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Adaptive Fault-Tolerant Control of Nonlinear
Uncertain Systems: An Information-Based

Diagnostic Approach
Xiaodong Zhang, Thomas Parisini, Senior Member, IEEE, and Marios M. Polycarpou, Senior Member, IEEE

Abstract—This paper presents a unified methodology for de-
tecting, isolating and accommodating faults in a class of nonlinear
dynamic systems. A fault diagnosis component is used for fault
detection and isolation. On the basis of the fault information
obtained by the fault-diagnosis procedure, a fault-tolerant control
component is designed to compensate for the effects of faults. In
the presence of a fault, a nominal controller guarantees the bound-
edness of all the system signals until the fault is detected. Then the
controller is reconfigured after fault detection and also after fault
isolation, to improve the control performance by using the fault
information generated by the diagnosis module. Under certain
assumptions, the stability of the closed-loop system is rigorously
investigated. It is shown that the system signals remain bounded
and the output tracking error converges to a neighborhood of zero.

Index Terms—Fault detection and isolation, fault-tolerant con-
trol, neural networks, nonlinear systems.

I. INTRODUCTION

THE greater demand for productivity has led to more chal-
lenging operating conditions for many modern industrial

systems. Such conditions increase the possibility of system
faults, which are characterized by critical and unpredictable
changes in system dynamics. A fault-tolerant control (FTC)
system is capable both of automatically compensating for the
effects of faults and of maintaining the performance of the
controlled system, at some acceptable level, even in the pres-
ence of faults. In general, fault tolerance can be achieved either
passively by use of feedback control laws that are robust to
possible system faults, or actively by means of a fault diagnosis
[fault detection and isolation (FDI)] and accommodation archi-
tecture. Survey papers by Patton [17] and Isermann et al. [11]
provide excellent overviews of recent research work on FTC.

Over the last two decades, the design and analysis of fault-
diagnosis algorithms using the model-based analytical redun-
dancy approach have received significant attention [3], [8], [9].
The fault information generated by detection and isolation pro-
cedures can be very useful to FTC. However, links between fault
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diagnosis and FTC techniques are still lacking [17]. Some recent
results on the integration of FDI with FTC can be found in [12],
[25], [27], and [30].

This paper presents a unified design and analysis method-
ology for detecting, isolating, and accommodating faults in a
class of nonlinear dynamic systems. The proposed fault-diag-
nosis and accommodation scheme has two main components:
1) the online health monitoring (fault diagnosis) module con-
sists of a bank of nonlinear adaptive estimators. One of them is
the fault detection and approximation estimator (FDAE), while
the others are fault isolation estimators (FIEs); and 2) the con-
troller (fault accommodation) module consists of a nominal con-
troller and two fault-tolerant controllers, which are used right
after fault detection and isolation, respectively.

To facilitate the design of nonlinear fault-tolerant controllers,
we consider a class of single-input–single-output nonlinear sys-
tems in a triangular structure, subject to unstructured (possibly
nonlinear) modeling uncertainty and nonlinear faults. A fault
is assumed to be an unknown nonlinear function of the state
of a closed-loop system. Under normal operating conditions
(without faults), the nominal controller aims to guarantee the
stability of the closed-loop system, while the FDAE is used
to monitor the system to detect the occurrence of any fault. In
the presence of a fault, under certain assumptions the nominal
controller is shown to maintain the system signal boundedness
until the fault is detected by the FDAE. After fault detection, the
nominal controller is reconfigured to compensate for the effect
of the fault, and at the same time the bank of FIEs is activated
to establish the particular type of fault that has occurred. If the
fault is isolated on the basis of the fault information obtained
by the isolation procedure, the second fault-tolerant controller
is activated to try to enhance the control performance. The
overall architecture adopts a learning-based approach by which
an unknown fault is estimated online by using adaptive and
online approximation techniques. Alternative adaptive methods
for fault diagnosis and accommodation can be found in [2],
[4], [7], [12], [21], and [23].

Prior papers by the authors deal with the FDI properties
[20], [29]. Here, we consider the problem of integrating the
FDI scheme with a fault-accommodation design. First, the
closed-loop system’s stability in the presence of a fault, but be-
fore its detection, is investigated. Then, in order to compensate
for the effect of the fault, two fault-tolerant controllers are de-
signed that are used after fault detection but before its isolation
and after fault isolation, respectively. It is shown that all the
system signals remain bounded and the output tracking error
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Fig. 1. Architecture of the fault-tolerant control scheme.

converges to a neighborhood of zero. Moreover, the second
fault-tolerant controller, which is designed on the basis of the
fault information obtained by the isolation procedure, requires
fewer assumptions than the first fault-tolerant controller.

The paper is organized as follows. In Section II, the problem
of fault-tolerant control of nonlinear uncertain systems is formu-
lated. In Section III, the FDI module is briefly described, and in
Section IV, the design and analysis of the controller module are
addressed. To illustrate the proposed FTC methodology, a sim-
ulation example is given in Section V. Finally, some concluding
remarks are made in Section VI.

II. PROBLEM FORMULATION

This paper presents a fault-tolerant nonlinear control archi-
tecture, as shown in Fig. 1.

The fault-tolerant controller will be designed according to the
following qualitative objectives.

1) In a fault-free mode of operation, the state should
track the reference vector as closely as possible, even
in the possible presence of plant modeling uncertainty.
2) When a fault occurs, the controller should be able to

guarantee some stability property, such as boundedness of
all signals in a closed-loop system.
3) The control action generated by the controller

should accommodate the fault that has occurred and recover
the tracking performances by using the fault information
provided by the monitoring module.
It is worth noting that the choice of using the monitoring

and controller modules as two separate subsystems may be
rather suitable for practical implementation because, in a way,
it reflects the typical hierachical structure of modern integrated
automation systems.

A. Controlled Plant

We consider a general multivariable nonlinear dynamic
system described by

(1)

where is the state vector of the system, is the
input vector, , and

are smooth vector fields, and is a matrix func-
tion representing the time profiles of faults, where denotes
the unknown fault-occurrence time. The vector fields , and

denote the dynamics of the nominal model, the modeling un-
certainty, and the change in the system dynamics due to a fault,
respectively.

The modeling uncertainty, represented by the vector field ,
includes external disturbances as well as modeling errors. The
following assumption will be used.

Assumption 1: The modeling uncertainty, denoted by in
(1), is an unknown nonlinear function of , and , but bounded
by some known function . Specifically, each component of
the modeling error is assumed to satisfy

(2)

where the bounding function , for
is known, continuous and uniformly bounded.

As will be seen later on, the uniform boundedness assump-
tion on is simply a technical existence condition
needed for the theoretical analysis to guarantee the bounded-
ness of system signals before fault detection. Moreover, it is
important to emphasize that, if we allow each to be a function
of , and , the above formulation provides a framework for
nonuniform bounds, thus enhancing the achievable fault sensi-
tivity and decreasing the detection and isolation times (both the
FDI and the controller modules will be designed on the basis
of the nonuniform bound ). For example, in several
applications, the nominal model is obtained by small-signal
linearization techniques (around a nominal operating point, or
trajectory). In this case, may represent the residual
nonlinear terms, which are typically small for close to
the operating point but can be large elsewhere.

From a qualitative viewpoint, the term
represents the deviation in the system dynamics due to the
occurrence of a fault. The matrix characterizes the
time profile of a fault that occurs at some unknown time

, and denotes the nonlinear fault function. This
characterization allows both additive and multiplicative faults
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[9], as well as more general nonlinear faults. We let the fault
time profile be a diagonal matrix of the form

where is a function representing the time profile
of a fault affecting the th state equation, for .
We consider faults with time profiles modeled by

if
if

(3)

where the scalar denotes the unknown fault-evolution
rate. Small values of characterize slowly developing faults,
also known as incipient faults. For large values of , the
time profile approaches a step function that models abrupt
faults. Note that the fault-time profile given by (3) stands for
only the developing speed of a fault, whereas all its other
basic features are defined by the nonlinear function
described later.

Since the fault-tolerant controller proposed in the paper
makes explicit use of information about the fault that has
occurred, i.e., the detection and isolation of the fault provided
by the monitoring module (see Fig. 1), we assume that there
are types of possible nonlinear fault functions; specifically,

belongs to a finite set of functions

Each fault function , is described by

where , is an unknown -dimensional param-
eter vector assumed to belong to a known compact set (i.e.,

) and is a known
smooth vector field. This representation characterizes a general
class of faults where the nonlinear vector field represents the
functional structure of the th fault affecting the th state equa-
tion, whereas the unknown parameter vector characterizes
the “magnitude” of the fault in the th state equation. The di-
mension of each parameter vector is determined by both
the type of fault and the specific state component considered.

B. Fault-Tolerant Controller

First of all, we define three important time-instants: is
the fault-occurrence time; is the fault-detection time;

is the fault-isolation time when the monitoring
system determines (if possible) which fault of the class has
actually occurred. The structure of the fault-tolerant controller
is given by

for
for

(4)
for
for
for

where is the state vector of the controller and
denotes a reference vector to be tracked by the controlled system
state vector; and

are nonlinear functions to
be designed according to the following objectives.

• Under normal operating conditions (i.e., for ),
a nominal controller is designed to guarantee the
system’s stability and robust tracking performance in the
presence of the modeling uncertainty .

• When a fault occurs at time , the nominal controller
described by and should guarantee the system signal
boundedness until the fault is detected, i.e., for .

• After fault detection (i.e., for ), the nominal con-
troller is reconfigured to compensate for the effect of the
(yet unknown) fault, that is, the controller described by

and is designed in such a way as to exploit the in-
formation that a fault has occurred so that the controller
may recover some control performances (e.g., tracking of

). This new controller should guarantee the bound-
edness of system signals even in the presence of the fault.

• If the fault is isolated (i.e., for ), then the
controller is reconfigured again. The functions and
are designed using the information about the type of fault
that has actually occurred so as to improve the control
performances.

Remark 1: It is possible that, in some cases, the fault that has
occurred cannot be isolated, for instance a fault whose func-
tional structure is completely unknown a priori (i.e.,
does not belong to ). Then, the first fault-tolerant controller
guarantees some minimal performance (e.g., closed-loop sta-
bility). In this case, the second fault-tolerant controller cannot
be activated.

Remark 2: As compared with some recent work on fault-
tolerant control [7], [2], [12], [19], [30], [25]–[27], [4], [21],
the previous framework allows us to make a thorough analysis
of the issues involved in integrating fault diagnosis with FTC.
Our approach explicitly takes into account the effects of fault-
detection time and fault-isolation time on system stability and
control performance. Moreover, some other issues, such as
the occurrence of an unanticipated fault with an unknown
functional structure, incipient faults, and unstructured modeling
uncertainty, are considered as well.

III. MONITORING MODULE

A more detailed architecture of the fault-tolerant controller
scheme is shown in Fig. 2. The controller module includes both
an accommodation scheme determining which of the three con-
trollers in (4) is activated at a specific time-instant and the design
of reconfigurable controllers (see Section IV).

The monitoring module consists of a bank of nonlinear
adaptive estimators operating in parallel. One of the adaptive
estimators is the fault detection and approximation estimator
(FDAE) used to detect and approximate faults. The remaining
adaptive estimators are fault isolation estimators (FIEs) acti-
vated for the purpose of fault isolation only after a fault has been
detected.
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Fig. 2. Detailed architecture of the fault-tolerant control scheme.

Remark 3: Using the FDAE and the FIEs separately has two
advantages. 1) Since the fault-isolation scheme consists of a
bank of estimators, there is no need to use them for fault
detection. Hence, a single estimator is used for fault detection,
whereas the bank of FIEs is activated only after fault detection.
2) In the presence of an unanticipated and completely unknown
fault, the functional approximator included in the FDAE pro-
vides the adaptive structure for approximating on-line the un-
known fault function (see Section III-A). This estimated fault
model can be used in a subsequent phase (for instance, by a
maintenance procedure) to improve the fault detection and iso-
lation scheme by updating the fault class and, accordingly,
the bank of isolation estimators. Moreover, in some cases (e.g.,
the occurrence of an unanticipated fault or when two or more
faults are indistinguishable), the fault that has occurred cannot
be isolated online, but it is however important to make a de-
tection decision in order to activate the first fault-tolerant con-
troller, which takes care of the system stability (see Remark 1).
It is worth noting that the design and analysis of such a moni-
toring component have been rigorously investigated in [20] and
[29]. For completeness, we next provide a brief description of
the FDI scheme.

A. Fault Detection and Approximation Scheme

Based on (1), the FDAE is chosen as

(5)

where is the estimated state vector,
is an online approximation model,

represents a vector of adjustable weights, and
, where is the th estimator

pole. The initial weight vector, , is chosen such that
, which corresponds to the case

where a system is in “healthy” (no fault) condition.

A key component of the nonlinear adaptive estimator de-
scribed by (5) is the online approximator, denoted by . Each
component of has the structure

(6)

where are given parametrized basis functions, and

and are the parameters (weights) to be determined, i.e.,
. In the presence of a

fault, provides the adaptive structure for approximating online
the unknown fault function. This is achieved by adapting the
weight vector . The term “on-line approximator” is used
to represent nonlinear multivariable approximation models with
adjustable parameters [24], [16], [28], such as neural networks,
fuzzy logic networks, polynomials, spline functions, etc.

The next step in the construction of the FDAE is the design of
the learning algorithm for updating the weights . Let

be the state estimation error. Using techniques from
adaptive control [10], [15], the learning algorithm for the online
approximator can be chosen as

(7)

where the projection operator restricts the parameter esti-
mation vector to a predefined compact and convex region

to guarantee the stability of the learning algorithm
in the presence of network approximation errors,

is a positive–definite learning rate matrix, and
denotes the gradient matrix of the on-

line approximator with respect to its adjustable weights, i.e.,
. The dead-zone operator is defined

as

if
otherwise
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The presence of modeling errors causes a nonzero
state estimation error , even in the absence of a fault.
The dead-zone operator prevents the adaptation of the
approximator weights when the modulus of every estimation
error component does not exceed its own bound ,
thereby preventing any false alarms. The time-varying dead-zone
bounds are chosen as follows, for :

where the first term can be implemented as the output of a linear
filter (with the transfer function and under zero initial
conditions), with the input given by .
The decision scheme for fault detection is as follows.
Fault Detection Decision Scheme: The decision on the occur-
rence of a fault (detection) is made when the modulus of at least
one of the estimation error components exceeds its cor-
responding bound . The fault detection time is defined
as

(8)

For more details concerning the FDAE (e.g., fault de-
tectability conditions, stability properties of the learning
scheme described by (5) and (7), etc.), we refer the reader to
[20].

B. Fault Isolation Scheme

After a fault has been detected, the isolation scheme is acti-
vated (see Fig. 2). Each nonlinear adaptive isolation estimator
corresponds to one of the possible types of nonlinear faults be-
longing to the fault class , that is

(9)

where , for , is the estimate
of the fault parameter vector in the th state variable. Moreover,

, where are design constants
representing the estimator pole locations. For notational sim-
plicity and without loss of generality, in this paper we assume
that , for all .

The adaptation in the isolation estimators is due to the un-
known parameter vector . The adaptive law for updating each

is derived by using the Lyapunov synthesis approach, with the
projection operator restricting to the corresponding known

set . Specifically, if we let be the th
component of the state estimation error vector of the th esti-
mator, then the following learning algorithm is chosen:

(10)

where is a symmetric, positive–definite learning rate
matrix. It should be noted that, as the isolation estimators are
activated only after the detection of a fault, there is no need to
apply the dead-zone operator to the state estimation error.

The fault isolation decision scheme is based on the following
intuitive principle: if fault occurs at some time and is
detected at time , then a set of threshold functions exist
such that the th component of the state estimation error of the
th estimator satisfies , for all

. Consequently, for each , a set of adaptive
threshold functions can be associated with the th fault
isolation estimator. For a particular , if for
some and some , then the possibility of the
occurrence of fault can be excluded. Therefore, we use the
following decision scheme for fault isolation.
Fault Isolation Decision Scheme: If, for each

, there exist some time
and some such that , then the
occurrence of fault is deduced. The fault isolation time is
defined as

(11)

Clearly, a basic role in the previous fault isolation scheme is
played by the adaptive thresholds . Let be the fault de-
tection time given by (8). According to the analysis made in
[29], the following threshold functions for fault isolation can be
chosen:

(12)

where represents the maximum fault-parameter vector
estimation error, i.e., . The form of
depends on the geometric properties of the compact set .
For instance, assume that the parameter set is a hyper-
sphere (or the smallest hypersphere containing the set of all
possible ) with center and radius ; then we have

. It is worth noting that the term
is due to the unknown fault parameter

vector (in this paper, we do not assume persistency of ex-
citation). Moreover, is assumed to be a known lower bound
on the unknown fault-evolution rate , for . In a
sense, can be interpreted as a tuning parameter that can be set
by exploiting some a priori knowledge of the fault developing
dynamics. If no specific knowledge of the fault-evolution rate is
available, it is always possible to make a cautious (and possibly
conservative) choice of a suitably small .

The adaptive threshold given by (12) can be easily imple-
mented online with linear filtering techniques. Specifically, the
first term of (12) can be implemented as the output of a linear
filter (with the transfer function ), with the input

and under zero initial conditions.
We stress that each term in the threshold function

described by (12) represents a type of uncertainty that
enters the fault isolation problem: 1)
is due to the parametric uncertainty ; 2)

is due to the unknown fault
evolution rate ; 3) is due to the modeling uncertainty ;
and 4) the last term appears to be due to the
initial state estimation error. On the other hand, the capability
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to isolate the fault depends not only on the thresholds
but also on “how different the faults are from one another.”
This intuitive, though qualitative, concept is made precise by
using the so-called fault mismatch function introduced in [29],
where the fault isolability condition characterizing the class of
faults that can be isolated by the considered isolation scheme
is rigorously defined. Some other important properties of the
fault isolation scheme, such as stability and fault isolation time,
have also been investigated in [29].

Remark 4: In the fault-diagnosis literature, there exist sev-
eral types of observer schemes. For example, within the fault-
isolation framework, the dedicated observer scheme (DOS) pro-
posed by Clark [3], [5], [6] and the generalized observer scheme
(GOS) presented by Frank [8] are typically used. The reader is
referred to [29] for some further discussions on these observer
schemes.

IV. CONTROLLER MODULE

In this section, we describe and analyze the proposed con-
troller module (see Fig. 2). To facilitate the analysis of the feed-
back control systems, from now on we assume that the general
plant given by (1) takes on the following specific structure:

(13)

where is the state vector,
is the control input, is the

output, is a nonzero smooth function, and , and ,
for , are generic smooth functions. The control
objective is to force the output to track a given reference
signal . We assume that and its first derivatives
are known, piecewise continuous and bounded (the th-order
time-derivative of is denoted by ).

The known nominal system dynamics can be expressed as

Moreover, the fault functions making up the class are as-
sumed to take on the specific form

(14)

The FDAE and FIE estimators are updated as follows:

(15)

and

for

(16)

In the following, the design and analysis of the fault-tolerant
control scheme described in (4) are rigorously investigated
for three different operating modes of the closed-loop system:
1) before fault detection, 2) between fault detection and isola-
tion, and 3) after fault isolation.

A. Nominal Controller and the System Stability Before Fault
Detection

In this section, we design the nominal controller and investi-
gate the system stability issue before a fault is detected. Using
the backstepping methodology [14], a new state vector

is defined recursively by the following coordi-
nate transformation, for

(17)

where

(18)

where and are suitable design constants. Due to the bound-
edness of [see (2)], the nominal controller

(19)

guarantees the stability of the system in the presence of mod-
eling uncertainty for (i.e., before the occurrence of any
faults); (18) and (19) correspond to the general controller state
equations (4) in the case . In the rest of the paper, for
simplicity and without any ambiguity, we shall apply the con-
trol laws (4) in three different cases by simply referring to the
control variables , and , respectively.

After a fault has occurred, but before its detection (i.e., for
), on the basis of (13), (15) the th component of

the estimation error, i.e., , satisfies

(20)

As the fault has not been detected yet, the estimation error re-
mains below its dead-zone threshold [see (8)], that is

(21)

Clearly, the occurrence of a fault may affect the stabilizing prop-
erty of the nominal controller (19). To address this issue, we first
need the following basic lemma concerning the fault-detection
time.

Lemma 1: Suppose that a fault occurs at some time .
Moreover, assume that there exist a time interval , a
scalar , and an index such that for all

(22)
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where , and is a time period
defined as . Then, an upper
bound to the fault detection time is .

Proof: For all , from the solution of the error
dynamics equation (20) and by using the triangle inequality, we
obtain

(23)

The dead-zone threshold for fault detection can be written as

(24)

According to (23) and (24), a sufficient condition for fault de-
tection (i.e., a condition implying that ) is

(25)

Recall the definition of given in Lemma 1. Then, using

and the triangle inequality again, a sufficient condi-
tion for (25) to hold is given by

(26)

Note that (if , the fault
would already have been detected). Hence, from (25), we obtain

(27)

Furthermore, note that

Then, if we use (27), condition (26) is guaranteed by the fol-
lowing inequality:

(28)

According to (22) and Assumption 1, it follows that the quantity
does not change sign over the time interval

. Therefore, a sufficient condition for (28) to hold is

Note that the left-hand side of the aforementioned inequality
is an increasing function of , whereas the right-hand side is a
decreasing function of . Therefore, the fault-detection time can
be obtained by solving the following equation for :

After some algebraic manipulations, we obtain

. The proof is completed by letting
.

In the presence of a fault but before its detection, some vari-
ables in the controlled system may grow unbounded, thus pos-
sibly causing also the fault function to become unbounded, that
is, the nominal controller (19) may lose its stabilizing properties.

The key issue to be resolved is to ensure that the faulty
behavior will be detected before the possible occurrence of
an unbounded growth of some state variable. In the following
analysis, a contradiction logic will be exploited. More specifi-
cally, let us suppose that the fault function
has some finite escape time before fault detection, i.e.,

, where ;
more precisely, , such that

(29)

Now, according to Assumption 1, let us denote by a uni-

form constant bound on the modeling uncertainty, i.e.,
. To analyze stability before fault

detection, the following assumption will be used.
Assumption 2: There exists some finite scalar such

that , where is defined in (29) and
the function is defined as in Lemma 1.

In the subsequent analysis, Assumption 2 will be related to
the rate of growth of the fault function to infinity. In order to
gain a deeper insight into the meaning of Assumption 2, let us
first give the following example.
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Illustrative Example: Consider the differential equation:

(30)

Without loss of generality, we let and . Let
us interpret as the fault function considered in
Lemma 1; clearly, . It is easy to show
that , we have . Now,
for and after some algebra, a sufficient condition for
Assumption 2 to be satisfied is . Hence,
if we choose , Assumption
2 is satisfied.

The previous example analytically shows how fast a fault
function may grow to infinity, while still satisfying Assumption
2. We are now able to prove the following lemma.

Lemma 2: Assume that a fault occurs at time and that it
is detected at some finite time . Then, the fault function

remains bounded before the fault is detected,
i.e., , for some finite positive constant

, for all , and for all .
Proof: Let us suppose that there exists some index

such that , where
. We choose for some generic

. Then, there exists some such that
. By letting

and by using Lemma 1 and Assumption 2, we obtain
an upper bound to the fault detection time; it is expressed as

, thus
proving that the fault is detected prior to the finite escape time.

We can now analyze the stability properties of the controlled
system before the detection of a fault.

Theorem 1 (Stability Before Fault Detection): Suppose that
a fault occurs at time and consider the time window .
Then, the nominal controller given by (19) has the following
properties.

1) The system state variables remain bounded, i.e., is
uniformly bounded for all .
2) There exist positive constants and a continuous

function (depending on the modeling uncertainty and
the fault function ) such that, for all , the
new state variable defined in (17) satisfies

Proof: According to the system model (13) and the co-
ordinate transformation described by (17) and (18), the time-
derivative of the new state variable is

(31)

Similarly, for , the time-derivative of can be
recursively obtained as follows:

(32)

Likewise, for , we have

By substituting the nominal control law (19) into the aforemen-
tioned equation, we obtain

Let , where

and . Then, according to the previous
equations, the system dynamics in the new coordinates given
by (17) can be rewritten as

(33)

where can be defined in a straightforward way, the compo-
nents of the vector field are defined by

and , for ,

and the components of the vector field are
defined by , for

, and .
Let us now consider the Lyapunov function candidate

. The time derivative of along the solution of (33)
is given by . Noting that

, we have
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Furthermore, from completing the squares, it follows that

(34)

where each component of is given by

, and . Inequality (34)
guarantees that if . From Lemma
2 and Assumption 1, i.e., the boundedness of the uncertainty

and the fault function , we deduce the boundedness of
and hence the boundedness of . According to (17), the

boundedness of and and its derivatives imply that
is bounded. Finally, by integrating (34) from to ,
we obtain

By defining and
, the proof is concluded.

It is worth noting that the boundedness analysis reported
in Theorem 1 is useful to ensure that the nominal controller
is able to guarantee a “reasonable” performance after the
fault occurrence and before any information provided by the
monitoring module is available (i.e., for ). Clearly,
this performance may degrade quite rapidly, depending on
the specific fault that has occurred. Hence, an early detection
decision (i.e., a small value of ) would be very beneficial
to reconfigure the controller; this will be the subject of the
next section.

B. First Controller Reconfiguration: Accommodation Before
Fault Isolation

After the fault is detected at time , the isolation es-
timators described in Section III-B are activated to determine
the particular type of fault that has occurred. Starting from ,
as (21) is no longer satisfied, the fault function may grow
unbounded. Therefore, the nominal controller has to be
reconfigured to ensure the system stability and some tracking
performances after fault detection. In the following, we describe
the design of the fault-tolerant controller defined in (4),
using stable adaptive tracking techniques [18], [13], [14].

Before the fault is isolated, no information about the fault
function is available. Online approximators such as neural-net-
work models can be used to estimate the unknown fault func-
tion . Specifically, with reference to the general structure
given by (6), we consider linearly parametrized networks (e.g.,
radial-basis-function networks with fixed centers and variances)
described as

(35)

where denote the ad-
justable weights of the online linear approximation model, and

represent the fixed network basis functions. Therefore,
the system model (13) can be rewritten as

(36)

where is the network approxima-
tion error for the th network, and is the optimal weight vector
given by

where denotes the set to which the variables belong
for all possible modes of behavior of the controlled system. To
simplify the subsequent analysis, in the following we assume
that the bounding conditions are global, so we set , and
we consider the global tracking problem. For each network, we
make the following assumption on the network approximation
error:

Assumption 3: For each

(37)

where are unknown bounding parameters and
are known smooth bounding functions.

The system described by (36) and (37) is characterized by
two types of uncertainty: 1) parametric uncertainty, which arises
due to the unknown network weights ; and 2) bounding un-
certainty, which arises due to the unknown bounding parame-
ters and the unknown incipient fault time profile . We let

denote the network weight estimation error,

and represent the corresponding bounding
parameter error, where is an unknown constant expressed
as

(38)

where is the fault detection time defined in (8). Note that the
fault time profile satisfies . Then, the
finite constant defined by (38) always exists. For the sake of
compactness of notation, we let

We now proceed to present the two-step fault-tolerant control
design.
Step 1) Backstepping design procedure

We first rewrite the linear approximator (35) as
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where . Consider a new

state vector defined by the following
change of coordinates:1

(39)

where the intermediate control functions are given by

for

In these equations, denotes a smooth function to be defined
later on by the adaptive bounding control design procedure, and
the intermediate adaptive functions are recursively updated
as follows:

(40)

where is a design constant, and for

(41)

By using (36) and (39), the derivative of the new state variable
can now be expressed as follows:

Consider the intermediate Lyapunov function
, where is another design con-

stant. The time derivative of is given by

being defined in (40), and

(42)

Similarly, for , the derivatives of can be
recursively obtained as

1For the sake of notational simplicity and without any risk of ambiguity, we do
not use different symbols for the new state variables z and the related quantities.

Let . Using (40) and
(41), after some algebraic manipulations, it can be shown that
the time derivative of is described by

where

(43)

In the final step, we consider the overall Lyapunov function can-
didate

(44)

On the basis of (39)–(41), it can be shown that the time deriva-
tive of is given by

where

We choose the fault-tolerant controller defined in (4) and
adaptive laws for updating as follows:

(45)

(46)

This operation yields

(47)

Step 2) Adaptive bounding design procedure
We now consider the bounding uncertainty , the recursive

design of the bounding control function , for ,
and the adaptive law for the bounding estimate . Let us first
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observe that, for any and for any , the hyperbolic
tangent function fulfills

(48)

where is a constant that satisfies (i.e.,
). By using (42) and Assumption 3, we have

where . By choosing the bounding
control function and the intermediate adaptation function
as

, and by using (48), we obtain

(49)

In the aforementioned definition of , the constant is a
positive design constant that can be used to enhance the tracking
performance in the case where some a priori estimate of the
unknown is available.

For , by (43) and (49), we have

where .
By choosing the bounding control function and the
intermediate adaptation function as

, with

and , we
obtain

For , from (43) and via mathematical induction, we
have

(50)

where
.

The bounding control function and the intermediate adap-
tation function are chosen to be

(51)

(52)

(53)

By substituting (51)–(53) into (50), and after some algebraic
manipulations, for , we finally obtain

Therefore, by choosing the adaptive law

(54)

we have

(55)

By substituting (55) into (47), and by completing the square for
each parameter estimate, the following inequality is obtained:

Therefore, the Lyapunov function satisfies

(56)

where and
. Now,

if we let , by (56) we have

(57)

Therefore, , and are uniformly bounded.
Furthermore, by using (44) and (57), we obtain that, given any

, there exists some time such that, for all , the
output satisfies .

The aforementioned design and analysis procedure is sum-
marized in the following important theorem.

Theorem 2: Suppose that the bounding Assumption 3 holds
globally. Then, if a fault is detected, the adaptive fault-tolerant
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control law (45), the weight parameter adaptive law (46) and the
bounding parameter adaptive law (54) guarantee that

1) all the signal and parameter estimates are uniformly
bounded, i.e., , and are bounded for all

;
2) given any , there exists such that

, for all .
Theorem 2 guarantees the system’s stability and tracking

performances after the fault has been detected. As no further
information about the fault is available at this stage, Assumption
3 provides a bounding function on the network approximation
error for the design of the fault-tolerant control law (45).
However, this critical assumption may result in conservative
bounds in (37); this justifies the fault-isolation and controller-
reconfiguration procedure analyzed in the next section.

C. Second Controller Reconfiguration: Accommodation After
Fault Isolation

Let us now assume that the isolation procedure described in
Section III-B provides the information that fault has been iso-
lated at time , as defined by (11). Then

(58)

If we compare (58) with the system model (36) before fault
isolation, we can see that the network approximation error

no longer exists. Consequently, the critical Assumption
3 can be removed for the design of the fault-tolerant con-
troller [see (4) again] used after fault isolation. We let

denote the fault parameter vector estimation

error, and represent the corresponding
bounding parameter error, where is an unknown constant
defined as .
The remaining procedures for designing the stable adaptive
control are analogous to that for described in
Section IV-B; thus, for the sake of brevity, several details are
omitted. Consider the Lyapunov function candidate

By a back-stepping design procedure similar to (39)–(41), and
after some algebraic manipulation, we have

where is defined recursively as

(59)

(60)

We choose the controller defined in (4) and adaptive laws
for updating as follows:

(61)

(62)

This operation yields

(63)

We now reconsider the adaptive bounding design procedure.
First, by using (59), we have

where . By choosing the bounding control

function and the intermediate adaptation function as
, with

, and by using the property of
the hyperbolic tangent function described by (48), we obtain

For , from (60) and via mathematical induction, it
follows that

(64)

where .
The bounding control function and the intermediate adap-

tation function are chosen to be

(65)

(66)

(67)
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Fig. 3. (a) Behaviors of the fault detection residual (solid line) and of the threshold (dashed line). (b) Fig. (a) in enlarged form. (c) Behaviors of the fault isolation
residual of estimator 1 (solid line) and of the threshold (dashed line). (d) Fig. (c) in enlarged form. (e) Behaviors of the fault isolation residual of estimator 2 (solid
line) and of the threshold (dashed line). (f) Fig. (e) in enlarged form.

By using (64)–(67) recursively, for , we finally have

Thus, by choosing the adaptive law

(68)

we obtain

(69)

By substituting (69) into (63), it follows that ,
where and

.
By using the same arguments as in Section IV-B, we can state

the following theorem.
Theorem 3: Assume that fault occurs at time and that it

is isolated at time . Then, the adaptive fault-tolerant control
law (61), the fault parameter adaptive law (62), and the bounding
parameter adaptive law (68) guarantee that:

1) all the signal and parameter estimates are uniformly
bounded, i.e., , and are bounded for all

;

2) given any , there exists some such that
, for all .

As we can see from the aforementioned design, the second
fault-tolerant controller eliminates the limitations involved by
Assumption 3 about the network approximation error bound in
the design of the first fault-tolerant controller. Moreover, it is
worth noting that the adaptive laws (46) and (62) for network
weights and the fault parameters for fault accommodation are
different from the adaptive laws (7) and (10) used for fault
detection and isolation in Section III. This is not surprising
as the objectives in these two cases are different: the goal of
adaptive parameter estimation in the case of FDI is learning
(i.e., approximating the fault function), whereas the objective
of fault accommodation is to modify the feedback control law
via parameter adaptation so as to stabilize the system and
to guarantee some tracking performance in the presence of a
fault. The presence of these two objectives at the same time
is consistent with the structure depicted in Fig. 1, where it is
pointed out that the monitoring module is important because:
1) it furnishes information on the current “health” of the con-
trolled system; and 2) the information it provides through a
learning algorithm can be exploited by the reconfigurable con-
troller to achieve better tracking performances in the presence
of a fault.
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Fig. 4. Behaviors of the water levels in the two tanks and of the control variable under the action of the fault-tolerant controller (solid line) and under the action
of the controller for which the second reconfiguration is not enabled (dashed line).

V. SIMULATION RESULTS

We now give a simulation example to illustrate the effec-
tiveness of the proposed fault-tolerant control methodology. In
particular, we consider a well-known benchmark problem for
fault-tolerant control. It deals with a laboratory process using
two tanks with fluid flow [1]. The two tanks are identical and
cylindrical in shape, with a cross section m . The
cross section of the connection pipes is m ,
and the liquid levels in the two tanks are denoted by and ,
respectively. The supplying flow rates coming from a pump to
tank 1 are denoted by . There is an outflow from tank 2. By
using balance equations and Torricelli’s rule, we obtain the fol-
lowing equations:

(70)

where and denote nondimensional outflow
coefficients, and is the gravity acceleration. The fault class
under consideration is defined as follows.

1) Leakage in tank . We assume that the leak is circular
in shape and of unknown radius . Then, denoting by
the outflow rate of the unknown-size leak in tank , we have

.
2) Leakage in tank . By analogy to the case of the leakage

in tank , we have .
By linearizing the nominal system model described by (70)

at a trim condition of m, m, and

m /s, and including the effects of faults and
modeling uncertainty, we have

where , and represent
modeling uncertainty, and are fault time profile functions,
and and are fault functions given by2

•

•

We consider the case of abrupt faults (the case of incipient
faults is completely analogous and is not addressed here for
the sake of brevity). More specifically, in tank 1 a leakage of

m is assumed to occur at s. The modeling un-
certainty used is , which gives a bound of

. Using the methodology described in Section III,
the monitoring module consisting of an FDAE and a bank of
two FIE’s are designed. The design parameters are taken to be

.

2Note that, after the linearization procedure, in order to write the state equa-
tions consistently with the general form (13), the state variable x was associ-
ated withh and the state variablex was associated withh . As a consequence,
the fault function f turns out to be associated with the leakage in tank 2 and
the fault function f with the leakage in tank 1.
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The control objective is to maintain the fluid level in tank 2
at a reference value. The controller module is determined by
the algorithms described in Section IV. Specifically, the online
approximation model in the first fault-tolerant controller design
is implemented as a radial-basis-function neural network with
five fixed centers evenly distributed in the interval .
The width of each RBF is 0.04. For simplicity, the bound on the
network approximation error is taken to be an unknown constant

. The design parameters are selected as follows: the controller
gains

, and . As shown in Fig. 3, the fault is
immediately detected and isolated after it occurs at s.

Regarding the performances of the fault-tolerant controller,
in Fig. 4 we compare the behavior of the two-tank system
under the action of the proposed FTC with the behavior of
the system when the second-controller reconfiguration is not
enabled (e.g., the controller does not take advantage of the
isolation information). As can be seen, the recovery of the
tracking performances is significantly worse when the isolation
information is not exploited to activate the second-controller
reconfiguration. Indeed, the proposed fault-tolerant controller
makes it possible to approximately maintain the level of tank
2 at a reference value of 0.2333 m, even after the occurrence
of the fault.

VI. CONCLUSION

In recent years, there has been significant research activity
in the fault diagnosis (fault detection and isolation) area and
the fault-tolerant control area. However, links between these
two areas are still lacking. In this paper, we have presented a
unified methodology for fault diagnosis and accommodation in
a class of nonlinear systems. The proposed FTC architecture
consists of an on-line monitoring module used to detect and
to isolate faults, and a controller module to accommodate the
effects of faults on the basis of the fault information obtained by
the fault-diagnosis procedure. An adaptive tracking design has
been developed that uses neural networks to approximate the
unknown fault function. The fault-tolerance has been enhanced
by use of adaptive bounding design techniques. Under certain
assumptions, the stability of the proposed robust FTC scheme
has been rigorously established by using the Lyapunov synthesis
approach.

The extension of the proposed integrated approach to fault di-
agnosis and controller reconfiguration to a larger class of non-
linear systems and faults deserves further research. Moreover,
considerable effort is devoted to generalizing the methodology
to the case where not all state variables are available for mea-
surements; this is clearly very important from an application
point of view.
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