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1. Introduction

In recent years the use of Bayesian methods in nonparametric function estima-
tion problems has increased considerably. It is by now well known however that
the construction of sensible priors on functional, infinite-dimensional parameters
is a delicate matter. Intuition is often not enough to guarantee important prop-
erties like consistency and optimal convergence rates of nonparametric Bayes
procedures. Over the last decade a mathematical framework has been devel-
oped to study these frequentist concepts for Bayesian methods, starting with
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the papers [6] and [19]. Concrete families of nonparametric priors for which
consistency, contraction rates and related matters like adaptation have been in-
vestigated include priors based on Dirichlet processes, Bernstein polynomials,
kernel mixture priors, beta mixtures, Gaussian process priors, wavelet based
priors, etc. See for instance the papers [8, 23, 24, 16, 11, 2, 13, 5], to mention
but a few.

In this work we consider prior distributions on functions of one or more
variables that are constructed using so-called splines. A spline function is a
piecewise polynomial function on either an interval in the real line or some
multi-dimensional Euclidean space. Spline functions provide good approxima-
tions for Hölder smooth functions, see for instance De Boor [1] or Schumaker
[17]. Therefore, splines can be a useful tool for constructing prior distributions
on smooth functions.

There are several papers in the literature that obtain rates of estimation for
smooth functions using splines, in particular ones using log-spline models in a
density estimation setting. It was shown for instance by Stone [20] that a smooth
probability density can be estimated at the minimax rate in a log-spline model
of growing dimension using a maximum likelihood estimator (MLE). This was
extended in [21] to the multivariate case. A Bayesian version of the former result
was obtained by Ghosal, Ghosh and Van der Vaart [6]. They consider priors
on densities that are constructed by postulating the same log-spline model for
the density as in Stone and putting an appropriate prior distribution on the
coefficients in the B-spline expansion of the log-density.

Ghosal, Ghosh and Van der Vaart [6] show that it is possible to attain the
minimax rate as the posterior contraction rate if the log-density is bounded (by
a known constant) and satisfies a smoothness condition. Specifically, the results
state that in the univariate case that a sample from an unknown density f on
an interval is observed, then if log f is uniformly bounded by a known con-
stant and is r times continuously differentiable, a rate of convergence relative
to the Hellinger metric (for the MLE in the case of Stone [20] and for the pos-
terior in the case of Ghosal, Ghosh and Van der Vaart [6]) of the optimal order
n−r/(1+2r) can be attained. Stone [21] also obtains the optimal rate n−r/(d+2r)

in the case that f is a d-variate density. The procedures in the cited papers are
non-adaptive, in the sense that they rely on knowledge of the smoothness level
r of the unknown density.

Rate-adaptive results for spline priors have been obtained by Huang [10]
and by Ghosal, Lember and Van der Vaart [7]. The paper [7] deals with uni-
variate density estimation again. Instead of letting the dimension J of the log-
spline expansion tend to infinity with sample size in a deterministic manner,
the “model index” J is viewed as a hyper-parameter and is endowed with an
additional prior. Put differently, the density estimation problem is viewed as a
model selection problem: a sequence of finite-dimensional log-spline models for
the density is considered, each with there own (finite-dimensional) prior. Then
appropriate prior weights are assigned to each of the models to obtain an overall
prior for f . The resulting hierarchical prior does not depend on the regularity
r of the density f , but it still yields a posterior contraction rate of the order
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n−r/(1+2r) if log f is r times continuously differentiable. Huang [10] presents a
very similar adaption result, but with more complicated prior weights on the
finite-dimensional models. This is accompanied by a similar result in a univari-
ate nonparametric regression context. The two settings in [10] are not treated in
a unified approach however. Priors weights for the models are chosen separately
for each case.

A joint feature of the approaches of [10] and [7] is that both the order and
the knots of the splines (see the next section for definitions of these notions) are
changing between models. In view of the approximation properties of splines (see
Section 2), allowing the orders of the splines to become arbitrarily large is indeed
necessary when adaption to arbitrarily large smoothness levels is desired. On the
other hand, it makes the priors rather involved and might be less attractive from
the computational perspective. Implementation schemes that have been pro-
posed in the literature typically take the order of the splines fixed, cf. e.g. [3, 4].

Our approach and the results we derive complement and extend the exist-
ing literature in a number of directions. First of all, we do not study specific
settings like density estimation and regression separately. Instead, we present
general theorems about random spline processes (Theorems 4.1 and 4.2) that, in
combination with existing general rate of contraction results for specific statis-
tical settings such as given for instance in [6, 9, 23, 22], or [12], lead to concrete
results for, for instance, density estimation, regression, classification, or drift
estimation for diffusions.

Secondly, we consider multivariate function estimation problems. Similar to
what Stone [21] did for the frequentist approach, we show that sensible priors
on multivariate functions can be constructed using tensor-product splines. We
prove that adaptive, rate-optimal procedures for multivariate function estima-
tion problems can be obtained in this way.

Another difference concerns the fact that the existing approaches in [6, 10]
and [7] assume known uniform bounds on the log-density or the regression func-
tion that is being estimated, allowing the use of bounded priors on the B-spline
coefficients. As is indicated in [7] this restriction could be removed by adding
another hierarchical layer, treating the bound as an additional hyper parameter.
In our approach this is not necessary however and we do not need to assume
any uniform bounds. This is a consequence of the fact that we use unbounded,
namely Gaussian prior weights on the B-spline coefficients. In our rates we get
additional logarithmic factors, which might in part be due to this issue.

Finally, we keep the order of the splines that we use fixed in the construction
of the prior. Only the number of knots is viewed as a hyper-parameter, which
we either send to infinity with sample size or endow with a prior. As a result our
priors are simpler and conceivably also computationally more attractive. On the
down side, with this approach we can not obtain adaption up to arbitrary high
smoothness levels, but only up to the order of the splines that are used. Since
we can freely choose this order however, we feel this is not a serious restriction.

As mentioned already, we build our spline priors from random splines with
independent, Gaussian B-spline coefficients. We keep the order of the splines
fixed and treat the number of knots as a hyper-parameter. The latter will be
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either deterministic, or endowed with a second, independent prior. As a result,
the priors we construct will be (transformations of) Gaussian or conditionally
Gaussian process priors. This allows us to use powerful tools from the general
theory of Gaussian process priors (cf. [23, 25]) for their analysis.

A different approach is taken in the recent papers [15] and [18]. Both papers
deal with series priors as well. The former considers univariate density estimation
and considers series priors with Fourier or wavelet basis functions. The latter
studies univariate estimation problems in a general framework, allowing also
different kinds of basis functions. The papers show that desirable results can
also be obtained with non-Gaussian prior weights. It is conceivable that this is
true for tensor product spline priors as well, but proving this would require a
different technical approach than the one we take in this paper.

The remainder of the paper is organized as follows. In Section 2 we review
the notions of spline functions and B-splines, and formulate a result that gives a
bound on the uniform distance between splines and a given smooth function. In
Section 3 we define our spline process with Gaussian coefficients and derive small
ball probability bounds that will be key ingredients for the rate of contraction
results. In Section 4.1 we show that optimal posterior rates (up to logarithmic
factors) can be achieved using Gaussian spline priors by letting the number of
knots tend to infinity with sample size in an appropriate way. In Section 4.2 we
present a hierarchical procedure by choosing a prior distribution on the partition
size hyper-parameter. We show that this hierarchical procedure also achieves a
near-optimal rate of posterior contraction and adapts to the smoothness of the
truth.

2. Preliminaries on splines

In this section we recall some necessary elements of the theory of splines. We
follow the definitions given by Schumaker [17] and refer to that book for an
exhaustive treatment of the subject.

2.1. Spline functions on intervals

A spline function or spline is a piecewise polynomial function that satisfies a
global smoothness condition. Let us first consider spline functions defined on an
interval. The domain of such a spline function can be partitioned into disjoint
subintervals in such a way that the function coincides with a polynomial on
every subinterval. A spline function is said to be of order q if all polynomials
in its definition are of degree at most q − 1. Without any further requirements,
this set of piecewise polynomials is a linear space of dimension qm, where m is
the number of partitioning intervals. Linear subspaces of lower dimension can
be obtained by further imposing that adjacent polynomials are tied together
smoothly at the knots of the partition.

In this paper we use splines of order q that satisfy such a smoothness condi-
tion. We consider a space Sm of splines of order q on the unit interval that is
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partitioned into m subintervals of equal length. We first define

Pq =
{

x 7→
q−1
∑

k=0

ckx
k, c0, . . . , cq−1 ∈ R

}

the space of polynomials of degree at most q − 1. Let yj = j/m and denote the
corresponding subintervals of [0, 1] by Ij = [yj−1, yj) for j = 1, . . . ,m− 1, and
Im = [ym−1, 1]. A function s : [0, 1] → R is then defined to be in Sm if there exist
polynomials p1, . . . , pm in Pq such that s(x) = pj(x) for x ∈ Ij and, moreover, s
is q− 2 times continuously differentiable1. According to the terminology of [17],
Sm is the space of polynomial splines of order q with simple knots at the points
1/m, 2/m, . . . , (m − 1)/m. We will always take q ≥ 2, so that all the splines in
Sm are continuous functions.

The space Sm has dimension q+m− 1, cf. Theorem 4.4 of [17]. A convenient
basis of the space is given by the so-called B-splines. The exact definition of
these functions (see Theorem 4.9 of Schumaker [17]) is of no importance to us.
Important properties of B-splines are that they are nonnegative and supported
on relative small parts of the domain and that the sum of all B-splines at any
given location equals one, i.e. they form a partition of unity: if we denote the
B-splines by Bm

1 , . . . , Bm
q+m−1, then

q+m−1
∑

j=1

Bm
j (x) = 1

for all x ∈ [0, 1].

2.2. Tensor-product splines

Spline functions can also be defined on multi-dimensional domains using multi-
variate polynomials. One can construct linear spaces of such multivariate splines
by taking tensor-products of the spline spaces mentioned above. This just means
that we associate a direction with every linear space in the tensor product, that
we introduce a different variable for each direction, and that we then multi-
ply polynomials of a single variable defined on intervals to obtain multivariate
polynomials defined on rectangles.

The space of tensor-product splines is spanned by the tensor-product B-
splines, which are just products of the B-splines associated with the different
directions. The dimension of the tensor-product space is thus found by mul-
tiplying the dimensions of the spline spaces from which it was constructed.
The properties of univariate B-splines carry over to similar properties for their
tensor-product analogues.

In the following we consider tensor-product splines from the d-fold tensor
product space Sm = Sm ⊗ · · · ⊗ Sm (d times), with Sm the space of univariate

1Here −1 times continuous differentiability is an empty condition and 0 times just means
continuity.
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splines defined above. The tensor-product splines are thus defined on the unit
cube [0, 1]d in the Euclidean space of dimension d and this unit cube is parti-
tioned into md equal cubes Ik1 ×· · ·×Ikd

. On every such set the splines coincide
with a polynomial of the form

q−1
∑

k1=0

. . .

q−1
∑

kd=0

ck1,...,kd
xk1
1 · · ·xkd

d . (2.1)

The space Sm has dimension (q +m − 1)d and a basis is given by the tensor-
product B-splines

Bm
j (x1, . . . , xd) = Bm

j1 (x1) · · ·Bm
jd(xd), 1 ≤ ji ≤ q +m− 1.

From now on these multivariate B-splines are denoted by Bm
1 , . . . , Bm

J for J =
(q+m− 1)d. It is easy to see that we again have the partition of unity property

J
∑

j=1

Bm
j (x) = 1 (2.2)

for all x ∈ [0, 1]d.
The total degree of a polynomial of the form (2.1) is the maximum of |k| =

k1 + · · ·+ kd over all k for which the coefficient ck is nonzero. The total degree
of these polynomials is thus at most d(q − 1), but not any polynomial of total
degree at most d(q−1) is an element of Sm. This is only true if the degree in each
single variable x1, . . . , xd is at most q− 1. In particular the polynomials of total
order q are in Sm, i.e. the polynomials of the form (2.1) with ck = 0 if |k| > q−1.
The approximating properties of such polynomials determine the approximating
capabilities of the tensor-product splines in Sm, see Lemma 2.1 ahead.

This approximation result is proved using a dual basis of the tensor-product
space. Given a set of linear functionals λj : Sm → R, we say that λ1, . . . , λJ is
a dual basis of Sm if

λiB
m
j = δi,j =

{

1 if i = j

0 if i 6= j

for any i, j = 1, . . . , J. For the spline s ∈ Sm given by

s =

J
∑

j=1

ajB
m
j (2.3)

we have that λj(s) = aj. Thus λj finds the coefficient belonging to the B-
spline Bm

j .

2.3. Approximation properties

The following result describes how well splines in the space Sm can approximate
functions with a smoothness level r that does not exceed the order q of the
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splines. We first explain what the appropriate notion of smoothness is in this
situation.

Let C([0, 1]d) be the space of continuous functions f : [0, 1]d → R and de-
note the supremum norm of f over [0, 1]d by ‖f‖∞. For a multi-index α =
(α1, . . . , αd), we define |α| = α1 + · · ·+ αd and the partial derivative

Dα =
∂|α|

∂xα1
1 · · · ∂xαd

d

.

For r ∈ N, we define the Hölder space Cr([0, 1]d) of all functions f ∈ C([0, 1]d)
with partial derivatives Dαf ∈ C([0, 1]d) for any |α| ≤ r, and we equip it with
the norm

‖f‖Cr = ‖f‖∞ +
∑

α:|α|=r

‖Dαf‖∞.

The lemma below gives an upper bound on the uniform distance of a func-
tion f ∈ Cr([0, 1]d) and some spline in Sm. The distance can be controlled by
choosing the partition size m sufficiently large. The proof of the lemma is simi-
lar to the proof of Theorem 12.7 in Schumaker [17]. We only need to apply the
multidimensional Taylor expansion in Theorem 13.18 of Schumaker with a total
Taylor expansion (13.33) in [17] instead of a tensor Taylor expansion (13.44), so
that this expansion produces a polynomial of total order r.

Lemma 2.1. For any m, d, q ∈ N, r ≤ q, and f ∈ Cr([0, 1]d) there exists a
spline s ∈ Sm and a constant C > 0 that only depends on d, q and r such that

‖f − s‖∞ ≤ Cm−r
∑

α:|α|=r

‖Dαf‖∞Cm−r‖f‖Cr .

Proof. Let Q be the bounded linear operator in (12.29) of [17] that maps

Cr([0, 1]d) onto Sm. It is given by Qf(x) =
∑J

j=1(λjf)Bj(x), for λj the (exten-
sions of the) elements of the dual space of Sm given in Theorem 12.5 of [17]. Let
H be a hypercube in the partition of [0, 1]d and let ‖ · ‖ be the supremum over
H . We will bound ‖f −Qf‖ from above. It is obvious that ‖f −Qf‖∞ is then
bounded from above by the maximum of these bounds for the various cubes in
the partition.

We have ‖Qf‖ ≤ C‖f‖ for any f ∈ Cr([0, 1]d) according to (12.31) of [17].
The constant C does not depend on the cube H as can be seen from (12.25) of
[17], but it does depend on q. According to Theorem 13.18 of [17] there exists a
polynomial p = pj of total order r such that ‖f − p‖ ≤ Dm−r

∑

α:|α|=r ‖Dαf‖
for some constant D that only depends on d, r and thus not on H. We have
Qp = p (see (12.30) in [17]) and hence ‖f − Qf‖ ≤ ‖f − p‖ + ‖Q(f − p)‖ ≤
(C + 1)‖f − p‖.

2.4. The size of a spline and its coefficients

In Section 3 we will use the fact that a smooth function can be approximated
by a spline in Sm in the sense of Lemma 2.1. For our purposes, we do not need
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to know the approximating spline or its coefficients in full detail, but rather
an expression that quantifies its size. We will use the following lemma, which
states that the uniform norm of a spline is equivalent to the maximal norm of
the vector of its B-spline coefficients.

Recall that the B-spline coefficients of a spline can be obtained from a dual
basis of Sm. We now assume that λ1, . . . , λJ is the dual basis given in Theo-
rem 12.5 of [17]. Let ‖λj‖ be the norm of the bounded linear functional λj . That
is to say, ‖λj‖ is the smallest constant K for which |λj(s)| ≤ K‖s‖∞ holds for
any s ∈ Sm Although max1≤j≤J ‖λj‖ depends on m, it can actually be replaced
by a constant that does not depend on m, cf. Theorem 12.5 in [17].

Lemma 2.2. Let s ∈ Sm be given by (2.3). Then

‖s‖∞ ≤ max
1≤j≤J

|aj | ≤
(

max
1≤j≤J

‖λj‖
)

‖s‖∞ ≤ C‖s‖∞,

where C > 0 is a constant independent of m.

Proof. Because the B-splines are nonnegative, |s(x)| ≤
∑J

j=1 |aj|Bj(x). Take the
maximum of the absolute values |aj | outside the sum. The first inequality now
follows from the partition of unity property (2.2). For the second inequality, use
that |aj | ≤ ‖λj‖‖s‖∞, by definition. The third inequality follows from Theorem
12.5 in [17].

3. Gaussian random splines

In this section we introduce and study a class of Gaussian processes that we will
use to construct prior distributions for various statistical settings. The corre-
sponding posterior contraction rates will be determined in Section 4.1. We use
the tensor-product splines from the preceding section to define the stochastic
process via its sample paths.

We have seen that the space Sm of tensor-product splines depends on two
parameters q andm. The parameter q is the order of the splines andm quantifies
the partition size. We fix some natural number q ≥ 2 and from now on it will
be understood that all splines are of order q. The remaining parameter m will
be referred to as the partition size parameter.

As before, let Bm
1 , . . . , Bm

J be the tensor-product B-spline basis of Sm, with
J = (m+ q − 1)d. For any m ∈ N we now define the Gaussian random element
Wm in Sm as follows. Let Z1, . . . , ZJ be independent, standard Gaussian random
variables, and let Wm be the random process on [0, 1]d defined by

Wm(x) =

J
∑

j=1

ZjB
m
j (x), x ∈ [0, 1]d. (3.1)

It follows from Theorem 4.2 in [25] that the reproducing kernel Hilbert space
(RKHS) Hm associated with Wm consists of all splines of order q with respect to
the given partition. Moreover, since they are linearly independent, the B-splines
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Bm
j form an orthonormal basis of the RKHS. It follows immediately that the

RKHS-norm of a spline in the RKHS is equal to the Euclidean norm of the
vector of its B-spline coefficients. In other words, the RKHS of Wm is equal to
the set Sm equipped with the norm ‖ · ‖Hm given by

∥

∥

∥

J
∑

j=1

ajB
m
j

∥

∥

∥

2

Hm

=

J
∑

j=1

a2j . (3.2)

It is known (cf. [23]) that in general, the contraction rate of a posterior corre-
sponding to a Gaussian process prior is determined by its concentration function,
i.e. its non-centered small ball probabilities around the truth. The concentra-
tion function can be determined from the centered small ball probabilities of
the process in addition to a term that quantifies the size of an approximation
of the truth in the reproducing kernel Hilbert space of the process. We study
these two quantities in the next two subsections.

3.1. Centered small ball probabilities

The following lemma is a straightforward consequence of the definition of the
process Wm and the basic properties of the B-splines.

Lemma 3.1. For all q,m ∈ N such that m ≥ q − 1 we have

P(‖Wm‖∞ ≤ ε) ≥ (ε/2)2
dmd

for all ε ∈ (0, 1/2).

Proof. By Lemma 2.2 and the fact that the random variables Zj are independent
and identically distributed we have

P(‖Wm‖∞ ≤ ε) ≥ P(max |Zj | ≤ ε) = (P(|Z1| ≤ ε))J .

The probability P(|Z1| ≤ ε) is bounded from below 2εϕ(ε0) for for any ε ∈
(0, ε0), with ϕ the standard normal density. Since J = (q+m− 1)d ≤ (2m)d for
m ≥ q − 1, it follows that for ε ∈ (0, ε0) and any q ≥ 1 and m ≥ q − 1,

(P(|Z1| ≤ ε))J ≥ (2ϕ(ε0)ε)
2dmd

This proves the assertion, since 2ϕ(1/2) ≥ 1/2.

3.2. Non-centered small ball probabilities

Consider w0 ∈ Cr([0, 1]d). The non-centered ball probability P(‖Wm−w0‖∞ ≤
2ε) is the probability that a realization of Wm ends up in a uniform ball of
radius 2ε around w0. To obtain contraction rates for priors based on the process
Wm we need a lower bound for this quantity.
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Lemma 3.2. Let w0 ∈ Cr([0, 1]d), for r ≤ q. There exist constants C,D > 0,
independent of m, such that for any ε ∈ (0, 1/2) and any m ≥ q − 1 such that
Dm−r ≤ ε, we have

P(‖Wm − w0‖∞ ≤ 2ε) ≥ exp(−Cmd log 1/ε).

Let ϕm
w0

be the concentration function of Wm around w0 as defined in [23]:

ϕm
w0

(ε) = inf
h∈Hm:‖h−w0‖∞≤ε

‖h‖2
Hm − logP(‖Wm‖∞ ≤ ε). (3.3)

Then by Lemma 5.3 of [25],

P(‖Wm − w0‖∞ ≤ 2ε) ≥ exp(−ϕm
w0

(ε))

and a similar inequality holds for the upper bound. Now Lemma 3.2 is a conse-
quence of the following result.

Lemma 3.3. Let w0 ∈ Cr([0, 1]d), for r ≤ q. There exist constant C,D > 0,
independent of m, such that for any ε ∈ (0, 1/2) and any m ≥ q − 1 such that
Dm−r ≤ ε, we have

ϕm
w0

(ε) ≤ Cmd log 1/ε. (3.4)

Proof. The second term in the concentration function (3.3) can be bounded
from above using Lemma 3.1. For ε ∈ (0, 1/2) we have

− logP(‖Wm‖∞ ≤ ε) ≤ 2dmd log
(2

ε

)

. (3.5)

As for the infimum part in (3.3), Lemma 2.1 shows that for every m ∈ N there
exists a spline s ∈ Sm = H

m such that ‖s − w0‖∞ ≤ Dm−r, for D > 0 a
constant that only depends on d, q, r and w0. Now fix ε ∈ (0, 1/2) and m ∈ N

such that Dm−r < ε. Then with s the spline above,

inf
h∈Hm:‖w0−h‖∞≤ε

‖h‖2
Hm ≤ ‖s‖2

Hm .

Suppose that the spline s ∈ Sm is given by s =
∑J

j=1 ajB
m
j . Then the squared

RKHS-norm of s is given by (3.2) and satisfies

‖s‖2
Hm =

J
∑

j=1

a2j ≤ J
(

max
1≤j≤J

|aj |
)2
.

We have seen in Lemma 2.2 that the absolute maximum max1≤j≤J |aj | of the
coefficients can be bounded from above by C′‖s‖∞ for some C′ > 0 that does not
depend on m. Note that by the triangle inequality and the fact that Dm−r < ε,
we have that ‖s‖∞ ≤ ‖w0‖∞ + ε. Since J ≤ (2m)d, we obtain upper bound for
‖s‖2

Hm that can be written as a multiple of md. This concludes the proof.
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4. Posterior contraction results

4.1. Gaussian spline priors

The Gaussian spline processes Wm can be used to construct priors in various
nonparametric statistical settings. In order for the priors to have large enough
support to ensure for instance consistency, one has to either let the partition size
parameter m tend to infinity with sample size, or view it as a hyper parameter
that itself is estimated from the data. In this section we consider the former
construction, leading to sequences of Gaussian process priors. We give bounds
on the contraction rates of the corresponding posteriors. In the next section we
investigate the possibility of endowing m with a prior distribution.

Let mn → ∞ be a sequence of natural numbers, fix an order q ≥ 2 for
the splines and consider the corresponding sequence Wmn of Gaussian spline
processes on [0, 1]d defined by (3.1). For a natural number r ≤ q and w0 ∈
Cr([0, 1]d), let ϕmn

w0
be the sequence of concentration functions defined by (3.3),

with H
m the RKHS of the process Wm. The general theory of Gaussian process

priors says that posterior contraction rates are obtained by solving the inequality

ϕmn

w0
(εn) ≤ nε2n, (4.1)

see Van der Vaart and Van Zanten [23]. By Lemma 3.3 this inequality holds if

Cmd
n logmn ≤ nε2n,

Dm−r
n ≤ εn,

with C,D > 0 the constants from the statement of the lemma. The optimal
solution of these inequalities is easily found and given in the following theorem.

Theorem 4.1. In the setting described above, let mn ∼ (n/ logn)1/(d+2r). Then
inequality (4.1) holds with εn ∼ (n/ logn)−r/(d+2r).

In combination with the results given in [23] this theorem immediately yields
rate of contraction results for a number of important nonparametric statistical
problems. In a nonparametric fixed design regression problem for instance, where
we have observations Y1, . . . , Yn satisfying

Yi = w0(xi) + ξi

for known xi ∈ [0, 1]d and independent N(0, σ2)-distributed ξi, the law Πn of
Wmn can be used directly as a prior on the regression function w0. Combining
Theorem 4.1 and Theorem 3.3 of [23] then shows that if w0 ∈ Cr([0, 1]d), the
posterior distribution Πn(· |Y1, . . . , Yn) of the regression function concentrates
around the truth at the rate εn = (n/ logn)−r/(d+2r) in the sense that we have,
for all L > 0 large enough,

E0Πn

(

w :
1

n

∑

i≤n

(w(xi)− w0(xi))
2 > L2ε2n |Y1, . . . , Yn

)

→ 0

as n → ∞. Here E0 is the expectation corresponding to the true regression
function w0.
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After exponentiation and renormalization a Gaussian process can be used
as a prior model for probability densities as well. Theorem 4.1 and Theorem
3.1 of [23] imply that if the true log-density is in Cr([0, 1]d), a contraction rate
(n/ logn)−r/(d+2r) relative to the Hellinger distance is attained. Similar results
can be obtained for instance for classification settings (by combining Theorem
4.1 and Theorem 3.2 of [23]) and nonparametric drift estimation for diffusions
(using results of [22] or [12]).

Generally speaking, the results show that if the law of the Gaussian spline
process Wmn is used as a prior on an r-regular function of d variables (possibly
after a suitable transformation), then with the choice mn ∼ (n/ logn)1/(d+2r)

this leads to a posterior contraction rate of the order n−r/(d+2r), up to a log-
arithmic factor. This is typically the optimal rate for estimating an r-regular
function of d variables (up to a logarithmic factor), for instance in a minimax
sense. Note however that through the partition size parameter mn, the prior
depends on the unknown smoothness level of the function of interest. Hence,
the procedure is not rate-adaptive. In Section 4.2 we construct a hierarchical,
conditionally Gaussian prior that does lead to adaption.

4.2. Adaptation using conditionally Gaussian priors

In the previous section we saw, for several statistical settings, that under a
certain smoothness condition on the truth w0, posterior contraction can be
achieved at an optimal rate for an appropriate sequence of our Gaussian spline
priors. We assumed that w0 is contained in Cr([0, 1]d) for a given r ≤ q and
used the knowledge of the degree of regularity r to define a sequence of Gaussian
priors via the partition size parameter mn.

In practice however, the exact degree of smoothness is typically not known
a-priori. Therefore, we will in this section only assume that for q ≥ 2 fixed in
advance, w0 is contained in Cr([0, 1]d) for r some unknown smoothness level
such that r ≤ q. In other words, we only assume a known upper bound on the
smoothness. The aim now is to construct a prior independent of r such that the
posterior achieves the same optimal rate as in the preceding section (perhaps
up to a logarithmic factor) for every possible value of r ≤ q. Such a procedure
is said to adapt to the regularity of the truth up to the level q.

As before we take the Gaussian spline process Wm as the starting point
for the definition of our priors. However, we now take a different approach
to choosing m. In the Bayesian paradigm it is quite common to view unknown
tuning parameters of this type as so-called hyper parameters and to endow them
with a separate prior, leading to hierarchical priors. We adopt this approach
and show that if the prior on m is chosen carefully, we can achieve our goal of
constructing a rate-adaptive procedure in this way.

Concretely, we define a new, conditionally Gaussian spline process W by
setting W = WM , for Wm the Gaussian process defined in (3.1) and M an
independent N-valued random variable. This construction is hierarchical in the
sense that a sample path of W is generated in two steps: first draw a realization
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m of the random variable M , then given m, draw a sample path of the Gaussian
process Wm.

The hierarchical spline process can be used to construct priors for various
statistical settings again. The following general theorem about the process W
will lead to the desired adaptive rate of contraction results.

Theorem 4.2. Suppose that for every m ≥ 1,

C1 exp(−D1m
d logt m) ≤ P(M = m) ≤ C2 exp(−D2m

d logt m) (4.2)

for some constants C1, C2, D1, D2, t ≥ 0. If w0 ∈ Cr([0, 1]d) for some integer
r ≤ q, then there exists for every constant C > 0, a constant D > 0 and
measurable subsets Un of C([0, 1]d) such that

P(‖W − w0‖∞ ≤ 2εn) ≥ exp(−nε2n), (4.3)

P(W 6∈ Un) ≤ exp(−Cnε2n), (4.4)

logN(2ε̄n, Un, ‖ · ‖∞) ≤ Dnε̄2n, (4.5)

are satisfied for sufficiently large n, and for εn and ε̄n given by

εn = c(n/ log1∨t n)−
r

d+2r ε̄n = n− r

d+2r (logn)
(1∨t)r
d+2r +( 1−t

2 )+ , (4.6)

for c > 0 a large enough constant.

Combined with existing results from [6, 9] and [23], which give posterior
contraction rates for various statistical settings under conditions of the form
(4.3)–(4.5), this general theorem will lead to results that state that in the various
settings, using the law of WM as a prior will lead to posterior contraction at
the rate εn ∨ εn, provided that the true function has smoothness degree r ≤ q.
Hence, up to a logarithmic factor, the posteriors attain optimal convergence
rates in this case. Moreover, since the prior does not depend on the unknown
smoothness level r, we indeed obtain rate-adaptive procedures.

Note that condition (4.2) holds in particular, for t = 0, if Md has a geometric
distribution. The best rate εn ∨ εn is obtained when t is chosen equal to 1. The
resulting rate is (n/ logn)−r/(d+2r) in that case, which coincides with the rate
obtained in Theorem 4.1 for the non-adaptive sequence of spline priors.

In our approach the order q of the splines remains fixed, contrary to for
instance in [10] or [7]. This keeps the priors simple and easy to deal with, but
of course in practice q has to be chosen. From the theoretical perspective q can
be chosen as large as one would like, although it might be chosen not too large
for computational reasons. In practice, cubic splines (q = 4 in our notation) are
a popular choice.

4.3. Proof of the general Theorem 4.2

4.3.1. Prior mass condition (4.3)

Let εn → 0 be given. Note that the inequality

P(‖W − w0‖∞ ≤ 2εn) ≥ P(M = m)P(‖Wm − w0‖ ≤ 2εn)
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holds for any m ≥ 1 by construction of W. According to Lemma 3.2 the second
factor on the right is bound from below by exp(−Cmd

n logmn) for sufficiently
large n and mn such that εn ≥ Dm−r

n . The probability P(M = mn) is bounded
from below by C1 exp(−D1m

d
n log

t mn) by assumption (4.2). We conclude that

P(‖W − w0‖∞ ≤ 2εn) ≥ C1 exp(−C2m
d
n log

1∨t mn)

for some constants C1, C2 > 0. The inequalities

md
n log

1∨t mn . nε2n,

m−r
n . εn,

are solved by mn ∼ (n/ log1∨t n)1/(d+2r) and εn as in (4.6). Condition (4.3) thus
holds if the constant c in (4.6) is sufficiently large.

4.3.2. Construction of sieves Un

Recall that Hm
1 is the unit ball of the RKHS H

m of the Gaussian spline process
Wm and B1 is the unit ball in the Banach space C([0, 1]d). For m ∈ N, let

Um
n = LnH

m
1 + εnB1 for some kn and Ln specified below, and Un =

⋃kn

m=1 U
m
n .

In the next two subsections we show that conditions (4.4) and (4.5) are
fulfilled if Ln and kn satisfy certain inequalities. In Subsection 4.3.5 we show
that these inequalities can be solved.

4.3.3. Remaining mass condition (4.4)

First note that the inequality

P(W 6∈ Un) ≤
k

∑

m=1

P(M = m)P(Wm 6∈ Un) + P(M ≥ k + 1). (4.7)

holds for any k by construction of W. Now take k equal to kn as defined in the
preceding subsection. By assumption (4.2) the tail probability P(M ≥ kn + 1)
is bounded from above by a constant times the geometric series

∑

m≥kn+1

(exp(−kd−1
n logt kn))

m ≤ exp(−kdn log
t kn).

So the tail probability is bounded by exp(−Cnε2n)/2 for large n if kn is chosen
such that kdn log

t kn > Cnε2n, for C as in the assertion of the theorem.
We now show that

P(Wm 6∈ Un) ≤ exp(−Cnε2n)/2

for any m ≤ kn, so that the first term on the right of (4.7) is also bounded by
exp(−Cnε2n)/2. It follows from the construction of the sieve Bn that

P(Wm 6∈ Un) ≤ P(Wm 6∈ Um
n )
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for any m ≤ kn. By Borell’s inequality (see [25], Theorem 5.1)

P(Wm 6∈ Um
n ) ≤ 1− Φ(Φ−1(P(‖Wm‖∞ ≤ εn)) + Ln).

A lower bound for the centered small ball probability P(‖Wm‖∞ ≤ εn) was
given in Lemma 3.1. The lower bound provided by this lemma is a decreasing
function of m. For every m ≤ kn we thus have

P(‖Wm‖∞ ≤ εn) ≥ (ε/2)2
dkd

n .

For y ∈ (0, 1/2) one has Φ−1(y) ≥ −
√

(5/2) log(1/y). Apply this inequality with

y equal to (ε/2)2
dkd

n to find that

P(Wm 6∈ Um
n ) ≤ Φ

(

√

(5/2)2dkdn log(2/εn)− Ln

)

for every m ≤ kn. Using the bound Φ(y) ≤ exp(−y2/2) we obtain

P(Wm 6∈ Un) ≤ e
− 1

2

(

Ln−
√

(5/2)2dkd
n
log(2/εn)

)2

(4.8)

for every m ≤ kn. Hence if Ln and kn are chosen such that

1

2

(

Ln −
√

(5/2)2dkdn log(2/εn)

)2

> Cnε2n,

then the first term on the right of (4.7) is bounded by exp(−Cnε2n)/2 as well.

4.3.4. Proof of entropy condition (4.5)

Let ε̄n be given by (4.6). Because Un is a union of the sets Um
n for m = 1, . . . , kn,

its 2ε̄n-covering number satisfies

N(2ε̄n, Un, ‖ · ‖∞) ≤
kn
∑

m=1

N(2ε̄n, U
m
n , ‖ · ‖∞).

If A1, . . . , AN is a minimal covering of Hm
1 using balls of radius ε̄n/Ln, then the

sets LnAi + εnB1 are balls of radius ε̄n + εn ≤ 2ε̄n which cover Um
n . This shows

that
N(2ε̄n, U

m
n , ‖ · ‖∞) ≤ N(ε̄n/Ln,H

m
1 , ‖ · ‖∞). (4.9)

We now identify splines in H
m with points in R

J via the B-spline coefficients.
Then H

m
1 corresponds to the unit ball in R

J (see (3.2)). Moreover, for a spline
s =

∑

ajB
m
j in H

m we have that the uniform norm ‖s‖∞ is bounded by the
Euclidean norm ‖a‖ of the vector of B-spline coefficients, by Cauchy-Schwarz
and the basic properties of the B-splines. It follows that the covering number
on the right of (4.9) is bounded by the ε̄n/Ln-covering number of the unit ball
in R

J relative to the Euclidean distance. The latter is bounded from above by
(6Ln/εn)

J according to e.g. Lemma 4.1 of Pollard [14].
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We thus find
N(2ε̄n, Un, ‖ · ‖∞) ≤ kn(6Ln/ε̄n)

2dkd

n

and consequently, if Ln = O(np) for some p > 0, we have

logN(2ε̄n, Un, ‖ · ‖∞) ≤ Dkdn logn

for some positive constant D. So if kn is taken such that kdn logn is bounded by
a multiple of nε̄2n, then condition (4.5) holds.

4.3.5. End of the proof of Theorem 4.2

The preceding subsections show that the proof of Theorem 4.2 is complete once
we show that there exist sequences Ln and kn such that

kdn log
t kn > Cnε2n (4.10)

εn ≥ εn (4.11)

kdn logn ≤ C′nε̄2n (4.12)

Ln −
√

(5/2)2dkdn log(2/εn) >
√

2Cnε2n (4.13)

Ln = O(np), (4.14)

where C is a given positive constant and p and C′ may be chosen arbitrarily.
We have nε2n = c2nd/(d+2r)(logn)(2r(1∨t))/(d+2r), hence (4.10) is fulfilled if

kdn = An
d

d+2r (log n)
2r(1∨t)
d+2r −t,

with A a large enough positive constant. Conditions (4.11) and (4.12) are then
fulfilled as well if C′ is chosen large enough, by definition of the sequence εn.
Finally, conditions (4.13) and (4.14) are then easily taken care of by taking Ln

to be a large enough power of n.
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