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In this paper, we study the problem of nonparametric adaptive estimation of the spectral density f of

a stationary Gaussian sequence. For this purpose, we consider a collection of ®nite-dimensional linear

spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on possibly irregular grids or

spaces of trigonometric polynomials). We estimate the spectral density by a projection estimator based

on the periodogram and constructed on a data-driven choice of linear space from the collection. This

data-driven choice is made via the minimization of a penalized projection contrast. The penalty

function depends on k f k1, but we give results including the estimation of this bound. Moreover, we

give extensions to the case of unbounded spectral densities (long-memory processes). In all cases, we

state non-asymptotic risk bounds in L 2-norm for our estimator, and we show that it is adaptive in the

minimax sense over a large class of Besov balls.
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sequence

1. Introduction

In this paper, we consider the problem of estimating the spectral density f of a stationary

Gaussian sequence. We develop an adaptive nonparametric method that automatically selects

an estimator f̂ m̂ from a collection of estimators f̂ m for varying index m. These estimators are

constructed as projection estimators based on integrals of the periodogram. The index m

denotes the linear functional subspace of L 2([ÿð, ð]) on which the estimator is computed.

Our method is very ¯exible and allows us to look for piecewise estimators associated with

possibly irregular partitions of the interval [ÿð, ð]. This is of particular interest for the

recognition of peaks, which is often an important goal of spectral analysis. This explains why

an appropriate method needs to be adaptive with respect to a possibly varying degree of

smoothness of the function to be estimated.

We measure the performance of our estimator via the L 2-integrated risk and we give

non-asymptotic risk bounds. We show that, without any prior knowledge of f , our estimate

automatically reaches the minimax optimal rate on Besov balls.

We use a method of model selection inspired by BirgeÂ and Massart (1997; 1998) and

Barron et al. (1999), who studied several types of contrast and estimate in various contexts,

but under assumptions of linearity or independence which are not valid here.

The problem of estimating the spectral density of a stationary (Gaussian) sequence has a
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very rich history, of which it is beyond the scope of this paper to give an exhaustive

presentation. Let us just mention that it was ®rst studied mainly in a parametric framework:

see, for example, the seminal paper by Whittle (1953), or the book by Hannan (1970), as

well as the methods developped by Davies (1973). Minimum contrast estimation for spectral

densities has also been explored in a parametric setting by Taniguchi in several papers (see,

for example, Taniguchi 1987). A new wave of studies were published more recently (Fox

and Taqqu 1986; Dahlhaus 1989) due to the development of fractional (long-memory)

models in which the standard assumptions of boundedness from above and below of the

spectral density are not ful®lled.

In the nonparametric framework, Bentkus and Rudzkis (1976) proved large-deviation

results for a projection spectral estimate based on a tapered periodogram. Bentkus (1985)

computed optimal rates of convergence of spectral estimates in some spaces of dif-

ferentiable functions. In both cases, the variables are Gaussian but the rates of conver-

gence are asymptotic and the methods are not adaptive: this means that the de®nition of

their estimator requires a priori knowledge of the smoothness of the function f . Golubev

(1993) builds a tapered estimate f̂ n(ù) �
P

jkj<nhkãke
iùk and proposes an adaptive

procedure with respect to the choice of the weights hk . His estimate is asymptotically

minimax on some families of neighbourhoods of the true spectral density, under

assumptions on f which are a little stronger than ours and for well-chosen families of

weights among which the best is selected. Finally, Neumann (1996) considers a tapered

wavelet projection estimator in a non-Gaussian framework. His conditions on f are given

mainly in terms of the cumulants of the sequence. He uses ®rst a ®xed (unknown) and then

a random thresholding method inspired by Donoho and Johnstone (1994; 1998). He reaches

the optimal rates of convergence on standard Besov spaces with the ®xed threshold. But the

minimax rate is obtained up to a power of ln(n) with the random threshold. The adaptive

method we develop here does not include this ln(n) factor. Again, in contrast to Neumann

(1996), we give non-asymptotic results.

Note that BirgeÂ and Massart (1997) have shown that wavelet thresholding can be

obtained as a particular case of a model selection method similar to the one described here.

It is also worth mentioning that we recover the adaptive result found by Efromovich (1998),

who presents an adaptive method in the particular case of linear processes estimated with

trigonometric bases. Most recently, an adaptive method selecting the optimal degree of a

Fourier expansion has been developed by Soulier (1999): his method is based on log-

periodogram regression in a semiparametric framework allowing long-memory cases to be

dealt with.

The paper is organized as follows. Section 2 presents the model, the estimator, the

collections of models and the assumptions under which we work. Section 3 gives the results

obtained for our penalized minimum constrast estimator: we provide a uniform and non-

asymptotic bound for the L 2-risk of our estimator. We work under the assumption of

boundedness from above of the spectral density f , and we consider very general collections

of models. But we ®nd a k f k21 multiplicative factor in the penalty function which must be

used to implement the method. Therefore, we give an extension of our ®rst theorem

showing that we can preserve our result by replacing the k f k21 factor in the penalty by an

estimate. Moreover, we show how the bounds provided in our ®rst two theorems lead to
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asymptotic minimax rates of convergence of our estimate on Besov spaces: the adaptivity

lies in the fact that no prior knowledge on the smoothness of f is required to reach the

right rate. In Section 4, we present a robustness result proving that our fundamental

inequality also holds when the spectral density is not bounded (long-memory case) in the

case of trigonometric bases. Note that in any case, and contrary to a great deal of other

work on the subject, we do not require the spectral density to be bounded away from 0.

Finally, in Section 5 we give some simulation results that allow our method to be compared

with Neumann's (1996) wavelets and kernel methods. Section 6 and the Appendix gather

together the proofs of all our results.

2. The framework

2.1. The model

Throughout the following, we consider X is satisfying the following assumption:

Assumption 1. The sequence (X 1, . . . , X n) is an n-sample drawn from a stationary sequence

of Gaussian random variables.

Let f be the spectral density of the process:

f (ù) � 1

2ð

X

k2Z
ãke

iùk , ù 2 [ÿð, ð],

where ãk � cov(X t, X t�k), t 2 Z. We need the following standard assumption on f :

Assumption 2. The autocovariance function is such that
P

k2Z jãk j � M ,�1 and
P

k2Z jkã2k j � M1 ,�1.

This condition is similar to the one given by Golubev (1993) for his set Ó except that he

requires f to be separated from 0.

Assumption 2 implies in particular that the spectral density f is bounded by the constant

M . As a consequence, it is also square-integrable. Nevertheless the boundedness of f is not

necessary for square integrability, as illustrated by the fractional examples below. Moreover,

Assumption 2 implies the following bound on the bias, which is proved in the Appendix:

Proposition 1. Let X be a stationary sequence satisfying Assumption 2. Then
�

ð

ÿð

( f (ù)ÿ E(I n(ù)))
2 dù <

M1 � 39M2

2ðn
:� M2

n
: (1)

Remark 2.1. Assumption 2 does not require the spectral density to be bounded away from

zero. Thus fractional models with intermediate memory are allowed. For instance, consider

the process X t de®ned by (1ÿ B)áP(B)X t � Q(B)å t, where å t are independent and
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identically distributed (i.i.d.) variables with mean 0 and variance ó 2, á is a real number in

]ÿ 1
2
, 1
2
[, B is the backward operator (BX t � X tÿ1) and P and Q are polynomials with roots

outside the unit circle. Then X admits the following spectral density f :

f (ù) � ó 2

2ð
sin

ù

2

� �� �ÿ2ájQ(eiù)j2
jP(eiù)j2 �

ù!0
Cùÿ2á,

where C is a constant (see, for instance, Brockwell and Davis 1991, Section 13.2, p. 520).

Consequently, for negative á, the spectral density is zero when ù � 0. Moreover, the

autocovariance function ãk is equivalent when k ! �1 to C9k2áÿ1, where C9 is a constant.

This implies that Assumption 2 is satis®ed for á, 0.

2.2. The collections of models

We begin the presentation of the collections of models with some examples. We describe ®ve

speci®c families of models (Sm)m2M n
which are suitable for estimating a spectral density f

in L 2([ÿð, ð], dx). These fall into three categories: trigonometric polynomials, wavelets and

piecewise polynomials.

(T) Trigonometric polynomials. We consider spaces Sm generated by the functions

j j(x) � ð
ÿ1=2 cos( jx), for j � 0, . . . , d, where Dm � d � 1 is thus the dimension of

Sm. In other words, any function t in Sm can be written t(x) �
PDmÿ1

j�0 a j cos( jx) for

some real numbers a j, j � 0, . . . , Dm ÿ 1. Such a space Sm is thus entirely de®ned

by its dimension Dm. The family of models Mn is in that case the set of all

possible dimensions: Mn � f1, . . . , ng.
(P) Regular piecewise polynomials. We consider the dyadic partitions of [0, ð] given by

I m � f[ð j=2m, ð( j� 1)=2m), j � 0, . . . , 2m ÿ 1g. Given some positive integer r,

we de®ne Sm as the space of piecewise polynomials with degree bounded by r ÿ 1

on the partition I m and de®ned on [ÿð, 0] by t(ÿx) � t(x). Here Dm � r2m. This

family is regular in the sense that the partition I m has equispaced knots. Another reg-

ular family is obtained by considering general regular partitions I m � f[ð j=m,
ð( j� 1)=m), j � 0, . . . , mÿ 1g, Dm � rm.

(GP) General piecewice polynomials (of degree less than r ÿ 1). The spaces are

generated by polynomials of degree no greater than r ÿ 1 on each subinterval of

the grid whose knots are now all possible subsets of cardinality mÿ 1 of fð j=n,
j � 1, . . . , nÿ 1g, Dm � rm < n.

(W) Regular compactly supported periodic wavelets. An orthonormal basis of the

L 2 space of 2ð periodic functions on [ÿð, ð] is given (see Daubechies 1992,

Section 9.3) byfjëgfë�( j,k),k2Ë( j), j2Ng � fö l,kgk2Ë( l) [ fø j,kg j> l,k2Ë( j), whereË( j) �
f1, . . . , 2 jg and

ö l,k(x) �
1
������

2ð
p

X

n2Z

~ö l,k

x

2ð
� n

� �

, ø l,k(x) �
1
������

2ð
p

X

n2Z
~ø l,k

x

2ð
� n

� �

,

where ~ö l,k(x) � 2 l=2ö l,k(2
lxÿ k) and ~ø j,k(x) � 2 j=2ö j,k(2

jxÿ k) are such that ö
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and ø are compactly supported and f ~ö l,kgk2Ë( l) [ f ~ø j,kg j> l,k2Ë( j) forms an

orthonormal basis of L 2(R), denoted by (jë)ë. Then Sm is the space generated by

the jë for ë 2 f( j, k), 0 < j < J , k 2 Ë( j)g which has dimension Dm �
PJ

j�02
k � 2J�1 ÿ 1 for J � 0, . . . , J n, where 2J n�1 ÿ 1 < n, i.e. J n � [ln(n)=

ln(2)]� 1 ([:] denotes the integer part). The basis is used on [0, ð] and extended

by parity to [ÿð, 0].

(GW) General compactly supported periodic wavelets. For a description of these, see

Barron et al. (1999, Section 3.2.1).

The de®nition of f implies some particular interest in the family (T) which is the most

commonly used. Regular piecewise polynomials are used to estimate the bound k f k1 and

in the simulation study. General piecewise polynomials are often very ¯exible for the

estimation of f . Wavelets are often considered, for instance by Neumann (1996) in a not

necessarily Gaussian context for a similar estimator.

Remark 2.2. The ®rst reason for the interest in general collections of models (and not just the

regular ones) lies in the interest in peak detection for spectral densities. The second reason

can be found in approximation theory. Let f be in the unit ball of a Sobolev space W (â)
p (R),

â integer (i.e. k f (â)k p < 1). Assume that we are looking for some ~m 2 Mn and for an

optimal approximation ~f 2 S ~m of f . If p � 2, it is well known that what we described as

regular collections of models give an adequate approximation with an adequate rate (namely

Dÿâ
m ). But this is not true if p, 2. For instance, let f belong to W 1

1(R). There is no hope in

general of approximating f in L 2 at the optimal rate Dÿ1
m using piecewise constant functions

on a partition with Dm equal pieces (see Pinkus 1985, Theorem 1.1, p. 232; BirgeÂ and

Massart 2000). But Birman and Solomjak (1967) reached the rate again by considering

nonlinear procedures and piecewise polynomials based on some special irregular partition of

[0, 1]. For details, see the discussion in BirgeÂ and Massart (2000). This is illustrated by

Corollary 4.

2.3. Assumptions on the collections of models

The general assumptions required for the collections of models are now described. The

general set-up is as follows:

Assumption 3. Each Sm is a linear ®nite-dimensional subspace of L 2([ÿð, ð]) with

dimension dim(Sm) � Dm. Moreover, Dn :� maxm2M n
Dm < n.

General collections of models are required to satisfy the following technical condition:

Assumption 4. Let (jë)ë2Ë(m,m9) be an orthonormal basis of Sm � Sm9 and â �
(âë)ë2Ë(m,m9) 2 R

dim(Sm�Sm9), with jâj1 � supë2Ë(m,m9) jâëj. Then, for all m, m9 2 Mn,

r(m,m9) �
1

�����������������������������

dim(Sm � Sm9)
p sup

â 6�0

k
P

ë2Ë(m,m9)âëjëk1
jâj1

< C r

����������������������������

n

dim(Sm � S9m)

r

: (2)
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Remark 2.3. We know from Barron et al. (1999, pp. 322±323) that for the family (W),

r(m,m9) < C, with C � 2�
���

2
p

, and the same holds for (P), but with C �
f(r � 1)(2r � 1)g1=2, where r is the degree of the polynomials. In other words, r(m,m9) can

in both these cases be bounded independently of (m, m9).

Remark 2.4. The family (GP) satis®es inequality (2) with C r � 2r
���

r
p

(see inequality (3.8) in

Barron et al. 1999). The family (GW) satis®es (2) with an unspeci®ed C r depending on the

wavelets (Barron et al. 1999, p. 321). The family (T) satis®es (2) with C r � ð
ÿ1=2, provided

that Dn <
���

n
p

.

Finally, we need the following control on the number models in each collection:

Assumption 5.
P

m2M n
eÿLmDm < Ó,�1, for some positive weights Lm.

Remark 2.5. For the families (W) and (P), Lm is of order 1. For the family (P), for example,

Lm � 1=r can be used. Since there is at most one model per dimension,
P

m2M n
eÿLmDm is

less than
Pn

d�1 e
ÿd

< 1=(1ÿ eÿ1).

Remark 2.6. For the families (GP) and (GW), Lm is of order ln(n). Consider, for example,

piecewise polynomials of degree r ÿ 1. There are Cd
n possible subdivisions for a given

dimension d. Thus, if we choose Lm � Ln=r, then

X

m2M n

eÿLmDm �
X

n

d�1

Cd
n e

ÿLnd � (1� nÿ1)n ÿ 1 < eÿ 1:

Therefore Ó � eÿ 1 can be used when Lm � ln(n)=r. For details, see Barron et al. (1999,

p. 328).

2.4. The procedure

Let fSm, m 2 Mng be some ®nite collection of models as described above. We associate

with each Sm the projection estimator f̂ m of f on Sm that minimizes over all t in Sm the

contrast function

ãn(t) �
�

ð

ÿð

t2(ù)dùÿ 2

�

ð

ÿð

t(ù)I n(ù)dù,

where

I n(ù) �
1

2ðn

�

�

�

�

X

n

t�1

(X t ÿ X n)e
iù t

�

�

�

�

2

, X n �
1

n

X

n

t�1

X t: (3)

First, we look for f̂ m such that

ãn( f̂ m) � min
t2Sm

ãn(t): (4)
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This is the same as looking for f̂ m so as to minimize
�

ð

ÿð
(I n(ù)ÿ t(ù))2 dù. Note that

f̂ m �
P

ë2Ëm
âëjë, with âë �

�

ð

ÿð
I n(ù)jë(ù)dù, if (jë) is an L 2-orthonormal basis of Sm.

Second, we choose m̂ among the family Mn such that

m̂ � argmin
m2M n

[ãn( f̂ m)� pen(m)],

where pen(m) is a penalty function to be speci®ed later. Then the estimator of f that we wish

to study is ~f � f̂ m̂. Denoting by kgk the usual L 2-norm kgk2 �
�

ð

ÿð
g2(ù)dù, we wish to

bound the risk E(k f ÿ ~f k2).

2.5. The aim

Let us brie¯y explain what kind of bound for the L 2-risk we are looking for. Under suitable

assumptions on f , it is easy to prove (see Appendix) that the risk of f̂ m is bounded by

Ek f ÿ f̂ mk2 < k f ÿ f mk2 � s
dim(Sm)

n
, (5)

where f m is the orthogonal L 2 projection of f on Sm and s is a constant depending on f . The

®rst term of the right-hand side of (5) is known as the bias term, and the second as the

variance term of the risk.

We aim to propose some suitable data-driven selection procedure to select some m̂ from

Mn in such a way that the projection estimator f̂ m̂ performs almost as well as the best f̂ m
over the collection, the criterion for comparing the estimators being the L 2-risk. This

implies that for a good choice of the penalty function, we aim to ®nd inequalities

Ek f ÿ f̂ m̂k2 < C inf
m2M n

k f ÿ f mk2 � Lm

dim(Sm)

n

� �

, (6)

where C is a multiplicative constant and the Lms are weights. When Lm � 1, our estimate

turns out to minimize the risks among the collection, up to the multiplicative constant C.

3. General theorems

3.1. The bound on f is known

With L 2-L1 chaining methods (Barron et al., 1999) we can prove our main theorem, which

holds for general collections of models, whether regular or not.

Theorem 1. Suppose that Assumptions 1 and 2 hold and consider a family of models

satisfying Assumptions 3±5. Then the penalized projection estimator (PPE ) de®ned by (4)

and

~f � f̂ m̂, where m̂ � argmin
m2M n

min
t2Sm

�

ð

ÿð

t(ù)(t(ù)ÿ 2In(ù))dù� pen(m)

� �

, (7)
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with

pen(m) > kk f k21(1� C2
r)(1� L2m)Dm=n, (8)

in which k is a numerical (universal) constant, satis®es

E(k f ÿ ~f k2) < C inf
m2M n

[k f ÿ f mk2 � pen(m)]� 8
M2

n
� C9

(1� C2
r)Ók f k

2
1

n
, (9)

where C and C9 are universal constants.

From Remarks 2.5 and 2.6, it follows that the penalty is of order Dm=n for regular

collections of models ((T), (P), (W)) and of order ln2(n)Dm=n for general collections ((GP),

(GW)).

3.2. Estimating the bound on f

Obviously the main drawback of Theorem 1 is that the (deterministic) penalty depends on an

unknown quantity, namely k f k1. In this subsection, we give an extension that leads to

consideration of a random penalty function which no longer depends on the bound on f . The

estimator of k f k1 is constructed as proposed by BirgeÂ and Massart (1997) in the following

way: we take the in®nite norm of f̂ Pn , the (empirical) orthogonal projection of the

periodogram I n on a space of regular dyadic piecewise polynomials (a space of the family

(P) based on dyadic partitions) of dimension depending on n and denoted by Nn. We denote

by f Pn the L 2-orthogonal projection of f on the same space.

Theorem 2. Suppose that Assumptions 1 and 2 hold and consider a family of models

satisfying Assumptions 3±5. Then if k f ÿ f Pnk1 <
1
4
k f k1 and

Nn <
k9

(r � 1)2
n

ln(n)
,

the PPE ~f de®ned by (4) and (7) with

pen(m) > kk f̂ Pnk
2
1(1� C2

r)(1� L2m)Dm=n (10)

where k and k9 are numerical constants, satis®es

E(k f ÿ ~f k2) < C inf
m2M n

k f ÿ f mk2 � k f k21(1� C2
r)
L2mDm

n

� �

� C(M2, Ó, k f k1, C r)

n
, (11)

where C is universal constant and C(M2, Ó, k f k1, C r) a constant depending on M2, Ó ,

k f k1 and C r.

It remains to examine the condition k f ÿ f Pnk1 <
1
4
k f k1. If some regularity conditions
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are set on f , then it is generally satis®ed, as is known from approximation theory. Indeed

for f 2 B â, p,1, â. 1=p, we know from DeVore and Lorentz (1993) that

k f ÿ f Pnk1 < C(â)j f jâ, pNÿ(âÿ1= p)
n ,

where the de®nitions are quickly recalled below. Therefore k f ÿ f Pnk1 <
1
4
k f k1 if

Nn > (4C(â)j f jâ, p=k f k1)1=(âÿ1= p)
:� C( f , â, p), where C( f , â, p) is a constant depending

on f , â and p.

Note that if C in (9) and (11) is allowed to depend on M2, C r, Ó and k f k1, then both

inequalities can be written

E(k f ÿ ~f k2) < C inf
m2M n

k f ÿ f mk2 �
L2mDm

n

� �

:

3.3. Adaptation to unknown smoothness

It is easy to derive adaptation results from inequalities such as (9) or (11). We give here an

adaptation result with respect to the unknown smoothness of f . Moreover, we consider

f (2ð�) on [0, 1]. We recall quickly that a function f belongs to the Besov space

B â, p,1([0, 1]) if it satis®es

j f jâ, p � sup
y. 0

yÿâwd( f , y) p ,�1, d � [â]� 1, jtj1 � sup
x, y2[0,1]

jt(x)ÿ t(y)j,

where wd( f , y) p denotes the modulus of smoothness. For a precise de®nition of these

notions, see DeVore and Lorentz (1993, Section 2.7), where it also proved that

B â, p,1([0, 1]) � B â,2,1([0, 1]) for p > 2. This justi®es our now restricting our attention

to B â,2,1([0, 1]).

Let us consider the three families (T), (P) and (W) previously described. It is well known

from classical approximation theory that if r > â and f 2 B â,2,1([0, 1]), then

k f ÿ f mk < C(â)j f jâ,2Dÿâ
m , (12)

where r is the regularity. See, for instance, Barron et al. (1999, Lemma 12, p. 404). It

immediately follows from (9) and (11) that the following result holds:

Corollary 3. Suppose that Assumptions 1 and 2 hold and that f (2ð�) belongs to some

B â,2,1([0, 1]) \ L1([0, 1]). Moreover, assume that fSmgm2M n
is one of the families (T), (P)

or (W) with â. 1
2
. Let ~f be the estimator de®ned by (7) with penalty (8) or (10). Then

E[k f ÿ ~f k2] < Cj f j2=(1�2â)

â,2 nÿ2â=(2â�1),

where the constant C only depends on â, M2, k f k1 and C r.

In other words

sup
f 2Bâ,2(R)

E[k f ÿ ~f k2] < Cnÿ2â=(2â�1),
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where Bâ,2(R) � f f 2 B â,2,1, j f jâ,2 < Rg and where the constant C now depends on â, R,

M2, k f k1 and r.

Remark 3.1. It is known from Bentkus (1985) that the minimax risk over some Besov ball

f f =j f jâ,2 < Rg cannot be smaller than C9R2=(1�2â)nÿ2â=(2â�1), where C9 is some positive

constant, and therefore our estimator is minimax (up to constants) over all such balls

simultaneously.

Remark 3.2. For the family (T), the bias±variance trade-off leads to the choice of

Dm � n1=(1�2â), which is less than
���

n
p

when â > 1=2.

Remark 3.3. The rate obtained by Neumann (1996) in the non-Gaussian case with random

thresholding and wavelet estimates is (n=ln(n))ÿ2â=(2â�1). We have improved this rate in the

Gaussian case.

Remark 3.4. We recover the rate ln(n)=n found by Efromovich (1998) in the particular case

of a spectral density with ãk < C eÿrk . Indeed then, using the family (T), k f ÿ f mk is of

order eÿrDm ; thus the optimal choice on the collection is Dm � 2 ln(n)=r, which gives the

global bound ln(n)=n.

For general collections of models, if Lm � ln(n) we ®nd the same rate up to

a ln(n) factor, that is to say, we have, for (GP) or (GW),

sup f 2Bâ,2(R) E[k f ÿ ~f k2] < C(n=ln2(n))ÿ2â=(2â�1). But general collections of models can

also be used, as per Remark 2.2, to handle the case of Besov bodies of the form

Bâ, p,1(R1, R2) � ft 2 B â, p,1([0, 1])=jtjâ, p < R1, jtj1 < R2g with 1 < p < 2. The method

is thus the same as in Baraud et al. (1999) and implies the same result.

More precisely, a modi®cation of the general spaces allows us to use results of the

compression algorithm ®eld given in BirgeÂ and Massart (2000). Let us de®ne

K j � [L (2Jÿ j)2J ], with L (x) � 1ÿ ln x

ln 2

� �ÿs

, s. 2, x 2 (0, 1),

and

L(s) � 1�
X

1

j�0

1� (s� ln(2)) j

(1� j)s
: (13)

Then we de®ne, using the notation of Section 2.2, the following restriction of (W):

(W9) Wavelets of regularity r. For J 2 f0, 1, . . . , J ng with P (M) denoting the set of all

the subsets of M , let

M
J
n �

[

J n

j�0

m j=m j 2
P (Ë( j)) if 0 < j, J ,

fA 2 P (Ë( j))=jAj � K jg if j > J

� �

8

<

:

9

=

;

:
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Let Mn �
SJ n

j�0 M
J
n and de®ne Sm as the linear span of the jë for ë 2 m, m 2 Mn, and

by 1: x 7! 1, 8x 2 [0, 1].

An analogous restriction of (GP) could be given for piecewise polynomials. Then the

following result holds:

Corollary 4. Suppose that Assumptions 1 and 2 hold. Consider the collection of models (W9)

with 2J n > n=Ã for some Ã > 1, and 2J n < n. Let p 2 [1, �1[ and

1

2
ÿ 1

p

� �

�
< âp :�

1

2

1

p
ÿ 1

2

� �

1�
��������������

2� 3p

2ÿ p

s

2

4

3

5 if p, 2

0 otherwise:

8

>

>

<

>

>

:

If âp , â < r, then 8R1, R2 2 R
�
3 R

�, the PPE ~f de®ned by (7) with penalty de®ned by

(8) or (10) and by Lm � L(s) given by (13) 8m 2 Mn, satis®es

sup
f 2Bâ, p,1(R1,R2)

E[k f ÿ ~f k2] < C1n
ÿ2â=(2â�1),

where the constant C1 depends on â, R1, R2 and Ã.

For the proof of this result, see the proof of Proposition 4.1 in Baraud et al. (1999).

4. The long-memory case

In this section, we study the case of unbounded f . This case, often known as the `long-

memory' case, has been extensively studied in recent years. It occurs for fractional models

when the spectral density satis®es:

f (ë) � Këÿ2á when ë ! 0, 0,á,
1
2

(14)

which implies that ãk � Cãk
2áÿ1 when k ! �1 (see Adenstedt 1974). Therefore,

Assumption 2 is not satis®ed for 0,á,
1
2
. An example of such models is given by the

fractional ARMA models described in Remark 2.1 above when 0,á,
1
2
.

In this framework, we can prove the next theorem, which must be considered as a

robustness result only, for two reasons. First, there is a constraint on á which cannot easily

be checked. Second, the penalty depends not on the bound on f , but on the bound on

f (ù)ù2á which, like á, is unknown and not easy to estimate. Note that it also depends on

the L 2-norm k f k which may be estimated in the light of work by Laurent and Massart

(1998).

Theorem 5. Suppose that Assumption 1 holds and that f satis®es

f (ë) < Këÿ2á, 8ë 2 [ÿð, ð], with 0,á,
1
4
: (15)

Consider the family of models (T) with Dn < n. Then the PPE ~f de®ned by (7) with
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pen(m) > k(K2 � k f k2 � C2
ã)ln

2(Dm)Dm=n,

where k is a numerical constant, satis®es

E(k f ÿ ~f k2) < C inf
m2M n

[k f ÿ f mk2 � pen(m)]� C9
(K2 � k f k2)

n
, (16)

where C and C9 are numerical constants and Cã is such that ãk < Cãk
2áÿ1 for all k > 1.

The restriction on á comes from the non-square integrability of f when á is greater than 1
4
.

Remark 4.1. This result shows that we keep (up to a factor ln2(Dm)) the same order for the

penalty and for the variance term of the risk as in Theorems 1 and 2, even for non-bounded

spectral densities (or non-summable covariance functions). The loss here comes from the

order of k f ÿ f mk, which is different from that found for classical functions in Besov spaces.

For instance, since f (ë) � (1=2ð)(ã0 � 2
P1

j�1ã j cos(ë j)) then k f ÿ f mk2 has the same

order as
P

j>Dm
ã2j ; and since, in the fractional case, ã j � Cã j

2áÿ1, k f ÿ f mk2 is of order

D4áÿ1
m . Optimizing both terms on the right-hand side of (16) gives a rate of order

(n=ln2(n))ÿ(1ÿ4á)=(1�(1ÿ4á)). This implies a rate of convergence tending to 0 when á tends to
1
4
. This is what is often obtained in such cases: for example, Hall and Hart (1990) also ®nd

a rate of convergence which has the same feature, in a regression problem with long-range

dependent errors.

Remark 4.2. Since Assumption 2 is not ful®lled, the result of Proposition 1 no longer holds.

Equation (37) in the Appendix implies that it can be replaced by

k f ÿ E(I n)k2 � O(n4áÿ1) if jãk j < Cãk
2áÿ1, 8k > 1: (17)

This is the reason why Theorem 5 holds for trigonometric bases only: improving the bound in

(17) requires a precise order for the scalar product h f ÿ E(I n), si for s 2 Sm. Since

f ÿ E(I n) admits a trigonometric development, the order is better if Sm is a trigonometric

space.

Remark 4.3. The proof of Theorem 5 does not rely on a chaining method but on some

simpler arguments. The method used to prove Theorem 1 and 2 would give a result of the

same kind but with a different penalty function. The loss in the penalty implies a loss in the

global rate (which is therefore less accurate than that found in Remark 4.1). More precisely,

in the case of models satisfying Assumptions 4 and 5 and under the same assumptions on f

and ãk as in Theorem 5, we would ®nd, for 0,á,
1
4
,

pen(m) > kK2(1� C2
r)(1� Lm)

2Dm=n
1ÿ4á,

where k is a numerical constant, and a penalized least-squares estimator ~f satisfying

E(k f ÿ ~f k2) < C inf
m2M n

[k f ÿ f mk2 � pen(m)]� C9
(1� C2

r)K
2
Ó

n1ÿ4á
� C 0

C2
ã

n1ÿ4á
, (18)
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where C, C9 and C 0 are numerical constants and Cã is such that ãk < Cãk
2áÿ1 for all k > 1.

See the note on the proof of this result at the end of Section 6.

5. Simulations

The programs for our simulations were implemented in collaboration with Y. Rozenholc

using the Matlab programming environment. Attempts to test the performance of the method

described in this paper have already been made by BirgeÂ and Rozenholc (2000) and Comte

and Rozenholc (2000). They are very convenient to use, but have high initial cost; indeed, the

constants in the penalty functions are unknown. Therefore, many investigations must be

carried out over large families of theoretical functions f to ®nd the right formula. On the

other hand, once the right calibration is found, the method is very ¯exible and all choices are

data-driven. For instance, one can try both regular and irregular piecewise polynomials with

arbitrary degree (say) 0, 1, 2, 3 to be automatically chosen on each considered subinterval of

any subdivision. Various degrees have been tested for regression and volatility function

estimation by Comte and Rozenholc (2000). General histograms have been investigated for

density estimation of i.i.d. random variables by Rozenholc, but this implies a great number of

models to examine: the algorithms must be highly optimized for the computational time to

remain reasonable.

This is the reason why we have concerned ourselves here with simple regular histograms.

This collection of models quickly gives a very good idea of the potential of the method. We

simulated the same model as Neumann (1996), namely

X t � Y t � ó Z t,

where Y t is an ARMA(2,2) process,

Y t � a1Y tÿ1 � a2Y tÿ2 � b0å t � b1å tÿ1 � b2å tÿ2,

and få tg, fZ tg are independent Gaussian white noise processes with unit variance. The

constants were chosen as a1 � 0:2, a2 � 0:9, b0 � 1, b1 � 0, b2 � 1 and ó � 0:5. We

simulated T � 1000 samples with length n � 1024, whereas Neumann (1996) used T � 100

samples of the same length: this has no in¯uence on the mean value of the L 2-risk nor on its

standard deviation v̂, but may slightly reduce the �95% intervals computed as in Neumann

(1996) as 1:96 v̂=
����

T
p

.

A given dimension Dm � d is associated with a histogram basis

j
(d)
j �

���

d

ð

r

1[ð j=d,ð( j�1)=d[, for j � 0, 1, . . . , d ÿ 1,

and with the estimated coef®cients

â
(d)
j �

���

d

ð

r

c0

2d
� 1

ð

X

nÿ1

r�1

cr

r
sin

ð( j� 1)r

d

� �

ÿ sin
ð jr

d

� �

" #

8

<

:

9

=

;

for j � 0, 1 . . . , d ÿ 1, where cr � cr,n, r � 0, 1, . . . , nÿ 1, are the empirical covariances

Adaptive estimation of the spectral density 279



de®ned by (32) in the Appendix. The penalized contrast values leading to the selection of the

optimal dimension among d � 1, 2, . . . , 100 are

ÿ
X

dÿ1

j�0

â
(d)
j

� �2

�kC2
1(dref )

d

n
, (19)

where C1(dref ) � max0< j<drefÿ1 jâ(dref )j j is the estimate of k f k1 and k is a constant.

We experimented with several values of the constant k and of the dimension dref . We

found dref � [n=36 ln(n)] � 4 to be a good choice: this is the maximal value authorized by

Theorem 2. Since the constant 1=36 in the bound seemed somewhat arbitrary, we expected

a much higher dimension to be chosen. We also found k � 4 to be a good choice. The

results of these experiments are given in Tables 1 and 2, in terms of the L 2-risk and the

con®dence intervals (CI). Table 3 recalls Neumann's results as a benchmark.

We can see that with this rough version of our method, we already achieve results as good as

those of Neumann (1996), who uses a somewhat more complicated wavelet thresholding.

Figure 1 illustrates also the type of estimated spectral density found with our method. The

oscillations of our histograms are clearly analogous to those of Neumann's wavelets.

Table 1. Adaptive histogram method: different choices of k

k 3 3.5 4 4.5 5

L 2-risk 0.053 0.049 0.048 0.047 0.048

�95% CI 0.0026 0.0023 0.0021 0.0018 0.0018

T � 1000 samples of size n � 1024. The penalized contrast is computed as in (19) with
dref � 4.

Table 2. Adaptive histogram method: different choices of dref

dref 2 3 4 5 6 10 25

L 2-risk 0.048 0.050 0.048 0.054 0.047 0.049 0.052

�95% CI 0.0018 0.0024 0.0021 0.0026 0.0022 0.0023 0.0025

T � 1000 samples of size n � 1024. The penalized contrast is computed as in (19) with
k � 4.

Table 3. Neumann's results

Estimator Kernel w(1, u) w(2, u) w(1, s) w(2, s)

L 2-risk 0.042 0.066 0.054 0.044 0.040

�95% C.I. 0.0032 0.0042 0.0053 0.0038 0.0043

T � 100 samples of size n � 1024 w(i, u) and w(i, s) refer to unshifted and shifted
versions of the thresholding with threshold ë̂

(i)
j,k developed by Neumann. The kernel

method is based on the optimal bandwith (unknown in practice).
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Of course, true piecewise polynomials may be smoother and therefore nicer, but it is not

certain that the values of the L 2-risk would be signi®cantly better. What appears in the

example considered here is that irregular partitions would lead to very relevant choices. The

dimensions selected by the algorithm with regular partitions are quite high in order to

capture the peak. Irregular partitions would lead to much smaller dimensions and more

adapted choices. This is a further programming challenge.

6. Proofs

6.1. Proof of Theorem 1

6.1.1. Decomposition of the contrast

We start with a decomposition of the contrast which is common to the proofs of all theorems.

Let hu, vi �
�

ð

ÿð
u(ù)v(ù)dù, and kuk2 � hu, ui. Then we can write:

ãn(t) � ktk2 ÿ 2hI n, ti � kt ÿ f k2 ÿ 2hI n ÿ f , ti ÿ k f k2:

0.9

1

0.8
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0
24 23 22 21 0 1 2 3 4

Figure 1. True spectral density and regular histogram estimation.

Adaptive estimation of the spectral density 281



By de®nition ~f � f̂ m̂ satis®es, 8m 2 Mn, the inequality ãn( ~f )� pen(m̂) < ãn( f m) �
pen(m), where f m denotes the orthogonal projection of f on Sm. This implies that,

8m 2 Mn,

k f ÿ ~f k2 ÿ 2hI n ÿ f , ~f i � pen(m̂) < k f ÿ f mk2 ÿ 2hI n ÿ f , f mi � pen(m),

that is,

k f ÿ ~f k2 < k f ÿ f mk2 � 2hI n ÿ f , ~f ÿ f mi � pen(m)ÿ pen(m̂)

< k f ÿ f mk2 � 2h f ÿ E(I n), f m ÿ ~f i � 2hI n ÿ E(I n), ~f ÿ f mi (20)

� pen(m)ÿ pen(m̂):

Then there are two different strategies for the proofs of Theorems 1 and 5. But they both

require a fundamental Bernstein-type inequality. For the latter the Gaussian feature is crucial.

6.1.2. A Bernstein-type inequality

Let us write X � (X1, . . . , X n)9 and X � (1=n)
Pn

i�1X i. For u 2 Sm9, let

Z n(u) � hI n ÿ E(I n), ui: (21)

Writing e � (1, . . . , 1)9, which is of size n3 1, Z n can also be written as

Z n(u) �
1

n
[(X ÿ X e)9Tn(u)(X ÿ X e)ÿ E((X ÿ X e)9Tn(u)(X ÿ X e))],

where Tn(u) is the Toeplitz matrix associated with the function u, that is,

[Tn(u)] j,k �
�

ð

ÿð

u(ù)eÿiù( jÿk) dù, 1 < j, k < n:

Since we aim to estimate a positive function, we can restrict our attention to positive

functions of Sm9, without loss of generality. We prove in this section the following result:

Proposition 2. Assume that the stationary sequence X 1, . . . , X n satis®es Assumption 1 and

let f denote its spectral density. Then for any even bounded positive function u,

P(Z n(u) > 2k f k1(kuk
���

x
p

� kuk1x)) < eÿnx (22)

and

P(Z n(u) > 2kuk1(k f k
���

x
p

� r(Tn( f ))x)) < eÿnx: (23)

k f k1 in (22) can be replaced by r(Tn( f )), where r(M) denotes the spectral radius of a

symmetric matrix M.

Proof. Since u is even positive on [ÿð, ð], Tn(u) is a symmetric positive de®nite matrix in

Mn(R) (see Dacunha-Castelle and Du¯o 1993, p. 41). We denote by
������������

Tn(u)
p

the usual

symmetric square root of a symmetric positive matrix. Then
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Z n(u) �
1

n
[k

������������

T n(u)
p

(X ÿ X e)k2n ÿ E(k
������������

Tn(u)
p

(X ÿ X e)k2n)],

with kxkn denoting the Euclidian norm in R
n. We use the following inequality, valid in the

Gaussian case only, which is a result proved by Laurent and Massart (1998, Lemma 1, p. 24):

Proposition 3. Let å � (å1, . . . , å p)9 be a vector of n i.i.d. centred Gaussian random

variables with common variance ó 2, and let A be some matrix in Mn(R). Let ë1, . . . , ë p be

the eigenvalues of the positive symmetric matrix AA9, v2 �
P p

i�1ë
2
i and b � maxi�1,:::, pëi.

Then ÷2(A) � kAåk2p satis®es, for each x. 0,

P(÷2(A) > tr(AA9)ó 2 � 2ó 2
�������

v
2x

p
� 2bó 2x) < eÿx, (24)

where tr denotes the trace of the matrix.

Let ÷2 � nhI n, ui � (X ÿ X e)9Tn(u)(X ÿ X e). If ì � E(X1), since X ÿ X e � (X ÿ
ìe)ÿ (X ÿ ì)e, we can assume without loss of generality that ì � 0 (otherwise we work

with ~X � X ÿ ìe). Let H be the hyperplane Vect(e)? (i.e. the orthogonal in the Euclidian

space R
n of the linear space generated by the vector e). Since X e is the orthogonal

projection of X on Vect(e), X ÿ X e � PH X , where PH is the matrix of the orthogonal

projection on H . Therefore, X ÿ X e is a Gaussian vector with degenerated variance,

var(X ÿ X e) � PHÓX P9H , where the rank of PH is nÿ 1 and ÓX denotes the variance

matrix of X . Since ÓX is symmetric positive semi-de®nite (it would be positive de®nite and

thus invertible if we had assumed f to be bounded away from zero), ÓX can be written

ÓX � P9DP where P9P � Id n (the n3 n identity matrix) and D � diag(ë1, . . . , ë p,

0, . . . , 0) with ëi . 0 for i � 1, . . . , p, with p < n denoting the rank of ÓX . Let Y � ÄPX ,

where Ä � diag(1=
�����

ë1
p

, . . . , 1=
������

ë p

p

, 1 . . . , 1). We have var(Y ) � diag(1, . . . , 1, 0, . . . , 0),

where there are p ones and nÿ p zeros on the diagonal. Since E(Y ) � 0, this implies that

Y p�1, . . . , Yn are almost surely null random variables. Moreover,

÷2 � k
������������

T n(u)
p

PH Xk2n � k
������������

T n(u)
p

PH (ÄP)ÿ1Yk2n � Y 9(ÄP)9ÿ1P9HTn(u)PH (ÄP)ÿ1Y

� (Y 9)( p)[(ÄP)9ÿ1P9HT n(u)PH (ÄP)ÿ1] pY
( p),

where Y ( p) � (Y1, . . . , Y p), and M p � (mi, j)1<i, j< p is the p3 p truncated matrix deduced

from M � (mi, j)1<i, j<n. We can apply inequality (24) to ÷2 with

AA9 � [(ÄP)9ÿ1P9HT n(u)PH (ÄP)ÿ1] p � [BB9] p, B � (ÄP)9ÿ1P9H
������������

Tn(u)
p

:

First, it is clear that E(÷2) � tr(AA9) and ÷2 ÿ E(÷2) � nZ n(u). Moreover, b � r(AA9)

< r(BB9) since any eigenvalue of AA9 is clearly an eigenvalue of BB9 (complete the

eigenvector with zeros) and

v
2 � tr((AA9)2) < tr((BB9)2) � tr(ÓX P9HTn(u)PHÓX P9HTn(u)PH ):
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Then we use the inequalities tr((MN )2) < r(M)2 tr(N 2) and tr((MN )2) < r(N )2 tr(M2) for

any pair (M , N ) of symmetric matrices. Since r(PH ) � 1 and r(ÓX ) � r(Tn( f )) < k f k1,
we have r(PHÓX P9H ) < r(ÓX ) and therefore we ®nd that tr((PHÓX P9HTn(u))

2) <

k f k21 tr(Tn(u)
2). Moreover, we know from Davies (1973, Lemma 3.1(iii)) that, for any

function u 2 L 2([ÿð, ð]),

lim
n!�1

" 1
n

X

n

i�1

ë2i (Tn(u)) �
�

ð

ÿð

u2(x)dx

for any Toeplitz matrix Tn(u) and with ëi(Tn(u)), i � 1, . . . , n denoting the eigenvalues of

T n(u). Then tr(Tn(u)
2) �Pn

i�1ë
2
i is of order nkuk2 when n grows to in®nity, and in

particular tr(Tn(u)
2) < nkuk2. Finally, since r(BB9) �

�������������������

r((BB9)2)
p

, we also ®nd that

b < r(ÓX )r(Tn(u)) < k f k1kuk1. Then inequality (24) gives (22).

Inequality (23) is derived in the same way but with the inequalities b < r(Tn( f ))kuk1
and v

2
< r(Tn(u))

2 tr(Tn( f )
2) < kuk21tr(Tn( f )

2). Then we note that tr(Tn( f )
2) is less than

n
�

ð

ÿð
f 2(x)dx. h

6.1.3. Proof of Theorem 1

Since m is ®xed and m9 is varying, let S(m9) � Sm � Sm9, D(m9) � dim(Sm � Sm9)

< Dm � Dm9 and Ë(m9) a set such that (jë)ë2Ë(m9) is an orthonormal basis of S(m9). Then

from (20) we obtain

k f ÿ ~f k2 < k f ÿ f mk2 � 2h f ÿ E(I n), f m ÿ ~f i � 2k ~f ÿ f mkG(m̂)� pen(m)ÿ pen(m̂),

with Z n de®ned by (21) and

G(m9) � sup
u2Bm,m9(0,1)

hI n ÿ E(I n), ui � sup
u2Bm,m9(0,1)

Z n(u), (25)

where Bm,m9(0, 1) is the unit L 2 ball of Sm � Sm9. This implies that

k f ÿ ~f k2 < k f ÿ f mk2 � 8k f ÿ E(I n)k2 � 1
4
k ~f ÿ f mk2 � 8G2(m̂)(26)� pen(m)ÿ pen(m̂):

Therefore we study the expectation of G2(m̂).

Proposition 4. Under the assumptions of Theorem 1,

E[(G2(m9)ÿ p1(m)ÿ p1(m9))�] < C eÿLm9Dm9
(1� C2

r)k f k
2
1

n
,

where p1(m) � ~k(1� C2
r)k f k

2
1(1� Lm)

2Dm=n, with C and ~k being numerical constants.
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From Proposition 4 and Assumption 5, it follows that, if p(m9) � p1(m9)� p
(m)
1 ,

E[G2(m̂)] < E[(G2(m̂)ÿ p(m̂))�]� p(m̂) <
X

m92M n

E[(G2(m9)ÿ p(m9))�]� p(m̂)

< C
(1� C2

r)k f k
2
1

n

X

m92M n

eÿLm9Dm9 � p1(m̂)� p1(m)

< C
(1� C2

r)k f k
2
1Ó

n
� p1(m̂)� p1(m): (27)

Using the fact that k ~f ÿ f mk2 < 2k f ÿ ~f k2 � 2k f ÿ f mk2, (26) can be rewritten

k f ÿ ~f k2 < 3k f ÿ f mk2 � 8k f ÿ E(I n)k2 � 8G2(m̂)� 8( p1(m̂)

� p1(m))ÿ 2pen(m̂)� 2pen(m), (28)

which, combined with (1) under Assumption 2 and (27), entails that

E(k f ÿ ~f k2) < 3k f ÿ f mk2 � 8
M2

n
� C

(1� C2
r)k f k

2
1Ó

n
� 3pen(m),

where C is a numerical constant and since pen(m) > 8p1(m) (with k � 8 ~k). Finally, the

in®mum over Mn can be taken since the result holds for any m.

Proof of Proposition 4. The proof uses arguments similar to those developed in the proof of

Theorem 5 in BirgeÂ and Massart (1998) and in the proofs of Proposition 7 and Theorems 8

and 9 in Barron et al. (1999). It is based on a chaining argument from which we know (see

Barron et al. 1999, Lemma 9, p. 400) that, in a linear subspace S � L 2 of dimension D, we

can ®nd a ®nite ä-net, Tä � B , where B denotes the ball of S centred in 0 and with radius

ó , and a mapping ð from S to Tä, such that:

· for each 0, ä < ó=5, jTäj < (5ó=ä)D;
· kuÿ ð(u)k < ä, 8u 2 S and supu2ðÿ1( t) kuÿ tk1 < rä, 8t 2 T, with r de®ned as in

(2).

We apply the above result to the linear space Sm � Sm9 of dimension D(m9) and r � r(m,m9)
de®ned by Assumption 4. We consider äk-nets, T k � Tä k

, with äk � ä02
ÿk , where ä0 <

1
5
is

to be chosen later. We set H k � ln(jT k j). Given some point u 2 Bm,m9(0, 1), we can ®nd a

sequence fukgk>0 with uk 2 T k such that kuÿ ukk2 < ä2k and kuÿ ukk1 < r(m,m9)äk .

Therefore we have the following decomposition, which holds for any u 2 Bm,m9(0, 1):

u � u0 �
X

1

k�1

(uk ÿ ukÿ1):

Clearly ku0k < ä0, ku0k1 < r(m,m9)ä0 and, for all k > 1, kuk ÿ ukÿ1k2 < 2(ä2k � ä2kÿ1) �
5ä2kÿ1=2 and kuk ÿ ukÿ1k1 < 3r(m,m9)äkÿ1=2.

Let (çk)k>0 be a sequence of positive numbers that will be chosen later on. We have
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P sup
u2Bm,m9(0,1)

Z n(u). ç
� �

� P 9(uk)k2N 2
Y

k2N
T k=Z n(u0)�

X

�1

k�1

Z n(uk ÿ ukÿ1). ç0 �
X

k>1

çk

" #

< P1 � P2,

where

P1 �
X

u02T0
P(Z n(u0). ç0), P2 �

X

1

k�1

X

u kÿ12T kÿ1

u k2T k

P(Z n(uk ÿ ukÿ1). çk),

with ç0 �
P

k>1çk < ç. Using inequality (22), we straightforwardly infer that P1 <

exp(H0 ÿ nx0) and P2 <
P

k>1 exp(H kÿ1 � H k ÿ nxk) provided that we choose

ç0 � 2k f k1ä0(
�����

x0
p � r(m,m9)x0),

çk � 2k f k1äkÿ1(
�������

5
2
xk

q

� 3
2
r(m,m9)xk):

(

We choose x0 such that nx0 � H0 � Lm9Dm9 � ô and, for k > 1,

nxk � H kÿ1 � H k � kDm9 � Lm9Dm9 � ô:

If Dm9 > 1, we infer that

P sup
t2Bm9

Z n(t). ç0 �
X

k>1

çk

 !

< eÿLm9Dm9ÿô 1�
X

1

k�1

eÿkDm9

 !

< 1:6 eÿLm9Dm9ÿô:

All that remains is to bound
P

k>0 çk . Since
P1

k�0äk � 2ä0 and
P1

k�0käk � 2ä0, we

®nd that

ä0x0 �
X

1

k�1

äkÿ1xk < 3ä0
D(m9)

n
(a(ä0)� Lm9)� 3ä0

ô

n
,

where a(ä0) � (5 ln(5=ä0)� 6 ln(2)� 4)=3. With repeated use of the inequality (x� y)2

< (1� è)x2 � (1� 1=è)y2 for positive x, y and è, we obtain

X

1

k�0

çk

 !2

< 4k f k21 ä0
�����

x0
p �

���

5

2

r

X

1

k�1

äkÿ1

�����

xk
p

 !

� 1:5r(m,m9) ä0x0 �
X

1

k�1

äkÿ1xk

 !

2

4

3

5

2
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< 8k f k21 ä0 �
5

2

X

1

k�1

äkÿ1

 !

ä0x0 �
X

1

k�1

äkÿ1xk

 !

� (1:5)2 r2(m,m9) ä0x0 �
X

1

k�1

äkÿ1xk

 !2
2

4

3

5

< 8k f k21ä20 180
D(m9)

n
(a(ä0)� Lm9)� 9(1:5)2

101

100

� �

11

10

� �

r2(m,m9)
D(m9)

n
(a(ä0)� Lm9)

� �2
"

� 180
ô

n
� 9(1:5)2100r2(m,m9)

ô2

n2

#

< (83 0:385)k f k21
D(m9)

n
(1� Lm9)� 4r2(m,m9)

D(m9)

n

� �2

(1� Lm9)
2 � ô

n
� r2(m,m9)

ô2

n2

" #

< 3:1k f k21 (1� C2
r)
D(m9)(1� Lm9)

2

n
� ô

n
� r2(m,m9)

ô2

n2

� �

,

provided that we choose ä0 � 1=100 < 1=5, a(ä0) � 13:08. The last inequality holds due to

Assumption 4. This implies

P sup
u2Bm,m9(0,1)

Z2
n(u). kk f k21

(1� C2
r)D(m9)(1� Lm9)

2

n
� 2

ô

n
_ r2(m,m9)

ô2

n2

� �� �

" #

< P sup
u2Bm,m9(0,1)

Z2
n(u). ç2

" #

< 2P sup
u2Bm,m9(0,1)

Z n(u). ç

" #

< 3:2eÿLm9Dm9ÿô:

Therefore, for k � 3:1,

E G2(m9)ÿ kk f k21(1� C2
r)
D(m9)(1� Lm9)

2

n

� �

�

<

�1

0

P G2(m9). k(1� C2
r)k f k

2
1
D(m9)(1� Lm9)

2

n
� u

� �

du

< eÿLm9Dm9

�1

2kk f k21=r2(m,m9)

eÿnu=(2kk f k21) du�
�2kk f k21=r2(m,m9)

0

eÿn
��

u
p

=(2
��

k
p

r(m,m9)k f k1)du

 !

< eÿLm9Dm9
2kk f k21

n

�1

0

eÿv dv�
2r2(m,m9)

n

�1

0

eÿ
��

v

p
dv

 !

< k9 eÿLm9Dm9
(1� 4C2

r)k f k
2
1

n

using Assumption 4 again. This completes the proof. h

6.2. Proof of Theorem 2

Recall that f Pn is the L 2 orthogonal projection of f on the space P n of piecewise

polynomials of degree r on a dyadic partition with step 2ÿJ n . The dimension of P n is

Nn � (r � 1)2J n . Let f̂ Pn similarly be the orthogonal projection of I n on P n and
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Ùn,b �
�

�

�

�

k f̂ Pnk1
k f k1

ÿ 1

�

�

�

�

, b

( )

, 0, b, 1:

On Ùn,b, the following inequalities hold:

k f k1 <
1

1ÿ b
k f̂ Pnk1, k f̂ Pnk1 < (1� b)k f k1:

We start from (28), with p1(m) as de®ned in Proposition 4. On Ùn,b we have

p1(m9) <
~k

(1ÿ b)2
k f̂ Pnk

2
1(1� C2

r)
Dm9(1� Lm9)

2

n
:

Then the choice

pen(m) � 4 ~k

(1ÿ b)2
k f̂ Pnk

2
1(1� C2

r)
Dm(1� Lm)

2

n

ensures that, on Ùn,b, 8p1(m̂)ÿ 2pen(m̂) < 0 and

8p1(m)� 2pen(m) < 8 1� (1� b)2

(1ÿ b)2

" #

~kk f k21(1� C2
r)
Dm(1� Lm)

2

n
:

Therefore, (28) becomes, on Ùn,b,

k f ÿ ~f k2 < 3k f ÿ f mk2 � 8
M2

n
� 8G2(m̂)� C(b)k f k21(1� C2

r)
Dm(1� Lm)

2

n
:

Taking the expectation on Ùn,b gives

E(k f ÿ ~f k21Ù n,b
)

< 3k f ÿ f mk2 � 8
M2

n
� C

(1� C2
r)k f k

2
1Ó

n

� C(b)k f k21(1� C2
r)
Dm(1� Lm)

2

n
:

Next we must study E(k f ÿ ~f k21Ùc
n,b
). We note that

k f ÿ ~f k2 � k f ÿ f m̂k2 � k f m̂ ÿ f̂ m̂k2 < 2k f k2 � k f ÿ I nk2

< 2k f k21 � 2k f ÿ EI nk2 � 2kI n ÿ EI nk2

using Pythagoras and the fact that f m̂ ÿ f̂ m̂ is the L 2-orthogonal projection of f ÿ I n on S m̂.

This implies that

E(k f ÿ ~f k21Ùc
n,b
) < 2k f k21 � M2

n

� �

P(Ùc
n,b)� 2(EkIn ÿ EI nk4P(Ùc

n,b))
1=2:

For EkIn ÿ EI nk4, we have the inequality
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EkIn ÿ E(I n)k4 � E

�

ð

ÿð

(In(ë)ÿ EIn(ë)
2 dë

� �2

� 4ð2E
X

jkj, n

ck,n ÿ 1ÿ jkj
n

� �

ãk

� �2
0

@

1

A

2

< 2ð
X

jkj, n

���������������������������������������������������

E ck,n ÿ 1ÿ jkj
n

� �

ãk

� �4
s

0

@

1

A

2

,

where ck,n is the empirical covariance de®ned by (32) below. With rough bounds it can be

proved that E(ck,n ÿ (1ÿ jkj=n)ãk)
4 is uniformly bounded; the computations are somewhat

tedious. Therefore EkIn ÿ E(I n)k4 is of order less than n2, and we need to prove that P(Ùc
n,b)

is of order 1=n4 for some choice of Nn.

We note that jk f̂ Pnk1 ÿ k f k1j < k f̂ Pn ÿ f Pnk1 � k f Pn ÿ f k1. Since k f Pn ÿ f k1 <
1
4
k f k1, if we take b >

3
4
, this implies k f Pn ÿ f k1 < (b=3)k f k1. We follow the line of

Section 5.3 in BirgeÂ and Massart (1997) and use their relation (2.8). Denoting by I j the

intervals [ð( jÿ 1)=2J n , ð j=2J n ) of the partition involved in P n, we have

k f̂ Pn ÿ f Pnk1 < sup
1< j<2 J n

k( f̂ Pn ÿ f Pn )1 I jk1 < sup
1< j<2 J n

�����������

r � 1
p

2J n=2

���

ð
p k( f̂ Pn ÿ f Pn )1 I jk

<
(r � 1)2J n=2

���

ð
p sup

ë2Ën

jhI n ÿ f , jëij

< (r � 1)2J n=2ð
ÿ1=2 sup

ë2Ën

jhI n ÿ E(I n), jëij � sup
ë2Ën

jhE(I n)ÿ f , jëij
� �

< ((r � 1)
������������

Nn=ð
p

) sup
ë2Ë n

jZ n(jë)j �
�������

M2

n

r

 !

,

where (jë)ë2Ën
is the orthonormal basis of P n, and using Proposition 1 and the de®nition

(21) of Z n. This implies

P(Ùc
n,b) � P(jk f̂ Pnk1 ÿ k f k1j. bk f k1)

< P (r � 1)

������

Nn

ð

r

sup
ë2Ën

jZ n(jë)j �
�������

M2

n

r

 !

� b

3
k f k1 . bk f k1

 !

< P sup
ë2Ën

jZn(jë)j.
2b=

���

ð
p

3(r � 1)
������

Nn

p k f k1 ÿ
�������

M2

n

r

 !

< 2
X

ë2Ën

P Zn(jë).
1
������

Nn

p 2
���

ð
p

bk f k1
3(r � 1)

ÿ
�������������

M2Nn

n

r

 ! !

:

Let
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î � 1
������

Nn

p 2
���

ð
p

bk f k1
3(r � 1)

ÿ
�������������

M2N n

n

r

 !

:

If we set the constraint (M2Nn=n)
1=2

< (bð1=2k f k1)=(6(r � 1)), i.e. the constraint on N n

given by

N n <
n

M2

b
���

ð
p

k f k1
6(r � 1)

 !2

, (29)

then î > bð1=2k f k1=(2(r � 1)N 1=2
n ). It follows from (22) that, since kjëk � 1 and

kjëk1 < f(r � 1)Nn=ðg1=2,

P(Zn(jë). 2k f k1(
���

x
p

�
��������������������������

(r � 1)Nn=ð
p

x)) < eÿnx:

This entails that

P(Z n(jë). î) < exp ÿn
î2

2v2
^ î

2c

� �� �

,

where v � 21=2k f k1 and c � 2k f k1f(r � 1)Nn=ðg1=2. Since

nî2

2v2
� nî2

4k f k21
>

ðb2

16(r � 1)2
n

Nn

and
nî

2c
� nî

���

ð
p

4k f k1
��������������������������

(r � 1)Nn=ð
p >

ðb

8(r � 1)3=2
n

Nn

,

we ®nd that

P(Z n(jë) > î) < exp ÿ ðb2

16(r � 1)2
n

N n

 !

,

and consequently

P(Ùc
n,b) < Nn exp ÿ ðb2

16(r � 1)2
n

Nn

 !

:

Then choosing

b � 4

6

���

5

ð

r

� 0:841 >
3

4
and Nn <

1

36(r � 1)2
n

ln(n)

implies that

P(Ùc
n,b) <

1

36(r � 1)2
1

n4 ln(n)

provided that n > exp(ðb2M2=M
2)) � exp(9M2=20M

2). For small values of n, the result is

trivially ful®lled as soon as the universal constant is chosen large enough.
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6.3. Proof of Theorem 5

We use the same notation as in the proof of Theorem 1. We start from equation (20). The ®rst

problem is to ®nd the maximum value of the term 2h f ÿ E(I n), f m ÿ ~f i because the result of

Proposition 1 no longer holds. Consequently a more precise study must be carried out. We

can prove the following lemma (see Appendix):

Lemma 6.1. For any m 2 Mn and s 2 Sm where Sm is a space of family (T), ksk � 1,

jh f ÿ E(I n), sij < 2
���

2
p

�������������������������������������������������������������������

1

n2

X

Dmÿ1

j�0

j2ã2j � 36
Dm

n2

X

n

j�0

jã jj
 !2

v

u

u

t :

This implies that

2jh f ÿ E(I n), f m ÿ ~f ij < 1

8
k f m ÿ ~f k2 � 8h f ÿ E(I n),

f m ÿ ~f

k f m ÿ ~f k
i2

<
1

8
k f m ÿ ~f k2 � 64

1

n2

X

D(m̂)ÿ1

j�0

j2ã2j � 36
D(m̂)

n2

X

n

j�0

jã jj
 !2

2

4

3

5

<
1

8
k f m ÿ ~f k2 � 64 C2

ã

D4á�1
m � D4á�1

m̂

n2

� �

� 36C2
ã

Dm

n
� Dm̂

n

� �

" #

<
1

8
k f m ÿ ~f k2 � kC2

ã

Dm

n
� Dm̂

n

� �

, (30)

using the inequalities ã j < Cã j
2áÿ1 and 4áÿ 1 < 0, and where k is a numerical constant.

For the bound of E(G2(m9)), with G given by (25), we do not use Proposition 4 and

proceed more simply. We know that

G2(m9) � sup
P

a2
ë
<1

X

ë2Ë(m9)

aëZ n(jë)

" #2

�
X

ë2Ë(m9)

Z2
n(jë):

Under assumption (15) on f , we straightforwardly derive from Dahlhaus (1989, p. 1781) that

r(T n( f )) < Kn2á, and this holds for á 2 (0, 1
2
). Here, we use inequality (23) instead of (22),

since for 0,á,
1
4
, f is still square-integrable:

P(Z n(jë) > 2kjëk1(k f k
���

u
p

� Kn2áu)) < eÿnu: (31)

Here jë(x) � B cos(ëx) and B � kjëk1 � ð
ÿ1=2. This leads to the following bound: for

every ã > 0,
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P(G2(m9). ã2) � P
X

ë2Ë(m9)

Z2
n(jë). ã2

 !

<

X

ë2Ë(m9)

P(Z2
n(jë). ã2ë)

�
X

ë2Ë(m9)

(P(Z n(jë). ãë)� P(Z n(ÿjë). ãë)) < 2
X

ë2Ë(m9)

eÿnxë ,

with ã2 �
P

ë2Ë(m9)ã
2
ë and ãë � 2B(k f kx1=2ë � Kn2áxë). Choosing

xë �
5 ln(D(m9))

n
� ç

n
, ç. 0,

implies that

P(G2(m9). ã2) <
2eÿç

D4(m9)
:

Let C be a numerical constant that may change from line to line. We ®nd

ã2 �
X

ë

ã2ë < 8B2
X

ë

[k f k2xë � K2n4áx2ë]

< C k f k2 D(m)ln(D(m9))
n

� K2 D(m9)ln
2(D(m9))

n2ÿ4á
� çk f k2 D(m9)

n
� ç2K2 D(m9)

2

n2ÿ4á

� �

< C (K2 � k f k2) D(m9)ln
2(D(m9))

n

� �

� K1D(m9)
ç

n
_ D(m9)ç2

n

� �

using the fact that 1ÿ 4á. 0 and setting K1 � 2Cmax(k f k2, K2).

This gives the following choice for p(m9):

p(m9) � C(K2 � k f k2) D(m9)ln
2(D(m9))

n
,

and leads to

P G2(m9). p(m9)� 2K1D(m9)
ç

n
_ D(m9)ç2

n

� �� �

< 2eÿçD(m9)ÿ4:

Now we set

ç � nô

2K1D(m9)
if ô, 2K1=n,

and

ç �
�����������������������

nô

2K1D2(m9)

r

otherwise,

whence
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�1

0

P(G2(m9). p(m9)� ô)dô

�
�2K1=n

0

P(G2(m9). p(m9)� ô)dô�
�1

2K1=n

P(G2(m9). p(m9)� ô)dô

< 2D(m9)ÿ4

�2K1=n

0

exp ÿ nô

2K1

� �

dô�
�1

2K1=n

exp ÿ
�����������������������

nô

2K1D2(m9)

r

( )( )

< 4K1

D(m9)ÿ3

n
� 8K1

D(m9)ÿ2

n
< 12K1

Dÿ2
m9

n
,

since D(m9) > Dm9 and
�1
0

eÿu du � 1,
�1
0

eÿ
��

u
p

du � 2. This gives the bound

E(G2(m9)ÿ p(m9))� <
12K1

n
Dÿ2

m9 :

Since in families (T), D(m9) � Dm _ Dm9, we have p(m̂) < p1(m)� p1(m̂), where p1(m)

� C(K2 � k f k2) (Dm ln2(Dm))=n. The end of the proof is the same as the end of the proof of

Theorem 1 using

X

m92M n

Dÿ2
m9 �

X

n

k�1

kÿ2
<

ð
2

6
� Ó:

instead of Assumption 5. Gathering these bounds with (30) gives the result claimed in

Theorem 5, provided that pen is chosen such that pen(m) > p1(m)� kC2
ãDm=n, 8m.

Comments on the proof of Remark 4.3. Under assumption (15) on f , we use the inequality

r(T n( f )) < Kn2á in the proof of Proposition 4 and Theorem 1. We apply inequality (22)

again with k f k1 replaced by r(T n( f )). The order of Ek f ÿ I nk2 is no longer given by

Proposition 1 but is computed from equation (37) in the Appendix, and is of order n4áÿ1.

Appendix

Proof of (5). Trivially, k f ÿ f̂ mk2 � k f ÿ f mk2 � k f m ÿ f̂ mk2, and if (jë)fë2Ëmg is an L 2-

orthonormal basis of the linear space Sm with card Ëm � Dm, then f m �
P

ë2Ëm
h f , jëijë

and f̂ m �
P

ë2Ëm
hI n, jëijë. Therefore,

k f m ÿ f̂ mk2 �
X

ë2Ëm

h f ÿ I n, jëi2 < 2
X

ë2Ëm

(h f ÿ E(I n), jëi2 � hE(I n)ÿ I n, jëi2)

< 2Dmk f ÿ I nk2 � 2
X

ë2Ëm

hE(I n)ÿ I n, jëi2:

First, Proposition 1 implies
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DmE(k f ÿ I nk2) < M2

Dm

n

under Assumption 2. Second, Theorem 10.3.2 (ii) in Brockwell and Davis (1991) implies that

under standard assumptions on linear processes, cov(I n(ù), I n(ù9)) � O(1=n), uniformly in

ù, ù9 for ù 6� ù9. Thus

E
X

ë2Ëm

hE(In)ÿ In, jëi2 �
X

ë2Ëm

�

jë(ù)jë(ù9)cov(In(ù), In(ù9))dù dù9

<
c

n

X

ë2Ëm

�

jë(ù)dù

� �2

< c
Dm

n
:

Gathering all terms gives the result. h

Proof of Proposition 1. First we rewrite I0n(ù) and I n(ù) as follows:

I0n(ù) �
1

2ð
c00,n � 2

X

nÿ1

r�1

c0r,n cos rù

 !

, I n(ù) �
1

2ð
c0,n � 2

X

nÿ1

r�1

cr,n cos rù

 !

,

where, for 0 < r < nÿ 1,

c0r,n �
1

n

X

nÿr

k�1

(X k ÿ ì)(X k�r ÿ ì), cr,n �
1

n

X

nÿr

k�1

(X k ÿ X n)(X k�r ÿ X n): (32)

Then we have

(2ð)2( f (ù)ÿ EI n(ù))
2 � (2ð)2( f (ù)ÿ EI0n(ù)� EI0n(ù)ÿ EI n(ù))

2

� (2ð)2 2
X

k>n

ãk cos kùÿ 2
X

nÿ1

k�1

k

n
ãk cos kù

( ) 

� Ec00,n ÿ Ec0,n � 2
X

nÿ1

r�1

cos rù(Ec0r,n ÿ Ecr,n)

( )!2

:� (2ð)2(A2
n(ù)� 2An(ù)Bn(ù)� B2

n(ù)):

We obtain

�

ð

ÿð

A2
n(ù)dù � 4ð

X

k>n

ã2k �
1

n2

X

nÿ1

k�1

k2ã2k

 !

< 4ð
1

n

X

k>n

kã2k �
n

n2

X

nÿ1

k�1

kã2k

 !

� 2ðM1

n
: (33)

Next

�

ð

ÿð

B2
n(ù)dù � 2ð(Ec00,n ÿ Ec0,n)

2 � 4ð
X

nÿ1

r�1

(Ec0r,n ÿ Ecr,n)
2:
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It is easily seen from Theorem 8.3.2 in Anderson (1971) that if
P1

k�ÿ1jãk j,1, then

jn(Ec0r,n ÿ Ecr,n)j < 3
X

jkj, n

jãk j < 6
X

1

k�0

jãk j (34)

for all n and r. Therefore, we derive that

�

ð

ÿð

B2
n(ù)dù < 18ð

M2

n
2� 1

n

� �

: (35)

Finally, the same arguments yield

2

�

�

�

�

�

ð

ÿð

An(ù)Bn(ù)dù

�

�

�

�

< 24ðM
X

nÿ1

k�1

k

n2
jãk j < 24ð

M2

n
: (36)

Then combining (33)±(36), we derive that

�

ð

ÿð

( f (ù)ÿ EI n(ù))
2 dù <

M1

2ðn
� 15

M2

ðn
� 9

M2

2ðn2
,

which concludes the proof. h

Note that, using (33) and (34), we obtain more generally the bound

�

ð

ÿð

( f (ù)ÿ E(I n(ù))
2 dù < 8ð

X

k>n

ã2k �
1

n2

X

nÿ1

k�1

k2ã2k �
6

n

X

n

k�1

jãk j
 !2

2

4

3

5 (37)

which allows us to compute an order even if
P

jãk j is not ®nite. In particular, if

jãk j � k2áÿ1, then all terms are of order n4áÿ1.

Proof of Lemma 6.1. Let s 2 Sm with ksk � 1. Then s(x) � B
PDmÿ1

j�0 a j cos( jx) and

jh f ÿ E(I n), sij � B

�

�

�

�

X

Dmÿ1

j�0

a jh f ÿ E(I n), cos( j�)i
�

�

�

�

< B
X

Dmÿ1

j�0

a2j

0

@

1

A

1=2
X

Dmÿ1

j�0

h f ÿ E(I n), cos( j�)i2
0

@

1

A

1=2

< B
X

Dmÿ1

j�0

h f ÿ E(I n), cos( j�)i2
0

@

1

A

1=2

With the same notation as previously,
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B2h f ÿ E(I n), cos( j�)i �
�

ð

ÿð

( f (ù)ÿ EI n(ù))B
2 cos( jù)dù

�
�

ð

ÿð

(An(ù)� Bn(ù))B
2 cos( jù)dù

:� I1( j)� I2( j):

Here,

I1( j) �
�

ð

ÿð

2
X

k>n

ãk cos(kù)ÿ 2
X

n

k�1

k

n
ãk cos(kù)

 !

B2 cos( jù)dù

� ÿ 2

n

X

n

k�1

kãk

�

ð

ÿð

B2 cos(kù)cos( jù)dù � ÿ 2 jã j

n
,

all terms
�

ð

ÿð
B2 cos(kù)cos( jù)dù being zero in the ®rst sum because j, Dm < n < k so

that j � k never holds. For I2( j), we use (34):

I2( j) �
�

ð

ÿð

(Ec00,n ÿ Ec0,n)B
2 cos( jù)dù� 2

X

nÿ1

r�1

(Ec0r,n ÿ Ecr,n)

�

ð

ÿð

B2 cos(rù)cos( jù)dù

� (Ec00,n ÿ Ec0,n)ä j,0 � 2(Ec0r,n ÿ Ecr,n)är, j1r>1 <
6

n

X

n

k�0

jãk j(ä j,0 � 2är, j1r>1):

Gathering the terms gives:

jh f ÿ E(I n), sij <
X

Dmÿ1

j�0

(I1( j)� I2( j))
2

0

@

1

A

1=2

<

X

Dmÿ1

j�0

2(I21( j)� I22( j))

0

@

1

A

1=2

<
���

2
p X

Dmÿ1

j�0

4 j2ã2j

n2
� 144Dm

n2

X

n

k�0

jãk j
 !2

0

@

1

A

1=2

,

which ends the proof of Lemma 6.1. h
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