Adaptive Evolutionary Planner/Navigator for
Mobile Robots

Jing Xiao* Zbigniew Michalewicz!
Lixin Zhang? and Krzysztof Trojanowski?

Abstract

Based on evolutionary computation (EC) concepts, we developed an adap-
tive Evolutionary Planner/Navigator (EP/N) as a novel approach to path plan-
ning and navigation. The EP/N is characterized by generality, flexibility, and
adaptability. It unifies off-line planning and on-line planning/navigation pro-
cesses in the same general and flexible evolutionary algorithm which (1) ac-
commodates different optimization criteria and changes in these criteria, (2)
incorporates various types of problem-specific domain knowledge, (3) enables
good trade-offs among near-optimality of paths, high planning efficiency, and
effective handling of unknown obstacles. More importantly, the EP/N can self-
tune its performance for different task environments and changes in such envi-
ronments, mostly through adapting probabilities of its operators and adjusting
paths constantly even during a robot’s motion towards the goal.

1 Introduction

The path planning problem for mobile robots is typically formulated as follows [20]:
given a robot and a description of an environment, plan a path of the robot be-
tween two specified locations, which is collision-free and satisfies certain optimiza-
tion criteria. Although a great deal of research has been done towards solving this
problem, conventional approaches tend to be inflexible in responding to (1) different
optimization goals and changes of goals, (2) different environments or changes and
uncertainties in an environment, and (3) different constraints on computational re-
sources (such as time and space). Traditional off-line planners often assume that the

*Department of Computer Science, University of North Carolina, Charlotte, NC 28223, USA;
e-mail: ziao@uncc.edu.

TDepartment of Computer Science, University of North Carolina, Charlotte, NC 28223, USA; e-
mail: zbyszek@unce.edu and Institute of Computer Science, Polish Academy of Sciences; ul. Ordona
21, 01-237 Warsaw, Poland; e-mail: zbyszek@ipipan.waw.pl.

{Department of Computer Science, University of North Carolina, Charlotte, NC 28223, USA.

$Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237 Warsaw,
Poland; e-mail: trojanow@ipipan.waw.pl.

environment is perfectly known and they try to search for the optimal path based on
some fixed criteria (most commonly: the shortest path) by any costs (see [20, 9] for
surveys). On-line planners, on the other hand, are often purely reactive and do not
try to optimize a path (e.g., [3, 13, 12, 1, 4]). There are also approaches combining
traditional off-line planners with incremental map building to deal with a partially-
known environment such that global planning is repeated whenever a new object is
sensed and added to the map [6, 15, 21]. Such approaches, however, suffer from the
same inflexibility as the traditional off-line planners do. The many advantages of
evolutionary computation have inspired the emergence of EC-based path planners.
However, early planners often use standard evolutionary algorithms (e.g., [16, 22, 17])
without being empowered by more domain-specific knowledge. In addition, they of-
ten assume discrete search maps derived from known environments and thus they are
also inflexible like many traditional planners. More recently, there emerged EC-based
planners to deal with dynamic environment with parallel implementation [2] and to
create diversity in paths [5].

However, there is still a need for more general, flexible, and preferably adap-
tive planners capable of meeting any changes in requirements and environments. EC
provides a promising paradigm for such a general planner, but to be effective, such a
planner (1) should be the product of creative application of the EC concept incorporat-
ing heuristic knowledge rather than dogmatic imposition of any standard algorithm,
(2) should not be limited to searching paths in some fixed abstract map structure,
and (3) should be able to accommodate or to adapt to diversities and changes in
optimization goals, environments, and computing resources.

The EP/N was developed to embody the above ideas for a general, flexible, and
adaptive planner. It combines the concept of evolutionary computation with problem-
specific chromosome structures and operators. Unlike many other planners which
need to first build a discretized map for search, the EP/N simply “searches” the
original and continuous environment to generate paths, and there is little difference
between off-line planning and on-line navigation for the EP/N. In fact, the EP/N
combines off-line planning and on-line navigation in the same evolutionary algorithm
using the same chromosome structure.

Since its first version [11], the development of the EP/N system has been an ever
living “evolution” process itself: major effort in the past was focused on operators and
fitness evaluation [18, 14], and more recently—on system performance and self-tuning
[19]. In this paper, we focus on the adaptability of the EP/N system, which is char-
acterized by (1) the adaptability of operator probabilities, and (2) the adaptability of
the on-line (real time) navigation process, and we present related new results. Such
new development enables the EP /N to deal with changes, unknowns and uncertainties
gracefully.

The paper is organized as follows. Section 2 introduces the evolutionary algorithm
of the EP/N in detail. Section 3 describes the self-tuning capabilities of the EP/N.
Section 4 presents a set of off-line experiments done on the EP/N which demonstrate
its adaptability to diverse environments. Section 5 discusses the on-line process and

presents simulation results of the on-line navigation on a few environments. Section 6
concludes the paper and discusses further research issues.

2 Description of the EP /N algorithm

As introduced in Section 1, the EP/N uses the same evolutionary algorithm and
chromosome structure for both off-line planning and on-line navigation. The outline
of the adaptive EP/N is shown in Figure 1.

procedure EP/N
begin
t—20
if known_path then
input P(t)
else
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin
t—1t+1
select operator o
select parent(s) from P(t)
produce an offspring by applying the operator o
to the selected parent(s)
evaluate new offspring
replace the worst member of the population P(t)
by the produced offspring
select the best individual p from P(t)
if online and p feasible and (¢ mod n) = 0 then
begin
move one step k., along the path determined
by p while sensing the environment
modify the values in all individuals
due to a new starting position
if there is any change sensed then
update the object map
evaluate P(t)
end
end
end

Figure 1: The Adaptive Evolutionary Planner/Navigator

In the EP/N algorithm, a chromosome in a population P(t) of generation ¢ rep-

resents a (feasible or infeasible) path leading the robot to the goal location (see
Section 2.1 for details on the chromosome structure). Fach chromosome is evaluated
(Section 2.2) and the algorithms enters evolutionary loop (while statement). An oper-
ator (Section 2.3) is selected on the basis of some probability distribution (Section 3);
the set of operators consists of a number of unary transformations (mutation type),
which create offspring by a small change in a single individual, and higher order trans-
formations (crossover type), which create offspring by combining parts from several
(two or more) individuals. The produced offspring replaces the worst individual in the
population. Thus, in this steady-state evolutionary system, the populations P(t+ 1)
and P(t) differ by a single individual.

The two Boolean variables known_path and online are used to achieve maximum
flexibility. If known_path is true, it means that the EP/N does not have to create
the initial population P(0) of chromosomes (which represent paths) from scratch. In-
stead, it can input a population of paths as the initial generation, which could be the
results of previous planning and/or navigation or obtained from a priori knowledge
of the task (i.e., the paths to accomplish the task), and so on. Otherwise, the EP/N
needs to generate an initial population (Section 2.1). The value of online indicates
the working mode of the EP/N. If online is false, the algorithm is run off-line, char-
acterized by evolution of paths (chromosomes) based on only known information of
an environment. If online is true, the algorithm is run in real time to guide a robot’s
movement based on both known and newly sensed information of the environment.

The on-line EP /N runs two processes in parallel:

1. navigation of the robot along the current best path while sensing the environ-
ment to detect unknown objects, and

2. continuation of the evolution process in search for further path improvements,
taking into account new location of the robot and newly sensed objects (if any).

The two processes are related in the following way: while the robot moves along
the current best path p., the best new path p emerged from the evolution process is
checked every n generations for feasibility: if p is feasible, the robot starts moving
along p; otherwise the robot continues to move along p. while the evolution process
also continues. Note that during such on-line navigation, the starting location of
each path (chromosome) in a population is constantly updated to reflect the current
location of the robot as it moves. By letting the robot to follow the current best path
from the continuing evolution, the EP/N is able to constantly improve the robot
motion between the current location of the robot and the goal, even if the robot is
not approaching any obstacles. A discovery of a new obstacle during the navigation
process results in changes in fitness values for all paths in the current population.
The on-line process is further detailed in Section 5.

The flexible EP /N algorithm (as the two Boolean variables known_path and online
indicate) allows an off-line planning process and an on-line navigation process to be
nicely concatenated: the final generation of paths found by the off-line planning can
be input to the on-line process as the initial population, a basis to start navigation

4

and further evolution. On the other hand, if the environment is totally unknown
beforehand, planning will depend the on-line process only, where the evolution can
start from a randomly generated initial population of paths (Section 2.1).

The following subsections describe the important components of the EP/N algo-
rithm: (1) the chromosome structure and initialization process, (2) the evaluation
function, and (3) the operators used.

2.1 Chromosomes and initialization

In the EP/N algorithm, a chromosome represents a path, consisting of straight-line
segments, as the sequence of knot points (i.e., intersections between two segments) or
nodes on the path (Figure 2). Each node, apart from the pointer to the next node,
consists of x and y coordinates of the knot point and a state variable b, providing
information such as whether (1) the knot point is feasible (i.e., outside obstacles) and
whether (2) the path segment connecting the knot point to the next knot point is
feasible (i.e., without intersecting obstacles). Thus, a path (or chromosome) can be
either feasible or infeasible. A feasible path is collision-free, i.e., has only feasible
nodes and path segments.

Figure 2: A chromosome representing a path

A path (or chromosome) can have a varied number of nodes. An initial population
of chromosomes can be randomly generated such that each chromosome has a random
number of nodes and randomly-generated coordinates for each node. Chromosomes
are then evaluated and selected (based on fitness) for parenthood for one of eight
operators (also selected on the basis of some probability distribution—see Section 3)
for a possible improvement. This sequence of application of the chosen operator
to one or two selected parents, evaluation of offspring, and the replacement of the
worst individual by the generated offspring, corresponds to a single generation in
the evolutionary process. The process terminates after some number of generations,
which can be either fixed by the user or determined dynamically by the program
itself, and the best chromosome represents the near-optimum path found.

2.2 Evaluation

The evaluation function of a chromosome p measures the cost of a path represented by
p. Since a path can be either feasible (i.e., collision-free) or infeasible, we adopt two
separate evaluation functions, eval; and eval;, to handle the feasible and infeasible
cases, respectively. For feasible paths, our current evaly is designed to accommodate

5

three different optimization goals: shortness, smoothness, and clearness (i.e., away
from obstacles) of a path. Specifically, evals is a linear combination of these three
factors:

evals(p) = wq - dist(p) + ws - smooth(p) + w. - clear(p)

where the constants wy, ws, and w, represent the weights on the total cost of the
path’s length, smoothness, and clearance, respectively. We define dist, smooth, and
clear as the following:

o dist(p) = Yi7! d(my,miy1), the total length of the path, where d(m;,miy1)
denotes the distance between two adjacent path nodes m; and m;.

e smooth(p) = max?Z;} s(m;), the maximum “curvature” at a knot point, where
“curvature” is defined as

0;

min{d(m;_y,m;), d(m;, mig1)}

s(m;) =

and §; € [0, 7] is the angle between the extension of the line segment connect-
ing nodes m;_; and m; and the line segment connecting nodes m; and m;;,

(Figure 3).

e clear(p) = max!7} ¢;, where

o) g7 ifgi>r
T e®m9) — 1 otherwise,

g; 1s the smallest distance from the segment ;7,17 to all detected objects, 7
is a parameter defining a “safe” distance, and «a is a coefficient.

With this formulation, our goal is to minimize the function evaly;.

-

-

mi/

/”’\/ei\ﬂ
m

i+
Mi.1 *t

Figure 3: 8, at each node m;

For infeasible paths, our design of eval; takes into account several factors: the
number of intersections of a path with obstacles, the depth of intersection (i.e., how
deep a path cuts through obstacles), the ratio between the numbers of feasible and
infeasible segments, the total lengths of feasible and infeasible segments, and so on,
as detailed in [18]. In ranking all paths, we assume that the worst feasible path is
better (or fitter) than the best infeasible path.

6

2.3 Operators

The current version of EP /N uses eight types of operators to evolve chromosomes into
possibly better ones. These operators are sufficient to generate an arbitrary path, but
may not all be applicable or needed in all situations. The application of each operator
is controlled by a probability. Now we introduce these eight operators, which are also
illustrated in Figure 4:

% N aTh %\%\q S

crossover mutation_1 mutation_2 insertion

T S
N T B B

deletion swap smooth repair

v v v v
‘m md e m

Figure 4: The roles of the operators

Crossover: it recombines two (parent) paths into two new paths. The parent paths
are divided randomly into two parts respectively and recombined: the first part of
the first path with the second part of the second path, and the first part of the second
path with the second part of the first path. Note that there can be different number
of nodes in the two parent paths.

Mutate_1: it is used for fine tuning node coordinates in a feasible path for shape
adjustment. The operator randomly adjusts node coordinates within some local clear-
ance of the path so that the path remains feasible afterwards.

Mutate_2: it is used for large random change of node coordinates in a path, which
can be either feasible or infeasible.

Insert-Delete: it operates on an infeasible path by inserting randomly generated new

nodes into infeasible path segments and deleting infeasible nodes (i.e., path nodes that
are inside obstacles).

Delete: it deletes nodes from a path, which can be either feasible or infeasible. If
the path is infeasible, the deletion is done randomly. Otherwise, the operator decides
whether a node should definitely be deleted based on some heuristic knowledge, and
if a node is not definitely deletable, its deletion will be random.

Swap: it swaps the coordinates of randomly selected adjacent nodes in a path, which
can be either feasible or infeasible.

Smooth: it smooths turns of a feasible path by “cutting corners”, i.e., for a selected
node, the operator inserts two new nodes on the two path segments connected to that
node respectively and deletes that selected node. The nodes with sharper turns are
more likely to be selected.

Repair: it repairs a randomly selected infeasible segment in a path by “pulling” the
segment around its intersecting obstacles.

It can be seen that except for the purely random operators Crossover and Mu-
tate_2, all the other operators (which are varied forms of mutations) are designed
with some heuristic knowledge to make them more effective. Note that since most
knowledge needed is available from the evaluation of path fitness (see the previous
subsection), the operators mostly use the knowledge with little extra computation.

The firing probability p; (i = 1,...,8) of each operator governs the contribution or
role of the operator to the whole evolution process. Clearly different values of these
probabilities affect the overall performance of the EP/N.

3 Performance and probability self-tuning

Different values of the operator probabilities affect the overall performance of the
EP/N. As the EP/N uses many operators, how to determine their probabilities prop-
erly is not a trivial matter, especially since proper values could very much depend
on environmental characteristics and specific constraints imposed on a task. In this
section, we describe how to enable the EP/N self-adapt these probabilities to achieve
the best results by a systematic method.

3.1 Operator performance index

We evaluate the performance of an operator taking into account three essential as-
pects:

1. its effectiveness in improving the fitness of a path,
2. its operation time (or time cost), and
3. its operation side effect to future generations.

While the first two aspects are self-explanatory, the third aspect refers to the fact that
five operators, i.e., crossover, insert-delete, delete, smooth, and repair, tend to
change the number of nodes (or the length) of a chromosome after their application.

8

Since the length of a chromosome affects both the processing time and the storage
space needed by the chromosome — the more nodes are in the chromosome, the more
space and time (i.e., evaluation time and often operation time) are needed, if an
operator alters the number of nodes in a chromosome, the effect will be felt in future
processing. Such effect can be either positive or negative on the processing cost of
future generations', depending on if the operator reduces or increases the number
of nodes in the chromosome. Note that including the last two aspects in evaluating
operators is particularly useful when constraints on operation resources (i.e., time
and space) for the EP/N are stringent.

Now we describe the performance measures in detail. The three aspects are first
measured individually and then combined to form a compound performance index
for an operator. Since the role of an operator often varies in different stages of an
evolution process (e.g., some operators apply only to infeasible paths while some only
apply to feasible ones), each aspect is measured as a function of generation interval
[Ty, T3], where T; and T; are the starting and ending generations of the interval. For
an operator z, ¢ = 1,..., 8,

o its effectiveness in improving the fitness of a path is measured by the ratio
e;(Ty,T,) between the number of times it improves a path and the total number
of times it is applied;

e its operation time ¢;(7T1,T%) is measured as the average time per its operation;

e its operation side effect s;(71,7) is measured as the average time cost of all
operators on the average change of nodes by the operator ::

5712' -tH(n
(1) = 2
n

where én; is the average change in the number of nodes of a chromosome by
operator ¢ per its operation during the generations in [T}, T3], such that én; is
negative if the number of nodes is decreased on average and is positive other-
wise, n is the average number of nodes in a chromosome over the generations in
[T1,T5], and t(n) is the weighted average operation time (on an average chro-
mosome) of all operators during [T, T3]

5.

) =S — " (T, T
(1) =3 gy BT

where m; is the number of times (i.e., generations) the operator ¢ is applied

during [T}, T3).

Tt is important to differentiate the processing cost (in terms of time and space) and the fitness
of a chromosome; the latter is often improved as the chromosome has more nodes (such as after the
operator repair or smooth is applied).

Note that the formulation of s;(73,73) takes into account the fact that the node
number change in a chromosome by operator ¢ has an effect on any future operation,
not necessarily by the same operator ¢.

The overall performance of an operator ¢ is measured by the following performance
index I;(Ty,Ty), which combines the three aspects of performance:

ei(T17 TQ) +c
ti(Th, Tz) 4 s;(T1,Ts)

]i(Tlv TQ) —

where ¢ > 0 is a small constant. Note that greater value of I, means better per-
formance. In addition, when s;(71,7T3) is negative (i.e., when én; is negative), it
contributes positively to [;, which can be shown to be non-negative.

The operator performance index [; has great significance because of the following:

e [t can be automatically computed by the EP/N since it is based on statistics
which the EP/N can accumulate during its run. Thus, it can be used by the
EP/N for automatic determination of the operator probability p;, defined as:

I;

— 1
ST, (1)

b=

e Since [; is a function of generation interval [Ty, T3], for different generation inter-
vals, the EP/N can compute different /;’s and accordingly different p;’s. That
is, a look-up table that maps different generation intervals to different operator
probabilities can be built by the EP/N automatically. Next, the operator prob-
abilities can be changed during different stages of evolution to achieve greater
effectiveness and efficiency.

e More importantly, the EP/N can be self-adaptive as follows. Let 6T be a
sufficiently small number of generations. Assign all initial operator probabilities
randomly (for example, uniformly). After the first 67 generations, use the
computed [;(0,6T), ¢ =1,...,8, to compute new probabilities p;(1;) and use the
new probabilities in the next 67" generations. Afterwards, compute the next
I;(6T,26T) and again reset the probabilities accordingly. Repeat the procedure
until the whole evolution process terminates.

3.2 System performance measures

We use the following measures to evaluate the performance of the whole EP /N system
over [0, T] generations:

o effectiveness index — in terms of the average path cost avgr or the best path
cost bestr in the population of the final generation T'.

e efficiency index — in terms of the product of the average path cost avgr or
the best path cost bestr in the final generation 7" and the total time {7 spent
over [0, 7] generations: avgr X {7 or besty X tr.

10

Clearly smaller values of both indices mean better effectiveness and better efficiency
respectively. To improve system performance is to reduce the values of those indices.
Note that the above measures are not necessarily optimal ways of measuring the
system performance. One may also take into account factors such as how quickly
infeasible paths are evolved into feasible ones (or the percentage of the feasible paths
in each generation) and the diversity of feasible paths, and so on, depending need.

3.3 Adapting operator probabilities

Based on the procedure of computing the operator performance indices [;’s in the
EP/N, we have used the following method to enable the EP/N self-adapt its oper-
ator probabilities at run-time. First, divide the total number of generations T' into
several equal intervals such that the number of intervals determine the frequency of
adaptation. To begin the run, let the EP/N assign equal probabilities to all opera-
tors initially. Then, after the first interval of generations, the EP/N computes the
corresponding [;’s and probabilities p;’s (by equation (1)) and resets the operator
probabilities to the newly computed p;’s to run the next interval of generations. At
the end of interval 2, the EP/N again resets the operator probabilities based on the
1;’s corresponding to that interval and uses the new probabilities to run interval 3,
and so on. Thus, adaptiveness is achieved by applying the probabilities computed
based on the operator performance in generation interval n to the next interval n+ 1.

Our experiments showed (Section 4) that comparing to running the EP/N with
equal operator probabilities or other manually determined fixed operator probabil-
ities, running the system with adaptive operator probabilities enhanced both the
effectiveness and efficiency of the system for diverse tasks.

4 Off-line experiments and results

We have implemented the EP/N for polygonal obstacles and run the EP/N off-line
on different tasks in diverse environments to test its self-tuning ability and overall
performance. Figure 5 shows six different tasks in six different environments, where
for each task, a near-optimal path obtained by the EP/N is displayed.

Tables 1 shows the gain on both system effectiveness and efficiency when the
EP/N self-adapted its operator probabilities against the case when the EP/N used
fixed, equal operator probabilities for each environment shown in Figure 5, in a total
T = 400 generations. Specifically, T' was divided into 4 intervals of 100 generations
each, i.e., the frequency of adaptation is 4. The population size was set to be 30. Each
result was the average of repeatedly running the EP /N under the same condition 100
times.? As expected, values of both system effectiveness and efficiency indices are
reduced, which means better effectiveness and efficiency was achieved in most of the
cases.

ZNote that [19] presented some results averaged over 30 times. We later find that 30 runs are not
enough statistically and 100 runs are more reasonable.

11

Figure 5: Task environments and typical paths found by EP/N

Table 2 shows, for each environment and the task shown in Figure 5, the average
time of running the EP /N with adaptive probabilities for 7' = 600 generations over
20 runs on a Silicon Graphics station. The population size was set to 30 for each case,
and the coefficients wy, ws, w,, a, 7 in the evaluation function evals(p) were selected as
1.0, 1.0, 1.0, 7.0, 10, respectively. For the environments 1-5, the best paths found are
as shown in Figure 5. For the task in the environment 6, we provide snapshots at six
different states of evolution as shown in Figure 6, where two-thirds of the population
are displayed. The best path found at the last state (7' = 1000), i.e., the best of the
paths from Figure 6 (for 7' = 1000), is shown in Figure 5.

Comparing to the results obtained by running the EP /N with fixed, manually de-

12

Table 1: Average gain (over 100 runs) on system performance against the case with

equal operator probabilities in 7' = 400 generations

env effectiveness efficiency
avgrYchange | besty Y%change | avgr x t7 %change | besty x tr Y%change

1 -L7T% -1.17% -1.20% -0.60%
2 -4.03% -0.39% -1.14% 2.61%
3 -4.59% -2.79% -12.76% -11.11%
4 -4.80% -3.43% -4.90% -3.52%
5 -2.28% -1.41% -6.30% -5.46%
6 -5.48% -4.96% -7.88% -7.39%

Table 2: Average running time (over 20 runs) for 7" = 600 on a Silicon Graphics
station. The time for the simplest environment 1 is for T' = 200

environment 1 2 3 4 5 6

0.17 | 1.45 | 3.33 | 5.46 | 7.25 | 7.61

time (sec)

termined operator probabilities [18], the results from running the EP /N with adaptive
probabilities (as presented here) show significant improvement of the system perfor-
mance. The advantages of letting the system self-adapt are obvious.

5 On-line navigation

We have implemented a simulation program for the on-line navigation of the EP/N
(see Figure 1) with the following assumptions:

o There are two kinds of obstacles in the environment: known and unknown. In
the current implementation they are assumed to be static.

e There is a range of view of the robot (described by R, parameter of the robot).
If, because of robot’s motion, an unknown obstacle is located in the range of
the view, the obstacle becomes known and is marked in the robot’s map of
the environment. In the current stage of simulation, for simplicity, we further
assume that once an obstacle is inside the robot’s range of view, it becomes
known totally. Of course, to be more realistic, this assumption can easily be
revised as only the part of the object boundary that is inside the robot’s range of
view is known. However, as our current focus is on testing the robot’s adaptation
capability to the discovery of unknowns in an environment, it does not matter
much at present how such discovery is actually done.

13

Figure 6: Snapshots of evolution

In the on-line navigation, the result of evolution is checked after every n genera-
tions (see the second “if” statement in the procedure of Figure 1) to provide the robot
with the current best feasible path. The robot moves along such a path in steps, and
we use a parameter k., to denote the maximum length of the robot’s step. ks
is less than R. If a segment of the path currently being followed by the robot has a
length shorter than k,,,,, the robot will cover it in one step to reach the next knot
point of the path. Otherwise, the robot will move along the segment in more than
one step, and during the process, it may also change course if a better path (i.e., the
next best path) becomes available from the evolution process. The evolution process
runs in parallel with the robot’s motion.

The implication of sensing a previously unknown obstacle is a change in the fitness
values of the current path population. As such new obstacle is added to the robot’s
map of environment, it may change the subsequent evaluation results of all paths.

14

This is a very sensitive moment for the evolution process: some of the (feasible) paths
in the population may become infeasible and their cost can grow up in a significant
way. Usually, the current best path may not be the best any longer and a new best
path may need to be found.

5.1 An example

The actions of the robot guided by the on-line navigation process are illustrated by
the following example. Figure 7 displays robot’s environment. The start point is
in the left bottom corner and the goal point is close to the right top corner of the
rectangle. There are eight obstacles in total; two of them are unknown (marked by
their contours only).

Figure 7: The environment

During the initialization process, a set of randomly generated paths is developed;
very likely none of these initial paths is feasible (Figure 8 displays the best path in
the initial population).

Figure 8: The best path in the initial population

Soon after discovery of the first feasible path, the first step ahead is made. Note
that this path of the robot is optimized only based on known obstacles so that it does
not have to be really feasible (Figure 9). Note also, that the remaining parts of the
paths are continuingly optimized: the current best path in Figure 9 is different from
that in Figure 10.

When a previously unknown obstacle is in the robot’s range of view, it becomes
known and the robot marks its presence on the map of the environment (Figures 10

15

Figure 9: The first feasible path

and 11). At this moment, all paths in the current population are re-evaluated, and
as the evolution process continues, the robot eventually follows a newly emerged best
feasible path (Figure 12).

Figure 10: Before sensing the first unknown obstacle

Figure 11: Sensing and re-evaluation

As mentioned earlier, as the robot proceeds, the remaining parts of the paths are
continuingly optimized: the current best path in Figure 12 is different from that in
Figure 13. When the second unknown obstacle is discovered, again, all paths in the
population are re-evaluated, and the robot adjusts its motion accordingly by following
a newly emerged best path (Figure 14).

The actual path traversed by the robot is displayed in Figure 15 (note again the
improvements in the final segments of the path from those displayed in Figure 14).
Clearly, this path is far from being optimal in comparison with an “ideal” path which

16

Figure 12: The best feasible path after sensing the first unknown obstacle

Figure 13: Before sensing the second unknown obstacle

would emerge if all obstacles in the environment were known beforehand (Figure 16).
However, it is unfair to simply compare such a real path traversed as the result of
on-line dealing with unknown obstacles to the “ideal” one.

5.2 Analysis of performance

To evaluate the quality of a real path, a more reasonable approach is to divide the
path into so-called fragments: the cut point between fragments is the location where
the robot sensed a new obstacle. There are as many cut points as the number of new
obstacles sensed during the robot’s movement (therefore the number of fragments, f,
is by one greater than the number of cut points). Then each fragment is compared

Figure 14: After sensing the second unknown obstacle

17

Figure 15: The robot’s real path

Figure 16: The robot’s “ideal” path for the completely known environment

to an ideal path generated to connect the fragment’s start and goal locations®, which
results in a relative error e; in path cost for the segment.

Knowing the merit of each fragment (measured by e;), we can measure the error
FE of the real path with the formula:

where:

f — number of fragments,

e; — relative error of the i-th fragment (in path cost),

g; — the number of generations passed during the traversal of the :-th
fragment, and

N = Z;Zl g;, i.e., N represents the total number of generations.

Note that ¢;’s depend on the following parameters: n (the number of generations
between robot’s steps), kpq. (the robot’s step length), and R (the robot’s range of
view). As the result, longer fragments usually correspond to larger values of ¢;’s, and
consequently smaller values of e;’s. This is why we define the error £ as a weighted
average of ¢;’s, with the corresponding weight being ¢; /N. Note also that if the robot

3Such an ideal path can be generated by running the EP/N off-line in the same environment but
with all obstacles known for a sufficient number of generations.

18

Table 3: Result of experiments for n = 5; the resulting number of generations N =

463.7 and error £ = 0.118076

‘ frag. | real cost | ideal cost s €; (e;-¢:)/N ‘

1 681.1 603.1 200.1 | 0.129331 | 0.055810

2 1059.3 951.0 198.9 | 0.113880 | 0.048847

3 715.8 653.0 64.7 | 0.096172 | 0.013419
Table 4: Result of experiments for n = 10; the resulting number of generations
N = 592.8 and error E = 0.081996

frag. | real cost | ideal cost s €; (e;-¢:)/N

1 655.4 603.2 251.9 | 0.086538 | 0.036773

2 1031.5 953.3 223.8 | 0.082031 | 0.030969

3 699.9 652.8 117.1 | 0.072151 | 0.014254

encounters no unknown obstacle, then there is only one fragment: the entire real
path, and E is simply the relative error of the real path traversed against an ideal

path (which can be the result of evolution over a larger number of generations).

Figure 17: Experimental environment; three fragments of a path are clearly marked

We now discuss how FE is related to n, the number of generations between the
robot’s steps. Tables 3 — 6 show results of experiments (average over 100 runs) for
different n’s. The other parameters used in these experiments were: population size
70, the robot’s single step k.., = 40, and the range of view R = 45. The environment
used is displayed in Figure 17, whose dimensions were 400 x 500.

Results reported in Tables 3—6 confirm a basic intuition: the total error £ de-
creases with the growth of n. That is, the more generations between robot’s steps
are, the better precision (in terms of the path quality) can be achieved. Also, the
relative errors ¢;’s are smaller for later fragments, i.e., fragments closer to the goal.
This is because these fragments are subject to more optimization (in terms of larger
number of generations) in the on-going evolutionary process.

19

Table 5: Result of experiments for n = 15; the resulting number of generations

N = 753.9 and error Ir = 0.071032

‘ frag. | real cost | ideal cost s €; (e;-¢:)/N ‘

1 649.1 603.0 303.2 | 0.076451 | 0.030747

2 1017.4 952.2 333.4 1 0.068473 | 0.030281

3 695.2 653.2 117.3 1 0.064299 | 0.010004
Table 6: Result of experiments for n = 20; the resulting number of generations
N = 960.3; error I/ = 0.064764

frag. | real cost | ideal cost s €; (e;-¢:)/N

1 650.5 603.1 341.1 | 0.078594 | 0.027917

2 1009.7 952.7 455.9 | 0.059830 | 0.028404

3 685.0 652.6 163.3 | 0.049648 | 0.008443

On the other hand, note that in this specific implementation of on-line navigation,
n is coupled with the step length k,,,, of the robot, in that n generations of evolution
must complete before the robot proceeds to the next step. For a fixed k4., this
implies that a very large n may cause a slower movement of the robot, and therefore
a longer time for path traversal.

Now let us discuss the effect of n on the time of navigation. As confirmed by
the experimental results (shown in Tables 3-6), a larger n leads to a larger total
number of generations NV, which means a longer total time of evolution #x. Since the
evolution process and the robot’s movement are done in parallel, the total time of
path traversal ¢ is the maximum of ¢y and the total time of robot’s movement ,;:

t = max(tn,tn),

where tj is a function of path quality (length and smoothness) and the robot’s ve-
locity. From off-line running the EP/N (Section 4), we know that even for a very
complex environment, ¢y for a reasonable N (e.g., in the range of 600-1000, as in the
Tables 3-6) is usually in the order of a few seconds, which should be well below the
time required for a robot to physically traverse a normal indoor or outdoor environ-
ment. That is, ty < tp; can usually hold for a reasonably large N as a result of a
comfortably large n. In other words, n can be sufficiently large without affecting the
time of traversal. Since a larger n can result in a path of better quality, which often
means a smoother path of shorter length, a larger n may actually reduce the robot’s
time of traversal.

In summary, the parallelism between path evolution and path traversal in the
adaptive EP/N is shown to be very advantageous in achieving both high effectiveness

20

and high efficiency in real-time navigation of a robot, especially when the environment
is only partially known.

6 Conclusions and Future Research

The EP /N represents a promising new approach in robot path planning taking great
advantage of evolutionary computation. The adaptive EP/N presented in this paper
is particularly suitable for dealing with the diversities, changes, and unknowns in
an environment gracefully with both high effectiveness and efficiency. Results from
off-line planning with adaptive probabilities of genetic operators and simulation of
on-line navigation are presented, which confirm the flexible nature and advantage of
such an evolutionary system. We are currently implementing the on-line process of
the EP/N on a real robot (Khepera robot). We expect to see more results from the
real-time experiments.

The EP /N also exposes many interesting challenges of general importance to evo-
lutionary computation. One of the most important is how to make an evolutionary
system self-adaptive. The adaptive EP/N uses an automatic mechanism to measure
performances of its genetic operators and self-adapt the operator probabilities accord-
ingly. The general nature of the strategy makes it applicable to other evolutionary
systems as well. The on-line adaptiveness of the EP/N to changes/unknowns in an
environment provides a good example of a real-time adaptive system based on evo-
lutionary computation. An important issue of future research is how to make the
EP/N capable of adapting other system parameters. Several such parameters may
be of particular interests. One is the parameter deciding how frequently operator
probabilities should be adjusted or adapted (i.e., the generation interval [T, T3]’s in
Section 3). Parameters n and k., in the on-line process (Section 5) as well as the
velocity of an robot are crucial to determine how frequently the robot should adjust
its path during on-line navigation and how to balance the quality of path and the time
of traversal. In the current implementation, n and k., are coupled (Section 5.2), but
they can be also implemented as two independent parameters so that their relations
are mainly affected by specific environment /task characteristics. In general, for any
parameter whose best value may vary for different tasks or environments, making it
self-adaptive could be desirable.

It may also be desirable to further incorporate domain knowledge in important
components/processes of the EP/N to enhance its performance. Although in the cur-
rent EP/N, we have incorporated domain knowledge in both fitness evaluation and
operators, there are other components/processes, such as the initialization process,
which may benefit from more knowledge. For example, rather than random initial-
ization, an initial population may consist of (a) a set of paths created by mutating
or repairing the shortest path between start and goal locations, (b) some mixture of
chromosomes having randomly-generated coordinates and chromosomes having coor-
dinates with “problem-specific knowledge” as obtained from (a).

Another important issue is to improve the organization of the EP/N to stress

21

learning for on-line navigation. The system may be extended by some sort of memory
where “valuable” paths or segments of paths discovered earlier can be stored. It
could also be interesting to study other forms of “memory”, such as one based on
multi-chromosome structures with a dominance function [7] or one employing machine
learning techniques.

References

[1] Arkin, R.C., “Motor Schema-based Mobile Robot Navigation”, Int. J. Robotics
Research, pp.92-112, Aug. 1989.

[2] Bessiere, P., Ahuactzin, J.-M., Talbi, A.-G., and Mazer E., “The “Ariadne’s Clew”
Algorithm: Global Planning with Local Methods”, Proceedings of 1993 IEEE-
IROS International Conference on Intelligent Robots and Systems, Yokohama,
Japan, Sept. 1993.

[3] Borenstein, J., and Koren, Y., “The Vector Field Histogram — Fast Obstacle
Avoidance for Mobile Robots”, IEEE Trans. Robotics and Automation, 7(3),
pp-278-287, June 1991.

[4] Brooks, R.A., “A Robust Layered Control System for A Mobile Robot”, IFEE
Journal of Robotics and Automation, vol.2, pp.14-23, 1986.

[5] Hocaoglu, C, and Sanderson, A.C., “Planning Multi-Paths using Speciation in
Genetic Algorithms”, Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation, Nagoya, Japan, pp.378-383, May 1996.

[6] Foux, G., Heymann, M., Bruckstein, A., “Two-Dimensional Robot Naviga-
tion Among Unknown Stationary Polygonal Obstacles”, IEEE Transactions on
Robotics and Automation, vol.9, pp.96-102, 1993.

[7] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley, Reading, MA, 1989.

[8] Khatib O., “Real-Time Obstacles Avoidance for Manipulators and Mobile
Robots”, International Journal of Robotics Research, vol.5, pp.90-98, 1986.

[9] Latombe, J.C., Robot Motion Planning. Kluwer Academic Publishers, 1991.

[10] Lin, H.-S., Xiao, J., and Michalewicz, Z., “Evolutionary Navigator for a Mobile
Robot,” Proc. IEEE Int. Conf. Robotics & Automation, San Diego, May 1994,
pp. 2199-2204.

[11] Lin, H.-S., Xiao, J., and Michalewicz, Z., “Evolutionary Algorithm for Path Plan-
ning in Mobile Robot Robot Environment,” Proc. IEEE Int. Conf. Evolutionary
Computation, Orlando, Florida, June 1994, pp. 211-216.

22

[12] Lumelsky, V.J., “A Comparative Study on the Path Length Performance of
Maze-Searching and Robot Motion Planning Algorithms”, IEEE Trans. Robotics
and Automation, 7(1), pp.5h7-66, Feb. 1991.

[13] Lumelsky, V.J., and Stepanov, A.A., “Path Planning Strategies for a Point Mo-
bile Automaton Moving amidst Unknown Obstacles of Arbitrary Shape”, Algo-
rithmica, vol.2, pp.403-430, 1987.

[14] Michalewicz, Z. and Xiao, J., “Evaluation of Paths in Evolutionary Planner/Na-
vigator”, Proceedings of the 1995 International Workshop on Biologically Inspired
Evolutionary Systems, Tokyo, Japan, May 30-31, 1995, pp.45-52.

[15] Oommen, J.B., Iyengar, S.S., Rao, N.S.V., and Kashyap, R.L., “Robot Naviga-
tion in Unknown Terrains Using Visibility Graphs: Part I: The Disjoint Convex
Obstacle Case”, IEEFE J. Robotics and Automation, RA-3, pp.672-681, 1987.

[16] Page, W.C., McDonnell, J.R., and Anderson, B., “An Evolutionary Program-
ming Approach to Multi-Dimensional Path Planning”, Proceedings of the First
Annual Conference on Evolutionary Programming, D. Fogel and J.W. Atmar (Ed-
itors), Evolutionary Programming Society, San Diego, 1992, pp.63-70.

[17] Shibata, T., and Fukuda, T., “Robot Motion Planning by Genetic Algorithm
with Fuzzy Critic”, Proceedings of the 8th IEEE International Symposium on
Intelligent Control, Chicago, August 25-27, 1993.

[18] Xiao, J., “Evolutionary Planner/Navigator in a Mobile Robot Environment,”
to appear in the Handbook of Evolutionary Computation, (T. Back, D. Fogel,
and Z. Michalewicz, Editors), Oxford University Press and Institute of Physics
Publishing.

[19] Xiao, J., Michalewicz, Z., and Zhang, L., “Evolutionary Planner/Navigator: Op-
erator Performance and Self-Tuning,” Proc. IEEE Int. Conf. Evolutionary Com-
putation, Nagoya, Japan, May 1996, pp. 366-371.

[20] Yap, C.-K., “Algorithmic Motion Planning”, Advances in Robotics, Vol.1: Al-
gorithmic and Geometric Aspects of Robotics, J.T. Schwartz and C.-K. Yap Ed.,
Lawrence Erlbaum Associates, 1987, pp. 95-143.

[21] Zelinsky, A., “A Mobile Robot Exploration Algorithm”, IEEFE Transactions on
Robotics and Automation, vol.8, pp.707-717, 1992.

[22] Zhao, M., Ansari, N., and Hou, E., “Mobile Manipulator Path Planning by a
Genetic Algorithm”, Proceedings of the 1992 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp.681-688, Raleigh, N.C., July 7-10, 1992.

23

