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Digital imaging of natural scenes and optical phenomena present on them (such as shadows, twilights,
and crepuscular rays) can be a very challenging task because of the range spanned by the radiances
impinging on the capture system. We propose a novel method for estimating the set of exposure times
(bracketing set) needed to capture the full dynamic range of a scene with high dynamic range (HDR)
content. The proposedmethod is adaptive to scene content and to any camera response and configuration,
and it works on-line since the exposure times are estimated as the capturing process is ongoing. Besides,
it requires no a priori information about scene content or radiance values. The resulting bracketing sets
are minimal in the default method settings, but the user can set a tolerance for the maximum percentage
of pixel population that is underexposed or saturated, which allows for a higher number of shots if a
better signal-to-noise ratio (SNR) in the HDR scene is desired. This method is based on the use of
the camera response function that is needed for building the HDR radiance map by stitching together
several differently exposed low dynamic range images of the scene. The use of HDR imaging techniques
converts our digital camera into a tool for measuring the relative radiance outgoing from each point of the
scene, and for each color channel. This is important for accurate characterization of optical phenomena
present in the atmosphere while not suffering any loss of information due to its HDR. We have compared
our method with the most similar one developed so far [IEEE Trans. Image Process. 17, 1864 (2008)].
Results of the experiments carried out for 30 natural scenes show that our proposed method equals or
outperforms the previously developed best approach, with less shots and shorter exposure times, thereby
asserting the advantage of being adaptive to scene content for exposure time estimation. As we can also
tune the balance between capturing time and the SNR in our method, we have compared its SNR per-
formance against that of Barakat’s method as well as against a ground-truth HDR image of maximum
SNR. Results confirm the success of the proposed method in exploiting its tunability to achieve the de-
sired balance of total Δt and SNR. © 2015 Optical Society of America
OCIS codes: (110.1758) Computational imaging; (100.2000) Digital image processing; (040.1490)

Cameras; (010.7295) Visibility and imaging; (110.1085) Adaptive imaging; (110.0110) Imaging systems.
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1. Introduction

Natural scenes are usually composed by a wide vari-
ety of radiance signals outgoing from the objects in the
scene, which are very different inmagnitude. This fact
makes their correct capture with a normal digital
camera a nontrivial problem. Capturing a scene with

high dynamic range (HDR) content with a single low
dynamic range (LDR) image would cause loss of infor-
mation in those regions of the scene where the light
level reaching the sensor is too low or too high to
be correctly registered with a single exposure time.
The HDR imaging techniques solve this problem.

Common imaging sensors suffer from limitations
in the process of capturing the light. Usually, the
dynamic range of the sensor (i.e., the ratio between
the maximum and minimum irradiance impinging
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on the sensor that produces an effective response) is
much lower than the dynamic range found in natural
open air scenes. The dynamic range of these scenes
(ratio between the maximum and minimum radian-
ces emitted by the objects in the scene) can vary from
2 to 8 orders of magnitude depending on the season
and scene content [1]. The human visual system can
simultaneously adjust to a difference of up to 3.73 or-
ders of magnitude (or log units) [2] when adaptation
is accomplished. However, most imaging and display
devices can only account for barely 2 orders of mag-
nitude in a single image (either for capturing or for
displaying) [3,4].

There have beenmany techniques proposed [5–7] as
well as sensor architectures [8,9] to achieve this goal.
The most common techniques are based on building
a HDR image from the information of a number of
different LDR images. The difference between these
LDR images is the exposure (i.e., the product of irra-
diance impinging in the sensor times the exposure
time used to acquire the image). It is changed by vary-
ing either exposure time or the aperture. Usually, the
former is adjusted since it does not affect the depth of
field between different captures. These differently ex-
posed versions of the same scene, when combined in
the correct way, can be used to build an image that
contains extended dynamic range information com-
pared to just a single exposure [10].

When we use our camera to capture a digital image
of a scene, we cannot know in advance which expo-
sure times would be useful for composing the HDR
image afterwards. We could just take a large number
of images with different exposure times (or even all
available ones in the camera), and then use all of
these LDR images to compose the HDR image. But
this option is often time consuming and very compu-
tationally demanding, so it is not always feasible.
Commercial cameras usually have an auto-exposure
mode that estimates an exposure time value based
on some cues like the reading from a built-in photom-
eter in high-end cameras that measures the average
brightness value in certain regions of the image.

All of these cases aim just for finding one exposure
time that works well for correctly imaging most parts
of the scene. However, whether we would be able to
find it or not, there is not a single value of exposure
time that could make all pixels in one shot be cor-
rectly exposed for most common natural scenes.

The aim of this paper is not to explain how to
merge LDR images into a HDR radiance map. The
process we used for this is very well explained in the
literature [11]. It is rather to present a method for
the selection of a set of exposure times (bracketing
set) to use in order to retrieve useful information
from all pixels (or at least from most of them). This
is very important for the study of optical phenomena
present in the atmosphere and open air natural
scenes with shadows, twilights, clouds, crepuscular
rays, and so forth [12], all of which have HDR content
that cannot be captured with a single shot of a com-
mercial digital camera. Thus, a digital camera can be

a useful tool for composing a HDR radiance map of
these phenomena in order to study them. Of course,
if the scene captured has very dark regions that
need long exposure times to be correctly exposed,
then it is important that there is no relative move-
ment between the camera and scene content during
the capturing time. If small movements happen,
there are ghosting-compensation techniques to cor-
rect for artifacts [13].

We aimed for a method that is blind (no information
from the scene content is known a priori), adaptive
(adapts to scene content dynamically by adjusting
required exposure times), universal (works for any
camera that we have tested so far), and on-line (the
exposure times are calculated as the capturing proc-
ess is ongoing and every single shot acquired is used
in the HDR radiance map generation). It will also
give as default output the minimal bracketing set
(the bracketing set that has the minimum number
of shots, yet recovers the full dynamic range of the
scene), but it can be tuned to yield longer exposure
times with a higher signal-to-noise ratio (SNR). This
tunability is introduced as a method that controls the
amount of overlapping between consecutive exposures
to increase the SNR in the resulting HDR image at
the cost of increasing the number of shots taken, and
hence the capturing time. We have also introduced a
method to control the percentage of pixel population
that we can accept to be useless.

The remainder of this paper is organized as follows.
Section 2 summarizes the state-of-the-art technology
for estimating exposure times for HDR imaging.
Section 3 explains the details of the method we pro-
pose. Section 4 explains the experiments made to
compare our method with the most advanced method
of those described in Section 2, as well as the results
obtained. Finally, Section 5 draws the main conclu-
sions of this work.

2. State of the Art

Several approaches have been proposed in the liter-
ature for solving the problem of finding the exposure
time values for HDR image capture via multiple ex-
posures. Chen and Gamal [14] proposed scheduling
for capture times. They were assuming a known illu-
minant in the scene, which in practice is a rather
non-realistic assumption, especially for optical open
air phenomena. Grossberg andNayar [15] proposed a
method to simulate the response of any camera (lin-
ear, logarithmic, gamma function, etc.) using a single
camera with a known camera response function
(CRF) by just selecting a set of exposure times. So
their aim was not to find a minimum bracketing set
for radiance map generation. Stumpfel et al. [16] pro-
posed a method for capturing HDR images of the sun
and sky. They threshold the images and check if
there are saturated and/or underexposed pixels. If
any, they add new shots by increasing or decreasing
the exposure by a fixed amount of three-stops. This
approach is not adaptive to the scene content and
could lead to situations where the exposure times
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are not well fitted to cover the full dynamic range of
the scene. Bilcu et al. [17] proposed amethod for over-
coming the limitations of mobile devices for HDR
imaging. Their proposal was also done by iteratively
trying every available value of exposure time and
afterwards deciding which is the correct one. There-
fore, many images need to be taken before a brack-
eting set is selected.

Barakat et al. [18] proposed a method for finding
minimal bracketing sets for HDR capture. Firstly,
they studied how the camera responds to radiance
using every available exposure time. Then, they se-
lect only those exposure times that completely cover
the full dynamic range of the camera with certain
overlap. This is the so-called minimal system brack-
eting set (MSBS), and whatever the content of the
scene being imaged is, using all these exposures
will always cover the full radiance range that the
camera can effectively acquire. To adapt this MSBS
to scene content, they proposed to select a subset of
it called the minimum image bracketing set (MIBS)
by capturing a first shot with an intermediate expo-
sure time (that belongs to the MSBS) and checking
if there are saturated or underexposed pixels. If so,
they add the next exposure time included in the
MSBS until the full dynamic range is covered.
Though the underlying idea in this method is similar
to the one proposed in this work, it is still not totally
adaptive to scene content since they limit the expo-
sure times selected to those belonging to the MSBS.
We believe that the same scenes could be captured
with less shots and shorter exposure times, yet cover-
ing their full dynamic range, and we have demon-
strated this by comparing the results of our method
with Barakat et al.’s insightful algorithm using their
MIBS approach.

Granados et al. [19] proposed amethod assuming the
known mean HDR irradiance histogram of the scene
being captured. Besides, their method only works for
linear cameras, and they used a greedy algorithm, iter-
atively capturing the same scene many times until
they obtained the optimal SNR solution. Thus, their
method is not on-line. Hirakawa and Wolfe [20] used
a mathematical method based on training for HDR ex-
posure time selection. They assumed linear sensor re-
sponse and known noise sources in the capture, which
is not always a realistic scenario. They did not really
aim for defining minimum bracketing sets, but for op-
timal SNRs instead. Gelfand et al. [21] adapted HDR
imaging to mobile devices as well. They merge LDR
images iteratively two by two. If there are still satu-
rated or underexposed pixels, they keep adding the
next available exposure time that the camera offers.
Hasinoff et al. [22] proposed a method to calculate a
bracketing set that is optimal in terms of the SNR
but not minimal (they just try to fit it within a given
time budget) by varying both the exposure time and
the ISO (i.e., sensitivity) settings of the camera. Be-
sides, their method assumes linear raw sensor re-
sponses only and known information about scene
radiance content.

Gallo et al. [23] proposed a method for taking
advantage of mobile phone camera APIs (application
programming interfaces). They programmed the auto-
matic histogram calculation in mobile phones to con-
struct a reduced HDR histogram of the scene, which
will be the target to be captured. This is however not
possible if the camera used for the captures does not
feature this automatic process. Besides, if the scene
imaged has very dark regions, the long exposures
needed to create this histogram make the process
slow. Moreover, the method is not on-line. After this
histogram is calculated, they capture several expo-
sures of the scene and then study many possible com-
binations of them until the optimal one is selected.

Guthier et al. [24] followed the lines previously pro-
posed by Kang et al. [25], who implemented a method
for sequentially adjusting the exposure for real-time
HDR video. Both are iterative and limited to only two
shots for building the HDR image. Finally, Gupta
et al. [26] proposed a Fibonacci-series-based bracket-
ing set determination algorithm in which each expo-
sure time is the sum of the previous two. This
technique does not aim for full dynamic range recov-
ery though, but image registration for HDR video.

3. Proposed Method

We drove our Canon EOS 7D camera from our laptop
via the USB (universal serial bus) port using the
open-source libraries called GPhoto2 from our algo-
rithm implemented in Matlab R2014a and working
on-line.

The method proposed in this paper is full range
because it finds a bracketing set that covers the full
dynamic range radiance map of the scene. This
HDR radiance map would be potentially useful for
studying the behavior of light in HDR open air
phenomena.

Our method uses the CRF to compute the relative
irradiance impinging on the sensor, which corre-
sponds to a certain population of pixels in the image
(using its cumulative histogram). Then, a new expo-
sure time is calculated in order to shift the camera
responses to this irradiance to a different value. This
way, the cumulative histogram is shifted and the new
shot would capture a different range of irradiances,
which are contiguous to the range captured in the
previous shot.

The CRF is a function that relates the response of
the camera, in digital counts (DC), with the exposure
that the sensor receives. This function depends on
each camera, and it even can be different for different
settings of the same camera (e.g., a camera working
in raw mode or in jpeg mode). Knowing the CRF of
our camera is a key factor to build the radiance map.
A detailed explanation of how to calculate the CRF
is given in [11]. The calculated CRF of the camera
used for the experimental part in this work is shown
in Fig. 1. It is clearly not linear.

The exposure axis is in relative units, and it is nor-
malized so that the center of the DC values (128 DC
for the 8-bits case) corresponds to a relative exposure
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value of 1. The function is the same for the three color
channels R, G, and B of the camera, since it is a prop-
erty of the sensor. Therefore, we process the three
color channels together like the technique in [23]. For
each LDR image we capture, we know the Δt used as
well as the DC values for each pixel and channel.
Therefore, by using the CRF we can easily work out
the relative irradiance (E) by computing the simple
ratio shown in Eq. (1):

Ei;k;e �
H�i; k; e�

Δt�e�
: (1)

The subindex i accounts for the pixel index, k accounts
for the color channel, and e accounts for the exposure
index (or number of shots). Thus, once we have cap-
tured an initial image with a known exposure time
Δt0, the CRF relatesH0 with DC0 as shown in Eq. (2):

DC0 � CRF�H0� � CRF�E0 · Δt0�: (2)

Therefore, we can work out the relative irradiance
value of a point of the image [E0, calculated as shown
in Eq. (3)] by knowing the CRF, the Δt, and its DC
value in the first shot (Δt0 and DC0, specifically):

E0 �
CRF−1�DC0�

Δt0
; (3)

where CRF−1 refers to the inverse CRF function that
always exists since CRF is a monotonically increasing
function. Then, to shift the sensor responses DC0 to
this same irradiance value E0 into a new value DC1,
we just have to workout which new exposure time Δt1
is needed for a new shot, like shown in Eq. (4):

Δt1 �
CRF−1�DC1�

E0

: (4)

If our camera has only a limited set of values from
which to choose the exposure time, we can select the
available value that is closest to the calculated one.

We already have a tool to control the values of sen-
sor responses, which is done by tuning the exposure
time used to acquire the images. Now, we explain
how to use it for our purpose of optimizing HDR
capture. For this aim, we propose a method based on
cumulative histograms of the scene inspired by

Grossberg and Nayar [27], who originally applied it
to pixel selection for CRF computations. If the scene
content does not change, then the same value for the
percentile of population in the cumulative histogram
will correspond to the same areas in the image. In
Fig. 2, we can see a plot where several cumulative
histograms of the same scene differently exposed
are drawn together.

If a given percentile is below some exposure value
for a given exposure time, then, for a different expo-
sure time, the same percentile of population will cor-
respond to a different exposure value but they will
still keep its location within the scene. Therefore,
the points where the horizontal lines in Fig. 2 inter-
sect the histograms report information correspond-
ing to the same areas of the scene. Our idea is to
shift sensor responses by calculating exposure times
to control the sensor responses to pixel populations of
key percentile values. As a starting point, we calcu-
late the cumulative histogram of the image captured
with the automated exposure of the camera. But in
principle, any image can be used as starting point
as long as it has some pixels that are neither satu-
rated nor underexposed.

We are going to sample the scene’s radiance using
the CRF of the camera between two DC levels. Un-
less the scene has a very reduced dynamic range,
there will be pixel values below and above these DC
values. Since in the default version of the algorithm
we aim for minimum bracketing sets, we have set
the low level (LO) to 3 DC and the high level (HI)
to 252 DC for considering a pixel to be underexposed
or saturated, respectively, when it is out of these
bounds. Thus, whatever pixel population is above
the HI level or below the LO level, we will sample
it using a different exposure time. Here, we introduce
two novel features of our method. One is the possibil-
ity of setting a tolerance for the percentage of useless
pixels. If we choose 0% tolerance, the algorithm will
look for longer or shorter exposure times if at least
one pixel is underexposed or saturated, like Barakat
et al. [18] proposed. However, for some scenes we can
set a different tolerance threshold to renounce to a
certain percentage of the population to be properly
exposed [e.g., when we directly image the sun and
our region of interest (ROI) is in a different area].

Fig. 1. CRF of the Canon EOS 7D camera in jpeg mode.
Fig. 2. Cumulative histograms of the same scene captured using
different exposure times.
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The other novelty involves controlling the LO and
HI values of the CRF. Setting values very close to the
extremes (0 and 255 DC for 8 bits) will result in a
lower number of shots at the cost of a lower SNR.
In contrast, if we set values further from these ex-
tremes, we will sample the scene’s radiance withmore
overlap between contiguous shots and therefore the
SNR will increase, at the cost of a higher number
of shots. This shows how our algorithm can be tuned
to adapt to different requirements regarding the SNR
of the captured HDR.

After commenting on these functionalities, we de-
scribe now in detail how the exposure time search is
done. With the information present in the cumula-
tive histogram of the first shot captured, we check
the percentile of the pixel population that is below
the LO level. If it is higher than the maximum value
set, then a longer exposure time is calculated. The
same is done if the difference betwen 100 and the per-
centile of the pixel population above the HI level is
higher than the tolerance threshold. In this case, a
shorter exposure time will be calculated.

To find a longer exposure time, we will use Eq. (4)
to shift the camera response value from the LO level
to HI level. Therefore, we use the HI level as DC1 and
E0 is substituted by Eq. (3), where we use the LO
level as DC0. Δt0 is the exposure time used to acquire
the current image [see Eq. (5)]:

Δtlonger �
CRF−1�HI�

CRF−1�LO�
· Δt0: (5)

In contrast, to find a shorter exposure time, we will
use Eq. (4) to shift the camera response value from

the HI level to LO level. Therefore, we use the LO
level as DC1 and E0 is substituted by Eq. (3), where
we use the HI level as DC0 [see Eq. (6)]:

Δtshorter �
CRF−1�LO�

CRF−1�HI�
· Δt0: (6)

In this way, if the population that has a sensor re-
sponse at the HI level in one shot shifts to the LO
level in the next shot, we can cover the full dynamic
range of the scene with certain overlap between
contiguous shots.

The process described here goes on checking the
cumulative histograms of the longer and shorter ex-
posure times until the tolerance requested is met or
the system reaches its maximum or minimum avail-
able exposure times.

4. Experiments and Results

Our camera (Canon EOS 7D) allows the choice of
only a discrete set of exposure times. We tuned the
HI and LO levels (explained in Section 3) to get the
minimum bracketing sets (lowest SNR). In the first
experiment, we tested the default version of the
adaptive exposure estimation (AEE) method (see
Section 4.B.1); in the second experiment, we explored
the tunability and evaluated the SNR performance
(see Section 4.B.2). In all scenes tested, the method
built a full dynamic range radiance map of the scenes.
We implemented our proposed method as well as the
only method found following the same philosophy,
which is the MIBS method proposed by Barakat
et al. [18] (hereafter termed BAR), to compare their
performances.

Fig. 3. LDR images and HDR radiance maps for some captured scenes.
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A. Bar Method and MSBS

Regarding the BAR method, the MSBS found for our
Canon camera, as explained in [18], using a 5.6 aper-
ture setting, was composed by four exposure times
for which the values were: 30 s, 300 ms, 1 ms, and
0.0125 ms. Sometimes, not all of these four shots
were needed to record the full dynamic range of the
scene. In these cases, a sub-set of the MSBS is used
omitting some of its shots. This represents the MIBS.
We could use as well as a first shot, the one chosen by
the auto-exposure mode of the camera, as was done
for the AEE method. However, we found that when
doing so, we only got the same number of shots or
even one more. So we did not use it. We see an exam-
ple of this in Fig. 4. The exposure time chosen by the
auto-exposure mode of the camera was 66.7 ms (top-
center). It was used as first shot for the AEE method,
since this method adapts to any exposure value
chosen as first. However, this value was in between
300 and 1 ms (both belong to MSBS). Therefore, if we
used it also as a first shot for the BAR method, it
would mean that the capture of this scene would
end up with five shots instead of four.

Also, if we change the aperture setting of the cam-
era, as the CRF is not changing, the AEE method
would work the same by adapting to the new expo-
sure levels impinging in the sensor. However, for the
BAR method we would need to calculate a new
MSBS, since the same exposure times for a different
aperture would not be valid any more. Thus, we fixed
our aperture setting to 5.6 for both methods.

B. Comparison between the AEE and BAR Methods

For the first experiment (Section 4.B.1), we captured
30 scenes using both methods and we studied the
number of shots taken, the total exposure time used,
and the percentage of the pixel population that was
not properly exposed. In this way, we assessed how
efficiently did both methods recover the full dynamic
range of the scene by comparing their resulting
bracketing sets.

In the second experiment (Section 4.B.2), we built
an indoors HDR scene with controlled illumination
conditions. We captured 10 HDR images of it using
the AEE and BAR methods. Besides, for the AEE
method we repeated the capture four times using dif-
ferent values for the LO and HI levels (see Section 3).
Finally, we captured 10 ground-truth (GT) HDR im-
ages using all available exposure times in the cam-
era. These GT images represent the highest SNR
that our camera can achieve to record a scene with-
out repeating shots with the same exposure.

1. HDR Capturing Efficiency

As mentioned before, we acquired 30 HDR scenes;
23 scenes were captured outdoors with natural illu-
mination and 7 were captured indoors with artificial
illumination. Outdoors, daylight cast HDR illumina-
tion over objects including clouds. Indoors we used a
light booth and a fluorescent lamp oriented directly
to the camera in a dark room to generate HDR
content. To check the performance of both methods
in terms of full range recovery, we plotted the

Fig. 4. Cumulative histograms of the same scene using the AEE method (top row) and BAR method (bottom row). The histograms are
ordered by decreasing exposure time to observe their continuity.
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cumulative histograms of all shots taken for each
scene and checked that no irradiance gaps were left
uncovered between consecutive shots. We set the
maximum percentile allowed to be lost to 0%. In
Table 1, we can see the results for 7 out of the 30
scenes captured.

We observed how the number of shots is always
equal or lower for the AEE method. The percentage
of useless pixels is always the same for both methods.
Many scenes had a percentage of lost pixels equal to
0, since both methods managed to retrieve the full
dynamic range of the scene. For the rest of the scenes,
the useless pixels were due to direct sunlight (like
the case of scene 1). This made some pixels impos-
sible to recover even for the shortest exposure time
available in the camera. The total exposure time is
always lower for the AEE method. The same trends
commented on were found for the remaining 23
scenes captured. In total, for the 30 scenes captured,
the BAR method took a total of 96 shots using
218.734 seconds and the AEE method took a total
of 81 shots using 139.869 seconds. This means that
the number of shots was 15.63% less, and the expo-
sure time was 36.06% less, for the AEE method.

In Fig. 3, you can see the LDR pictures and the tone-
mapped HDR radiance maps generated for some of
the scenes. The tone-mapping algorithm used was a
contrast-limited adaptive histogram equalization,
which was introduced by Ward [28] and implemented
in Matlab R2014a.

In Fig. 4, we plot an example of the cumulative histo-
grams corresponding to both methods for scene num-
ber 7. The data-tips in histograms for shots 2 and 3
for the BAR method highlight that there are still
underexposed and saturated pixels in those exposures,
although at first glance the histograms may seem to
reach percentiles 0 and 100, respectively.

We observed how bothmethods succeeded in recov-
ering the full dynamic range of the scene. However,
thanks to the adaptation of the AEE method, only
three shots were needed instead of the four shots the
BAR method used. Therefore, we can conclude with
this experiment that the AEE method recovers the

dynamic range of the scene as well as the BAR
method does, but by using a more reduced bracketing
set.

2. Signal-to-Noise Ratio

We did a second experiment to study the SNR behav-
ior of our method. For the AEE method, we tested
four different conditions named A (LO � 3 and
HI � 253), B (LO � 16 and HI � 240), C (LO � 56

and HI � 200), and D (LO � 106 and HI � 150). We
compared all these AEE conditions with the BAR
method and the ground-truth (GT) images.

The dynamic range of the scene was measured us-
ing a spectroradiometer (Photo Research, PR-745) to
measure the integrated radiances of both the bright-
est and the darkest points of the scene. The resulting
dynamic range measured was 4.1 log units.

For each pixel and each color channel of these HDR
radiance maps, we calculated its average HDR value
and its standard deviation across the ten images cor-
responding to each method. The average HDR value
provides information about the signal level in the
pixel, and the standard deviation provides informa-
tion about the level of noise generated by all noise
processes present in the HDR capture process. Thus,
by computing the ratio of the average HDR value
(Ēxy) over the standard deviation (σxy) as Eq. (7)
shows, we obtain a SNR estimate [29]:

SNRxy � 20 × log10

�

Ēxy

σxy

�

: (7)

The subindex xy stands for pixel position within the
HDR radiance map.

We can see the number of shots, the total exposure
times, and the average SNR for each method in
Table 2.

As expected, setting the LO and HI values further
from the extremes of the range in the AEE method
yields a higher number of shots and also higher total
exposure time, but the SNR increases as well. For
condition D, we reached an average SNR only less
than 2 dB below the ideal case (GT), yet using only
about 40% of the total exposure time. The minimum
bracketing set found was AEE A, with only three
shots and 14.79 s of total exposure time, but this also
had the lowest SNR. The BAR method needed the
full MSBS to recover this scene using four shots. It
had a better SNR than our minimum bracketing

Table 1. Minimum Bracketing Sets Found for BAR and AEE

Methods in 7 of the 30 Scenes Captured

Scene # Method # Shots % Lost
P

n
i�1

Ti�s�

1 BAR 3 1.61 0.301
AEE 2 1.61 0.025

2 BAR 3 0 0.301
AEE 2 0 0.101

3 BAR 3 0 0.301
AEE 2 0 0.040

4 BAR 3 0 0.301
AEE 2 0 0.050

5 BAR 3 0 0.301
AEE 2 0 0.034

6 BAR 3 0 0.301
AEE 2 0 0.025

7 BAR 4 0 30.301
AEE 3 0 13.067

Table 2. SNR Performance for Four AEE Conditions and the GT

and BAR Methods

Method # Shots Δt (s) SNR (dB)

AEE A 3 14.79 27.19
AEE B 4 15.02 30.47
AEE C 5 31.32 32.58
AEE D 16 61.22 33.57
GT 55 151.43 35.32
BAR 4 30.30 29.97
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set, but we also had a second option (AEE B) using
four shots with a shorter total exposure time (less
than half) and a higher SNR than the BAR method.

We can observe in Fig. 5 the SNR for each pixel of
the radiance maps generated versus the signal level.
We can also see how the AEE D has the most similar
distribution compared with GT. Also, the BARmethod
has a very similar distribution compared with cases
AEE A and AEE B, as expected.

Figure 6 plots the SNR histograms for all methods.
We can observe how for the AEE method, the main
lobe gets narrower and shifts towards a higher mean
SNR as we tune the LO and HI levels further from
the extremes of the range. The AEE D is quite close
to GT in position and shape. In contrast, the BAR
method yields a histogram that is the mostly spread
over a wide range of SNR values.

5. Conclusions

We present a new method for estimating the expo-
sure times needed to recover the HDR radiance map
from a scene via multiple exposures. We compared
the performance of our method with that of the only
method found in literature that aims for the same
purpose (i.e., finding minimum bracketing sets) and
performs under the same conditions (adapted to
scene content with no a priori information about it
and valid for any camera whether it is linear or not).

Fig. 5. SNR versus average HDR signals present in the radiance maps.
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Our proposed method is adaptive because it finds a
bracketing set adapted to any HDR scene content,
and it is universal because it works for any camera.
We only need to calculate its CRF (which is needed
anyway to build the radiance map).

Moreover, the method is tunable, since we can de-
cide if we prefer to find a minimum bracketing set at
the cost of higher SNR or increase the SNR sampling
the radiance of the scene with more overlapping be-
tween consecutive shots (increasing the number of
shots and capturing time as well). For the minimum
bracketing set case, the bracketing sets found were
minimal in the 30 scenes tested.

Futhermore, our method is blind, which means
that no information about the content of the scene
needs to be known a priori. Themultiple LDR images
are captured on-line as the process is ongoing, and
every single shot taken is used to compose the HDR
radiance map.

We can also control the percentage of the total
pixel population that we can assume is useless
(underexposed or saturated). This way, we can find
the minimum bracketing set only for our region of
interest.

We have applied the method for HDR imaging of
natural scenes where partially cloudy skies were
present in order to increase the dynamic range of the
capture. We have successfully covered the full dy-
namic range of the 30 scenes imaged. We have shown
how our method can find bracketing sets that are
shorter than those found by the BAR method, yet
keeping higher SNR levels in the HDR radiance
map reconstructed from the multiple exposures.

We studied the SNR performance of our method
comparing it not only with the BAR method but also
with an ideal-case ground-truth HDR image built
using all available exposure times in the camera.
We have demonstrated how we can tune our method
to suit different requirements for the SNR at the cost
of increasing the number of shots.

The proposedmethod brings a solution for the blind
acquisition of HDR images using multiple exposures,
which can be used in any HDR imaging context:
machine vision, sky imaging, daylight illuminated
scenes, HDR photography, etc. And in particular, the
proposed method may be useful for studying optical
phenomena present in open air scenes where the illu-
mination conditions are extreme (i.e., direct sunlight
that might be surrounded by regions of interest like
halos, clouds casting shadows, and rainbows, just to
give a few examples).

This work was funded by the Spanish Ministry of
Economy and Competitiveness through the research
project DPI2011-23202.
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