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ABSTRACT 

This paper sununariz.es from. an economet:ric perspective recent work 

by statisticians on adaptive estimation. It ~lso presents new findings 

concerning the adaptive estilllability of non-linear regression models. 



.. 

Introduction 2 

The development of methods for efficitnt est:ma~ion of 

structural parameters given specified prior distributional 

information is an ongoing, central theme of econometric theory. 

At the same time, one would generally like to avoid estimators 

whose good properties depend on the validity of s~rong, 

unsupportable assumptions about the behavior of unobservables. 

T'ne two objectives of precise estimation and unrestrictive 

distributional specification must ultimately be in conflict. 

One should not think, however, that a weakening of 

distributional assumptions always carries with it a loss in 

attainable precision. 

In :particular, r::c!l.sider a non-linear regression model with 

a free intercept parameter a~d errors known to be independent 

and identically distributed (i.i.:i.). In this paper, H will 

be proved under standard regularity condHions that there 

exists an estimator of the model's slope parameters whose com­

putation does not invol'le a.ny knowledge of the true error den­

sity yet whose asymptotic distribution is identical to that of 

the most efficient estiostor t,hat could be computed were the 

true error density given. That is, knowledge of the error 

density turns out to be irrelevant, asymptotically, to estima­

tion of the slope parameters. 

The above and other important asymptotic results relating 

attainable precision of estimation to prior distributional 

information can be obtained as appli~ations of recent work by 

statisticians on adaptive estimation. An estimator may be 

termed adaptive if its computation incorporates a data based 

procedure for learning unkn01m features of the arror distribu­

tion and if such learning is asymptotically successful in the 

sense that thA asymptotic distribution of the estimator is that 

of the most efficient estimator tha~ could be computed if the 

distribution were known. 

The literature exploring contexts in which ad1ptive estim­

ation is possible and proposing specific adaptive estimators is 

now at least thirty yeors old. It was apparently Stein (1956) 

who first sought to charact~~ize the situations in which a 

parameter is and is not adaptively estimable. The achievement 
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of results allowing analysis of adaptive estimation in models 

of econometric interest has occurred only recently, howeYer, in 

seminal work of Bickel (1982), who builds on earlier important 

work of Stone (1975). 

In Sections 1, 3, and 5, I summarize from an econometric 

perspective the statistical literature on adaptive estimation. 

In Sections 2, 4, 6, and 7, I present my own findings concern­

ing the adaptive estimability of non-linear regression and more 

general non-linear models. 

1 • Adaptive Estimation: An Informal Historical Perspective 

The statistical literatu~e on adaptive estimation is enor­

mously rewarding to study, both for the powerful theorems it 

offers and for the technical vi~tuosity it displays. The form­

al arguments in this literature tend to be rat!ler intricate. 

The ideas, on the other hand, are easy to understand and intui­

tive. An overview of those developments most relevant to our 

applications will serve as a useful prelude to the more formal 

analysis that follows. 

Stein (1956) originally posed the p~oblem of adaptive 

estimability as a non-parametric generalization of the 

classical question concerning the asymptotic relevance of 

nuisance parameters. Let a sample of observativns be drawn 

randomly from a distribution known to be a member of a family 

of distributions characterized by the finite parameter vector 

(8* ,T)*)e:0xH, 1-•here 0 C:::. RM and H C R1• Let 8* be the parameters 

of interest and Tl* be the nuisance ~ara:neters. Let I(8*) be 

the Fisher's information matrix associated with estimation of 

8* given knowledge of n* and let I(8*,T1*) be the iuformation 

matrix associated with joint estimation of (8*,n*). As is well 

known, standard regularity conditions imply that given ri*, the 

best attainable asymptotic variance for an asymptotically 

normal estimator of 0* is I(e*)-1 • If TJ* is unknown, the best 

attainable precision is the upper left MxM sub-matrix of 

I(9*,n*)-1 • The latter matrix exceeds the former one by a non­

negative definite matrix which is null if the upper right MxL 

sub-matrix of I(6*,n*) is null. That is, if and only if this 

last condition holds is knowledge of n* asymptotically 

irrelevant to estimation of 9*. 

,. 
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Now consider the more general situation in which the 

distribution generating the observationa is known only to be a 

member of a family of distributL1n3 characterized "by 

(8* ,~)e:RM x (Q, where~ ia a function space. Then f* is a 

nuisance function. For example, in a non-linaa~ regression 

model with i.i.d. disturbances, f* might be the unknown error 

density and~ the set of all symmetric density functions 

centered on zero. 3tein reasoned that in this context, the 

asymptotic variance of an estimate for 0* must be at least as 

large as the best asymptotic variance that would be attainable 

were f* known to lie in some finite parametric family 

(/1,ne:H)C:::~. This, we have noted, is the MxM upper left sub­

matrix of r(e*,rJ*)-1 , where ri~· indexes the true density. Stein 

observed that the above inequality must hold for every finite 

dimensional subfamily of~ containing f*. He then concluded 

that given the prior restriction of f'.• to -1', 0* cannot be 

estimated adaptively if there exists any finite para.metric 

family such that :f'"'e: (r1 ,rie:R1 ) c. ~ and the upper right MxL sub­

matrix of r(e*,n*) is non-null. This condition, ~hich we shall 

later state formally as Condition S, is conceptually simple. 

Unfortunately, Stein did not indicate how it might be checked 

in practice. A verifiable form of t:he condition became 

_available only recently, in Bickel (1982). See also Begun, 

Hall, Huang, and Wellner (1983). 

Stein's paper does contain one iC1I11ediately useful result. 

Considering the classical problem of estimating e* in the 

presence of the nuisance parameters rJ*, Stein observed that 

there can exist situations in which knowledge of Tl* is 

asymptotically relevant to estimation of 0* as a whole but 

irrelevant to estimation of so~e sub-vector of e*. Let 

8* = (13*,a*) where j3*e:Ru, a*d~v, U + V = M. Given knowledge of 

n*, the best attainable asymptotic variance for an estimate of 

13* is the upper left UxU sub-matrix of I(j3*,a*)-1 • In the 

absence of such knowledge, it is the corresponding sub-matrix 

of I(j3*,a*,~*)-1 • Stein found the necessary and sufficient 

condition for these two Uxry matrices to be equal. This 

condition, which we shall state later as Lemma. 3.1, is less 

stringent than the familiar condition for equality of 
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I(~*,cx*)-1 and the upper left MxM sub-matrix of I(~*,a:*,ri*)-1. 

Surprisingly, Stein's Lemma appears to have lay unnoticed until 

Bickel (1982) put it to an important application. 

Following the appearance of Stein's paper, approximately 

fifteen years passed before a serious literature on adaptive 

estimation began to develop. Then, in the early 1970's, a 

number of authors reported positive findings for the simplest 

regression problem, namely the location parameter problem in 

which 

y - e* = u ( 1) 

where y, e*, and u are scalar, u has density fit, and a random 

sample of y values are observ~d. The most general result was 

achieved by Beran (1974), who showed that if~ is known only 

to be sy::unetric around zero, one can construct an estimator for 

8* whose asymptotic variance equals the best that would be 

attainable were~ known. Thus, given symmetry off*, 9* is 

adaptively estimable. 

Beran also considered the 'two-sample' pr~blem in which 

y - ~•w - a* = u (2) 

where the arguments are all scalar, e* = (~*,a:*) and Yhere w, 

which is observed, is Bernoulli distributed, independent of u. 

As before, u has unknown density f'I' and sampling is random. 

For this problem, he found that the shift (or slope) parameter 

~• can be adaptively estimated even when no prior restrictions 

on f* beyond regularity are available. 

Beran's proofs were constructive but his approach, which 

involved the construction of adaptive rank estimates, does not 

lend itself to applicatio~ to more complex estimation problems. 

Soon after the appearance of Beran's paper, however, Stone 

(1975) reported an alternative constructive proof that a 

location parameter can be estimated adaptively, given symmetry 

of r-. Stone's approach is at once generalizable, easily 

computable, and intuitively appealling, 
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Stone's construction has the following steps: 

(1) Compute eN' any estimate for 0* which does not use 

knowledge off* and which is ✓ N consistent whenever f'I" is a 

symmetric density. For example, the aam.ple median will do. 

(2) Calculate the residuals unN = yn- eN, n=1, ••• N. 

(3) Use the residuals to form a non-parametric estimate 

of the density :rw. Stone chose a particular trimmed kernel 

estimate. Details on this will be given later. 

(4) Acting as if the density estimate is the true 

density, take one Newton-Raphson type step from eN. 

If the true density were used in Step (4), the generated 

estimate would, as is well known, be asymptotically equivalent 

to the maximum likelihood estimate. For this reason, Stone 

termed his procedure 'adaptive maximum likelihood'. Proof that 

the first stage residuals can be used successfully to adapt to 

the unknown density is decidedly non-trivial. In fact, given 

that the poin~wiae rate of convergence cf a non-parametric 

density esti~ate is known to always be slower than ✓ N, one 

might think that Stone's approach must fail. The Newton­

Raphson step, however, requires not an estimate of the 

density per se but only of the information and of the sample 

mean score at eN. These functions of the density can, it turns 

out, be estimated well enough. 

Technical differences aside, the adaptive maximum 

likelihood procedure should seem familiar to eccnoraetricians. 

The approximate generalized least squares methods ubiquitous in 

econometrics have similar structures. The latter are simpler 

in that the residuals, say from OLS, are used to estimate 

(adapt to) a finite set of parameters defining the second 

moments of a distribution, not to estimate a score. The 

objective in most econometric work has been to attain 

efficiency in the sense of the Gauss-Markov Theorem, not in the 
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more ambitious sense of the Cr&.I11er-Rao lower bound. The idea, 

however, is clearly the same. 

Stone presented the adaptive maximum likelihood estimator 

entirely in the context of the location parameter problem. 

Proof that a version of the estimator is adaptive in more 

general regression problems is due to Bickel (1982). In a 

paper that must be considered a breakthrough of the first 

order, Bickel has done the following, all in the context of 

models with i.i.d. disturbances and random sampling. 

First, he has shown that if the likelihood is a convex 

functional of the unknown error density fl", and if that density 

is a priori restricted to a convex family~ of densities, then 

Stein's ~ecesssry condition fo~ adaptive estimation is 

equivalent to another condition far easier to verify or 

contradict. Essentially, Stein's necessary condition is 

equivalent to the requirement that the one Newton-Raphson step 

estimate computed using any fE~ be co~sistent and 

asymptotically normal whatever density fll'e~ actually is. The 

formal statement of Bickel's condition will be given later, as 

Condition 13. 

Assume now that one faces a suitably convex estimation 

problem for which Condition Bis satisfied. Bickel's second 

:major contribution was to prove that a modified version of 

Stone's procedure successfully yields an adaptive estimate if a 

certain verifiable condition is satisfied. This result, which 

will be presented here as Lem.ma 5.4, offers a prescription for 

the constructive proof of the existence of adaptive estimates. 

Going further, Bickel applied his result to prove the 

existence of adaptive estimates in some important multi­

parameter contexts. Of clear econometric interest are his 

applications to linear models. Consider the problem of 

estimating e~ in the single equation model 

y - x'6* = u (3) 
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where y, tte:R and x,e*eRK. Bickel proved that if :fl' is known 

only to be symmetric centered on zero, then, subject to 

standard. regularity conditions on the distribution of x, e* can 

be estimated adaptively by an adaptive maximum likelihcod 

procedure. If the model contains an intercept, so that we may 

write 

y - w'•~* - a* = u (4) 

with w,~*eRK-1; a*eR; 0* = (~*,a*); x = (w,1); then the slope 

parameters~* can be estimated adaptively when u is known only 

to be i.i.d. These findings are major generalizations of the 

Beran ( 1974) rssul ts for the rr,odels ( 1 ) and ( 2) • The adaptive 

maximum likelihood estimates are, moreover, easily computab1e. 

Viewed as a whole, Bickel's work converts what had been a 

set of isolated, specific results on adaptive estimation into a 

coherent field of atudy with broad application. On an 

aesthetic level, I find particularly appealling the 

relationship uncovered between the behavior of quasi-one Newton 

Raphson step estimates and the properties of adaptive maximum 

likelihood Gstimates. When quasi-one step estimates are ✓ N­

consistent, Stone's procedure remains IN-consistent even if a 

fixed, incorrect density estimate is used to perform the 

NeYton-Raphson step. Given this, it makes sense that the use 

of a sequence of density estimates converging to the true 

density should yield an asymptotically efficient estimate. On 

the other hand, in an estimation problem where quasi-one step 

estime.tes are inconsistent 1 Stone's procedure based on a fixed 

density estimate is inconsistent. In this case. we might hope 

that use of a convergent sequence of density estimates would 

yield a consistent estimate but achievement of asymptotic 

efficiency would seem unlikely. 
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2. Non-Linear Regression Models: A SuillI!iary of Findings 

In this paper, I shall extend Bickel's treatment of linear 

models to analyze the adaptive estimability of non-linear 

models of the general form 

g(y,x,8*) = u (5) 
J K J 

where yc.Y CR and XEX C: R are observable, ue:R is 

unobservable, the J-vector of functions g is specified up to 

the value of 0*e:0 <:: RM and a reduced form function y = 

g-1 (u,x,0) exists for each Xe:X, 8e:0. Maintained regularity 

conditions include the assumption that for each :reX, the 

conditional distribution of u has differentiable density f"I"(•) 
X 

with finite, positive definite information. The conditional 

densities f-ft are assumed non-informative regarding 0*. The 
X 

function g(y,x,8) should be measureable in (y,x) for all 9 and, 

for each x, should be jointly continuously differentiable over 

(y,8) e:Y x e. Certain integrability conditions will also be 

imposed on g. 

The Bickel theorems apply when the sample (y ,x ), 
n n 

n=1, ••• ,N is drawn by a serially independent, exog~nous 

sampling process. That is, the sample size N and the 

realizations (x, n=1, ••• ,N) are not per se informative 
n 

regarding either 9* or the densities (f~, :reX). The likelihood 

of observing y conditional on xis the population conditional 

density, namely 

~(ylx,e*,~) = !J(y,x,e*)l•~[g(y,x,0*)] (6) 

og(y,x,0*) 
where J(y,x,9*) = det[ oy ] • The likelihood of 

(y ,n=1, ••• ,N) conditional on (x, n=1 ••• ,N) is the product 
n n 

over n=1, ••• ,N of the likelihoods of y conditional on x. 
n n 

These sampling assumptions are conventional in cross-sectional 

applications. 
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Some regularity must be imposed on the exogenous process 

generating realizations of x. Let r be the set of probability 

distributions on RK having non-singular variance. We shall 

assume that the empirical distribution of x converges almost 

surely at rate/ N to some G*e:r. This is satisfied if, for 

example, the realizations of x are randomly drawn from G*. 

An important sub-family of non-linear models are those 

that can be written in the non-linear regressi~n form 

y - h(x,e*) = u (7) 

wher~ his a J-vector of functions. The structure (7) is 

considerably simpler than (5). In particular, J{y,x,e) = 

identically and the basic likelihood expression (6) reduces to 

* * A-(y!x,e*,f) = f [y- h(x,~*)]. (8) 
X :X 

A further specialization of the non-linear regression family 

are the models with free intercept 

y - li(w,~*) - a:* = u (9) 

where ~*e:RU, ex*e:R3 , 0* = (~*,c:*), x = (,7,1), and h(~,e*) = 

h(w,~*) + ex*. Here the basic likelihood expression is 

"'Cvlx,~*, ex*, f:) = f:[y- h(w,~*) - ex*]. (10) 

The distinctions between the likelihood expressions (6), (8) 

and (10) will be seen later to have important implications for 

the possibility of adaptive estimation. 

Working in the above setting we can obtain general results 

on attainable precision of estimation. In Section 3, we state 

formally the Stein-Bickel necessary conditions for adaptive 

estimation. Then, in Section 4, we show that non-linear 

regression problems satisfy Condition Bin two important 

settings. First, Condition Bis satisfied for the entire 

parameter vector if the disturbances are known to be 

symmetrically distributed conditior-al on x (Proposition 4.1). 
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Second, Condition Bis satisfied for the slope parameters of a 

model with free intercept if the disturbances are known to be 

i.i.d. (Proposition 4.2). 

These results are very encouraging but it should not be 

thought that Condition B remains satisfied under arbitrarily 

weak distributional assumptions. For instance, if the 

disturbances are known to have densities that are close (in the 

sense of the weak topology) to symmetric but not necessarily 

symmetric, conditional on x, then Condition Bis not satisfied 

(Proposition 4.3). If the model has a free intercept but the 

disturbances are not known to be i.i.d., then Condition B does 

not hold for the slope parameters unless the symmetry 

restriction ho:ds (Proposition 4.4). In these cases then, 

adaptive estimation cannot be possible. 

Condition B also fails when one moves from non-linear 

regression to models of form (5)-(6) in which the Jacobian of 

the transformation from y to u has a more ccmplex form. 

Consider the simple location-scale parameter model ~*y +a*= 

u, where all the expressions are scalar and where y is known to 

be symmetric with mean zero and variance one. Here the 

Jacobian is still relatively simple yet Condition B for joint 

estimation of (~*,a*) is not satisfied (Proposition 4.5). 

Following Section 4, we seek to verify the existence of 

adaptive estimates in those situations where Condition Bis 

satisfied. The Stone-Bickel construction of adaptive maximum 

likelihood estimates is outlined in Section 5. While the 

adaptive maximum likelihood method should have general 

applicability, the central lemma on the convergence of the non­

parametric estimate of the score function has thus far been 

proved only in the one-dimensional case. For this reason, our 

applications of the method, given in Section 6, are confined to 

single equation models. 

In Section 6, we extend Bickel's proofs for linear models 

with i.i.d. disturbances to non-linear regression models with 
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x and u possibly interdependent. We prove that if the 

disturbances are known to be distributed symmetric around zero 

conditional on x, and if the space X ca.~ be partitioned into a 

* finite system of subsets within each of which f is known to be 
X 

invariant, then the Stone-Bickel estimator is adaptive for the 

entire parameter vector (Theorem 6.1 and Corollary). We then 

prove that the Stone-Bickel estimator is adaptive for the slope 

parameters if the model has a free intercept and the 

disturbances are known to be i.i.d. (Theorem 6.2). 

The concluding Section 7 raises questions that are either 

being addressed in ongoing research or need to be addressed. 

Section 7.1 briefly describes the elegant new results of Begun 

et al. (1983) placing bounds on attainable precision when 

adaptation is not possible. Section 7.2 lists a number of 

important econometric probleres which cannot be treated using 

the theory summarized in this paper. In Section 3, we consider 

the small sample behavior of adaptive maximum likelihood 

estimates and present some suggestive Monte Carlo findings. 

_3_. __ T_he Stein-Bickel Necessary Conditions for the Existence 
of Adaptive Estimates 

We present the Stein-Bickel necessary conditions in a form 

appropriate for our applications but not necessarily in the 

moat general manner possible. In all that follows, we maintain 

the regularity and sampling assumptions imposed in Section 2 

when the non-linear model (5)-(6) was introduced. Moreover, we 

restrict attention to problems in which the classical bound on 

precision of estimation would be attainable 

* * asymptotically if the set of densities~ = (f ,XEX) were 
X 

known. That is, we assume that for all e*ee and G*er, 
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I(8*) = E(olog\ olog,\.) 
o8 Q\j I 8=0* ( 11) 

olog\(ylx,8*,f*) olog\(y!x,8*,f*) 
= f[f 08 X ae 1 X A (y!x,e*' ~)dy] dG* 

is finite, non-singular and that, given knowledge of$*, 

" exists a computable estimator 8N such that, as N+,m, 

A L d-7 
IN (a.ti- 8*) + -il(O,I(e*)-1 ). 

there 

( 12) 

I\ 

Minimal regularity conditions guaranteeing the existence of 8N 

are given in LeCam (1969). 

Consider next the familiar situation in which$* is not 

given but is known to be a member of a parametric family 

[(i',:n:X), TJEH] where His a subset of a finite dimensional 
X 

real space, where each~ is differentiable in u and where, for 

each value of u, fl (u) is differentiable in ri at TJ=r'I*• Here ri* 
X 

indexes the true set of conditional densities. We can then 

write the true conditional density of y as A(y!x,8*,~*) and 

consider joint estimation of (e*,ri*). As is ~ell known, the 

classical bound on the precision of aa estimate for 9* 

continues to equal I(e*)-1 if and only if 

d ~ log\ o log,\ 1 = O 
.I:.\ 00 ori' ·1e=e*, ri=n* • 

(13) 

Otherwise, the presence of the nuisance parameters ri* lowers 

the precision with which 9 * can be estimated. 

It is much less well appreciated that in the presence of 

nuisance parameters, the bound on the precision of an estimate 

for a given sub-vector of 0* can continue to equal the relevan·t 

sub-matrix of I(0*)-1 even though condition (13) is not 

satisfied. This was shown in Stein (1956). 
U V 

Let 0* = (j3* ,a*), j3ER , a*s:R , U+V = M. For yc:(13 ,a ,Tl) and 

os:(j3,a,n), define 
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{14) 

If' n• is known, the smallest possible asymptotic variance for 

an asymptotically normal estimate of 13• is the UxU upper left 

sub-matrix of' the inverted information matrix 

I(~•,u•)-1 • [ t tr• (15) 

If n• is not known, the smallest possible asymptotic variance 

tor an estimate of' p• is the UxU upper left sub-matrix of 

~p "Pa: 'P11 
-1 

I(p• ,cz• ,n•)-1 • ~ A A • a:.:z (IT) 

ApT) 
A' 

(Ill All'l 

Let Iu denote the UxU identity matrix. Stein proved the 

following matrix algebraic lemma: 

(16) 

Lemma 3.1: The UxU upper left sub-matrix of I(p*,a:*,n*)-1 

equals that of I(~•,a:•)-1 if' and only if 

[ !;• - ~A;!J [ t] • O. (17) 

Proof': See Stein (1956). 

Condition (17) is less stringent than (13), which requires that 

¾Tl • ACX1l • O. 

lov consider the situation in which,• is known only to 

belong to a class ~ of sets of' densities containing the 

parametric family [(~, :u:X). T)eH]. Clearly, a subvector 13* of' 

9* can be estimated no more precisely in this case than in the 

case where ,• is lmown to be in the parametric subset of ~. 

This simple observation is t~e essence of the Stein (1956) 

• 
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necessary condition for adaptive estimation of 13•. Paraphrased 

tor our applications, Stein's condition is 

Condition S: Let ♦ * be known to lie in ~, a specified class of 

sets of densities on R3• Ir there exists some 

(8*, ♦ *,G*) ee x~ xr and some finite dimensional subfamily of 

~ such that I(f3*,a:*,11*)-1- exists but (17) is not satisfied, 

then 13• is not adaptively estimable. 

Condition Sis conceptually simple but difficult to check. 

To obtain a practical version of the condition, Bickel (1982) 

restricted attention to problems in which~ is a convex family 

of densities and the sampling distribution of the data is a 

convex functional on~. The former condition is ~atisf'ied if, 

for example, ~ is the space of all aensi ties or of all 

symmetric de~sities centered on zero. In our applications, the 

structure of the basic likeliho~d expression (6) implies that 

the latter condition is alw&ys met. Simply o~serve that for 

all (y,x,8)e Y x Xx e, all pairs of densities (r0 ,r1) and all 

11c[o,1], 

(18) 

•· 
• !J(y,x,e)l•[rifl(g(y,:x,8)) + (1-,,)r0 (g(y,x,8))] 

• 11•>..(ylx,e,r1 ) + (1-Tt)•k{ylx,e,:r0 ). 

Consider new any ♦ *• (f4t,uX)~ and ♦• {r ,uX)~. 
X X 

Letting 

/I • Tlf' + {1-Tt )f*x' 
::z: X 

( 19) 

convexity of ~ implies that 

[ (~ ,uX) ,11e: [o, 1 ]]c:,,. {20) 

Bickel obtained his condition by applying Condition S 
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informally to the parametri~ family defined in (20). Formally, 

this makes sense only if the densities fl are differentiable in 
X 

T\ at the boundary point 11 * = 0. 

extend the family (20) and apply 

To guarantee this, we can 

Condition Sonly when there 

exists an 11 0 < 0 such that 

[ ( ~ , xe X) , 11e [ 110 , 1 ] ] c:: ~ • (20') 

This allow~ us to formally derive the following version of 

Bickel's necessary condition for adaptive estimation. 

Condition B: Let~* be known to lie in~, a specified convex 

class of sets of densities on rt3 • Where it exists, define the 

expected score function 
(21) 

oloSA- (y Ix ,e*, f-lt) 
s[ (e*,~*),(e*,¢,),G*] = ff oe x A(y!x.e*,fx)dydG* 

A necessary condition for adaptive estimation of p* is that 

whenever Sexists and (20') hold~ fer some ri 0 < 0, 

~:. r(e*)-1 s[(a*,~*),(a*,$),G*] = o. (22) 

Proof: When ¢,* and ¢, are such that (20') holds for some ,, 0 < 

O, ~ is differentiable in TJ at Tl* = 0 s.nd Condition S can be 

applied. 

To interpret (17) in this case, 

ologA.(ylx,0*,TJ*) >.(y!x,0*,f) 

--------- X ori - "'(y Ix ,e *, :rit) 
X 

observe that by (18), 

- 1. (23) 

T"ne adding-up condition for probabilities implies that 

t:( olog\~ _ 
.I:.\ oe :.ie=e* - o. (24) 

Together, (23) and (24) imply that 
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[ t ] • S[(0*, ♦ *),(0*, ♦ ),G*). (25) 

Next observe that premultiplication of both 3ides of (17) 

by an arbitrary non-singular UxU matrix B yields the equivalent 

relationship 

[B:-BA A-1 ] 
l3cx cxcx 

I A~n] - O LA - • 
CXT} 

( 17') 

Since~:, is the UxM matrix [I,,.: O], a further equivalent 

statement is 

:: • [ : • -~.A~] [ t ] • 0 ( 17") 

where C' end D ere arbitrary VxU and VxV matrices. C'noose 

B = (A - A A-1 A,! )-1 C = - BA_ A-1 and D = A-1 + C'B-lc. 
~~ ~ex a:cx pa: ' -pa: a:a ' acx 

Then (17") becomes 

~- I(~* ,a*)-1 I~;] • O. (17" ') 

Combining this with (25) yields Condition B. 

Q.E.D. 

An important special case is that in which~•= 0*. Here, 

~~• = IM' the presence of I(0*)-1 in (22) becomes irrelevant 

and (22) reduces to s[(e*,4>*),(<1>*,<1>),G*] = o. Observe that 

this is the condition that should be satisfied for consistent, 

quasi-maximum likelihood estimation of 6*. See Huber (1967). 

More directly relevant to us is the fact that (22) is necessary 

and sufficient for consistent estimation of 8* by a quasi-one 

step procedure. That is, assume that an initial consistent 

estimate of e* has been obtained and now take one Newton­

Raphson step under the assumption that the disturbances are 
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generated by$* when they really are by$• Under standard 

regularity conditions, the resulting estimate remains 

consistent for ~ *, al though not necessarily for a:*, if and only 

if (22) is satisfied. 

4. Applications 
4.1 Non-Linear Regression Models 

Bickel (1982) verified that Condition Bis satisfied for 

estimation of 0* in the single equation linear model when the 

disturbances are known to be i.i.d. and symmetric around zero. 

He also showed that Condition Bis satisfied for estimation of 

the slope parameters~* in the single equation linear modP-1 

with free intercept when the aisturbances are only known to be 

i.i.d. Proposition 4.1 extends the former result to the J­

equation non-linear regression model when the disturbances are 

known to be symmetric around zero, conditional on x. 

Proposition 4.2 extends the latter finding to the J-equation 

non-linear model with i.i.d. disturbances. In what follows, 

the information of a density f is denoted by the JxJ matrix 

i(r) = J 1 · of(u) of(u) 
fGiY OU OU 

du. (26) 

Where it exists, the expected score for a density f° computed 

under a possibly different density f1 is denoted by the Jx1 

vector 

s(f 0 ,r1 ) = f 1 of•(u) f1 (u)du 
f 0 (u) ou 

(27) 

Proposition 4.1: Let Fs be the space of all symmetric J­

variate densities centered on zero, with finite non-singular 

information. Let~= (Fs)x. Then model (7) satisfies 

Condition B for estimation of e*. 

Proof: As defined, q> is convex. For a model of form (7) and 

~* = 0*, condition (22) reduces to 
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s[(e*,<P*),(e*,<P), G*] = J' - oh(x,e*) s 1 :f":t f )dG* = o (28) 
08 \ x' X 

oh. 
where ~: is the MxJ matrix of terms ~- For each :n:X, the 

m of* 
restriction of~ and fx to F8 implies that~ oux fx is anti­

x 
symmetric so s(f*,f) = O. Hence, (28) is satisfied. Q.E.D. 

X X 

Proposition 4.2: Let F 0 be the space of all J-variate 

densities wi tb finite non-singula_r information and zero mean. 

Let~= [(f)x, feF 0
]. Then model (9) satisfies Condition B for 

estimation cf a*. 

Proof: if> is convex. Rather t'han verify condition (22) 

directly, it is simpler to verify the equivalent condition 

[Iu: - ')3<XA;~J s[(e*,<1>*),(e*,~),G*] = o. (22') 

To do this, observe that for a model of form (9) with i.i.d. 

disturbances 

and 

A~a = (oh(;/*)] • i( f*) 

A-1 = i( f*)-1 
Q;(X 

(29) 

(30) 

[
E[oh(w,a*)]l 

s[(e*,<P*),(e*,<P),G*] = - ~~ s(f*,f). (31) 

J J 
Inspection of (29), (30) and (31) reveals that (22') is 

satisfied for all densities f* and f for which s(f*,f) exists. 

Q.E.D. 

In Proposition 4.2, the restriction off* to densities 

with mean zero was imposed only to identify a* and can be 

replaced by an alternative location parameter restriction. 
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This aside, it appears that the distributional assumptions of 

Propositions 4.1 and 4.2 are close to the minimum necessary for 

satisfaction of Condition B. In particular, we can prove that 

adaptive estimation of 0* becomes impossible if Proposition 

4.1's restriction of (f*,XEX) to symmetric densities is relaxed 
X 

ev·en locally, so as to allow neighbors of such densities. We 

can also show that Proposition 4.2 does not generalize to cases 

in which u is dependent on x. These negative results are 

contained in Propositions 4.3 and 4.4. 

Proposition 4.3: For given oe:(-0,1), let F00 = [(1-n)•f + 11•z: 

fe:F8 , zdF 0 -Fs), 0 < 11 < o] be the space of a-neighbors of 

symmetric densities on R3, centered on zero. Let~= (F85 )~. 

Then model (7) does not satisfy Condition B for estimation of 

0*. 

Proof: It is easy to show that~ is convex. To contradict 

condition B, it suffices to consider the spec~.al case in which 

the disturbances are truly i.i.d. symmetric. Let fil'e:Fs be the 

common true density and consider (fx·,xe:X) = [(1-11)£¼ + riz]X 

for so~e ze:(F 0 
- Fs), 0 < 11 < o. Then the condition (22) for 

9* reduces to 

(Joh(~9e)dG*][ (1-ri)s(f*,f¼) + 11 s(f*,z)] = O. (32) 

The assumed non-singularity of I(0*) for all G*e:r implies 

that oh(;t*) t- 0 for at least some x. Hence ,f9h(;9e*) dG* * 0 

for at least some G*e:r • For all f*, s(f'll',f¼) = O. On the 

other hand, there clearly exist non-symmetric z for which 

s(f*,z) t- O. Hence, (32) does not always hold as Condition B 

would require. 

Q.E.D. 

Proposition 4-4: Let¢ (F•)X. Then model (9) does not 
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satisfy Condition B for estimation of~*. 

Proof: It suffices to consider the two-sample model (2) where 

y-~*w - a*= u and w=1 with probability y, w=O otherwise. Let 

(~,ff) be the true conditional densities for w=0,1 and 

consider any alternative pair (f0 ,f1) in~. In this context, 

A~cx = ye i(f1) 

Acxa: = ( 1 -y ) • i ( ~) + r i ( ff) 

and 

s[ (a*,¢,*), (e* ,¢,) ,G*] = 

= - [~] (1-y)s(~,f0 ) - [ ~J ys(£1,f1). 

The condition (22') therefore reduces to 

(33) 

(34) 

(35) 

r i( rr) 
(1 ) ·{r) + '( :--11-) [ (1-y)s(f*,f ) + ys(~,f1)] (36) 
~ • 1 0 y• l. I 1 o O l 

- ys(ff ,t1 ) = O. 

It is immediate that (36) is not satisfied for all choices of 

(~,ff), (f0 ,f1 ) and y. For example, if s(fi,f1 ) ~ 0 and 

s(f*,f) * 0, condition (36) fails for all ye(o,1 ). 
0 0 

Q.E.D. 

4.2 Linear Systems Models 

Consider the J-equation simultaneous systems model 

b(e*)y + a(a *)x = u (37) 

where b ~ (JxJ), a~ (JxK) and prior restrictions on the 

structural parameters are expressed by making those parameters 

functions of a lower-dimension parameter vector 0*. Assuming 

b(9*) non-singular, we can write the equivalent reduced form 

model 
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1 - [-b(e*)-1 a(e*) J x = b(0*)-1 u. (37') 

Prior knowledge that the structural disturbances u have 

conditional densities in a class~ implies that the reduced 

form disturbances b(0*)-lu have conditional densities in some 

class i(e*). 

Wheni(e*) is invariant over 8*e0, the reduced form 

disturbances are uninformative regarding e* and the problem of 

adaptive estimation of simultaneous systems models becomes 

identical to that of adaptive estimation of non-linear 

regression models. This holds in particular if <Ii is specified 

as in Propositions 4.1 and 4.2. In both of these cases, 

~(9*} = <Ii for all 9* and the simultaneous systems origin of the 

regression (37') introduces n~ new issues. 

Wheni(9*) does vary with 9*, the reduced form model (37') 

cannot be analyzed using the tools of this paper. On the other 

hand, the structural model (37) can, in principle, be checked 

directly for satisfaction of Condition B. This will not be 

pursued here. 

4.3 Joint Estimat~on of Location and Scale 

Consider for a moment the general non-linear model defined 

in (5)-(6). The expected score function S has the. relatively 

complex form 

s[(e*,$*),(e*,'1>),G*] (38) 

a ( e*) afit[g(y,x,e*)] f [g(y,x,e*)] 
= If I J(y ,x,8*) I g ya:, x OU F[ I 9*) ]dydG* 

Note that in the special 

problem, the second term 

term simplifies as !Ji = 

X g,y,X, 

case of a non-linear regression 

disappears as 0~:I = 0 and the first 
cg oh 

1 and 09- = ae· 
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Given the complexity of the expression (38), a general 

characterization of the situations in which Condition Bis and 

is not satisfied appears difficult to achieve. On the other 

hand, some insight emerges from consideration of what is, 

perhaps, the simplest model that is of form (5) but not (7). 

This is the single equation model 

b*y + a* = u (39) 

whero the location parameter a* and scale parameter b* > 0 are 

to be jointly estimated. A natural choice for~ is the set F88 

of standardized symmetric densities, defined to be the space of 

symmetric densities centered on zero, with variance one and 

fini'i;e non-singular information. For this specification we can 

prove 

Proposition 4.5: Let~= Fss. The model (39) does not satisfy 

Condition B for estimation of (b*,a*). 

Proof: As defined,~ is convex. 

For model (39), !JI = b*, ~ = 1 ?ill= o og = og = 1 
ob ' oa ' ob y, oa • 

Therefore, condition (22) for joint adaptive estimation of 

(b*,a*) has the two components 

~~ = Ju 0 r;~u) ;1(~) du - a*s(f*,f) + 1 = O (40) 

oS ( - = b*s f* f) = 0 oa ' (41) 

where we have, in (40), used the fact that ~*y = u - a*. For 

feFss, condition (41) is always satisfied and condition (40) 

reduces to 

(42) 

Clearly, (42) is not satisfied for all f+, feFss. For example, 
1 u4 

take fl'( u) = y exp (- 46 ) where y and 6 are such that 



J~(u)du = 1 and Ju2 f'/r(u) du= 1. 
3 -r and condition (42) becomes 6 
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Then :flteFss' o ~·( u) 1 
ou f*(u) = 

= f u4 f(u)du. The restriction 
ss 

off to F , however, does not constrain the fourth moment off 

to any constant value. Hence, (42) is not always satisfied as 

required for Condition B to hold. 

Q.E.D. 

Obse:c-ve that the question of joint adaptive estimation of 

(b*,a*) in model (39) is logically distinct from the question 

of adaptive estimation of a*/b* in the transformed model 

y + a* /b* = u' (39' ) 

where u' = u/b*. Restriction of the density of u to F88 

s 
implies that the density of u' is in a subset of F , namely 

those symmetric densities having finite variance. It follows 

from Preposition 4.1 that Condition Bis satisfied for a*/b*. 

Thus, we have here another instance in which the entire 

parameter vector 0* cannot be adaptively estimated but an 

interesting fU!lction of 0* can be. 

Writing (39) as (39') points to an important re­

interpretation of Proposition 4,5. This is 

Corollary: Let~= (Fs)X. Then model (7) does not satisfy 

Condition B for joint estimation of 0* and the standard error 

of the regression. 

Proof: Model (39') is a special case of model (7) and the 

space of finite variance symmetric densities is a subset cf F8 • 

In this special csse, 0* = a*/b* and 1/b* is the standard error 

of the regression. By Proposition 4.5, Condition Bis not 

satisfied for (b*,a*). Hence, Condition Bis not satisfied for 

the one-to-one transformation (a*/b*,1/b*). 

Q.E.D. 
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5. The Stone-Bickel Construction of Adaptive Maximum 
Likelihood Estimates 

When Condition Bis satisfied, one may attempt to confirm 

that adaptive estimation is possible and to construct adaptive 

estimates. The Stono-Bickel work on adaptive maximum 

likelihood (AML) estimates meets both these objectives. We 

shall summarize the AML approach as developed by Stone (1975) 

and Bickel (1982) and shall simultaneously lay the groundwork 

for our applications to non-linear regression models. 

5.1 General Approach 

Consider first the idealized situation in wtich ($*,G*) is 

known but 0* is not. Given the sample (y ,x ) , n=1, ••• ,U, let 
n n 

8Nee be an estimate for 0* known to satisfy the condition 

✓ N(8N- 0*) = Op(1). (43) 

Recalling equation (11), let I(0N) be_ the information matrix 

evaluated as if eN were the true parameter vector. Define the 

sample mean score function 

N ~ log\ (y I :x: ,e N f'"lt ) 
n n , :x: 

2 oe n 
n=1 

(44) 

(45) 

which is a modified form of the familiar one Newton-Raphson 
I\ 

step estimate. The modification is that en uses I(eN) to 

approximate I(0*) while the usual one step estimate uses minus 

the sample mean of b2 log\ (yl x ,eN, ~) /o9o0'. In all that 

follows we assume that the estimation problem is sufficiently 
/')_ 

regular so that eN satisfies 
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A L 
✓ i(0N- 0*) + qz_(o,I(e*)-1). (46) 

In the random sampling context in particular, the asymptotic 

efficiency property (46) is known to hold given minimal smooth­

ness restrictions. See LeCam (1969) and Bickel (1982). Here, 

we shall simply assume (46) directly. 

Now return to the situation of interest, in which it is 

kn.own only that (0* ,qi* ,a-ic•) e: e x cJt x r. Assume that there 

exists a computable initial estimate 0N that satisfies (43). 

Let IN and SN be computable estimates of I(0N) and SN(eN,¢*) 

respectively. Then construct the estimate for 0* 

(47) 

where IN is a generalized inverse of IN. Given (46), the sub-
. ~ ~~ . estimate ~N = 09 , eN will be adaptive for ~• if and only if 

The question is whether computable estimates eN'IM and SN 

satisfying (43) and (48) exist. 

5.2 Estimation of the Density 

(48) 

Stone (1975) answered this question in the affirmative in 

the case of the location parameter model (1) with symmetric 

disturbances. In this setting, suitable initial estimates eN 

are readily available and the problem of estimating I(eN) and 

SN(eN,q,*) reduces to one of approprhte estimation of the 

unknown f* and its score function~*~;- To accomplish this, 

Stone used residuals to form a kernel estimate for f* and, 

after some trimming, formed a score function estimate from 

this. The procedure is a.s follows. 

For n = 1, ••• N, compute the residua.ls 
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unN = Yn - 0N (49) 

Define uN to be a random variable having the empirical 
N 1 

distribution of the residuals. That is, Prob(u = unN) = N. 

Let vN be a random variable distributed normal with raea.n zero 

and variance cr~, where 1 is a positive parameter selected by 

the analyst. Now define the random variable 

l;N = UN + V 
N . (50) 

Then the distribution of CN is a smoothed version of that of 

uN, with °1J controlling the degree of smoothing. In 

particular, CN has the infinitely differentiable density 

N u-u 
= l _!_ [-1 <!,( nN) ] 

n=1 N O'N O'N 
(51) 

where cj, is the standard normal density. Recall that~ is 

known to be symmetric. The estimat, fN is not generally 

symmetric but the derived estimate 

(52) 

is. 

Stone used r; as his estimate for £ii-. He proposed a 

family of trimmed score function estimates, the simplest of 

which is 

s (u) 
1 df: (u) 

if lu! ~ bN rN = 
fs (u) 

du 
N 

(53a) 

s 
(u) = 0 otherwise. rN (53b) 

Here bN is a positive parameter selected by the analyst to 

control the degree of trimming. Using r; and r;, Stone 

proposed estimates IN and SN. His estimates are considera~ly 

more burdensome to compute than the ones later introduced by 
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Bickel, in a more general setting. For this reason, details 

will not be given here. The important point is that Stone 

proved his estimate 0N to be adaptive for 

parameter 0*, provided that the degree of 

trimming in r; are reduced at appropriate 

the location 
s 

smoothing in fN and 

rates as the sample 

size increases. Neither Stone nor Bickel discusses how the 

smoothing and trimming parameters should be set in the context 

of a given data sample. We shall return to this problem in 

Section 7. 

While Stone's approach would seem generalizable well 

beyond the location para.meter ,roblem, his dense, specific 

presentation makes it difficult to see beyond his paper's 

confines. Happily, Bickel (1982) has succeeded in doing so. 

To appreciate Bickel's contribution, observe that in any AML 

problem, the question of appropriate estimation of the unknown 

density can be decomposed into three components. These are 

(1) What properties should an estimate of the density 

have in order that it be possible to construe~ estimates IN and 

SN that satisfy (48)? 

(2) In the idealized situation where the disturbances 

u1, ••• ,uN are observed, can a density estimate with the 

appropriate properties be formed? 

(3) If the answer to question 2 is positive but only 

residuals u1N, ••• ,uNN associated with a eN satisfying (43) are 

observed, can a density estimate with the appropriate 

properties still be formed? 

Working in the context of single equation linear models 

with i.i.d. disturbances, Bickel found the following. 

First, appropriate estimation of I(eN) and SN(eN,~*) 

requires suitably convergent estimation of the score function 

{:..~:but not of the density fir per se. Let qN be an estimate 

for the score function. Then qN should satisfy the mean square 
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convergence condition 

J[ 1 dfit(u)] 2 p 
qN(u) - fit(u) du f¼(u)du + 0 (54) 

as N + =· Rather than derive (54) here, we shall show in 

Section 6 that it remains the relevant condition in the more 

general context of single equation non-linear regression 

models. 

Second, if u1 ,···~ are observed, a modified version of 

Stone's score function estimate satisfies (54). In particular, 

define 

N u-u 
i](u) = L .!.. [-1 ct,(--n)] 

n=1 N °N °N 
(55) 

and 

q*(u) = 0 
N 

other-dse. 

Here bN' cN, and dN are positive parameters chosen by the 

analyst to control trimming. Bickel proved 

(56a) 

(56b) 

Lemma 5.1: Let u~,···,uN be a random sample from a univariate 

density fit having finite information. Then the score function 

estimate qN defined in (56) converges in mean square as 

specified in (54) :provided that ~ + =, °N + O, ¾J + =, aN + 0, 

N-1 bN°ii3 + 0 and aNdN + 0 as N + =. 

Proof: See Bickel (1982), Section 6.1 for the lengthy and 

delicate proof. Related results are given in Stone (1975), 

Section 3. 
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When f"I" is known to be symmetric, it is desirable that the 

score function estimate be anti-syrunetric. 'rhe estimate qN is 

not generally anti-symmetric but the derived estimate 

4;sc u) = ½ [ q;< u) - q;<-u)J 

is. The following Corollary to Lemma 5.1 is a simple 

application of the Cauchy-Schwarz inequality. 

(57) 

s 
Corollary: If f"I" E F, Lemma 5.1 continues to be satisfied 

*s 
when qN replaces qN. 

Now turn to the third question. Observe that Lemma 5.1 

and its Corollary are general results, not dependent en the 

model in which the disturbances appear. On the other hand, 

extension of the Lemma to score function estimation based on 

residuals requires consideration of the model generating the 

residuals. For n=1, ••• ,N let 

unN = Y n - x~ e N (58) 

be the single equation linear model residuals. Define fN as in 

(51) and define qN as in (56), but with fN replacing r-;. In 

this c~ntext, Bickel proved that Lemma 5.1 continues to be 

satisfied when qN replaces q;. The argument that linear model 

residuals can replace disturbances in the estimation of the 

score function relies on two very useful ideas of LeCam and on 

a theorem of Hajek and Sidak. We shall need to extend the 

argument to non-linear models and so shall present it in some 

detail. 

LeCam (1960) introduced the concept of 'contiguity' of two 

sequences of probability measures. In the present setting, the 

sequence PN, N=1 , ••• ~of N dimensional densities of the 

residuals (unN, n=1, ••• ,N) is said to be contiguous to the 

sequence PN, N=1, ••• ~ of N dimensional densities of the 

disturbances (u, n=1, ••• ,N) if, as N + ~, 
n 
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(59a) 

N 
for every measureable sequence of events AvC. R, N=1, ••• = such 

.Lt 

that 

J PN(u1 , ••• ,uN) du 1, ••• duN+ o. 
AN 

(59b) 

To see the relevance of contiguity to the present problem, 

choose any € > 0 and le+. 
(60) 

& [ N [ 1 dfit( u) 2 Aw= (u1 , ••• ,'½J)&R :f qN(u) - :flt(u) du ] ~(u)du > e] 

By Lemma 5.1, {~} is a sequen~e satisfying (59b). If {PN} is 

contiguous to {PN}, then the sequence{~} also satisfies 

(59a), implying that qN does converge in mean square. Thus, 

the problem of extending Lemm.a 5.1 to estimation Jy residuals 

is solved if it can be shown that {PN} is contiguous to {PN}. 
The result enabling demonstration of contiguity is due to 

Hajek and Sidak ( 1967). Let z , n°1 , •• .= be a sequence of 
n 

univariate random variables such that the joint density of zn' 

n=1, ••• ,N is 
N 

Q~=Ilf(z -µnN). 
· · n=1 n 

(61) 

Here f is a fixed density with O < i(f) <~and µnN' n=1, •.• ,N 

are a set of location parameters. Let µN = N-1 lµnN and define 
N 

Q = II f(z - µN). (62) 
N n= 1 n 1 

Hajek and Sidak proved 

Lemma 5 .2: Assume that as N + =, 

(63) 
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and 

N 
): (µ - µ )2 + P 

n=1 nN N 
(64) 

where O < p < co • Then { QN} is contiguous to { QN} • 

Proof: See Hajek and Sidak (1967), Section vr.2.1. 

To apply Lemma 5.2 to the problem at hand, we select the 

initial estimate 0N in a manner suggested 

any computable estimate satisfying (43). 

define the lattice of coordina~es in RM 

by LeCam. Let 0N be 
M 

Recalling that 0*c:R , 

(65) 

R~ = [N-112 (i 1, ... ,iM): ik= - co, ••• -1,0,1, ••• co,k=1, ••• M]. 

Now choose 9N to be a point in R: closest in Euclidean distance 

to 0N. Clearly 0N satisfies (43), hence is a legitimate 

initial estimate. The estimate eN has a technical advantage 

over 0N, as follows. 

✓ if-consistency implies that for every A> 0 there exists a 

o (X.) > 0 such that 

lim Prob[! 0 N - 0 * I < N-11 26 (A ) ] > 1-X. 
N + co 

lim 
N + co 

Here !• I is the Euclidean norm. Consider the sets 

efl.N = [e:le-e*I < N-112&(>..)] 

0,,_N = ¾.N /) R:. 

(66a) 

(66b) 

(67a) 

(67b) 

By (66), any proposition that h~lds uniformly for all 0 in 0/\.N 

(respectively 0/\.N) must hold asymptotically with probability at 
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least 1-i.. for 0N (respectively eN). Now ¾.N is uncountable but 

eAN is a finite subset whose cardinality depends on A but does 

not vary with N. It is thus often easy to prove propositions 

uniformly over eAN. This opens a convenient approach to 

proving propositions concerning the random variable eN. That 

is, prove that for each N and A> 0, the proposition holds for 

all e in 0A N. Then let A + 0 to prove that, the proposition 

holds in probability, asymptotically, for eN. 
With the above as preliminaries, Bickel proved that the 

answer to Question 3 is affirmative for single equation linear 

models. Our Lemma 5.3 extends this result to single equation 

non-linear regression models. 

Lemma 5-3: For a single equation model of form (7) with i.i.d. 

disturbances, Lemma 5.1 continues to be satisfied when qN 

replaces qN. 

Proof: For 9s:0 and n=1, ••• ,"" define the residuals 

u ( e) = y - h ( x ,e ) • 
n :::i. n 

(68) 

Let fl = e-a*. Then the relationship between u (e) and the 
n 

disturbance u = u (e *) is 
n n 

u (a) = u - h' D-
n n n 

(69) 

• oh(xn,e~) 
where hn = 00 and 0~ is intermediate between 0* and e. 

Observe that in the notation of equation (61), f=f*, z = u (0), 
n n - -

µ = b'll andµ = h..'.A where h.._ = N-1 ). h. This sets the 
nN n N -r• -""N J n 

stage for application of Lemma 5.2. 

Fix ;\ > o. By the definition of eAN in (67), t::. 't::. <: N-1 

6(~)2 for all 8s:0AN. By this and the Cauchy-Schwarz 

inequality, 



Max [ Max (µnN - µN)2] 

e 0 n=1, ••• ,N 
€ X.N 

< 6 (X. )2 Max [ N-1 

9e0AN 

N 
\ (ii - • ) ' (h - ii__)] • 
I.. n ~I n -"N 

n=1 
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(71 ) 

Now let N + =· Recall that by assumption, the empirical 
oh(x,9*) 

distribution of x has almost sure limit G* and that 
08 

has finite, positive definite variance under G*. It follows 

from this and from the fixed cardinality, convergent 

construction of the sequence of' sets 0AN. N=1 , ••• = that the 

r.h.s. of (70) has limit zero, almost surely in x and the 

r.h.s. of (71) has finite, positive limit, almost surely in x. 
a.a. - . ' Also note that µN = ¥ + O. Lemma 5.2 then implies that 

given any sequence of values 0>..N s: e,._N , N=1, ••• ,=, the 

sequence of densities of the residuals [un (0>..N), n=1, ••• , N] is 

contiguous to the sequence of densities of the disturbances 

(u ,n=1, ••• ,N), almost surely in x. Therefore, Lemma 5.1 
n 

extends to the sequence of score function estimates constructed 

using the sequence of sets of residuals [un(eX.N), n=1, ••• ,N], 

N=1, m. 

Since 9N e 0>..N with asymptotic probability at least 1-X., 

we can conclude that for ally > 0, 

lim Prob[J (qN(u) - f'k(u) dr:~u)) 2~(u)du < y] ) 1-X..(72) 
~ 

Letting X. + 0 proves that (54) is satisfied. 

Q.E.D. 
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The following Corollary is an immediate consequence of 

Lemma 5.3 and of the Corollary to Lemma 5.1. 

Corollary 1 : 
s 

If f+eF, Lemma 5.3 continues to be satisfied 
s 

when qN replaces qN. 

A simple extension of Lemma 5.3 is to models involving a 

finite number of unknown conditional densities. 

Corollarv 2: Let there exist A<~ unknown densities r+, 
a. 

a=1, ••• ,A. Assume that X partitions into A known, mutually 

exclusive 
A 

subsets X, a=1 , ••• ,A such that G*(X) > 0, 
a a 

at G*(Xa) = 1 and xeX ~ r+ = f+. Let N( a) be that subset of 
a :x: a 

observations n=1 , ••• ,N for which :x: c:X and let a,., , be the 
n a -1H, aJ 

score function estimate ccnst~ucted using the residuals in 

N(a). For a single equation model of form (7), qN(a) converges 

1 dr: s - s 
in mean square to f* du • If £'! e: F , qN(a) converges as 

a 
well. 

a.a. 
Proof: Since G*(X) > O, N ~ ~ => N(a) ~ ~. Lemma 5.3 and 

a 
s 

Corollary 1 can therefore be applied to qN(a) and qN(a) 

respectively. 

Q.E.D. 

Corollary 2 will be used in Section 6 to demonstrate that 

adaptive estimation remains possible in the presence of at 

least some forms of interdependence between u and x. On the 

other hand, it is clear that we cannot adapt if the set of 
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conditional densities is too rich. For example, consider the 

case in which x has a limiting continuous distribution and 

there is no prior information relating the conditional 

densities ~' XEX to one a!lother. In this setting, the only 

observations whose residuals can yield information on~ are 

those for which x = x but N(x) does not go to infinity with N. 
n 

It would be of considerable interest to determine how rich the 

set of conditional densities can be and convergent score 

function estimation in the sense of (54) still remain 

possible. 

A second important open question concerns the 

generalizability of the Stone-Bickel approach to problems of 

multivariate score function estimation. A natural idea would 

be to convolute the residuals of a multivariate regression with 

a multivariate normal random variable, leading to multivariate 

versions of fN and qN. To prove that thjs works in the manner 

of Lemma 5.3, ~owever, requires appropriate multivariate 

generalizations of both Lemma 5.1 and Lemma 5.2. These non­

trivial tasks are not attempted here. 

5.3 A Sufficient Condition for SuccP-ssful Adaptation 

Return to t4e general AML problem of finding estimates 

IN and SN that satisfy (48). Bickel (1982) shows that if ~SN 

is constructed in a certain manner, this problem reduces to one 

of verifying a simpler condition. Bickel presents his 

sufficient condition in great generality. For cur 

applications, a less abstract presentation is adequate and may 

have advantages in clarity. 

For given T < N, let 4ir be the score function estimate 

constructed using eT and the residuals unT(eT), n=1, ••• ,T. Lat 

t(ylx,eN,qT) denote a computable estimate for 

3log>,.(y!x,eN,f'l')/oe. Now define 
r X 
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1 N 
= N T I !J.(y Ix ,eN,q_T) 

- n=T+1 n n r 
(73) 

The unusual feature in this construction of SNT is the 

splitting of the sample into two parts. All the observations 

are used to form the initial estimate eN. Then the first T 

observations are used to estimate the score functions and the 

last N-T to determine the step taken from eN. Splitting the 

sample in this way is very convenient technically because it 

allows ones to condition on q_T as a predetermined function when 

examining the behavior of SNT. Of course, maintenance of 

desirable asymptotic properties requires that T grow with Nin 

an appropriate manner. It is easy to see that q_T remains a 

converg~nt sc~re function estimate in the sense of (54) as long 

as T+ co as N + co. Comparison of (73) with (48) indicates that 

SNT can serve as a successful estimate for SN(eN,9*) only 

if N;T + 1 as N + a,. Together these two requirements imply 

that we should select Tso that 

T + co, T/N + 0 as N + '". (74) 

Note that asymptoFc theory gives no guidance on the choice of 

T for a given data sample. In fact, one should not infer th~t 

sample splitting is necessary to successful AML estimation. 

Stone's estimator for a location parameter does not split the 

sample nor does it discretize the initial estimate, at the cost 

of a more difficult proof of adaptation. 

Bickel proved 

M 
Lemma 5-4: Let eN € RN be an estimate satisfying (43). Let 

eN = eN + IN SNT where SNT is constructed in the manner of (73) 

and (74). Then a sufficient condition for (48) to hold is that 

as N + co, 
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and 

o ( 1 ) • 
p 

Proof: Bickel (1982) Theorem 3.1 proves the Lemma for the case 

~* = 0* while his Theorem 3.2 extends it to the case where~* 

is a sub-vector. Both of these Theorems impose the condition 

that the l.h.s. expression of (75) actually equal zero. 

HoweYer, it is sufficient that the expression be o (1). Bickel 
p 

implicitly uses this weaker condition in his pre.of of 

adaptatio.a for his Example 3. 

In the next section, we $hall verify Lemma 5.4 in two non­

linear regression settings. Before doing this, we should 

clarif:r the content of conditions (75) and (76). Condition 

(75) is essentially equivalent to Condition B, the necessary 

condition for successful adaptation introduced in Section 3. 

Condition (76) more or less requires consistent estimation of 

the information matrix I(0*) and mean square convergent 

estimation of the score function o log\/08. This explains our 

focus in Section 5.2 on the problem of mean square convergent 

estimation of the score function associated with the density 

r. 

6. Applications to Non-Linear Regression Models 

We are now in position to extend Bickel's findings for 

linear models with i.i.d. disturbances to non-linear models and 

to models allowing some interdependence between u and x. 

Theorem 6.1 and its Corollary prove that A11L estimates do 
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successfully adapt in the context studied in Proposition 4.1. 

Theorem 6.2 proves adaptation in the context of Proposition 

4.2. 

y-h(x,9*) = u with yER1 • Let~ = Theorem 6.1: Let 

[ ( f)x, fEFS]. Let M 
9N E RN be an estimate satisfying (43). Let 

IN be a consistent 

the manner of (73) 

estimate for I(0*) and SNT be constructed in 

and (74) using 

oh(x,eN) 
- - 08 q_; [ y-h(x,eN)]. (77) 

Proof: Both here and in Theorem 6.2, a menu of suitable 

initial Pstimates 0N exists. For example, discretized versions 

of the least squares estimates of Jennrich (1969) and White 

(1980) will do. There also exist a number of satisfactory ways 

to define~- In the present setting, 

I(0*) = (78) 

rfoh(x,0*) oh(x,9*)dG*] [J( 1 d~(u),J2~(u'Jdu~J. 
L oe oe' . fi!'(u) au 

One consistent estimate for I(9*) is 

IN= QN iN 

where 

1 
N ah(x ,91-i) oh(x ,9N) 

QN = N-T I n • n 

n=T+1 
oe ae • 

1 
N 

iN = -- I q; ( unN)2. 
N-T n=T+1 

(79) 

(80) 

(81) 

By consistency of eN and by the weak law of large numbers, QN 

converges in probability to the first bracketted integral in 

(78). By contiguity of {P1i} to {PN}, by Lemma 5.3 and by the 
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weak law of large numbers, ½f converges in probability to the 

second integral, that is to i(f*). 

Now consider conditions (75) and (76). With l defined in 

(77) and with~*= 9*, t~e l.h.s. of (75) becomes 

oh(x,9N) 
IN Ii [J- oe dG*] [J q; (u)f*(u)du]. 

s 
By symmetry of~ and by anti-symmetry of 4T, the second 

bracketted integral is identically zero. By consistency of 0N 

and IN and by non-singularity of I(0*), the leading term is 

0 (IN). Hence, condition (75) is satisfied. 
p 

Given that ~ and I(0N) both converge to I(0*), the l.h.s. 

of (76) can be written as 

oh(x,9 ) 
[J lr(e*)-1 

00 N 12 dG*] [f( q; (u) - f*(u) dr:~u))2f¼(u)du] 

+ o (1). 
p 

The first bra~ketted integral has a finite probability limit. 

By Lemma 5.3, the second integral iL o (1). Hence condition 
p 

(76) is satisfied. 

By Lemma 5 .4, eN is adaptive for 9*. 

Q.E.D. 

Corollary: Let y-h(x,9*) = u with ye:R1 • Assume that X 

partitions into A < "" known, mutually exclusive subsets Xa, 
A 

a=1, •.• ,A such that G*(X) > 0 and L G*(X) = 1. Let 
a a=1 a 

A X 
cp = II [ (f) a, fe:F 8]. 

a=1 
Let eN e: R: be an estimate satisfying 

(43). Let~ be a consistent estimate for !(9*) and let SNT be 

constructed in the manner of (73) and (74) using 
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(82) 

Here a(x) denotes the subset X .::ontaining x and q8 is the 
a Ta 

anti-symmetric score function estimate introduced in Lemma. 

5.3,corollary 2. Then eN = eN + IN SNT is adaptive for e*. 

Proof: For each a=1, ••• ,A, define Q,T and iN as in (80) and 
11a 1 a 

(81) but using only the su·o-sample N( a). The argument in the 

proof of Theorem 6.1 that QN ½ is consistent for I(e*) implies 

in the f'letting of this Corollary that QN iN is consistent for 
a ra 

I(0*IX ). Let N = IN(a)I and T = IT(a)I. Then 
a a a 

A N - T 
I \' a a Q • (83) 

N = 1, N-T Ual.Na 
a=1 

is consistent for I(0*). 

With t defined in (82) and with~*= 0*, the l.h.s. of 

(75) becomes 

A oh(x,6N) 
✓ NIN 2'.[Jx - 09 dG*][JqT:(u)f!(u)du]. 

a=1 a 

By the argument of the proof to Theorem 6.1, this Jxpression is 

identically zero. Likewise, the l.h.s. of (76) can be written 

as the sum of A terms, each of which is o (1). Hence, (75) and 
~ p 

(76) are oatisfied. By Lemma 5.4, eN is adaptive for 0*. 

Q.E.D. 

Theorem 6.2: Let y - h(x,0*) = y - h(w,~*) - a* = u with ~R1 • 

Let~= [(f)x, feF 0
]. Let 01fRi be an estimate satisfying 

(43). Let IN be the estimate defined in (79), (80), and (81). 

Let SNT be constructed in the manner of (73) and (74) using 

oh(x,eN) _ 
.t(ylx,eN,qT) = - 06 qrly - h(x,eN)]. (84) 
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Then ~N = ~N + ~~ , IN SNT is adaptive for ~*. 

Proof: Condition (76) is satisfied by the same argument as 

used in the proof of Theorem 6.1. With t defined in (84), the 

l.h.s. of (75) becomes 

_ 08 ·- _ oh(x,9N) *, 
✓ N ea' J.N QN [J - oe dG J [f qT( u) f«'( u)du] • 

In contrast to the situation in Theorem 6.1, the second 

bra~ket~ed integral is not identically zero. It is, however, 

o (1). This follows from Lemma 5.3 and from the fact that 

f Pdf+(u) du = O. 
du 

To determine the limiting behavior of the leading 
p 

expression, recall first that iN ~ i(f*)-1. Next define 

• _ oh(x,eN) _ [oh( w '~N)] _ [-=- ] 
~(x) - 08 - o~ - ~(w) • 

1 ~ 

Using this notation, define 

~ 1 N • • 
Q = -·- L hN(wn) hN(wn)' 

N N-T n=T+1 

1 N • 
E = - I hN(wn) 

N N-T n=T+1 

We can now write 

(85) 

(86; 

(87) 

(88) 



_ ~ _ [f oh(x,eN) 
✓ N oe ' QN - oe dG*] 

= ✓ N [ IK_1 :O] 

• 

v­
N 

= VN IN[\ - f \Cw)dG] 

43 

• 

-1 

The variable VN has a non-singular probability limit. The 
• 

expression ✓ N [\ - f \(w)dG*] is 0/1) by the Central Limit 

Theorem. Hence, the 1-h.a. of (75) is o (1) as required. By 
p 

Lemma 5.4, ~N 1.s adaptive. 

Q.E.D. 

7. Some Questions 

We have earlier called attenti~n to a number of specific 

unresolved issues that deserve attention. Do Theorems 6.1 and 

6.2 extend to multivariate regression models? Doeq the 

Corollary to Theorem 6.1 extend to other forms of 

interdependence between u and x? In a given sample, how should 

one select the parameters T, crT' bT' cT, and~ in constructing 

the score function estimate qm? Can we characterize the 
r 

situations in which a non-linear systems model of form (5) 

satisfies Condition B? In this concluding section, we attempt 

to organize in a coherent manner some more general open 

questions. 

7.1 Attainable Precision When Adantive Estimates Do 
Not Exist 

Many researchers are i~itially surprised to learn that 

adaptive estimates exist in settings as general as those 
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considered in Theorems 6.1 and 6.2. It remains the case, 

nevertheless, that adaptation is not possible in "most" 

estimation problems. It is then natural to ask how well on9 

can do. 

An important part of an answer has recently been achieved 

in a paper by Begun, Hall, Huang, and Wellner (1983). Working 

in the random sampling context, these authors consider the 

infinite 1imensional problem of joint estimation of (e*,f'l"). 

Using projection arguments on Hilbert spaces, they derive the 

appropriate infinite dimensional generalization of the 

classical bound on precision of estimation. A special case is 

that in which olo~/o0 is orthogonal to the sccre for f*, a 

functional deri va ti ve o log,,. /of. This is a necessary condition 

for adaptation. When the scores are not orthogonal, the 

authors' bound for estimation of 0~ differs from the classical 

bound given knowledge of f'l", Thus, lack of knowledge of fl" 

causes a quantifiable loss in at~ainable p~ecision of 

estimation of 0*. 

An appealling feature of the Begun et al, work is that its 

treatment of the finite dimensional parameter 0* and the 

functional parameter f-!1- is entirely symmetric, Consider any 

estimate al-1 such that ✓ N(0N- 0*) has a limiting distribution • 
... , 

The authors show that asymptotically, 

(89) 

where Z*~~(o,r:;1), I;l is the bound on precision, and Wis 

an independent random variable, Analogously, consider any 

• 
estimate FN of the distribution function F* = f f'l"(u)du such -
that ✓ N(FN - r) has a limiting stochastic process. The 

authors show that asymptotically, 
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✓ N (FN - r) i C * + w (90) 

where'* is a Gaussian stochastic process and w is an 

independent process. The results (89) and (90) are non­

parametric generalizations of the Hajek (1972) convolution 

theorem characterizing limiting distributicns in parametric 

models. 

Begm. et al. do not attempt to construct an estimator 

that achieves the best asymptotic distributions Z* and'*" 

Nor do they verify that their bounds are sharp. They do, 

however, offer an intriguing conjecture. They speculate, that 

when adaptation is not possible, the nonparametric mazimum 

likelihood estimator is asymptotically efficient under weak 

regularity conditions. 

7.2 Attainable Precision in Other Settings 

The analytical fra~ework assumed in this paper is general 

enough to treat many important econometric problems but 

certainly net all. For one reason o~ another, various classes 

of problems do not satisfy the assumptions imposed in Sections 

1 and 2. The following is a partial list. 

(i) Models with serially dependent observations - The 

sample likelihood does not decompose into the product of the 

likelihoods of y conditional on x. 
n n 

(ii) Discrete Dependent Variable Models - For most such 

models, it is net known whether IN consistent initial 

estimates exist. For 4uantal response models there are 

consistent, distribution free esti~ators but rates of 

convergence have not been established. 

(iii) Endogenous Sampling Problems - The likelihood under 

stratified endogenous sampling processes (e.g. truncated 

sampling, choice-based sampling) is net a convex functional of 
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the density f'l('. Moreover, the sample distribution of xis 

informative regarding 9* and f*. 

(iv) Models in which f* is informative for 9* - In such 

problems as Poi3son regression, the linear probability model, 

and exponential family models, the distribution of disturbances 

is functionally dependent on 9 *. 
Among these four classes of problems, I see no fundamental 

reason why the arguments of Stein-Stone-Bickel should not 

extend to class (i). Applications to problems of class (ii) 

hinge on the resolution of the initial estimate question. 

Problems of classes (iii) and (iv) are not treatable in 

Bickel's setup but may be using the Begun et al. approach. 

7.3 Beyond First Order Efficiency 

To close this paper, it is appropriate that we recall the 

sense in which adaptive estimation i3 a desirable objective. 

In the presence of a nuisance density function, an adaptive 

estimate achieves the first order asymptotic efficiency of the 

best estimate that would be computable were the density knowu. 

In its present state, the literature on adaptive estimation 

makes no claims beyond first order efficiency. Indeed, the AML 

estimator is based on a _first-order approximation to the 

likelihood function of a correctly specified model. To the 

best of my knowledge, there are not now available any 

theoretical results on the exact distributions, higher order 

asymptotic properties, or behavior in misspecified models of 

AML estimates. 

In discussions of adaptive estimation, I have occasionally 

heard more than the usual concern expressed about the 

limitations of first order asymptotic theory. Satisfactory 

density estimation, it is feared, requires inordinately large 

data samples. In small samples, the reasoning goes, adaptive 
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estimates are likely to be inferior to conventional ones such 

as ordinary least squares. 

I believe that this concern is unfounded. While it is 

true that nonparametric density estimates converge slowly 

pointwise, the AML method requires only estimation of the 

information and of the sample mean score associated with the 

unknown density. These estimation problems have more in common 

with the problem of nonparametric estimation of a mean than 

with that of pointwise ncnparametric estimation of a density. 

Moreover, the smoothing and trimming performed in constructing 

the score function estimate½ prevents outlying residuals from 

being overly influential and constrains the size of the step 

taken from the initial IN-consistent estimate. 

A potentially troublesome aspect of AML estimation is the 

need for the analyst to select the parameters T, crT' bT, cT' 

and dT. Successful adaptation imposes restrictions only on tl1e 

rates at which these paramet(rs change with the sar::ple size. 

By its nature first order asymptotic theory can provide no 

guidance on the parameter settings appropriate for a given 

sample. The development of a second order theory of adaptive 

estimation might conceivably yield implications but I see no 

early prospect of a breakthrough in second order theory. 

I have recently begun a series of Monte Carlo experiments 

designed to reveal the exact distributions of some AML 

estimates and of certain alternative non-parametric estimates. 

When these experiments are completed, I plan to report them in 

a separate paper. For now, I have a few early, suggestive 

findings to report, as follows. 

Consider the model y =a+ px + u with with a=1, p=-1, x 

distributed uniform on [-1,1] and u i.i.d. with density~ 

having mean zero and variance one. In the experiments, five 

alternative densities were used to draw the realizations of u. 

These include 1) normal, 2) contaminated normal, being the 
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convolution .9 C/2..(o, ½) + .1 '1t(0,9); 3) log-normal; 4) Type 

I extreme value, and 5) exponential. 

Given each density, a random sample of observations (y,x) 

was drawn. I shall report findings for N=25 and for N=100. 

Ordinary least squares provided the initial estimate eN. The 

restriction of 0N to the lattice R: is ignored here. I chose 

the parameter values T, ~, b, c, and din a manner that seemed 

subjectively reasonable. In particular, for N=25, I set T=10, 

a=.08, b=4.0, c=.004 and d=30.0. For N=100, I set T=30, a=.06, 

b=5,0, c=.002 and d=36.0. These settings are consistent with 

the requirements of Lemma 5.3 and Le!llllla 5.4. To. a second set 

of experiments, I did not split the sample as Bickel calls for. 

Instead, I set T=N and re-used all the observations to compute 

the step from eN. The values of a, b, c, and d were not 

altered. In all the experiments, the score function estimate 

qT was used to compute the A:ML estinate. By Theorem 6.2, the 

estimate for~ is adaptive but that for a need not be. 

l!lach experiment consistd of 400 :.ndependent :-epl:i.cations 

in which a sample was drawn and the AML estimates were 

computed. Table 7.1 presents the results on precision of 

estimation, as measured by the root mean square errors of the 

estimates over the 400 replications. The columns labelled 

"Scale" refer to estimates of the standard error of u. The 

estimate used in each case is the square root of the sample 

variance of the residuals. 

Inspection of the Table reveals some clear patterns, as 

follows. 

1. The OLS and AML estimates of a do not differ at all in 

precision. 

2. In the case of normal disturbances, the 01S estimates 

of~ slightly outperform the Al.Th ones. The difference in 

precision is always less than 6 percent for N=25 and less than 

4.5 percent for N=100. Since 01S is the maximum likelihood 
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estimate here, these results are consistent with the 

theoretical prediction that the AML estimates should approach 

the MLE in precision as N + = • 

3. When the true distribution is contaminated normal, log 

normal, or exponential, the Ai~L estimates outperform the OLS 

ones. The difference in precision between the OLS and split 

sample (SAML) adaptive estimates is marginal. On the other 

hand, the re-used sample (RAML) estimates perform strikingly 

better than OLS. For N=25, the RAML estimates have root mean 

square errors, 11, 17, and 4 percent lowe~ than the 

corresponding OLS ones. For N=100, the R.Ac.~L root mean square 

errors are 28, 35, and 18 percent lower than those for OLS. 

These findings strongly suggest that sample splitting is 

unnecessary and moreover, not to be recommended in small 

samples. 

4. In the case of extreme value disturbances, the OLS 

estimates of~ slightly outperform the AML ones. The pa+.tern 

is very similar to that observed uncer normality. This 

suggests that OLS may be close to efficient when the 

distribution of u is extreme value. In fact, exam-i..nation 

reveals that for small disturbances, the extreme value 

likelihood equations are approximated to first order by the 01S 

normal equations. 

5. The OLS and RAML estimates of the scale parameter do 

not differ at all in their precisions. The S.Ai~L estimat0s are 

noticeably less precise. This is presumably due to the fact 

that the SAML estimates are based on sub-samples of size 

N-T=15, 70 rather than on the full sample?. 

Overall, the experiments indicate that P.AML estimates of~ 

can range from slightly less precise to substantially more 

precise than OLS ones. This conclusion holds for samples as 

small as N=25 but is more pronounced in samples of size N=100. 

For estimation of a and the scale parameter, RAML and 01S have 

more or less identical precisions. These preliminary results 

. 
' 

,i 
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are encouraging, particularly, in light of the fact that we 

have not attempted to optimize the settings for a, b, c and d. 

TABLE 7.1 Monte Carlo Ex~eriments 

Distribution Estimator Root Mean Square Errors of Estimates 

Alpha Beta Scale 

N=25 N=100 N=25 N=100 N=25 N=100 

Normal OLS 
SAML 
RAML 

Contaminated OLS 
Normal SA:iIL 

RAML 

Log Normal OLS 
SAML 
RAML 

Extreme Value OLS 
SAML 
RAML 

Exponential OLS 
SAML 
RAML 

.1919 

.1 915 

.1931 

.1901 

.1900 

.1896 

.1822 

.1896 

.1797 

.2098 

.2120 

.2124 

.2109 

.2136 

.2127 

.0972 

.0973 

.0977 

.0998 

.1022 

.0999 

.0925 

.0929 

.0910 

.0947 

.0964 

.0950 

.1003 

.1008 

.0997 

.3579 

.3624 

.3793 

.3239 

.3216 

.2898 

.3361 

.3299 

.2790 

.3599 

.3623 

.3757 

.3590 

.3679 

.3451 

Abbreviations: SA.J.'fL= split sample AML 
RAML= reused sample AML 

.1842 

.1864 

.1922 

.1731 

.1611 

.1242 

.1753 

.1669 

.1143 

.1762 

.1762 

.1"{92 

.1740 

.1707 

.1419 

.1432 

.1843 

.1455 

.4519 

.5323 

.4472 

.4193 

.4830 

.4157 

.1957 

.2379 

.1961 

.2676 
-3048 
.2632 

.0703 

.0835 

.0707 

.2402 

.2791 

.2405 

.2715 

.3065 

.2716 

.1040 

.1241 
• 1 036 

.1327 

.1590 

.1318 
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