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Abstract: This paper presents a fault tolerant scheme employing adaptive non-singular fixed-time
terminal sliding mode control (AFxNTSM) for the application of robotic manipulators under uncer-
tainties, external disturbances, and actuator faults. To begin, non-singular fixed-time terminal sliding
mode control (FxNTSM) is put forth. This control method uses non-singular terminal sliding mode
control to quickly reach fixed-time convergence, accomplish satisfactory performance in tracking,
and produce non-singular and non-chatter control inputs. Then, without knowing the upper bounds
beforehand, AFxNTSM is used as a reliable fault tolerant control (FTC) to estimate actuator faults and
unknown dynamics. The fixed-time stability of the closed-loop system is established by the theory of
Lyapunov analysis. The computer simulation results of the position tracking, control inputs, and
adaptive parameters are presented to verify and illustrate the performance of the proposed strategy.

Keywords: robotic manipulators; fixed-time sliding mode control; fault tolerant control; actuator faults

1. Introduction

Recent developments in the field of control systems are having a profound impact on
the fields of mechatronics and robotic systems. The problem of the robotic manipulator is
one that is explored in the area of control theory. It is a highly unstable mechanical system
that is nonlinear to a high degree. As a consequence of this, such a system must have
a robust control law and must be capable of maintaining strong stability and trajectory
tracking capabilities in the face of external disturbance and uncertainty [1]. In spite of
the fact that a range of robust solutions have been offered for uncertain robotic systems,
an additional problem arises when joint actuators fail to function properly. In this scenario,
FTC is utilized to compensate for controller failures in order to ensure that the system
continues to function correctly. Under real-world conditions, it is impossible to prevent
the control failure from occurring. Therefore, an accurately functioning controlled system
is impossible if the controller cannot tolerate faults in the system being regulated. As a
consequence of this, there is a growing interest in the development of FTC methodologies,
which have been subjected to extensive research and are being utilized in a variety of
industries. The fundamental theory of FTC is that the designed controller needs to be
robust in order to guarantee the achievement of the optimal level of stability and robustness
in the event that the actuators fail to do their jobs [2].

The family of nonlinear controllers includes the sliding mode control (SMC). It is
able to manage nonlinear systems with uncertainties, bounded disturbances, and low
sensitivity to parameter variations in an effective manner. Terminal sliding mode control
(TSM), which provides robust tracking and better precision, was created in [3] with the
purpose of achieving finite-time stability. However, it suffers from slow convergence and
singularity concerns. Then, SMC techniques were proposed as solutions to these challenges
in order to meet the aims of attaining rapid convergence through the use of fast terminal
SMC (FTSM), and getting rid of singularities through the use of fast non-singular terminal
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SMC (FNTSM) [4,5]. In addition, the amount of time required for the finite-time system to
converge is highly dependent on the initial values of the nonlinear system, and this amount
of time would unquestionably increase as the initial values of the nonlinear system were
raised. Therefore, fixed-time stability is an alternative, which may be utilized to precisely
calculate the time of convergence regardless of the initial conditions [6,7]. Concerning finite-
time convergence, several FTC algorithms have been proposed for robotic applications
using adaptive control scheme to estimate the actuator faults [8].

Adaptive control is a well-known nonlinear control method that is gaining popularity
in control engineering applications. It exhibits extraordinary adaptability to system uncer-
tainty, external disturbances, and actuator failures, and improve the closed-loop system’s
tracking performance [9]. Various adaptive finite time SMC schemes have been proposed
for the robotic manipulator with uncertainties and actuator failures. In [10], FTC using
adaptive finite-time FTSM was designed for the robotic system under faults, in which faults
were estimated using adaptive gains. A finite-time SMC based active FTC was proposed to
estimate the unknown dynamics of the nonlinear robot with joint faults [11]. Another FTC
scheme based on a class of third-order SMC was developed for the second-order nonlinear
system in the presence of actuator faults [12]. Furthermore, a robust adaptive control
approach with a quasi-continuous high-order SMC and neural network has been proposed
for the unknown dynamics of the nonlinear system under joint actuator faults [13].

Interestingly, all of the aforementioned publications focused primarily on the adaptive
scheme for the estimation of the upper bounds of uncertain dynamics and actuator faults
utilizing finite-time FNTSM control [11–13]. According to our understanding, few works
offer adaptive FxNTSM control [14,15], but none of them examined the FTC based on
adaptive FxNTSM method under actuator failures. It is recognized that the primary
advantage of FxNTSM control is singularity avoidance, strong robustness under system
uncertainty and external disturbances; and convergence time does not depend on the initial
values. In this study, we examine the fixed-time convergence and FTC for the nonlinear
system in the presence of unknown dynamics. Therefore, we are proposing the adaptive
fixed-time non-singular terminal SMC (AFxNTSM) for the application of uncertain and
disturb robotic manipulators under actuator failures. The following is a summary of
the key contributions of this work: (1) A sliding surface derived from the characteristics
of non-singular fixed-time terminal SMC is devised. This sliding surface is designed to
provide exceptional tracking performance, fixed-time convergence, and reduced chatter
in the control torque. (2) Adaptive FTC approach is proposed with FxNTSM; bounded
unknown dynamics and actuator failure are estimated to obtain the robust and sustainable
performance for the robotic system. (3) The fixed-time stability analysis of the system is
studied using the Lyapunov synthesis.

The other sections of this work are structured as follows: Section 2 presents the related
works. Section 3 provides the system modelling and problem formulations. In Sections 4 and 5,
respectively, the control design and stability analysis based on the Lyapunov theorem are
described in detail. Section 6 then provides the numerical simulations to validate and
demonstrate the performance of proposed scheme, and Section 7 addressed the discussion
on the simulation results. The conclusions of the paper are presented in Section 8.

2. Related Work

In recent years, a significant number of researchers have focused their attention on the
issue of the SMC schemes for nonlinear systems, which are distinguished by a fixed-time
convergence. In [16], the authors proposed a singularity-free fixed-time SMC scheme for
an uncertain robotic system with disturbances. The research that was published in [17]
involved the creation of a new fixed-time sliding surface using constant and variable
exponent coefficients for the second-order system. For the autonomous underwater vehicle,
an event-triggered scheme using an integral fixed-time SMC technique has been presented
in [18], and the formation control was constructed with the help of a fixed-time SMC,
and disturbance was dealt with the assistance of a disturbance observer in [19]. Moreover,
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the author in [20] presented fast exponential fixed-time super-twisting SMC for the robotic
manipulator and the finite-time high-order sliding mode observer to estimate the angular
velocity and lumped disturbances. A fixed-time super-twisting sliding mode method
subject to control input limitations was developed for a symmetric chaotic supply chain
system [21]. A third-order fixed-time super-twisting-like SMC scheme was designed for
the piezoelectric nanopositioning stage [22]. Another fixed-time control strategy based on
robust observer was presented for n-DOF robot manipulators with uncertainty [23].

Faulty actuators can be compensated for by employing a variety of different adaptive
techniques, which were presented in order to build FTC for a wide range of nonlinear
systems. An adaptive non-singular TSM (AFTSMC) has been used in [10] to achieve fast
response and lessen chattering and singularity problems, and adaptive control based FTC
has been used to estimate uncertainties and actuator faults. Actuator failure compensation
for an underactuated nonlinear system utilising an adaptive fuzzy SMC approach to adjust
the uncertainties caused by actuator faults has been addressed in [24]. In [25], another
adaptive technique has been developed for wind turbine under constant and variable
actuator faults. In [26], FNTSM was designed and paired with adaptive control for attitude
tracking of spacecraft in the presence of actuator faults, actuator saturations, external
disturbances, and inertia uncertainty. Robust fault tolerant tracking control using fixed-
time SMC and observer has been presented for an uncertain robotic manipulator [27].

3. Robot Dynamics and Problem Statement

The robotic manipulator’s dynamic equation can be described as follows [28]:

M0(q)q̈ + M̄(q)q̈ + C0(q, q̇)q̇ + C̄(q, q̇)q̇ + G0(q) + Ḡ(q) = u(t) + Td + f (t− t f )F (q, q̇, τ) (1)

=⇒ M0(q)q̈ + C0(q, q̇)q̇ + G0(q) = u(t) + Ξ(q, q̇, q̈, Td,F ) (2)

where Ξ(q, q̇, q̈, Td,F ) = Td + f (t− t f )F (q, q̇, τ)− M̄(q)q̈− C̄(q, q̇)q̇− Ḡ(q). The (2) can
be rewritten as

q̈ = M−1
0 (q)[u(t)− C0(q, q̇)q̇− G0(q) + Ξ(q, q̇, q̈, Td,F )] (3)

where q ∈ Rn is joints position, q̇ ∈ Rn is joint velocity and q̈ ∈ Rn is joint acceleration.
M(q) ∈ Rn×n represents the inertia matrix and satisfies that 0 < λ1(M(q)) ≤ ‖M(q)‖ ≤
λ2(M(q)) with λ1 and λ2 illustrate the min and the max eigenvalues of matrix M(q).
C(q, q̇) ∈ Rn×n denotes the coriolis, centripetal, and friction forces matrix; G(q) ∈ Rn is
the gravitational vector. M0(q), C0(q, q̇), G0(q) are nominal and M̄(q), C̄(q, q̇), Ḡ(q) are
uncertain parameters. Td ∈ Rn is a representation of the external disturbance, u(t) ∈ Rn is
the input torque at the joints, the fault vector for a constant and/or time-varying actuator
is defined by F (q, q̇, τ) ∈ Rn, and the fault time profile is indicated by f (t− T f ), where t f
is the time at which the fault first occurs. The following notations throughout the paper
will be used.

In addition, the following is the time profile of the faults that were discussed earlier,
f (·), is defined:

f (t− t f ) = diag
{

f1(t− t f ), f2(t− t f ), · · · , fn(t− t f )
}

(4)

The time profile fault model is as follows, where fi is the ith state equation affected by
the fault:

fi(t− t f ) =

{
0 i f t < t f

1− e−ςi(t−t f ) i f t ≥ t f
(5)

where ςi > 0 is the time constant that characterizes the unknown actuator fault’s devel-
opment. When ςi is minor, the fault is referred to as an incipient fault. When ςi → ∞,
the fi function begins to grow as a step, and the fault that was in the process of developing
becomes an abrupt fault.
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Using (3), we can express the trajectory tracking error as

ë = M−1
0 (q)[u(t)− C0(q, q̇)q̇− G0(q) + Ξ(q, q̇, q̈, Td,F )]− q̈d (6)

⇒ ë = M−1
0 (q)u(t) + Ω(q, q̇) + Ξ̃(q, q̇, q̈, Td,F ) (7)

where Ω(q, q̇) = −M−1
0 (q)[C0(q, q̇)q̇ + G0(q)] − q̈d denotes the known nominal system

dynamics and Ξ̃(q, q̇, q̈, Td,F ) = M−1
0 (q)Ξ(q, q̇, q̈, Td,F ). The tracking error e = q − qd,

where q is the actual and qd is the desired position vector.

4. Control Design

This section begins with a discussion of the features of nonsingular fixed-time slid-
ing surface and control design named FxNTSM. Moreover, the important Lemma and
Assumption are given in this section.

4.1. Fixed-Time Non-Singular Terminal Sliding Manifold

In literature, sliding surfaces have been constructed to obtain the benefits of TSM
while avoiding the singularity problem. Motivated by the aforementioned methodologies
discussed in Section 1, the proposed FxNTSM surface can be designed as providing robust
and precise trajectory tracking of the n-DOF robotic manipulators in fixed-time:

s(t) = ė(t) + θ1sigη1(e(t)) + θ2sigη2(e(t)) (8)

where s(t) ∈ Rn is the sliding surface, sigy(·) = |·|ysign(·), θ1 ∈ R+ and θ2 ∈ R+ are
positive constants, and the η1 and η2 are constants satisfying the relation 0 < η1 < 1 and
1 < η2.

The development of the sliding manifold is completed; now, the robustness against
uncertainty and actuator faults will be achieved through the FxNTSM design for n-DOF
robotic manipulators.

Assumption 1. Conditional bounds on the uncertainty, external disturbance and fault vector are
expressed by (9) that are shown below:∥∥Ξ̃(q, q̇, q̈, Td,F )

∥∥ ≤ Ξ1 + Ξ2‖q‖+ Ξ3‖q̇‖2 (9)

where Ξ1, Ξ2 and Ξ3 are unknown constants of uncertainties, disturbances and actuator faults’
upper bounds.

Lemma 1 ([29,30]). Consider the following nonlinear system:

ẋ(t) = f (t, x), x(0) = x0 (10)

where f (t, x) is a continuous nonlinear function. For fixed-time stability with fast time convergence,
Lyapunov function V(x) that satisfies
a. V(x) = 0 ⇔ x = 0
b. V̇(x) ≤ −β1Vα1(x)− β2V(x)α2

where β1, β2 > 0, 0 < α1 < 1 and α2 > 1. Then, the system is fixed-time stable and the
convergence time can be computed as

T ≤ 1
β1(1− α1)

+
1

β2(α2 − 1)
(11)

During the sliding motion, we have s(t) = 0. Thus, the following dynamics can be
obtained according to (8) as

ė(t) = −θ1sigη1(e(t))− θ2sigη2(e(t)) (12)
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The Lyapunov function is considered as follows:

Ve(t) =
1
2

e(t)Te(t) (13)

The derivative of Ve(t) can be obtained with (12) as

V̇e(t) = e(t)T ė(t) = e(t)T [−θ1sigη1(e(t))− θ2sigη2(e(t))] (14)

V̇e(t) ≤ −θ1‖e(t)‖η1+1 − θ2‖e(t)‖η2+1

≤ −2
η1+1

2 θ1Ve
η1+1

2 − 2
η2+1

2 θ2Ve
η2+1

2
(15)

According to Lemma 1, the sliding surface (8) will reach zero in a fixed-time, and the
time it takes to converge is bounded by

T1 = 1

2
η1+1

2 θ1

(
1− η1+1

2

) + 1

2
η2+1

2 θ2

(
η2+1

2 −1
)

=
√

2
2η1/2θ1(1−η1)

+
√

2
2η2/2θ2(η2−1)

(16)

4.2. Fxntsm Control Design

To control a robotic manipulator in the presence of known bounded uncertainties,
external disturbances, and actuator failures, the FxNTSM control law can be defined
as follows:

u(t) = u1(t) + u2(t) (17)

where u1(t) is the control input that is utilized in the control of the nominal dynamics,
and u2(t) is used to mitigate the uncertainties and actuator fault:

u1(t) = −M0(q)
(

Ω(q, q̇) + θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)
)

(18)

where Π(e(t)) =
{

η1|e(t)|η1−1 i f e(t) 6= 0
0 i f e(t) = 0

satisfies the non-singularity in the control input:

u2(t) = −M0(q)
(
(Ξ1 + Ξ2‖q‖+ Ξ3‖q̇‖2)sign(s) + γ1sigγ10(s(t)) + γ2sigγ20(s(t))

)
(19)

where γ1 ∈ R+ and γ2 ∈ R+ are positive constants, and γ10 and γ20 are constants satisfying
the relation 0 < γ10 < 1 and 1 < γ20, respectively.

5. Stability Analysis

In this section, the stability of the overall system using FxNTSM scheme is established
through the application of the Lyapunov theorem. Afterward, the fault tolerant control
structure with adaptive laws is subsequently designed to provide AFxNTSM for uncertain
robotic manipulators under varying actuator faults at joint(s). Then, stability analysis using
AFxNTSM method is investigated by the Lyapunov theorem.

Theorem 1. Taking into account the defined robotic manipulator (3), the proposed sliding man-
ifold (8) and the proposed FxNTSM controller (17) allow for the desired augular position of the
uncertain robotic manipulator to converge in a fixed-time along with (9).

Proof. The following is the Lyapunov function selected as

Vs(t) =
1
2

s(t)Ts(t) (20)
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The calculation for the derivative of Vs(t) can be written as

V̇s(t) = s(t)T ṡ(t) (21)

The derivative of (8) when substituted into Equation (21) yields

V̇s(t) = s(t)T
[
ë(t) + θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

]
(22)

By substituting error Equation (7) in (22), one has

V̇(t) = s(t)T

{
M−1

0 (q)u + Ω(q, q̇) + Ξ̃(q, q̇, q̈, Td,F )
+θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

}
(23)

By substituting control input (17) in (23), one obtains

V̇s(t) = s(t)T


(−Ξ1 − Ξ2‖q‖ − Ξ3‖q̇‖2)sign(s(t))−Ω(q, q̇)
−γ1sigγ10(s(t))− γ2sigγ20(s(t))
−θ1Π(q)ė(t)− θ2η2|e(t)|η2−1 ė(t) + Ω(q, q̇)
+Ξ̃(q, q̇, q̈, Td, F) + θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

 (24)

V̇s(t) = s(t)T
{

(−Ξ1 − Ξ2‖q‖ − Ξ3‖q̇‖2)sign(s(t)) + Ξ̃(q, q̇, q̈, Td,F )
−γ1sigγ10(s(t))− γ2sigγ20(s(t))

}
≤ (−Ξ1 − Ξ2‖q‖ − Ξ3‖q̇‖2)‖s(t)‖+ ‖Ξ̃(q, q̇, q̈, Td,F )‖‖s(t)‖
−γ1‖s(t)‖γ10+1 − γ2‖s(t)‖γ20+1

(25)

According to Assumption 1, one can obtain

V̇s(t) ≤ −γ1‖s(t)‖γ10+1 − γ2‖s(t)‖γ20+1 (26)

V̇s(t) ≤ −2
γ10+1

2 γ1{Vs(t)}
γ10+1

2 − 2
γ20+1

2 γ2{Vs(t)}
γ20+1

2 (27)

Thus, the system trajectory approaches to s(t) in a fixed-time. According to Lemma 1,
the convergence time can be formulated as

T2 =
1

2
γ10+1

2 γ1

(
1− γ10+1

2

) +
1

2
γ20+1

2 γ2

(
γ20+1

2 − 1
) (28)

By the combination of T1 and T2, the total fixed settling time can be calculated as

T10 = T1 + T2 =
√

2
2γ10/2γ1(1−γ10)

+
√

2
2γ20/2γ2(γ20−1)

+
√

2
2η1/2θ1(1−η1)

+
√

2
2η2/2θ2(η2−1)

(29)

Hence, this shows that the proposed scheme is fixed-time SMC.

AFxNTSM Based FTC Control Design

For the unknown dynamics and actuator faults, the control input using adaptive
scheme is designed as follows:

u(t) = u3(t) (30)

where

u3(t) = −M0(q)

 (Ξ̂1 + Ξ̂2‖q‖+ Ξ̂3‖q̇‖2)sign(s(t)) + Ω(q, q̇)
+γ1sigγ10(s(t)) + γ2sigγ20(s(t))
+θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

 (31)

where Ξ̂1, Ξ̂2 and Ξ̂3 represent the estimates of Ξ1, Ξ2 and Ξ3, respectively.
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For the compensation of uncertainties, external disturbances and actuator faults,
adaptive laws are designed as follows:

˙̂Ξ1 = 1
λ1
‖s‖

˙̂Ξ2 = 1
λ2
‖q‖‖s‖

˙̂Ξ3 = 1
λ3
‖q̇‖2‖s‖

(32)

where λ1, λ2 and λ3 are positive constants, and the proposed model is given in Figure 1.

FoSMC

Sliding surface

Adaptive Law

Uncertain 

Robotic 

Manipulators

Adaptive

FxNTSM

Controller

X̂

( )u t ,q q

,q qq

,q q

,d dq qd dqd dd d ( )e t ( )s t

dT

Figure 1. Structure of the proposed scheme.

The upper bounds of the uncertainties, external disturbances and actuator faults
can be compensated using (32). Hence, the AFxNTSM scheme formulates the tracking
performance of the uncertain robotic manipulators under actuator faults.

Theorem 2. Taking into account the defined robotic manipulator (3), which is subject to a number
of problems such as uncertainties, external disturbances and joint actuator failures. Therefore,
the proposed sliding surface (8), AFxNTSM control input (30) and adaptive laws (32) make it
possible for the desired angular position of the robotic manipulator to converge in a fixed-time with
the condition of Assumption 1.

Proof. The Lyapunov functional candidate is chosen as follows:

Va(t) =
1
2

s(t)Ts(t) +
1
2

λ1∆Ξ2
1 +

1
2

λ2∆Ξ2
2 +

1
2

λ3∆Ξ2
3 (33)

where ∆Ξ1 = Ξ̂1 − Ξ1, ∆Ξ2 = Ξ̂2 − Ξ2, ∆Ξ3 = Ξ̂3 − Ξ3 are adaptation errors.
The derivative of Va(t) can be obtained as

V̇a(t) = s(t)T ṡ(t) + λ1∆Ξ1
˙̂Ξ1 + λ2∆Ξ2

˙̂Ξ2 + λ2∆Ξ3
˙̂Ξ3 (34)

The substitution of derivative of (8) into (34), one obtains

V̇a(t) = s(t)T

{
M−1

0 (q)u(t) + Ω(q, q̇) + Ξ̃(q, q̇, q̈, Td,F )
+θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

}
+λ1∆Ξ1

˙̂Ξ1 + λ2∆Ξ2
˙̂Ξ2 + λ3∆Ξ3

˙̂Ξ3

(35)
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The substitution of control input (30) into (35), one obtains

V̇a(t) = s(t)T


(−Ξ̂1 − Ξ̂2‖q‖ − Ξ̂3‖q̇‖2)sign(s(t))−Ω(q, q̇)
−γ1sigγ10(s(t))− γ2sigγ20(s(t))
−θ1Π(q)ė(t)− θ2η2|e(t)|η2−1 ė(t) + Ω(q, q̇)
+Ξ̃(q, q̇, q̈, Td,F ) + θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)


+λ1∆Ξ1

˙̂Ξ1 + λ2∆Ξ2
˙̂Ξ2 + λ3∆Ξ3

˙̂Ξ3

(36)

V̇a(t) = s(t)T
{

(−Ξ̂1 − Ξ̂2‖q‖ − Ξ̂3‖q̇‖2)sign(s(t))
−γ1sigγ10(s(t))− γ2sigγ20(s(t)) + Ξ̃(q, q̇, q̈, Td,F )

}
+λ1∆Ξ1

˙̂Ξ1 + λ2∆Ξ2
˙̂Ξ2 + λ3∆Ξ3

˙̂Ξ3

(37)

V̇a(t) ≤ −γ1‖s(t)‖γ10+1 − γ2‖s(t)‖γ20+1

−Ξ̂1‖(s(t))‖ − Ξ̂2‖q‖‖(s(t))‖ − Ξ̂3‖q̇‖2‖(s(t))‖
+‖Ξ̃(q, q̇, q̈, Td,F )‖‖s(t)‖+ λ1∆Ξ1

˙̂Ξ1 + λ2∆Ξ2
˙̂Ξ2 + λ3∆Ξ3

˙̂Ξ3

(38)

Using (32), (38) can be simplified as follows:

V̇a(t) ≤ −γ1‖s(t)‖γ10+1 − γ2‖s(t)‖γ20+1 (39)

Hence, the robotic manipulator that is used for the precise trajectory tracking is fixed-
time stable if and only if certain conditions are met. As a result, the proof of stability is
thoroughly examined.

Now, we will determine the fixed settling time, and the preceding equation can be
represented as [26]

V̇a(t) ≤ −γ1{2(Va(t)−Φ)}
γ10+1

2 − γ2{2(Va(t)−Φ)}
γ20+1

2 (40)

where Φ = 1
2 λ1∆Ξ2

1 +
1
2 λ2∆Ξ2

2 +
1
2 λ3∆Ξ2

3.

V̇a(t) ≤ −2
γ10+1

2 γ1

{
1− Φ

Va(t)

} γ10+1
2 Va(t)

γ10+1
2 − 2

γ20+1
2 γ2

{
1− Φ

Va(t)

} γ20+1
2 Va(t)

γ20+1
2 (41)

Using Lemma 1, the fixed-time can be computed as

T3 =
1

σ1

(
1− γ10+1

2

) +
1

σ2

(
γ20+1

2 − 1
) =

2
σ1(1− γ10)

+
2

σ2(γ20 − 1)
(42)

where σ1 = 2
γ10+1

2 γ1

{
1− Φ

Va(t)

} γ10+1
2 , σ2 = 2

γ20+1
2 γ2

{
1− Φ

Va(t)

} γ20+1
2 .

By the combination of of T1 and T3, the fixed time convergence can be computed as

T20 =
2

σ1(1− γ10)
+

2
σ2(γ20 − 1)

+

√
2

2η1/2θ1(1− η1)
+

√
2

2η2/2θ2(η2 − 1)
(43)

As a result, the state trajectory will approach to zero in fixed-time.

Remark 1. Applying the proposed method to the uncertain dynamics of robotic system (1), which
includes the sliding surface (8), the proposed control input (30) and the adaptive laws (32), implies
the tracking error tends to zero. In the following part, the numerical simulation will be provided.
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6. Simulation Results and Comparative Analyses

In order to validate the proposed FxNTSM and AFxNTSM methods, a 2DOF manip-
ulator is used to show the simulation performance. A 2DOF robotic manipulator under
actuator faults with external disturbances and uncertainty will be used. Therefore, there
are two cases that are presented with and without actuator faults to demonstrate the high
performance of FxNTSM and AFxNTSM, and simulations using MATLAB/Simulink are
illustrated. Their model parameters, intended trajectories and uncertainties are given, and
the dynamic of 2DOF robotic manipulators is described as:

M(q) =
[

M11 M12
M21 M22

]
, C(q, q̇) =

[
C1
C2

]
, G(q) =

[
G1
G2

]
,

u(t) =
[

u1
u2

]
, qd =

[
1.45− 1.4e−t + 0.6e−4t

1.25 + e−t − 0.5e−4t

]
, Td =

[
1− e−t

1− e−t

]
.

where M11 = m1r2
1 +m1(r2

1 + l2
1)+ 2 cos(q2)m2l1r2 + J2 + J1, M12 = m2r2

2 + cos(q2)m2r2l1 +
J2, M21 = M12, M22 = m2r2

2 + J2, C1 = − sin(q2)m2r2l1q̇1q̇2 − sin(q2)m2r2l1(q̇1 + q̇2)q̇2,
C2 = sin(q2)m2r2l1q̇1q̇1, G1 = cos(q1)(m1r1 + m2l1)g + cos(q1 + q2)m2r2g, G2 = cos(q1 +
q2)m2r2g.

The length of the links l1 = 1 m, l2 = 1 m, centroid length of joints r1 = 0.5 m, r2 = 0.85 m,
mass of the links m̄1 = 0.5 kg, m̄2 = 1.5 kg, nominal mass of links m10 = 0.4 kg, m20 = 1.2 kg,
moment of inertia J1 = J2 = 5 kg·m2 and gravitational constant g = 9.8 m/s2. In addition,
the physical model of 2-DOF robotic manipulator is given in Figure 2.

r1

l1

r 2

q1

q2

m2

m1

l 2

g

Figure 2. 2-DOF robotic manipulator.

6.1. Case-1: Proposed Scheme without Actuator Faults

In this subsection, the proposed FxNTSM method is applied on the 2-DOF robotic
manipulator with known uncertainties and external disturbances and the joint actuator
faults are not considered. The parameters of FxNTSM are selected as follows: for (8),
parameters are chosen as θ1 = 6, θ2 = 1, η1 = 0.8, η2 = 1.5. The parameters of (17) are
selected as γ1 = 50, γ2 = 50, γ10 = 0.65, γ20 = 1.5. The initial conditions of joint positions
are chosen as q1(0) = 1 and q2(0) = 1.5.

Figures 3–10 exhibit, accordingly, the position tracking performance, tracking errors,
control inputs, and sliding mode surfaces, which correspond to the simulation findings of
the proposed method on 2-DOF robotic manipulators.
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Figure 3. Position tracking—Joint 1.
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Figure 4. Position tracking—Joint 2.
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Figure 5. Tracking error—Joint 1.
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Figure 6. Tracking error—Joint 2.
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Figure 7. Control input—Joint 1.
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Figure 8. Control input—Joint 2.
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Figure 9. Sliding surface—Joint 1.
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Figure 10. Sliding surface—Joint 2.
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Taking into consideration the high tracking and robustness against the known bounded
system’s uncertainties, the proposed FxNTSM has superior performance and obtains
angular position fast tracking performance in Figures 3 and 4, smaller tracking errors in
Figures 5 and 6, and chatter-free control inputs in Figures 7 and 8.

6.2. Case-2: Comparative Analysis under Unknown Dynamics and Actuator Faults

In this subsection, the proposed adaptive approach with FxNTSM method is employed
to compensate the unknown dynamics of the uncertain 2-DOF robotic manipulator in the
existence of unknown bounded external disturbances and actuator faults. Moreover, it
is compared with adaptive fractional-order non-singular terminal sliding mode control
(AFONTSM) [10] to show the effectiveness of the proposed method. The fault occurs at 2 s
for joint-2 such as F = [0, 0.7u2(2s)]T , the parameters of (30) are selected the same as (17),
and the parameters of (32) are selected as λ1 = 20, λ2 = 20 and λ3 = 20. The performances
under unknown dynamics and actuator faults, the compared benchmark simulations of
trajectories, control inputs and sliding surfaces of the proposed AFxNTSM scheme with
AFONTSM are given in Figures 11–16. In addition, the adaptive parameter estimations of
unknown dynamics are illustrated in Figure 17.

The compared obtained results show that the AFxNTSM has enhanced tracking per-
formance, chatter-free control inputs and precise adaptive values in the presence of uncer-
tainties, external disturbances and actuator failures. In Figures 11–14, it is clearly seen that
the proposed method under external disturbances and at the occurrence of actuator faults
provides the better convergence and trajectory tracking performance while the AFONTSM
method shows the large angular position error and the less robust to unknown dynam-
ics. Moreover, the root mean square (RMS) error of the proposed AFxNTSM method and
AFONTSM technique are computed as e1RMS = 0.0294, e2RMS = 0.0208 and e1RMS = 0.0320,
e2RMS = 0.0237, respectively.

Figure 11. Position tracking method under fault and disturbances—Joint 1.
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Figure 12. Position tracking method under fault and disturbances—Joint 2.
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Figure 13. Control input under fault and disturbances—Joint 1.
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Figure 14. Control input under fault and disturbances—Joint 2.
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Figure 15. Sliding surface under fault and disturbances—Joint 1.
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Figure 16. Sliding surface under fault and disturbances—Joint 2.

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15
10

-4  

Figure 17. Cont.



Actuators 2022, 11, 353 18 of 21

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6
10

-3  

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

10
-3  

Figure 17. Adaptive parameters.
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7. Discussion

In this section, the discussion related to the simulated results of the proposed FxNTSM
and AFxNTSM are presented. In addition, the limitations of the suggested controller are
briefly discussed in terms parameters and stability analyses. Moreover, the future aspects
of the proposed method with the nonlinear system are also discussed.

A comparison is made between the suggested control approach and the AFONTSM and
the parameters of both schemes are fairly selected. Thus, it is evident from Figures 11 and 12
that the suggested controller has the minimum tracking error and the shortest time to
converge. In addition, the control inputs of the two joints can be seen in Figures 13 and 14,
and it can be observed that the suggested solution provides the smoothest and efficient
control input. Moreover, the adaptive estimation is given in Figure 17, which estimates the
unknown parameters and compensates the effects of uncertainties, external disturbance
and actuator faults, and shows that there is no drifting problem in adaptive control laws.

The parameters of the suggested control strategy are selected according to the range
that was stated, such as θ1 > 0, θ2 > 0, 0 < η1 < 1, η2 > 1, γ1 > 0, γ2 > 0, 0 < γ10 < 1 and
γ20 > 1. If these are not taken care of, the closed-loop system will not remain fixed-time
stable. It is easy to see, based on the results of (29) and (43) that T10 and T20 are inversely
proportional to θi and γi, whereas θi and γi are directly proportional to u(t) in (17) and (30).
Therefore, the appropriate values of θi and γi need to be chosen in order to obtain fixed-
time convergence as well as closed-loop system stability at the same time. Furthermore,
the ranges of the other parameters are known, which enables one to choose the suitable
value in a manner that is appropriate. In addition, this work can further be extended to
consider the non-smooth nonlinearities for the nonlinear robotic systems such as a robotic
manipulator, inverted pendulum, mobile robots etc.

8. Conclusions

For robotic manipulator trajectory tracking with uncertainties, external disturbances
and actuator faults, an AFxNTSM based FTC is developed. In order to estimate the
unknown bounds of actuator faults, uncertainties and disturbances, fixed-time sliding
surface is developed and then the FxNTSM control is designed utilising an adaptive
approach, allowing for fixed-time convergence and tracking performance. FxNTSM and
AFxNTSM are applied on the 2-DOF manipulator with and without actuator faults to
show and justify the efficacy of the proposed approach. Simulation results show that
the proposed FxNTSM and AFxNTSM outperform in terms of response time, trajectory
tracking error, faults control, and better uncertainties and disturbances rejection capability.

Author Contributions: Conceptualization, S.A., A.T.A.; Formal analysis, S.A., A.T.A., M.T.; Funding
acquisition, M.T.; Investigation, A.T.A., M.T.; Methodology, S.A., A.T.A., M.T.; Project administration,
M.T.; Resources, S.A., M.T.; Software, S.A.; Supervision, A.T.A.; Validation, A.T.A., M.T.; Visualization,
S.A., A.T.A.; Writing—original draft, S.A.; Writing—review & editing, S.A., A.T.A., M.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Prince Sultan University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the support of Prince Sultan University,
for paying the Article Processing Charges (APC) of this publication. Special acknowledgement to
Automated Systems & Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh, Saudi Arabia.
In addition, the authors wish to acknowledge the editorial office and anonymous reviewers for their
insightful comments, which have improved the quality of this publication.

Conflicts of Interest: The authors declare no conflict of interest.



Actuators 2022, 11, 353 20 of 21

References
1. Ahmed, S.; Wang, H.; Tian, Y. Modification to model reference adaptive control of 5-link exoskeleton with gravity compensation.

In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 6115–6120.
2. Hagh, Y.S.; Asl, R.M.; Cocquempot, V. A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter. ISA

Trans. 2017, 66, 262–274. [CrossRef] [PubMed]
3. Zhao, D.; Li, S.; Gao, F. A new terminal sliding mode control for robotic manipulators. Int. J. Control. 2009, 82, 1804–1813.

[CrossRef]
4. Feng, Y.; Yu, X.; Man, Z. Non-singular terminal sliding mode control of rigid manipulators. Automatica 2002, 38, 2159–2167.

[CrossRef]
5. Yang, L.; Yang, J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control

2011, 21, 1865–1879. [CrossRef]
6. Moulay, E.; Lechappe, V.; Bernuau, E.; Defoort, M.; Plestan, F. Fixed-time sliding mode control with mismatched disturbances.

Automatica 2022, 136, 110009. [CrossRef]
7. Ton, C.; Petersen, C. Continuous fixed-time sliding mode control for spacecraft with flexible appendages. IFAC-PapersOnLine

2018, 51, 1–5. [CrossRef]
8. Mekki, H.; Boukhetala, D.; Azar, A.T. Sliding modes for fault tolerant control. In Advances and Applications in Sliding Mode Control

Systems; Springer: Cham, Switzerland, 2015; pp. 407–433.
9. Tao, G. Multivariable adaptive control: A survey. Automatica 2014, 50, 2737–2764.
10. Ahmed, S.; Wang, H.; Tian, Y. Fault tolerant control using fractional-order terminal sliding mode control for robotic manipulators.

Stud. Inform. Control 2018, 27, 55–64. [CrossRef]
11. Truong, T.N.; Vo, A.T.; Kang, H.J.; Van, M. A Novel Active Fault-Tolerant Tracking Control for Robot Manipulators with

Finite-Time Stability. Sensors 2021, 21, 8101. [CrossRef]
12. Van, M.; Ge, S.S.; Ren, H. Robust fault-tolerant control for a class of second-order nonlinear systems using an adaptive third-order

sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 221–228. [CrossRef]
13. Van, M.; Kang, H.J. Robust fault-tolerant control for uncertain robot manipulators based on adaptive quasi-continuous high-order

sliding mode and neural network. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 1425–1446. [CrossRef]
14. Abadi, A.S.S.; Hosseinabadi, P.A.; Mekhilef, S. Fuzzy adaptive fixed-time sliding mode control with state observer for a class of

high-order mismatched uncertain systems. Int. J. Control Autom. Syst. 2020, 18, 2492–2508. [CrossRef]
15. Hu, Y.; Yan, H.; Zhang, H.; Wang, M.; Zeng, L. Robust Adaptive Fixed-Time Sliding-Mode Control for Uncertain Robotic Systems

with Input Saturation. IEEE Trans. Cybern. 2022, 1–11. [CrossRef]
16. Zhang, L.; Wang, Y.; Hou, Y.; Li, H. Fixed-time sliding mode control for uncertain robot manipulators. IEEE Access 2019,

7, 149750–149763. [CrossRef]
17. Moulay, E.; Lechappe, V.; Bernuau, E.; Plestan, F. Robust Fixed-Time Stability: Application to Sliding-Mode Control. IEEE Trans.

Autom. Control 2021, 67, 1061–1066. [CrossRef]
18. Su, B.; Wang, H.; Li, N. Event-triggered integral sliding mode fixed time control for trajectory tracking of autonomous underwater

vehicle. Trans. Inst. Meas. Control 2021, 43, 3483–3496. [CrossRef]
19. Gao, Z.; Guo, G. Fixed-time sliding mode formation control of AUVs based on a disturbance observer. IEEE/CAA J. Autom. Sin.

2020, 7, 539–545. [CrossRef]
20. Zhai, J.; Li, Z. Fast-exponential sliding mode control of robotic manipulator with super-twisting method. IEEE Trans. Circuits Syst.

II Express Briefs 2021, 69, 489–493. [CrossRef]
21. Wang, B.; Jahanshahi, H.; Volos, C.; Bekiros, S.; Yusuf, A.; Agarwal, P.; Aly, A.A. Control of a symmetric chaotic supply chain

system using a new fixed-time super-twisting sliding mode technique subject to control input limitations. Symmetry 2021, 12, 1257.
[CrossRef]

22. Wang, G.; Wang, B.; Zhang, C. Fixed-time third-order super-twisting-like sliding mode motion control for piezoelectric nanoposi-
tioning stage. Mathematics 2021, 9, 1770. [CrossRef]

23. Vo, A.T.; Truong, T.N.; Kang, H.J.; Van, M. A Robust Observer-Based Control Strategy for n-DOF Uncertain Robot Manipulators
with Fixed-Time Stability. Sensors 2021, 21, 7084. [CrossRef] [PubMed]

24. Abro, G.E.M.; Zulkifli, S.A.B.; Asirvadam, V.S.; Ali, Z.A. Model-free-based single-dimension fuzzy SMC design for underactuated
quadrotor UAV. Actuators 2021, 10, 191. [CrossRef]

25. Fekih, A.; Mobayen, S.; Chen, C.C. Adaptive robust fault-tolerant control design for wind turbines subject to pitch actuator faults.
Energies 2021, 14, 1791. [CrossRef]

26. Han, Z.; Zhang, K.; Yang, T.; Zhang, M. Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode.
IET Control Theory Appl. 2010, 10, 1991–1999. [CrossRef]

27. Liu, L.; Zhang, L.; Wang, Y.; Hou, Y. A novel robust fixed-time fault-tolerant tracking control of uncertain robot manipulators. IET
Control Theory Appl. 2021, 15, 195–208. [CrossRef]

28. Ahmed, S. Robust model reference adaptive control for five-link robotic exoskeleton. Int. J. Model. Identif. Control 2021, 39, 324–331.
[CrossRef]

http://doi.org/10.1016/j.isatra.2016.09.009
http://www.ncbi.nlm.nih.gov/pubmed/27659725
http://dx.doi.org/10.1080/00207170902769928
http://dx.doi.org/10.1016/S0005-1098(02)00147-4
http://dx.doi.org/10.1002/rnc.1666
http://dx.doi.org/10.1016/j.automatica.2021.110009
http://dx.doi.org/10.1016/j.ifacol.2018.07.079
http://dx.doi.org/10.24846/v27i1y201806
http://dx.doi.org/10.3390/s21238101
http://dx.doi.org/10.1109/TSMC.2016.2557220
http://dx.doi.org/10.1177/0954406214544311
http://dx.doi.org/10.1007/s12555-019-0650-z
http://dx.doi.org/10.1109/TCYB.2022.3164739
http://dx.doi.org/10.1109/ACCESS.2019.2946866
http://dx.doi.org/10.1109/TAC.2021.3069667
http://dx.doi.org/10.1177/0142331221994380
http://dx.doi.org/10.1109/JAS.2020.1003057
http://dx.doi.org/10.1109/TCSII.2021.3081147
http://dx.doi.org/10.3390/sym13071257
http://dx.doi.org/10.3390/math9151770
http://dx.doi.org/10.3390/s21217084
http://www.ncbi.nlm.nih.gov/pubmed/34770391
http://dx.doi.org/10.3390/act10080191
http://dx.doi.org/10.3390/en14061791
http://dx.doi.org/10.1049/iet-cta.2016.0044
http://dx.doi.org/10.1049/cth2.12028
http://dx.doi.org/10.1504/IJMIC.2021.123799


Actuators 2022, 11, 353 21 of 21

29. Zimenko, K.; Polyakov, A.; Efimov, D.; Perruquetti, W. On simple scheme of finite/fixed-time control design. Int. J. Control 2020,
93, 1353–1361. [CrossRef]

30. Huang, S.; Wang, J. Fixed-time fractional-order sliding mode control for nonlinear power systems. J. Vib. Control 2020, 26, 1425–1434.
[CrossRef]

http://dx.doi.org/10.1080/00207179.2018.1506889
http://dx.doi.org/10.1177/1077546319898311

	Introduction
	Related Work
	Robot Dynamics and Problem Statement
	Control Design
	Fixed-Time Non-Singular Terminal Sliding Manifold
	Fxntsm Control Design

	Stability Analysis
	Simulation Results and Comparative Analyses
	Case-1: Proposed Scheme without Actuator Faults
	Case-2: Comparative Analysis under Unknown Dynamics and Actuator Faults

	Discussion
	Conclusions
	References

