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Adaptive Extraction of Highlights From a Sport
Video Based on Excitement Modeling
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Abstract—This paper addresses the challenge of automatically
extracting the highlights from sports TV broadcasts. In particular,
we are interested in finding a generic method of highlights extrac-
tion, which does not require the development of models for the
events that are thought to be interpreted by the users as high-
lights. Instead, we search for highlights in those video segments
that are expected to excite the users most. It is namely realistic
to assume that a highlighting event induces a steady increase in
a user’s excitement, as compared to other, less interesting events.
We mimic the expected variations in a user’s excitement by ob-
serving the temporal behavior of selected audiovisual low-level fea-
tures and the editing scheme of a video. Relations between this non-
content information and the evoked excitement are drawn partly
from psychophysiological research and partly from analyzing the
live-video directing practice. The expected variations in a user’s
excitement are represented by the excitement time curve, which
is, subsequently, filtered in an adaptive way to extract the high-
lights in the prespecified total length and in view of the preferences
regarding the highlights strength: extraction can namely be per-
formed with variable sensitivity to capture few “strong” highlights
or more “less strong” ones. We evaluate and discuss the perfor-
mance of our method on the case study of soccer TV broadcasts.

Index Terms—Affective video content analysis, video abstrac-
tion, video content modeling, video content pruning, video high-
lights extraction.

I. INTRODUCTION

WITH the advent of digital video1 revolution the television
broadcasting industry is slowly but surely transferring

to the end-to-end digital television production, transmission
and delivery chain. Supported by the availability of broadband
communication channels, this transfer will lead to an enormous
increase in the amount of video data reaching our homes.
At the same time the quickly growing capacity-versus-price
ratio of digital storage devices is likely to make such de-
vices highly popular with consumers. A combination of the
abovementioned phenomena will result in an explosion in the
“consumer choice”, that is, in the number of video hours that
are instantaneously accessible to the consumer. This may have
crucial consequences for the ways the broadcasted material is
“consumed”. As reported in the study of Durlacher Research
Ltd. [1], the understanding of the broadcasting mechanism
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1We refer to “video” as a multimodal data stream consisting of an image se-
quence and the accompanying audio.

may change. This mechanism will only be something that pro-
vides data to the—soon inevitable—home mass storage system
(HMSS), and as far as the consumer is concerned, the concept
of the “broadcasting channel” will lose its meaning. Further,
due to large amounts of incoming data, video recording will be
performed routinely and automatically, and programs will be
accessed on demand from the local storage. Viewing of live TV
is therefore likely to drastically diminish with the time [1].

Various scientific and technological challenges appear as
a consequence of the development described above, aiming
at maximum transparency of the recorded video volume to-
ward the consumer—independent of the volume size. One of
such challenges is to develop techniques for automatically
abstracting video. The purpose of a video abstraction algorithm
in the context of an HMSS can be twofold. First, such an
algorithm can be designed to summarize a TV program in order
to facilitate the consumer’s choice of what to watch later on.
This may be highly valuable, for instance, in the process of
digesting a large volume of news television broadcasts and
presenting to the consumer in a compact but comprehensive
way the coverage of all news topics found in the volume.
Alternatively, a video abstraction algorithm can be designed
to prune the recorded video material by keeping the most in-
teresting segments—or highlights–only, and by leaving out the
remaining, less interesting parts. In this paper we concentrate
on the design of a video abstraction algorithm for pruning
purposes, and address the specific problem of pruning sports
television broadcasts. The sports programs are particularly
interesting objects for pruning as they lack story line, and as
the events being worth watching (e.g., goals in soccer, home
runs in baseball, touchdowns in football) are sparse and spread
over a long period of time.

The challenge of automatically pruning sports television
broadcasts has been pursued widely in the scientific community
in recent years [15]. An analysis of the previous work on this
subject reveals that most of the approaches proposed so far are
event-based: they aim at detecting predefined events that are
considered most interesting in a particular sport genre. Event
detection is approached either by developing feature-based
event models [8], [12], [13], [22]–[24], [26], by searching for
keywords in speech (e.g. commentator) [4] and closed captions
[16], by using MPEG-7 metadata [11] or by involving several
of the above-mentioned clues into inter-modal collaboration
[3], [9], [21]. We see the main disadvantage of this approach in
the need for numerous and reliable event models which should
take into account not only all highlight-related events but also
various realizations of these events and their coverage that may
change from one broadcaster to another. Clearly, this makes the
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event-based highlight extraction technically and semantically
a complex task in many broadcasts. Although the problem of
different event realizations and coverage can partly be solved
via keyword spotting, the composition of the highlighting video
abstract in that case is limited to those events only, for which
obvious keywords are likely to be found. While this may be the
case for the “goal” and “penalty” events in soccer or “home
run” in baseball, other interesting events, such as a nice action
on the net during a tennis game or a quick attack toward the
goal finishing by a nice move of a goalkeeper in soccer, will
probably remain undetected.

An alternative to the approaches discussed above is to search
for a single effect that is assumed to accompany an arbitrary
highlighting event. For instance, Pan et al. [17] based the de-
tection of highlights on the detection on slow-motion segments.
They observe namely that the interesting events are often re-
played in slow motion immediately after they occur. Although
being more generic than the methods discussed above, this high-
lights extraction mechanism may result in a large number of
falsely extracted video segments: interesting events are often re-
played in slow-motion during several later game breaks. Further,
several slow-motion segments may be played after each other,
showing the highlighting event from different camera views.
Similar problems emerge in the attempts to detect specific audio
events, such as “applause”, “cheering crowd” or “cheering com-
mentator”, that are often seen as indicators of the potential pres-
ence of a highlight. Although rather successful attempts to ex-
tract highlights based on an analysis of audio events alone were
reported (e.g., [25]), Rui et al. [20] observe that such an ap-
proach, in general, is likely to lead to a large number of false
alarms. The spectators and the commentator may, namely, be-
come “loud” for the reasons that have nothing to do with the
sport event considered (e.g., cheering a hot-air balloon that flies
over the stadium). It is, therefore, not surprising that many pro-
posed methods combine the “cheering” detection with other, in
most cases event-specific clues [4], [5], [18], [20].

A further step toward the development of generic tools for
sport-program pruning is made by the approaches for detecting
the high-level sport program structure. For instance, Li and
Sezan [14] develop both a deterministic and probabilistic
framework for detecting the “play” segments of a sport video.
These segments are assumed to contain all the interesting
material of a program, as opposed to less interesting “nonplay”
segments. They demonstrate the applicability of their frame-
work to football, baseball and sumo wrestling. An alternative
approach to detecting “play” and “break” events was proposed
by Ekin and Tekalp [7], and was demonstrated on basketball,
football, golf and soccer. However, although being very helpful
in filtering out irrelevant video segments, these structure-ori-
ented approaches are not suitable for highlights extraction: not
all the material contained in a “play” segment can be consid-
ered a highlight. Further, the detection of structural elements as
described above may not be possible in some sport disciplines,
such as swimming or car racing.

As a spin-off from our previous work on affective video con-
tent representation and modeling [10], we propose in this paper
a method for highlights extraction that is based on modeling
the expected variations in the excitement level of the user while

watching a sports video. Since it is realistic to assume that a
highlighting event (e.g. goal, touchdown, home run, the finals of
a swimming competition, or the last 50 meters in a running con-
test) induces a steady increase in a user’s excitement, we search
for highlights in those video segments that are expected to excite
the user most. At this stage it is worthwhile emphasizing that the
expected level of excitement should not be mixed up with the ac-
tual level of excitement that is evoked in a user while watching
video. The expected affective response can be considered ob-
jective, as it results from the actions of the program director, or
reflects the more-or-less unanimous response of a general au-
dience to a given audio-visual stimulus. Opposed to this, the
actual level of excitement is highly subjective and context-de-
pendent. For instance, the same soccer television broadcast may
evoke different levels of excitement at the winning team’s and
the losing team’s fans, and elicit no reaction at all from an au-
dience that is not interested in soccer. As we argue in [10], the
expected variations in a user’s excitement induced by video can
be modeled as a function of various content-unrelated video fea-
tures. In this way, the basis is provided for developing generic
methods for highlights extraction independent of the type of
events to be expected in a particular sports program genre but
also independent of the event realization and coverage.

In Section II, we first recap the main points of our approach
to excitement modeling from [10]. This approach generates an
excitement time curve through a superposition of a number of
excitement components, each of which mimics the changes in
a user’s excitement as a reaction to one particular audio-visual
stimulus. Then, in Section III, we explain how a filtered ver-
sion of the excitement time curve can be obtained, revealing
only those video segments that contain an event of a particular
“strength”. Here, the strength is determined by the total excite-
ment level evoked by an event and by the “richness” of event ex-
perience. Subsequently, the highlights are extracted in a prede-
fined length by cutting-off the peaks of the filtered excitement
time curve. By tuning the “strength” parameter, the filtering can
be performed adaptively. In this way, the highlights can be ex-
tracted with variable sensitivity to capture few “strong” high-
lights or more “less strong” ones by a constant abstract length

. In Section IV, we evaluate and discuss the performance of our
method on the case study of soccer TV broadcasts. Conclusions
and recommendations for future research are given in Section V.

II. EXCITEMENT MODELING

We introduced in [10] the arousal time curve as a repre-
sentation of the expected variations in a user’s excitement while
watching a video. Formally, the curve was defined as a
function of basic components

(1)

To simplify the terminology, we will refer to in this paper
as excitement time curve. The function models the varia-
tions in the excitement level over the video frames as induced
by the stimulus represented by the feature . We assume that all
of the features considered in the model (1) were selected to
reliably represent the stimuli that will likely influence the af-
fective state of the user while watching a video. For instance,



1116 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 6, DECEMBER 2005

psychophysiological experiments have shown that the level of
excitement of an average user is expected to rise as a conse-
quence of an increase in sound energy and (camera/object) mo-
tion intensity in the video being watched [6], [19]. In this sense,
each function can be seen as an elementary excitement
time curve or the primitive of the overall excitement time curve

, while is obtained by integrating the contributions of
all components using a suitable function .

As excitement is a psychological category, we introduced
in [10] two basic criteria that are to be satisfied by the models
for both the and in order for these models to be
psychologically justifiable. The first criterion (Comparability)
ensures that the levels of excitement computed for similar
events in different videos are comparable. This criterion obvi-
ously imposes normalization and scaling requirements when
computing the abovementioned time curves. The second crite-
rion (Smoothness) accounts for the degree of memory retention
of preceding frames and shots. It ensures that the perception of
the content, and consequently, of the mediated affective state,
does not change abruptly from one video frame to another but
is a function of a number of consecutive frames (shots).

III. ADAPTIVE FILTERING OF THE EXCITEMENT TIME CURVE

Given the excitement time curve and the maximum de-
sired abstract length in frames, the simplest approach to high-
lights extraction is to look at the values of the curve and to ex-
tract those video segments that are likely to excite the user most.
To do this, we can draw a horizontal line cutting off the peaks
of the curve in such a way that the number of frames in video
segments where the peaks are found is not larger than [10].
As the extraction process is driven by the local excitement level
only, any event in a sport program may be included into the ab-
stract, provided that the curve passes through a sufficiently
high value range during that event. In this way, highlights are ex-
tracted in a generic fashion without the need for event modeling
or artificially limiting the scope of the abstract content.

In view of the fact that each value of the curve results
from multiple combined stimuli represented by the component
time curves , we could also extract the highlights in a more
sophisticated fashion, namely by taking into account the addi-
tional criterion of highlight “strength”. We define the strength of
a highlight as the number of component time curves
that rise to a high value range during this highlight. The number

is therefore equivalent to the number of stimuli that have
major influence on the affective state of the user during a par-
ticular sport event, and can be said to determine the “richness”
of the experience of that event: the richer the experience the
stronger (better, more interesting) is the highlight. To ensure the
selectiveness of the highlights extraction process, given the min-
imum allowed highlight strength only those video segments
having the strength of at least should be allowed to enter the
process in the first place. This can be done by “filtering” the orig-
inal excitement time curve : the curve values in video seg-
ments that are likely to be the highlights of the required strength
are left high while all other curve values are pulled down in order
not to be captured by the cutoff line.

Fig. 1. Weighting function w(k).

Let us consider the time stamp and the values of the
components computed at that time stamp. We rank
the values in the descending order, denote the ranked
values by and consider the elements of the subset

. As the lower bound of the
value range of all components in the subset is determined
by the value of the minimum of that subset, , we weight
the values of the curves in correspondence to this min-
imum, that is

(2a)

where

(2b)

and

(2c)

The behavior of the weighting function is illustrated by
the curve in Fig. 1. The parameters and are the delay from
the origin and the spread factor determining the steepness of the
middle curve segment, respectively. The form of the weighting
function (2b) secures that the weighted result is as discrimina-
tive as possible while, at the same time, no reasonable highlight
candidate is discarded, as it would be the case if a hard threshold
was applied to evaluate the argument in (2b) instead. If the min-
imum of the subset is not high enough, the weighting factor

is close to zero. Consequently, the components are
pulled down, and therewith also the resulting excitement value

. This is not the case only at those time stamps where the
value is sufficiently high, meaning that the values of all
components from the subset are sufficiently high. There, the
value of is close to one and the effect of filtering is negli-
gible. Clearly, the filtering process is adaptive, as it is controlled
by the parameter : the higher the value of , the more strict
is the filtering of the excitement time curve.

By considering the processed components in the model
(1), instead of the original components , we obtain a fil-
tered version of the excitement time curve that we will refer to
as highlights time curve

(3)
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Fig. 2. Scheme illustrating the possibilities for practical implementation of the
proposed highlights extraction method.

The time curve serves, instead of the curve , as the
basis for extracting highlights using the methodology explained
in the first paragraph of Section III. By applying the cutoff line to
the highlights time curve only those video segments will
be considered highlights in which the excitement values remain
high after the filtering process (2). Consequently, the parameter

controlling the filtering process can also be said to determine
the composition of the highlighting video abstract.

Fig. 2 illustrates the possibilities for practical implementation
of the proposed adaptive highlights-extraction method. While
the filtering process (2), the formation of the highlights time
curve and the actual highlights extraction using a cutoff line
can be considered universal for all sports program genres, this
is not necessarily true for the feature set used to compute the
component time curves . This is simply due to the fact
that some features revealing the excitement stimuli in one genre
may not be present in another genre or may not be relevant for
excitement measurement in that genre.

IV. A CASE STUDY: SOCCER

A. Creation of a Highlights Time Curve

In order to evaluate our proposed method for highlights ex-
traction, we choose the “soccer” program genre and the realiza-
tion of the excitement model (1) that we proposed in our pre-
vious work [10]. This realization includes an expression for the
function and a methodology for computing the component
time curves for the following excitement-related features.

(a) the overall motion activity measured at frame transitions;
(b) the rhythm, obtained by investigating the changes in shot

lengths along the video;
(c) the energy contained in the audio track of a video.
To the best of our knowledge, this excitement model realiza-

tion is the only one proposed in literature so far. Furthermore,
the features mentioned above can intuitively be related to many
events in a soccer television broadcast that are generally consid-
ered “exciting”. As explained in [10], each of these features in-
fluences the level of excitement in the positive way: an increase
in a feature value leads to an increase in the excitement level of
the user. We can illustrate the applicability of these features to
our “soccer” case study on the example of a typical “exciting”

event in a soccer match—a goal. First, we can expect a sound en-
ergy peak produced by the audience or a commentator cheering
the action. The sound energy is much stronger there compared
to the (stationary) segments of the match surrounding the goal.
Further, the “goal” event is likely to be characterized by the mo-
tion activity peak that results from extreme motion activity in
close-up shots of running players celebrating the goal. Finally,
there may be a peak in the rhythm that results from a strongly
increased shot change rate produced by the director to illustrate
the atmosphere in the stadium after the goal (e.g. short close-ups
to the bench, spectators, players, etc.).

The features mentioned above have already been employed
in various contexts directly or indirectly related to the objectives
of this paper. For instance, motion magnitude and shot lengths
were used in [2] to model the “pace” function of a movie. Fur-
ther, the sound energy was used by many authors for the pur-
pose of video abstraction, as already reported in the literature
overview in Section I. For modeling the component time curves

, however, we employ these features in a different way
[10] in order to fulfill the requirements of Comparability and
Smoothness. The obtained components are subsequently
processed by the (2), which results in the modified component
time curves . According to the definition of the integrating
function in [10], we base the highlights time curve on
a weighted average of the modified components

(4a)

with

(4b)

Here, are the coefficients weighting the component functions
, with . The convolution introduced in (4b) ap-

pears particularly useful to merge the neighboring local maxima
into one “highlight peak” and so to compensate for the possible
(and realistic) slight asynchrony of the behavior of the compo-
nent time curves at places of highlights. The convolution is per-
formed with the Kaiser window of the length and shape param-
eter and , respectively. Fig. 3 shows an example of the high-
light time curve without the smoothing step [Fig. 3(a)],
and after the smoothing has been applied [Fig. 3(b)]. In case of
no smoothing, the extracted abstract for the event (goal) in the
time interval between the frames 6000 and 6800 will consist of
two short segments, while after smoothing the entire goal event
is extracted as one segment.

B. Highlights Extraction

We first demonstrate the soccer highlights extraction proce-
dure described above on the example of one excerpt from a typ-
ical soccer television broadcast. The length and shape parameter
of the Kaiser window used to smooth the highlights time curve
were set to 1500 and 5, respectively. The values and in (2b)
were selected as 40 and 5, respectively. Fig. 4(a) shows the time
curves of the three defined excitement components obtained for
this video sequence. These components served as the basis for
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Fig. 3. Zoom-in on the excitement time curve, horizontal cutoff line for
highlights extraction and the highlights time curve for the case of: (a) no
smoothing and (b) smoothing of the weighted average of the component time
curves.

computing the highlights time curve for three possible
values of 1, 2, or 3.

Let us first consider the case of , where we are max-
imally selective when creating the highlighting video abstract:
we are interested in extracting the strongest (richest) highlights
only. The highlights time curve for is shown in Fig. 4(b)
together with the original (nonfiltered) excitement time curve

that is obtained using the realization of the model (1)
from [10]. If we look at the content labels characterizing dif-
ferent video segments in Fig. 4(a), we can see that the high-
lights time curve in Fig. 4(b) provides highly distinguishable
peaks at video segments corresponding to goals. Obviously, the
goals appear to be the only events in the analyzed segment of
the soccer TV broadcast complying with the requirements that
we posed on the strength of the highlights. The horizontal line
in Fig. 4(b) provides an abstract of 50 s, showing the two goals
contained in the analyzed excerpt, each of them preceded by the
action leading to the goal and succeeded by a number of shots
showing the situation in the stadium, as well as by replays of
the action taken from different camera views. The effect of fil-
tering becomes clear when we move the cutoff line vertically:
depending on the line position, only the length of the extracted
video segments will change, but not the composition of the re-
sulting highlighting video abstract: it will always consist only of
the goals and the actions related to them, while all other events
of the game will be left out.

Fig. 4(c) and (d) show the highlights time curves obtained
using the same procedure as above but with weaker require-
ments posed on the strength of the highlights to be extracted,
namely, with and , respectively. Clearly, each re-
duction of the value of resulted in an extension of the scope
of extractable video content. In Fig. 4(c), besides the goals also
a goal chance (free kick) and a quick action toward the goal
stopped by a game break are now considered in the highlights
extraction procedure. In Fig. 4(d), no further events are added to
the highlights extraction base, except that more material is con-
sidered related to the “free kick” event between frames 6000 and

Fig. 4. (a) Component time curves obtained for an excerpt from a soccer
match. Excitement and highlights time curve obtained for the case of (b)
M = 3, (c)M = 2, and (d)M = 1. Horizontal cutoff line in (b) serves to
extract highlights.

8000. This was also expected as in this video sequence no addi-
tional events could be found which could in one way or another
qualify as highlights. The rest of the sequence consisted namely
of more or less dynamic ball exchanges in the middle of the field
which we referred to as the “normal course of the game”. How-
ever, although the number of the extractable events is similar for

and , the ratio of the material extracted from dif-
ferent events will vary in both cases. As the peaks of the middle
two events in Fig. 4(c) are lower than the peaks of the goals,
much longer segments will be extracted for the goals relatively
to other two events. This is not the case in Fig. 4(d), where the
peaks of all four events have more equal height.

C. Discussion on Performance

We now extend our experimental evaluation to three other test
sequences and discuss the robustness of the proposed highlights
extraction method. Figs. 5–7 show the highlights time curves
obtained for the new test video sequences, for all three values
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Fig. 5. (a) Component time curves obtained for an excerpt from a soccer
match. Excitement and highlights time curve obtained for the case of (b)
M = 3, (c)M = 2, and (d)M = 1.

of and with the same parameter set as in Fig. 4. The test
sequences belong to two different soccer television broadcasts
produced by two different broadcasters, a Spanish (Figs. 4 and
7) and a British (Figs. 5 and 6) one.

1) The Case of Maximum Selectiveness: We first look at the
cases of maximum selectiveness. The first two sequences con-
tain each one goal while no goals were scored in the sequence
in Fig. 7. Just like for the test sequence in Fig. 4, the peaks in the
highlights time curves in Figs. 5(b) and 6(b) indicate the goals
as the only events in these sequences satisfying the high require-
ments on the excitement “strength” posed by setting . On
the other hand, no such peaks were found in the highlights time
curve in Fig. 7(b). This consistence in the composition of high-
lighting video abstracts generated in a uniform way for video
sequences that were taken under different conditions (different
broadcasters) and where the goals were scored in different game
contexts, can be seen as a first important indication of the ro-
bustness of the proposed approach. Namely, although only four
goals were found in the test sequences, they differed strongly
from each other, both in terms of realization and coverage. For

Fig. 6. (a) Component time curves obtained for an excerpt from a soccer
match. Excitement and highlights time curve obtained for the case of (b)
M = 3, (c)M = 2, and (d)M = 1.

instance, the first goal in Fig. 4 and the goal in Fig. 6 resulted
from the actions of a similar type (massive attack toward the
goal emerged from the normal course of the game). However,
their realizations differed in the sense that the first action came
from a side and the other one from the center of the field. As
opposed to these goals, the goal in Fig. 5 resulted from a corner
kick. The coverage of this goal was different from other goals
as in addition to the standard wide-range and close-up shots of
the players on the field, shots were also taken by the camera po-
sitioned behind the goalkeeper and by another one that focused
on the player performing the corner kick. Finally, the second
goal in Fig. 4 was scored from a quick action that emerged from
a game break. The presence of the game break and a specific
course of action toward the goal resulted in a coverage that was
different than the coverage of other goals in our test set.

An additional indication of the robustness of the proposed
approach for the case of maximum selectiveness can be drawn
from the fact that the peaks indicating the goals in Figs. 4(b),
5(b), and 6(b) are all in the value range of medium-to-high
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Fig. 7. (a) Component time curves obtained for an excerpt from a soccer
match. Excitement and highlights time curve obtained for the case of (b)
M = 3, (c)M = 2, and (d)M = 1.

excitement (40%–80% on the excitement value scale) and thus
clearly detectable, in spite of the differences in broadcasters
and in the goal realization and coverage. Constructing com-
parable highlights time curves of the sequences taken under
different conditions is enabled by the scaling and normalization
mechanisms introduced in the definitions of the component
time curves [10]. In addition to enabling the component time
curves of different modalities to be compared to each other and
to be combined into the excitement and highlights time curves,
these mechanisms also reduce the sensitivity of the curves
with respect to the varying technical parameters, such as the
basic sound volume level or frame resolution. The unavoidable
residual variations of excitement values at the goal-peaks are
mainly due to the factors such as the directing style (e.g., long
versus short shots, close-up versus wide-range shots, fixed
versus moving camera), different styles of the commentators
(temperament) and some other technical parameters (e.g.
camera position and dynamics). While these variations can be

explained in part by different conventions of coverage adopted
by broadcasters, another cause of these variations we see in the
differences in the realizations of one and the same event. If we
take the “goal” event as an example, a goal can be scored, for
instance, after a surprise attack, after a corner kick or a free
kick. Depending on the dynamics of an action and the presence
and length of a game break preceding or succeeding the goal,
these different realizations of the “goal” event will be char-
acterized by different cheering and motion activity patterns,
different directing (editing) practices and different degrees
of their temporal synchronization. This directly translates to
the behavior of the component time curves and the resulting
highlights time curves where the peaks of similar events will
have (slightly) different heights.

The differences in coverage of various event realizations can
also be related to the varying importance of these realizations.
As namely not every goal is equally important, the more im-
portant goals (like those determining which team will enter the
next round of a championship) will most likely be character-
ized by the commentator and audience being more loud, and by
a longer period of celebration which is, in most cases, covered
by a longer sequence of short and dynamic close-up shots. This
will result in higher peaks of the component and highlights time
curves at these video segments and thus indicate the periods of
“strong” excitement as compared to a lower level of excitement
obtained for some other, less important goals.

Based on the discussions above, we may conclude that a high-
lights time curve is not necessarily equivalent to a specific event
detector. In our soccer case study the events such as a spectac-
ular action or free kick can be characterized by stronger excite-
ment than some goals. Also, the excitement strength of some
unimportant goals may not be sufficient for their inclusion in the
highlighting video abstract in the case of maximum selective-
ness. Then, these spectacular nongoal events may be made ex-
tractable for while the (unimportant) goals may be made
accessible only after lowering the selectiveness criterion. The
highlights time curve generated for soccer and for the case of
maximum selectiveness should therefore not be seen simply as
a “goal detector”, but more generally, as a detector of a subset of
events (which ever these may be) that are characterized by suf-
ficiently strong excitement. The generic nature of a highlights
time curve will become more visible when we analyze the cases
of less selectiveness in the next section.

We now analyze the sequence considered in Fig. 7 to investi-
gate whether the flatness of the highlights time curve for
can be justified by the absence of sufficiently exciting events.
As can be seen from Fig. 7(b), this curve is almost flat, with the
highest value being less than 10% on the excitement value scale.
An analysis of this sequence and its comparison with other test
sequences showed that the attack toward the goal in the begin-
ning of this sequence was of a similar type as the events around
the frame 10 000 in Figs. 4 and 5 and the one at the beginning
of the sequence in Fig. 6: they were all characterized by quick
attacks that were stopped either by a foul play or the ball going
out of the field. Further, the free kick in Fig. 7 was similar to the
free kick in Fig. 4, both regarding the situation on the field and
the coverage. Finally, the corner kick at the end of the sequence
was covered in a similar way as the one resulting in a goal in
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Fig. 5. That this corner kick was not successful and therefore
also less exciting than the one in Fig. 5 is properly indicated
by the level of sound energy which is considerably lower than
in Fig. 5 and which prevents this event to be included into the
events of the same class as the successful corner kick in Fig. 5.

2) Less Selective Cases: If we now look at the changes in
highlights time curves in Figs. 5–7 as a consequence of the
changing value of , we see similar effects as in Fig. 4. The
scope of extractable events increases, and the ratio of the ex-
tracted material per event changes for different values of .
As we could see from the content labels in the Figs. 5(a), 6(a),
and 7(a), the filtering process works in most cases according to
expectations. For instance, all peaks to be found starting from
the frame 4000 in Fig. 5(c) and (d) correspond to distinct events
that are more and more “amplified” with the reduction of the
value of . The small peak around the frame 1000 in Fig. 5(c)
and its amplified version in Fig. 5(d) indicate no specific event,
but a particularly dynamic game segment with several good ac-
tions following each other and covered by zoom-ins on players
and duels on the field. Similar type of dynamic ball exchange
also characterizes the segment of the sequence in Fig. 7 between
frames 3000 and 5000, which is indicated by medium-range ex-
citement values in Fig. 7(d). An intriguing aspect of Fig. 5 is the
rather low peak around the frame 14 000 in Fig. 5(d). This peak
correctly indicates a free kick and is lower than the peaks indi-
cating the realizations of the “free kick” event in the sequences
in Figs. 4 and 7. We explain this difference by the fact that the
free kick in Fig. 5 was performed after a relatively long game
break that was caused by a controversial foul play. The game
break was covered by a series of dynamic close-up shots of
moving players which is indicated by the peaks in the highlights
time curves in Fig. 5(c) and (d) around frame 13 000. After this
break, the free kick is performed rather quickly and the game is
immediately resumed. In this sense, we may also say that here
the foul play and the resulting game break were more interesting
than the free kick itself, which is correctly indicated by the high-
lights time curves.

In Fig. 6(c), the quick action in the first segment of the se-
quence is correctly indicated as a highlight candidate for

. This is, besides the goal, the only distinct event to be consid-
ered as a highlight candidate in the first half of the test sequence.
As we already mentioned in the previous section, this action is
of a similar type as the actions also found in Figs. 4, 5, and 7. Al-
though these four realizations of the “quick action” event took
place in different sectors of the field and were covered in dif-
ferent ways in terms of camera activity, level of zoom and the vi-
sual content captured, they were treated in a similar way by our
approach. This can be seen in the similar behavior of the high-
lights time curves in Fig. 4(c) and (d) (around frame 10 000),
Fig. 5(c) and (d) (around frame 10 000), Fig. 6(c) and (d) (first
1000 frames), and Fig. 7(c) and (d) (first 1000 frames) in terms
of the reached excitement levels which are all in the range of
medium excitement (40%–60% on the excitement scale). In the
second half of the sequence in Fig. 6, the small peak around
the frame 13 000 in Fig. 6(b) indicates an interesting fast ac-
tion toward the goal that finishes by a nice move of the goal-
keeper preventing the score. Although it is (correctly) not con-
sidered the strongest highlight, one would expect this peak to

be amplified for lower values of . This, however, is not the
case. Moreover, this event is surrounded in Fig. 6(c) by other
two peaks indicating the player exchange and the replay of the
action mentioned above, respectively. This “imperfection” was
caused by the high rhythm and motion activity components in
the surrounding segments which outperformed the sound energy
increase caused by cheering the action in the actual action seg-
ment. However, due to smoothing, the entire sequence of these
three events is then recognized in Fig. 6(d) as one long highlight
candidate, which is probably the best solution in view of a rather
dynamic character of this second part of the sequence. Only the
parts around the frames 3000 and 6000 were left out in all cases.
This is acceptable as these parts correspond to stationary game
segments.

V. CONCLUSIONS

With the method for highlights extraction from a sport video
that we proposed in this paper, we intended to come one step
closer to a generic solution of the highlights extraction problem.
The generic aspect of the proposed method is best visible from
its underlying concept of “excitement”: instead of modeling
each potential highlighting event separately, we simply search
for the video segments where the excitement evoked in the user
is expected to be sufficiently high.

The proposed approach consists of five major steps: 1) fea-
ture extraction; 2) computation of the component time curves; 3)
adaptive filtering; 4) highlights time curve generation; and 5) ap-
plying a cutoff line to extract highlights in a prespecified length.
The first two steps should, in general, be considered specific for
each particular sport program genre. However, once this “raw
information” is available, the fully generic highlight extraction
steps (3–5) can be applied. Regarding step 1), it is worthwhile
emphasizing that the feature set used in this paper, although gen-
erated carefully, may still be suboptimal. We see the problem
not that much in the selection of features that are already in the
set but mainly in the small size of this set. It is namely so that
our combined analysis of features proves to be beneficial for re-
ducing the imperfections of single features. Indeed, the results
obtained in our “soccer” case study are not bad, and more im-
portantly, they are encouraging. However, the robustness of the
approach may increase with more evidence extracted from the
audiovisual data stream. To extend our feature set, new findings
are needed regarding the links between the audio-visual stimuli
and human affective responses. Establishing these links is a sub-
ject of current and future research in the field of psychophysi-
ology.
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