of a symmetric positive definite matrix into 
a neural network framework. We now extend this work using 
an inflation technique to estimate all or some of the orthogonal 
eigenvectors of the given matrix. Based on these results, we form 
a cost function for the finite data case and derive a Newton- 
based adaptive algorithm. The inflation technique leads to a 
highly modular and parallel structure for implementation. The 
computational requirement of the algorithm is L?( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS2 ), being 
the size of the covariance matrix. 

We also present a rigorous convergence analysis of this adap- 
tive algorithm. The algorithm is locally convergent and the 
undesired stationary points are unstable. Computer simulation 
results are provided to compare its performance with that of 
two adaptive subspace estimation methods proposed by Yang and 
Kaveh and an improved version of one of them, for stationary 
and nonstationary signal scenarios. The results show that the 
proposed approach performs identically to one of them and is 
significantly superior to the remaining two. 

I. INTRODUCTION 

HE PROBLEM of estimating the parameters of narrow- T band signals in additive white noise has been a subject 
of active research recently. The various methods which can 
be applied to this problem can be broadly classified into 
two categories: i) the eigenstructure-based methods which 
exploit the eigenstructure (eigenvectors and eigenvalues) of 
the covariance matrix of the underlying signal; and ii) the 

noneigenstructure-based methods. The eigenstructure-based 
methods are preferred, since they yield high resolution and 

asymptotically exact results. Implementation of these methods 
calls for the estimation of eigenvectors of the covariance 

matrix. Even though these eigenvectors can be estimated 
using any of the known block approaches (if we are given the 

covariance matrix), for real time applications we need methods 
to adaptively estimate them; this is the objective of this paper. 

In real time applications, the data covariance matrix is 

recursively updated as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R(71) = &!(TI, - 1) + E 

where R(n) denotes the data covariance matrix at nth data 

instant, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is a parameter in the range (0, I],  and E is a 
symmetric matrix of rank much less than that of R(n - 1). 
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While working with stationary signal scenarios, we use rank-1 
update with a = ( n  - l ) /n  and E = ( l /n)z(n)zT(n)  where 

z(n) is the data vector at nth instant. On the other hand, in the 

nonstationary case, rank-1 updating is carried out by choosing 

a in the range (0, 1) and E as z(n)zT(n). Another commonly 

used updating scheme in the nonstationary case is the rank-2 

update with a = 1 and E = z(n)zT(n) -z(a - L)zT(n  - L ) ,  
where L is the window length over which the covariance 

matrix is computed. 

Let R be the true (or asymptotic) covariance matrix of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz. 
Then, the aim of any adaptive subspace estimation scheme is 
to estimate the eigenstructure of R using R(n) as its estimate. 

This is especially true in applications such as the estimation of 

directions-of-arrival or frequencies of stationary narrowband 

signals. But, for the case of nonstationary signals, one would 

like to obtain the eigenstructure of R(71) itself. 
Development of adaptive techniques to calculate the eigen- 

structure of R(n) can be classified under the topic “modified 

eigenvalue problem.” In this, the objective is to develop an 
algorithm which will compute the eigenstructure of R( 71) 

given the prior knowledge of the eigenstructure of R(n - 
1). A fundamental work in this area is that of Bunch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer 
al. [ l l ] .  Some of the very recent contributions are those 
of DeGroat and Roberts [12], Yu [13], Bischof and Shroff 

[ 141, and DeCroat [ 151. In [ 121 is developed a parallel and 
numerically stable algorithm for the rank- 1 recursive updating 

of the eigenstructure. A parallel algorithm for rank-k recursive 

updating of the eigenstructure was proposed by Yu [13]. 

Bischof and Shroff [14] reported an approach for updating 

the noise subspace using a rank-revealing QR-factorization. A 

noniterative and computationally inexpensive subspace updat- 

ing algorithm was proposed by [15]. Most recently, based on 

the rank-revealing URV decomposition, Stewart [ 161 proposed 

a subspace updating algorithm. 

In this paper, we are interested in estimating the eigenstruc- 
ture of R. Many researchers used the fact that eigenvectors can 
be estimated by minimizing a specific cost function subject to 

certain nonlinear constraints [2], [ 5 ] ,  [7], [9] for developing 
adaptive algorithms. An adaptive approach for estimating the 

orthogonal eigenvectors corresponding to the signal subspace 

of the covariance matrix was first developed by Owsley [l]. 

Thompson [2] exploited the constrained minimization formu- 
lation to develop a constrained stochastic gradient algorithm 

for seeking the eigenvector corresponding to the minimum 
eigenvalue (which we refer to as minimum eigenvector). Later, 

Larimore [3] studied the convergence properties of Thomp- 
son’s [2] approach. Reddy et al. [4] restated this constrained 

minimization problem into an unconstrained framework and 

developed a least-squares-type recursive algorithm for seeking 
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the minimum eigenvector. The development of adaptive algo- 
rithms for the single eigenvector case was further explored 
by Durrani and Sharman [J], Vaccaro [6], and Fuhrmann and 

Liu [7]. Sharman [8] developed an adaptive algorithm, based 
on the QR-recursions, to estimate the complete eigenstructure. 

Recently, Yang and Kaveh [9] proposed an adaptive approach 
for estimating the complete noise subspace or the signal 

subspace. 
We present zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan adaptive approach which combines a Newton- 

type algorithm and an inflation method for estimating the 
eigensubspace of the covariance matrix. The resulting algo- 
rithm is highly modular and well suited for parallel imple- 
mentation. We develop this in an unconstrained minimization 

framework. The basic principle of this approach can be used 
to compute the complete eigenstructure of any symmetric 

nonindefinite matrix. Our objective here is the same as that of 
Yang and Kaveh [9], but our approach is different from theirs, 

both in the nature of the algorithm and the inflation technique. 
We present simulation results comparing the performance of 

our approach with the maximization gradient search approach 
and the dation-based approach of [9]. Since their inflation- 
based algorithm uses instantaneous gradient while we use 

exact gradient, we modified their algorithm by incorporating 
exact gradient, and compared our algorithm with the modified 

version as well. 
In Section 11, we briefly review the unconstrained formula- 

tion reported in [lo] for a single eigenvector case and extend 
it to the case of orthogonal multiple eigenvectors. The finite 

data case is considered in Section 111. Convergence analysis of 
this algorithm is presented in Section IV. Simulation results 

are discussed in Section V. Computational requirements of the 
algorithm are given in Section VI and Section VII concludes 
the paper. 

U. FORMULATION FOR SEEKING THE EIGENSUBSPACE 

In this section, our aim is to develop a method to obtain 
the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD orthogonal eigenvectors and the corresponding 
eigenvalues of a positive definite matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR of size N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx N .  

Suppose 

A1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 A2 5 ” ’  5 A N - 1  5 AN (2.1) 

represent the eigenvalues of R in the ascending order of mag- 

nitude and qi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1, . . . , N ,  the corresponding orthonormal 
eigenvectors. Then, we can write 

N 

R = = Q A Q ~  (2.2) 
i=l 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q = [qi ,  q2, . . ., qN] and = diag(A1, A2, ’ ‘ ‘ A N  ). 

(2.3) 

If R is the true covariance matrix of a time series consisting 

of P ( 2 P < N )  real sinusoids in additive white noise of 
variance c2, then its minimum eigenvalue Amin is equal to 

o2 with multiplicity N - 2P (i.e., A1 = A2 = . = A h 7 - p  = 
Amin = a2). The minimum eigenvalues and the corresponding 

eigenvectors are also known as noise eigenvalues and noise 

eigenvectors, respectively. Hence, we call the span of q l ,  . . . 
, qN-2p the noise subspace and its orthogonal complement 

the signal subspace. Estimation of a basis for the noise or 
signal subspace is a primary requirement in many of the 

“super-resolution” spectral estimation techniques. 
It is well known that a minimum eigenvector of R is the 

solution of the following constrained minimization problem 

(2.4) 

- 

min wTRw subject to wTw = 1 
W 

where w = [ w ~ , w ~ , - . - , w N ] ~  is an N x 1 vector. It has 
been shown in [lo] that this problem can be recast into an 

unconstrained form as 

min{J(w, p )  = wTRw + p(wTw - 1)’) (2.5) 
W 

where p is a positive parameter. This cost function has a 
special structure that “a minimizer of J(w, p)  is a minimum 
eigenvector of R for any p > A,;,/2.” We state the follow- 

ing main results (see [lo] for proof) pertaining to this cost 
function. 

Results: 

i) w* is a global minimizer of J if and only if w* is an 
eigenvector of R corresponding to the eigenvalue A,,, 
with llw*112 = p’ = 1 - Amin/2p. 

ii) For a given p, every local minimizer of J is also a 
global minimizer. 

We now present an inflation approach to extend the above 

results to obtain the first D orthogonal eigenvectors. 

Let w: be the eigenvector (with norm = d m )  
of R corresponding to the eigenvalue A, for i = 1, - + , k - 1, 

(with 2 5 k 5 D) and assume that U;, , are 
orthogonal. Our objective is to obtain the next orthogonal 
eigenvector w;, assuming that w: , i = 1, . . , k - 1, are 
available. 

Define a function J k  as 

Jk(Wk,p,a) =wrRWk + p(wrwk - 
k - 1  

+ a C(w;w : )2  
2 4  

= WTRkWk + p(WrWk - (2.6) 

where W k  E R ~ , ~ > o  and 

k -  1 

Rk = R + ~ ~ w : w : ~  
a=1 

ZRk-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- aW;-lW;Tl k = 2, * * . , D (2.7) 

with RI = R. Equation (2.7) defines the inflation step and 

its implication is discussed below. Defining qz = tu://?,, 

i = 1, ... , k - 1, we get the spectral representation of Rk 
as (cf. (2.2), (2.7)) 

IC-1 1 
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Now, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y is chosen such that A.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASingle Eigenvector Case 

Let a(.) be the coefficient vector at the nth instant. Then, 
the Newton-based adaptive algorithm for minimizing J is of 
the form 

A,+ < A, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAap," 2 = 1, . . . , k - 1 (2.9) 

then the minimum eigenvalue of RI, is A,+ with qk as the 
corresponding eigenvector. Thus, if w$ is a minimizer of JI , ,  
then from the results (i) and (ii), i t  follows that w; is a 

minimum eigenvector of Rk. But, observe from (2.8) that this 
eigenvector corresponds to the kth eigenvector of R. That is, 

Rwi = Xkw; with 11w;112 = 1 - -. (2.10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a(.) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 7 1  - 1) - {H-'g}\a=qn-1) 

=u(n - 1) - [ H ( n  - 1>]-1g(n - 1). (3.3) 

Here, H(rL - 1) and S(7L - 1) are the I-k~sian matrix and 

gradient vector, respectively, of J with respect to a, evaluated 
at a = u(n - l), and are given by A,+ 

2 P g(n - 1) = 2R(n)a(n - 1) 

Further, the strict inequality in (2.9) guarantees that + 4p[aT(n - 1)a(n - 1) - 1]a(n - 1) 

(3.4) 

(3.5) 

Now, to develop the Newton-based algorithm (cf. (3.3)), 
H(n)  must positive definite. Further, to make it computa- 
tionally efficient, we should be able to obtain a recursion for 
the inverse of H ( n )  directly. These two requirements are met 

if we approximate the Hessian by dropping the last term in 

(3.5). That is, 

w;=w: = 0 vi = l ; . . , k  - 1. (2.1') 

Thus, by constructing D cost functions ,Jk, k = 1, . . . . D ,  as 

in (2.6) and finding their minimizers, we get the D orthogonal 
eigenvectors of R. Norm of these eigenvectors depends on the 
CoflesPonding eigenvalues and I". If we wish to obtain all the 

orthogonal eigenvectors (i.e., D = N ) ,  the Parameters P and 
cy must satisfy the following conditions 

~ ( n  - 1) = Z R ( ~ >  + ~pa(7i - l )aT(n - 1) 

+ 4p[aT(n - l)a(n - 1) - IIIN. 

A N 
(2'12) p > - arid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY > 211. 

The condition on p follows from the result (i) and that on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t can 
be obtained from (2.9) with k = N .  Since the eigenvalues of 

R are not known a priori, we suggest the following practical 
lower bounds for p and CL: 

H ( n  - 1) z R(n, - 1) = 2R(n) + 8pa(n - l ) a T ( n  - 1). 2 

(3.6) 

Obtaining the expression for the inverse of f i ( 71 -  1) (using the 

matrix inversion lemma) and substituting the result along with 
(3.4) in (3.3), we obtain the Newton-type adaptive algorithm 

j 6  > ___ Trace(R) arid CI > Trace(R). (2.13) 
2 

111. ADAPTIVE APPROACH TO EIGENSUBSPACE ESTIMATION 

Consider I J ( T L )  = aTz(n)  where a = [ u l : .  . . , u l ~ I T  is the 
coefficient vector and z(.) = [z(n), . . . , z(n - N + 1)IT 
is the most recent data vector. Following the unconstrained 
minimization (2.5), we define the criterion function for the 

data case as 

(after some manipulations) as 

71 
R-l(n) = - 

71 - 1 

(3.9) 

1 R-l(n - l ) ~ ( n ) z ~ ( n ) R - ~ ( 7 1  - 1) - 
n - 1 + zT(n)R-l(n - l)z(n) 

n 2 2. 

B. Extension to the Case of Multiple Eigenvectors 

= UTR(7L)U + /L(U% - 1>2 (3.1) 

where n is the number of samples and R(n) is the data 
covariance matrix defined as 

Extension of the above adaptive algorithm to the case 
of multiple eigenvectors directly follows from the principle 

described in Section 11. The method can be explained using 
the block schematic given in Fig. 1 .  Consider the kth unit. 

Here, a1,(7~) E R" is the estimate of the kth eigenvector at 
1 ' l  

n 
rith data instant. The adaptation criterion for kth unit is the 
minimization of the cost function JI, defined as 

R(n) = - C z ( i ) z T ( i ) .  (3'2) 
1 = l  

J k ( a k ,  p: N:  71) = a:Rk(n)ak + p(arak - 1)2 
In the following subsection, we derive an adaptive algorithm 

for estimating the minimum eigenvector of the asymptotic k =  1:..,D (3.10) 

covariance matrix of 2(n) ,  R,  by minimizing J and in the next 
section we show that it converges to a minimum eigenvector 

of R. R1,(71) = R k - ~ ( n )  + uak-lar-l k = 2; . . ,  D (3.11) 

where 
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data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvectot ~~~--jq:::-~tD ah-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaD-1 

1* unit k" unit P' unit 

operatin# on data operatily on data operating on data 
upto n'* instant upto (n - k t instant upto (n - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD t instant 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Modular implementation of the proposed adaptive subspace estimation method. 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(n) = R(n). Then, the Newton-type algorithm for 

recursively estimating the D eigenvectors follows from (3.7) 
to (3.9) and is given below: 

show that it converges asymptotically to the desired set of 

orthogonal eigenvectors of the asymptotic covariance matrix 
R. We do this in two steps. First, we prove the convergence 

of {a1(n)} to a minimum eigenvector of R and then extend 
this to the case of multiple eigenvectors. 

For the case of a single eigenvector, we shall refer to the 
algorithm given in (3.7) to (3.9). The convergence analysis is 

based on the following two assumptions: 

1) Ergodicity assumption: The underlying process { ~ ( n ) )  
is ergodic. That is, 3 R such that R-l(n) of (3.9) obeys 

ak(n) =lk(n - 1)R,'(n)ak(n - 1 )  

I C =  l , . . . , D  
1 + aT(n - l)ak(n - 1 )  

(3.12) 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2P 

Ek(n - 1 )  = 
- + 2az(n - l )Ri l(n)ak(n - 1 )  

I C = l , . . . , D  (3.13) 

R;I(n) =R&(n) 
lim ~ - l ( n )  = R-'. (4.1) - R;: 1 (.).IC - 1 (n)aT- 1 (n)Ri? 1 (n)  n+cc 

' T  (y + ak-1 (n)RLJi (n)ak-l (n)  2) Richness assumption: The data is rich, i.e., it satisfies 
the persistent excitation condition: 3 finite a1 > 0 and k = 2, * .  . , D. (3.14) 

The recursion (3.14) is obtained by applying the matrix 

inversion lemma to (3.11). Note that R;'(n) = R-l(n) and 
it is updated as in (3.9). 

The above algorithm can be implemented using a pipeline 

architecture as described below. During one sampling interval, 
lcth unit goes through the following steps (see Fig. 1): 

1 )  The current weight vector (rk and the matrix R;' are 

2) The weight vector a k - 1  and the matrix are ac- 
passed on to the (IC + 1)th unit. 

cepted from the (k  - 1)th unit. 

3) R;', l k ,  and are updated. 

As a result of steps 1 to 3, the data x(n)  which enters 
the first unit reaches the kth unit after a delay of (IC - 1 )  
sampling intervals. Consequently, there will be a similar delay 

a2 > 0 such that for all n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 

a l I ~  5 R-'(n) 5 a a I ~ .  (4.2) 

In the analysis of convergence, it is important to specify 
a precise quantification of the distance between a(.) and the 
subspace of minimum eigenvectors of R. Let us define 

b(n) = QTa(n) 

and 

in getting the final eigenvector estimates from each of these 

units. Because of the nature of the inflation technique used (cf. 
(3.1 1)1, the computations required for updating the eigenvector 

where A4 is assumed to be the multiplicity of the minimum 

eigenvalue, i.e. 

estimates are identical for all the units, thus making the 

adaptive algorithm both modular and parallel in nature. 
We may point out here that we did not assume any par- 

ticular signal scenario during the development of either the 

asymptotic formulation in Section I1 or the adaptive algorithm 
in Section 111. Hence, the adaptive algorithm developed above 
(cf. (3.12)-(3.14)) can be used to estimate the eigenvectors of 

to the case of sinusoids in noise. 

A1 = A2 = . . . = A M  < AM+1 5 AM+2. .  . 5 AN (4.4) 

and Q is as defined in (2.3). ClealY, f(n) = 0 implies that 
a(.) is in the desired subspace. 

fiemultiplying (3-7) with QT7 we obtain 

the covariance matrix of any signal scenario and is not limited b(n) = Z(n - 1)[fI-' + ?P(n)]b(n - 1) (4.5) 

where 
IV. CONVERGENCE ANALYSIS 

of the recursive algorithm given in (3.12) to (3.14). That is, 

assuming that the algorithm is initialized appropriately, we 

In this section, we provide a proof for the local convergence #(a) = QT[R-'(n) - R-']Q. (4.6) 

Now, consider the following Lemma. 
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Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: Under (4.1) and (4.2), the quantities in (4.5) have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i) There exists finite positive 71 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA72 such that 

the following properties: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2P72 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl(n) I 2 m  Vn.  (4.7) 

ii) !P(n) in (4.6) obeys 

lim @(n) = 0. 
n+oo 

(4.8) 

iii) There exist no and 64,155~66 (all are positive scalars) 

such that Vn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 no 
1 

AM+1 
- + $M+l,M+l(n)  

( a )  1 < l - 6 4  (4.9) 

Combining (4.13) and (4.14), we get (i). 
ii) This follows from (4.6) and (4.1). 
iii) All the results under this item can be established using 

(4.4), (4.1), (4.7), and (4.8). 

Now, observe that the underlying process goveming the 

behavior of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(n) in (4.3) is such that (see (4.1), (4.2), (4.7)) 
for every no, there exists €6 > 0 such that 

If(no)l< 1 whenever I f ( O ) l <  € 6 .  (4.15) 

Then, the following theorem (proved in Appendix) establishes 

the local convergence of a(.) to a minimum eigenvector of R 
Theorem 1: There exists €6 > 0 such that with If(o)l < €6 

lim f ( n )  = 0. (4.16) 
n+m 

That is, “if a(n) is initialized sufficiently close to the space 

of minimum eigenvectors of R, then a(.) will converge 
asymptotically to a minimum eigenvector.” 

Having shown the local convergence ‘of {a(.)} (or 
{a1(n)}),  we want to examine how the algorithm behaves 
in the neighborhood of any of the undesired eigenvectors (i.e., 

eigenvectors other than the minimum eigenvectors). 
Consider the ideal case of R(n) = R for all n. Then, (3.7) 

and (3.8) can be rewritten as 

(4.17) b(n) = l(n - l)A-lb(n - 1) 

V i 7 j  E { l , . . . , M }  (4.104 

(4.1 1) 

where b(n) = QTa(n) or a(.) = C2N,16;(n)qi. NOW, (4.17) 
implies that 65 I54 

(c> Mj(n)I<- Vi  # j  

where $ij(n) denotes the (i , j) th element of !P(n). 
Z(n - 1) 8N 

b;(n) = ~ b i ( n - 1 )  i = l , . . .  , N .  (4.19) 
Ai 

Proof: 
i) From (3.8), we get 

(4.12) 

Substituting (4.2) in (4.12), we get 

where 

Since p,a1 and a2 are finite positive quantities, there 

exists finite > 0 and 72 > 0 such that 

T2 
1 + lI4n - 1) I? 

1 + 4pa2I(a(n - 1)p 

and 

Suppose a(.) is close to the kth eigenvector for k E {M + 
1,-. . ,N}. Then, ] b k ( n ) l  >> lbj(n)I for all j # k. Suppose 
also that at least one of bl(n - l), . . . , b ~ ( n  - 1) is nonzero 
but possibly very small. Then, since l(n - 1 ) / A j  > l(n - 
1)/& for j E { 1 , .  . . , M}, b j ( n )  will increase exponentially 

at a rate faster than that experienced by b;(n) for i > M. 
Thus, the algorithm forces a(n) to move towards a minimum 
eigenvector. But, if a(.) is exactly on one of the undesired 
eigenvectors, say the (M + l)st, then b;(n) = 0 for i # 
M + 1, and it follows from (4.19) that it will remain at 
that eigenvector, implying that the global convergence of 
the algorithm cannot be guaranteed. In practice, however, 

R(n) # R and hence, the eigenvectors and eigenvalues of 
R(n) keep changing from instant to instant since R(n) itself 

is changing. Hence, even if one starts exactly on one of the 
nonminimum eigenvectors of R, the varying nature of R(n) 
will cause a(n) to move in a random fashion. However, as 
R(n) converges to R, the vector a(.) will move towards 
the minimum eigenvector. This is because, ( 4 3 ,  (4.8) and 

A i  2 Amin V i  imply that U(.) will be richer in the minimum 
eigenvector compared to a(n - 1) for sufficiently large n. 
Thus, all the nonminimum eigenvectors of R are unstable, and 

hence, the algorithm will eventually converge to a minimum 
eigenvector of R. 
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Thus, combining the local convergence theorem (which 

shows that "minimum eigenvectors of R are stable stationary 
points") with the above arguments (which prove the fact 

that "nonminimum eigenvectors of, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR are unstable stationary 

points"), we conclude that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( T I ) }  converges with probability 
one to a minimum eigenvector of R. 

Combining this result with (3.11) and (4.1), we get 

(4.20) 

where R2 is as defined in (2.7). Further, from (3.7), (3.14), 
(4.2), and (4.7), and noting that 01(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a(.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand & ( T I )  = 
R(n), we obtain 

Q ~ I N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 RZ1(n) 5 Q 4 1 ~  vn (4.21) 

where a3 > 0 and a4 > 0. As a result, /2(n) (cf. (3.13)) is 
bounded. Then, it follows from the above-stated theorem that 

{oz(n)} converges (locally) asymptotically to the minimum 
eigenvector of R2 which is nothing but the second eigenvector 
of R (see Section 11). 

Using similar arguments, one can easily see that {ok(n)} 
converges to the kth eigenvector of R, k = 2, . . . , D. 

V. SIMULATION RESULTS 

In this section, we present some computer simulation results. 
Performance of the proposed approach was compared with the 

methods proposed by Yang and Kaveh [9], viz. the inflation 
based approach and its modified version, and the maximization 

gradient search approach. The performance measures used are 
the projection error measure and the orthogonality measure. 

A. Adaptive Subspace Estimation Methods of 191 
Since one of the main features of the proposed approach is 

the inflation method (cf. (3.1 l)), we have chosen the inflation- 
based noise subspace estimation method of [9] as one of the 

methods for performance comparison purpose. The updating 

steps of their algorithm for the kth eigenvector are given 
below: 

&(n) =&.(n - 1) - 2qAzk(n)yk(n) 

I C =  l , . - * , D  (5.1) 

(5.2) 

gyk(n) =iikT(n- l ) ~k (n )  k = l , - . . , D  (5.3) 

k = 2 , * * . , D  (5.4) 

zk(n) = zk-l(n) + ~ i - l C ~ ) ( ~ ' , T _ , < ~ ) ~ k - l ( n > )  

with q ( n )  = %(TI ) .  Here, q~ is the step-size parameter. Equa- 
tion (5.4) is the inflation step. If we assume a deterministic 
framework (as in Section 111), the above algorithm can be 

considered as a constrained gradient search to minimize the 
least-squares criterion 

with the true gradient (evaluated at &(n - l), i.e., 
gk(n)iii(n - 1)) replaced by its instantaneous estimate 

zk(n)yk(n). Here, Hk(n) = ( l / n ) X ~ ~ l z ~ ( i ) z ~ ( z )  with 

R',(n) = R(n). Since the Newton algorithm derived in 
Section 111 uses exact gradient, we modified the above 

algorithm correspondingly. The resulting algorithm (for 

IC = 1, . - , D) is as follows: P 

&(n) =&(TI  - 1) - 2q~3I&(n)ii;(n - 1) (5.6) 

(5.7) 

1 
R',(n) = - czk( i )z ; ( i )  

i=l 

n - 1  1 

n n 
= -R',(n - 1) + -zk(n)~; (n)  (5.8) 

with q ( n )  as defined in (5.4) and V E  is the step-size param- 

eter. 
Another method that we used in performance comparison is 

the maximization gradient search method of [9] combined with 
the inflation approach proposed in Section 111-B (cf. (3.11)). 

The resulting algorithm is given below: 

ai(.) =iii(n - 1) + 2qM&;l(n)dk(n - 1) 

k =  l , . . - , D  (5.9) 

(5.10) 

- i2;: 1 (n)zk- 1 ( T I ) q :  1 (n)i2;: 1 (n )  

- a + iii:1(n)i2~~l(n)B$-l(n) 
1 

k = 2 , . . - , D  (5.11) 

with &;'(TI) = R-l(n), which is updated as in (3.9). Again, 
q~ is the step-size parameter. 

B. Performance Measures 

Our objective is to estimate the first D orthogonal eigen- 
vectors, qi, i = 1, . . . , D, of R. Let SD be the span of these 

vectors. The measures we used for evaluating the quality of the 
estimated eigensubspace are as follows. To see the closeness 

of the estimated eigenvectors to the true subspace, we use the 
projection error measure, E(n),  defined as 

where ii;(n) = cr;(n)/llai(n)ll. That is, E(n)  is the sum of the 

norms of the projection error vectors obtained by projecting 
each ?ii;(n) onto So.  Thus, the smaller the value of E(n) ,  
the closer the estimated subspace is to SO, and vice-versa. 
Vectors qi, i = 1, . . . , D, are obtained using the eigenvalue 

decomposition routine in MATLAB. 
Note that E(n )  does not reveal the extent of orthog- 

onality among the estimated eigenvectors. Since the pro- 

posed approach results in orthogonal eigenvectors because of 
the inflation approach, we define an orthogonality measure, 
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Observe that Orth,,,(n) is the magnitude cosine of the angle 

between those two vectors which have the smallest angle 

between them. Thus, the larger the value of Orth,,(n), the 
less orthogonal the estimated eigenvectors are, and vice-versa. 

For the case of Yang and Kaveh's [9] algorithms, &(n) is 
replaced by ii{(n) in (5.12) and (5.13). 

i,j€{l,...,D} 

. 

- J 

- 
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C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPerformance Evaluation 

To study the convergence and tracking performance of the 
above algorithms, we used both stationary and nonstationary 

signal scenarios. 
Stationary Signal Scenario: The data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(n) was gener- 

ated as 

x(n) = A s i n ( 0 . 4 ~ ~ ~ )  + A s in (0 .48~n+  0) + U(.) 
n =  1 , 2 , . - - .  (5.14) 

The initial phase 8 (uniformly distributed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-T, r ] )  and w(n), 
a zero-mean white noise of unit variance, were varied from 

trial to trial of the Monte Carlo simulations. The amplitude 
of the sinusoids, A, was chosen to give the desired signal to 

noise ratio (SNR), defined as 1010g(A2/2). The size of the 

covariance matrix N was fixed at 6 and D at 2. 
The four algorithms were initialized as below: Newton type 

algorithm (cf. (3.12)-(3.14)) (denoted by A N ) :  

R-l(O) = l o o l N l  ( I k ( 0 )  = i k  fork = 1 , . " , D .  

Approximate gradient algorithm (cf. (5.1 H5.4) )  (denoted by 

u;(o) = z k  fork = 1 , . . . , D .  

A A ) :  

Exact gradient algorithm (cf. (5.6)-(5.8)) (denoted by AE): 

&(o) = i k ,  R',(o) = o for IC = 1 , .  . . , D. 

Maximization gradient algorithm (cf. (5,9)-(5.11)) (denoted by 
A M ) :  

R-'(O) = lOOIN, = i k  for k = 1, ' ' * 1 D. 

Here, i j  represents the j th column of the N x N identity 
matrix, IN. Since the updating of the inverse of the data 
covariance matrix (cf. (3.9)) can be started from n = 2 only, 
R-'(l) was also set to 1 0 0 1 ~ .  100 Monte Carlo runs were 

performed in each case. The projection error measure for AN, 
AA, AE, and AM was evaluated at each iteration (data sample) 

and averaged over 100 trials. The results are plotted in Fig. 2 
for SNR values of 0 dB and 10 dB. 

Observe that the performance of AN is far superior to that 
of A A  for both the SNR's. This is, however, expected from 
the nature of the two algorithms. The plots corresponding 
to AN and AB show that the initial convergence of AN is 
better, and as the data length increases, both perform almost 

alike at high SNR while the AN performs better at low SNR. 
One obvious reason for the superior performance of A N  is 

0.2 

ai 

0 
100 150 250 

0.8 

D O.' 

B 0.6 I 0.5 

that it is a Newton-type algorithm, whereas the AE and AA 
are gradient-only-based algorithms. Further, the type of the 
inflation technique used in each case has an influence on 
the performance. In AE and AA, the inflation is done at the 
data level, while in AN it is done at the covariance matrix 

level. The data level inflation introduces extra terms in the 
expressions for the covariance matrices of higher units (i.e., 
%(IC), i = 2, . . , D) compared to matrix level inflation. For 
example, the covariance matrix corresponding to the kth unit 
in AE is given by (cf. (5.8))  

On the other hand, the corresponding expression in the case 
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of AN is given by 

A-1 

&(n) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR(n) + Crca.(n)UT(n) .  (5.16) 
2=1 

Note the presence of additional terms on the R.H.S of (5.15) 
as compared to (5.16). Thus, if R(n) has not converged 
close enough to R, the additional terms (which contain R(n) 
implicitly) will cause an increased estimation error in RL(n) 
compared to that in Rk(n). So, the lower the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS N R ,  higher will 
be the performance degradation of AE compared to AN. This 
phenomenon together with the fact that AN is a Newton-type 

algorithm explains its superior performance. 
Comparing the performance of AN and AM, we observe 

that AN is superior. However, extensive simulation studies 
showed that the superiority of AN over AM comes down as 
the value of 7 7 ~  goes up. A typical set of results demonstrating 
this behavior is shown in Fig. 3. Note that for QM = 20, the 

performance of AN and AM are identical. The reason for such 
a behavior can be explained as below. 

In AM, the step-size parameter 1 1 ~  can be any positive 

quantity [9]. For small values of V M ,  the algorithm behaves 
essentially as a gradient-only-based algorithm. But, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq~ 
is chosen large compared to unity, the second term dominates 

the R.H.S of (5.9), and as a result (and because of (5.1 1)) the 
algorithm behaves essentially as the Newton algorithm AN. 

Consequently, the best performance of AM will be identical 
to that of AN. We therefore will not compare AN with AM 
in the subsequent simulation studies. 

We may point out here that the value of the error measure 
for large n (sample number) is smaller for 10 dB SNR, since 
convergence of R(n) to R is faster when the SNR is higher. 

Values of the orthogonality measure, Orth,,(n), calcu- 
lated at each data instant and averaged over 100 Monte Carlo 
runs, are shown in Fig. 4. It is of the order of for 

the Newton case, implying that the implicit orthogonalization 
built into the algorithm through the inflation technique is very 
effective. On the other hand, values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOrth,,(n) are very 

high for AE and AA (eg. 0.1 152 and 0.1832 for AA and AE, 
respectively, at 250th data instant for 10 dB SNR), implying 
the inferiority of data level inflation. 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz- 
a2 

0.1 

0 

In some applications of adaptive subspace estimation, we 
would like the estimated subspace at nth data instant to be 

close to the corresponding subspace of R(n). To study this, 
we did the following simulations. The projection error measure 

at nth data instant was evaluated using the corresponding 
subspace of R(n) as the reference. Since R(n) is deficient 
in full-rank until n = N - 1, we computed the error measure 

from n = N onwards instead from n = 1. The averaged 

results (over 100 trials) are plotted in Fig. 5. Note from these 
plots that the initial convergence performance of AN is much 
superior to that of AE and AA. This suggests that the Newton 

based algorithm AN will have an edge over AA and AE under 
nonstationary signal scenarios. 

Nonstationary Signal Scenario: The signal scenario used 
for nonstationary simulations is as follows. As before, we 

considered sinusoids in white noise, but the frequencies of 
the sinusoids were now made to vary in a linear fashion. The 

data x(n) were generated as 

~ ( n )  = Asin(27rfl(n)n) + Asin(27rrfz(n)n + 8) + w(n) 
n =  1 , 2 , . - *  (5.17) 

where f i  (n) and f2 (n)  are the frequencies (normalized) of the 
two sinusoids at nth instant which were varied from 0.05 to 
0.25 Hz, and 0.1 to 0.25 Hz, respectively, over a data length 

of 200 samples. The values of N and D were chosen as 6 
and 2, respectively. 

The data covariance matrix was computed as the sum of 
outer products of the L most recent data vectors (i.e., a sliding 
rectangular window of length L). This results in the following 
rank-2 updating of the covariance matrix 

L-1 

R(n) = z(n - i)zT(n - i) 

= R(n - 1) + z(n)zT(n) 
i =O 

- z(n - L)zT(n - L) .  (5.18) 

We chose L as 40 in our simulations. The change in the 
frequency of the first sinusoid over this interval of 40 samples 

N l l = O d B  

- 
- m r . l O l t B  

50 100 im 200 250 
50 100 150 200 250 
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Fig. 5. Convergence performance of the three algorithms (illv, A.4 and AE) 
with the subspace of R(n) as the reference (stationary signal scenario): (a) 
SNR = 10 dB; (b) SNR = 0 dB. 

is 0.04 Hz. Applying the matrix inversion lemma twice, we 

get the inverse of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR(n) as 

R-l(n) = K 1 ( n )  

&-l(n)z(n - L)zT(n - L)&-l(n) 

-1 + zT(n - L ) K l ( n ) z ( n  - L )  
- (5.19) 

where 

li-l(n) =R-l(n - 1) 

R - y n  - l>z(n)z'(n)R-1(n - 1) 

1 + zT(n)R-'(n - l )z(n)  
- . (5.20) 

Here, h(n)  = R(n-l)+z(n)zT(n). Then, (3.12)-(3.14) with 
(5.20) and (5.19) describe the Newton type algorithm ( A N )  
for the nonstationary case. The corresponding exact gradient 
algorithm ( A E )  is given by (5.6), (5.7), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.3), and (5.4) with 

the covariance matrices RL (n)  , k = 1, . . . , D updated as 

RL(n) =&(n - 1) + zk(n)z:(n) 
- zk(n - L)z l (n  - L )  k = 1,. . . , D. 

(5.21) 

We did not apply the approximate algorithm ( A A )  for the 
nonstationary case since the updating of the data covariance 

matrix as above does not arise in this algorithm, as it is based 
on the instantaneous estimate of the covariance matrix. 

The two algorithms, AN and AE,  were initialized as fol- 

lows. Keeping the frequencies fl(n) and fi(n) fixed at 
0.05 and 0.1 Hz, respectively, L data samples, x(n),n = 
1 , .  . . , L, were generated (cf. (5.17)). Then, R(n) and R-'(n) 
were initialized as R(L) = C f = l z ( i ) z T ( i )  and R-'(L), 
respectively. The coefficient vectors, ak (n) and ai (n) for IC = 
1, . . . , D, were initialized as q ( L )  = aL(L) = qk (L )  where 

qk (L )  is the kth eigenvector of R(L). Then, the modified 

data vectors zk(n),  n = 1, . . . , L, (in the case of A E )  were 
generated using (5.4) with iii(n) = qk(L), k = l , . . . ,  D, 
for all n = 1, . . . , L, and the matrices R',(n) were initialized 

as R',(L) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ f = = , z k ( i ) z ~ ( i ) ,  k = I , - . . , D .  Since qk (L ) ,  
k = 1, . . . , D, are the orthonormal eigenvectors of R(L), we 

get 

&(L) = RL-~(L)  + 3 ~ k - 1 ( ~ ) ~ k - - l ( ~ ) q : - l ( ~ )  

k = 2 , . . . ,  D 

where R',(L) = R(L) and &(L)  is the ktli eigenvalue of 

From the ( L  + 1)st sample onwards, the frequencies of the 

two sinusoids were varied in steps of 0.001 and 0.00075 Hz 
per data sample, respectively. The algorithms ( A N  and A E )  
were run on this data and the projection error measure was 
computed using the subspace of R(n) as the reference (cf. 

(5.18)). The results, averaged over 100 Monte Carlo runs, are 
shown in Fig. 6 for a SNR of 10 dB. Note that the error 

measure is zero at n = 40 since the algorithms were initialized 
to the eigenvectors of R(40). The sudden increase in the error 
for 41 5 n 5 50 is due to the fact that the reference subspace 

of R(n) has changed significantly from that of R(40) and 
the algorithms could not track this sudden change. From n 
= 50 onwards, the algorithms begin to track the subspace 
with the A N  performing much superior compared to AE.  The 
fluctuations seen in these plots are due to the fact that the 
change in the reference eigenvectors from instant to instant is 

quite significant because of the nonstationarity of the signal. 
The plots show that the Newton type algorithm tracks the 

subspace quite satisfactorily. The inferior performance of A E  
can be attributed to its slow convergence behaviour. 

Based on these results, we conclude that the proposed 
Newton-cum-inflation-based approach ( A N )  for adaptively 

estimating the eigensubspace is much superior to the inflation- 
based gradient algorithms A A  and A E ,  and is identical to the 

maximization gradient algorithm A M .  

R(L) .  

VI. COMPUTA~ONAL REQUIREMENTS 

In this section, we give the computational requirements (in 
terms of the number of square roots, multiplications, divisions, 
and additions required per iteration) of the four algorithms 
considered above (for the stationary case). Because of the 
parallelism that is present in all these approaches, the effective 

computational load is equal to that required for updating one 
eigenvector estimate. Table I lists this computational load. 

Note that the proposed approach needs more multiplications 
compared to the approximate and exact gradient algorithms. 
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Fig. 6. Tracking performance of the two algorithms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(AN and A E )  with the 
subspace of R(n) as the reference (nonstationary signal scenario with sliding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rectangular window of length 40). 

TABLE I 
COMPUTAT3ONAL &QUlREMENTS OF THE FOUR ALGORITHMS 

Squut mols 

However, in view of the decreasing trend in computing costs, 

the excess computations required are not significant. 

VII. CONCLUSIONS 

The problem of obtaining the orthogonal eigenvectors of 

a symmetric positive definite matrix has been formulated as 
an unconstrained minimization problem and a Newton-type 
adaptive algorithm has been developed for estimating these 
eigenvectors in the data case. This algorithm makes use of 

an implicit orthogonalization procedure which is built into it 
through an inflation technique. 

The algorithm is highly modular in nature and suitable 
for parallel implementation. Convergence analysis of this 

algorithm is also presented. Its performance (evaluated under 
stationary and nonstationary signal scenarios) has been found 

to be superior to that of the inflation-based algorithm proposed 
in [9] and an improved version of it, and is identical to the 
maximization gradient search procedure of [9]. Projection error 
measure and orthogonality measure are used in evaluating the 
performance. 

APPENDIX 

In this appendix, we prove Theorem 1. But first, we develop 
the following preliminary result. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lemma A.1: Consider a matrix D of size N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx N. Suppose 
Vi, there exists lei 1 < E such that the elements of D are given by 

dii = d + ti and Jd;,l< E VZ # j. (A.1) 

Then, VY E R~ 

IIDVllm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 [ I4 - NElIlvlloo* (A.2) 

+ D, we get from (A.l) ,  Proofi Expressing D = 
llDlloo <NE. It then follows that 

_- 

Il&lloo 2 I 4  llvlloo - IIfivlloo 
2 I 4  llvlloo - NEIIvIlm. 

Proof of Theorem I :  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(n) = Z(n - l)[fl-l +*(.)I. 
Partition b(n) as 

b(n) = [ b3~) ,b%41T (A.3) 

where bl(n) = [b1(n),...,bM(n)lT and b ( n )  = 
[bM+l(n), . . . , bN(n)lT. Similarly, partition @(n) into 
@ll(n), @12(n), &(n) and d521(n) so that (4.5) becomes 

Then, we have the following 

Il@22(n)lloollb2(n - 1)Iloo + 11@21(~>llooll~l(n - 1)Ilm 

ll@ll(n)bl(n - 1)Iloo - 11@12(n)b(n - 1)Iloo 

(A.5) 

l+ij(n)l< E I ( ~ )  vi # j (-4.6) 

(A.7) 

where ~ 1 ( n )  is such that 0 < ~ l ( n )  < €1 and limn-,m ~ l ( n )  = 
0. Denoting &(n) = +i(n) and using Lemma A.l, (A.6), 
(4.10), and (A.7), we can express (AS) as 

I 

Because of (4.8) and (4.1Od), we can write Vn 2 no 

I+ii(n)-~~j(.>I<El(n) V i , j  E { l , . * . , M }  

1 

4l(n) - N ~ l ( n ) ( l +  f(n - 1)) 

. f(n - 1) + N~1(n)] Vn 2 no. (A.8) 

Now, choose €1 < 6564/8N. Then, if f (n  - 1) < 1, using 

[+M+l(n) f(n) 

(4.10), and (4.9), we can reduce (A.8) to 

(1 - 64)f(n - 1) + - (A.9) 
41 (n)  

f(n) I 

Thus, in view of (4.15), (A.lO) implies that f(n) < 1Vn 2 no. 
Now, consider (A.9). Since +l(n) > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA65, it can be written as 

~ l ( n ) .  (A . l l )  ( l -  64) f ( n  - 1) + N 
f ( n>  I 

(1-%) &(I  - %) 
Since (1 - 64) < (1 - 64/4) and limn+oo ~ 1 ( n )  = 0, we 
conclude from (A. 1 1) that 

lim f(n) = 0. 
n-oo 
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