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Adaptive Fault-Tolerant Sliding-Mode Control for

High-Speed Trains with Actuator Faults and

Uncertainties
Zehui Mao, Xing-Gang Yan, Bin Jiang, Senior Member, IEEE, Mou Chen, Member, IEEE

Abstract—In this paper, a novel adaptive fault-tolerant sliding-
mode control scheme is proposed for high-speed trains, where the
longitudinal dynamical model is focused, and the disturbances
and actuator faults are considered. Considering the disturbances
in traction force generated by the traction system, a dynamic
model with actuator uncertainties modelled as input distribution
matrix uncertainty is established. Then, a new sliding-mode
controller with design conditions is proposed for the healthy train
system, which can drive the tracking error dynamical system
to a pre-designed sliding surface in finite time and maintain
the sliding motion on it thereafter. In order to deal with the
actuator uncertainties and unknown faults simultaneously, the
adaptive technique is combined with the fault-tolerant sliding-
mode control design together to guarantee that the asymptotical
convergence of the tracking errors is achieved. Furthermore, the
proposed adaptive fault-tolerant sliding-mode control scheme is
extended to the cases of the actuator uncertainties with unknown
bounds and the unparameterized actuator faults. Finally, case
studies on a real train dynamic model are presented to explain
the developed fault-tolerant control scheme. Simulation results
show the effectiveness and feasibility of the proposed method.

Index Terms—Actuator faults, fault-tolerant sliding-mode con-
trol, adaptive control, actuator uncertainty, high-speed train.

I. INTRODUCTION

Due to the increasing requirements of the reliability and

safety of the modern control systems, fault detection and

fault-tolerant control design have attracted more and more

researchers and engineers (see [1]- [5]). High-speed trains with

their high loading capacities, fast and on schedule, have been

one of the most important transportation means. Similar to

the other large-scale and complex control systems, faults also

exist in high-speed trains, which motivates the studies of the

fault detection and fault-tolerant control design for high-speed

trains (see [6]- [9]).

Uncertainty, including modelling uncertainty and distur-

bance, widely exists in real physical systems, and thus it is es-

sential to consider various uncertainties in control design, fault

detection and fault-tolerant control design. For high-speed

trains, there exist some internal and external uncertainties,
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such as modelling uncertainties from the electric equipments

and mechanical installations, and disturbances from the track

irregularities, tunnels and slopes. It should be noted that the

external disturbances can be modelled as an additional signal

for the system model, while the internal uncertainties should

be modelled as state or input/actuator uncertainties in the

system differential dynamical equation.

It is well known that the input saturation, deadzone and

hysteresis are popular problems for actuator uncertainties, see

[10]- [11], for which the input signals are limited and bounded.

It should be noted that the internal uncertainties cannot be

considered as the external uncertainties in system modelling,

since the boundedness of the system states should be ensured

by the controller design, which are always used in the designed

controller and cannot be assumed to be bounded, a priori.

Actually, the complex coupling between the input distribution

uncertainties and the control signal makes the control design

full of challenges. Among the existing results for the controller

or fault-tolerant controller design of high-speed trains, the

external disturbances, which are modelled as an additional

signal for the system model, are widely investigated [12]-

[15]. However, the internal uncertainties, which are modelled

as state or input/actuator distribution matrix uncertainties in

the system differential dynamical equation, are rarely taken

into considerations. Thus, the fault-tolerant control for high-

speed train with actuator uncertainties is of both theoretical

challenge and practical importance.

For the faulty system, the fault-tolerant control is an es-

sential and effective technique to guarantee system stability

and/or some performances (such as asymptotic tracking), in

the presence of faults. Due to the unknown fault, adaptive

techniques are always used to deal with this case to achieve

the desired tracking performance (see [16]- [20]). As the

position/speed tracking is the main task for trains to guarantee

the on-time schedule, the adaptive technique is pertinent to

high-speed trains with unknown faults. Moreover, the results

about the adaptive fault-tolerant sliding-mode control are rare,

although there are some works for the aircrafts [21], [22].

This paper is focused on the fault-tolerant control problem

for the longitudinal dynamical model of high-speed trains

with traction system actuator faults and uncertainties. Both the

traction system actuator uncertainties and external disturbances

are considered, which are modelled as the input distribution

matrix uncertainties and additional disturbances in the high-

speed train. For the healthy and different faulty cases, the adap-

tive fault-tolerant sliding-mode control schemes are proposed
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with the controller structure, design conditions, and adaptive

laws being derived. The main contributions of this paper are

summarized as follows:

(i) Considering the traction system actuator uncertainties

and external disturbances, a model with input distribu-

tion matrix uncertainty and additional disturbances is

introduced to describe the dynamic properties of the

high-speed trains.

(ii) A set of conditions and the controller structure are

developed for the healthy case such that the designed

novel sliding-mode controller can drive the tracking

error dynamical system to a pre-designed sliding surface

in finite time and maintains the sliding motion on it

thereafter, even in the presence of input distribution

matrix uncertainty.

(iii) For different cases (the bound of the actuator uncer-

tainty is unknown; the actuator fault is unparameterized),

the fault-tolerant sliding-mode controllers with adaptive

laws are developed for the longitudinal dynamical model

of high-speed trains, respectively.

The rest of this paper is organized as follows: In Section II,

the longitudinal dynamical model of high-speed trains with

actuator uncertainties is presented, and the actuator fault-

tolerant control problem is formulated. In Section III, a sliding-

mode controller with the design condition is developed for

the healthy system with actuator uncertainties and external

disturbances, to achieve the displacement and speed tracking.

In Section IV, a new fault-tolerant sliding-mode controller with

adaptive laws is proposed for the faulty system with the known

bound of fault. In Section V and VI, the proposed fault-tolerant

sliding-mode controller is extended to the cases of the actuator

uncertainties with unknown bound and unparameterized fault,

respectively. In Section VII, simulations for four cases (health

and faulty cases) are presented, and the effectiveness of the

fault-tolerant control scheme is verified. Finally, Section VIII

concludes the paper.

II. PROBLEM FORMULATION

For high-speed trains, the general dynamical model of

longitudinal motion can be described as [6], [23], [24]

M(t)ẍ(t)=Ft(t)−M(t)(a+ bv(t) + cv2(t)) + d(t), (1)

where x(t) is the displacement of the train, M(t) is the

mass of the train, Ft(t) is the traction force generated by the

traction system, the parameters a, b and c are resistive force

coefficients of the Davis equation, d(t) models the external

disturbances from weather conditions or rail conditions (ramp,

tunnel, curvature, etc.).

Remark 1: It should be noted that the slope and curvature

rails can induce additional resistances. In order to achieve

a high speed for a high-speed train, the railway should be

smooth, and the slope angle and the degree of curvature

should be as small as possible. According to [29], under the

speed 300km/h, the minimum curve radius is 4500m, and

the maximum slop is 12‰. In connection with this, the train

moves in a one-dimensional space, with slope and curvature

resistances considered as disturbances, which are modeled as

(1). In China, a plenty of bridges are built to make the railway

straight. On the other hand, the suspension system model is

always used to describe the lateral and roll dynamics, which

can be decoupled from the longitudinal dynamic model (1).

Thus, the considering that train moves in a one-dimensional

space and modelled as a rigid body, is reasonable. ✷

Actuator uncertainty. According to [6], the mass of a train

can be considered as varying with respect to the stations and

keeps constants between two consecutive stations. Therefore,

it is reasonable to express the mass of train in the dynamics (1)

as M(t) = M̄+∆M (t), where M̄ is a constant determined by

the loadings of train, ∆M (t) is also a constant during the two

stations and only changed at the stopping stations. According

to the maximum loading of a train, ∆M (t) is bounded and its

bound can be estimated in reality.

The traction system generates the traction force, which is

considered as the actuators in high-speed trains, and consists of

traction motors, inverters, PWMs (pulse width modulations),

rectifiers, and related mechanical drives, etc. The uncertainties

widely exist in these equipments. In this paper, considering

the actuator uncertainties, a dynamics model is introduced to

express the taction force Ft(t) as follows:

Ft(t)=(1 + ∆f (t))F (t) + ∆F (t), (2)

where ∆f (t) and ∆F (t) are time-varying functions to rep-

resent the uncertainties in the traction system, F (t) is the

force that the motors provide. The traction force model (2)

contains both additive and multiplicative uncertainties, which

are used to express the most of the actuator uncertainties.

Moreover, these two terms ∆f (t) and ∆F (t) are bounded

with their bounds obtained from the maximum traction force

and mechanical installation.

Remark 2: For high-speed trains, both the input saturation

and deadzone exist in the actuators. Because the breaking

system is working when the traction system starts, the input

deadzone can be avoided, as traction force is applied to the

train when the motors in the traction system work normally.

Moreover, the allowed maximin speed decides the maximin

traction forces and the redundances of the traction system.

Then, the high-speed train cannot be operated under the

input saturation. Thus, the presented traction force model (2)

can mainly display the uncertainties in the high-speed train

actuator. ✷

Dynamic model of high-speed trains. Let x1 = x,

x2 = ẋ, m = 1/M̄ , ∆m(t) = (1 + ∆f (t))/M(t) − 1/M̄
and d̄(t) = (d(t) + ∆F (t))/M(t). Due to the known bounds

of ∆f (t), ∆F (t) and M(t), the bounds of ∆m(t) and d̄(t)
can be calculated easily. The longitudinal motion dynamics

(1) with (2) can be expressed as

ẋ1(t)=x2(t), (3)

ẋ2(t)= (m+∆m(t))F (t) − a− bx2(t)− cx2
2(t) + d̄(t),(4)

where m, a, b and c are known system parameters, ∆m(t)
and d̄(t) satisfy the following conditions:

0 ≤ ∆m(t)≤mb < m, |d̄(t)| ≤ db, (5)
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with mb and db > 0 being known constants.

Actuator faults. The general faults for traction system are

motor faults, IGBT faults in rectifier and inverter, mechanical

faults, and so on. In modelling, most of these faults can

be equivalent to the effectiveness loss of the motor, and the

traction force can be considered as the sum of the motor forces.

The parametric fault model for one motor can be expressed as

(see, e.g. [9] and [20])

Fi(t)= F̄i(t) = fi0 +

li
∑

ρ=1

fiρsiρ(t), t ≥ ti, (6)

for some i ∈ {1, 2, . . . , n}, where n is the number of motors.

Here, ti is the fault occurring time instant, i is the fault index,

fi0 and fiρ are constants, which are all unknown. The basis

signals siρ(t) are known, and li are the number of the basis

signals of the ith actuator fault.

This fault model (6) covers several practical fault conditions

of the high-speed train actuators, which is shown as follows:

1) Totaly fault. The motor stopping fault is a total fault.

Then, Eq. (6) can be written as Fi(t) = F̄i(t) = fi0 = 0, with

fiρ = 0, for ρ = 1, . . . , li.
2) Constant fault. The mechanical drives locked fault can

lead the constant torque, which is a constant actuator fault.

Then, Eq. (6) can be written as Fi(t) = F̄i(t) = fi0 =
non-zero constant, with fiρ = 0, for ρ = i, . . . , li.

3) Periodic fault. The IGBT (Insulated Gate Bipolar Tran-

sistor) fault (from PWM) can lead the periodic fault with

approximately known frequency, which could be a sine func-

tion. Then, Eq. (6) can be written as Fi(t) = F̄i(t) =
fi1 sin(wt) for some known w, with fi0 = 0, fi1 =
non-zero unknown constant and fiρ = 0, for ρ = 2, . . . , li.

In some cases, a completely parameterized fault model

may be an ideal model for some time-varying actuator faults,

as the knowledge of the basis functions fiρ(t) may not be

available for some applications. In such cases, approximations

of the basis functions fiρ(t) can be employed to achieve

approximate compensation of actuator faults. Some commonly

used approximation methods, such as Taylor series and neural

networks, are employed to approximate the unknown actuator

faults. The approximation for the actuator fault, usually will

result in a bounded approximation error, the whose magnitude

can be very small by proper choices of the basis functions

used in approximation.

Consider that there are n motors. From (6), the input of

system (3)-(4) can be rewritten as

F (t)=σνν(t) + ϑT ζ(t), (7)

ϑ=[ϑT
1 , ϑ

T
2 , . . . , ϑ

T
n ]

T ,

ϑi=[fi0, fi1, . . . , fili ]
T ∈ Rli+1, i = 1, . . . , n, (8)

ζ(t)= [1, s11(t), . . . , s1l1(t), . . . , 1,

si1(t), . . . , sili(t), . . . , 1, sn1(t), . . . , snln(t)]
T , (9)

where ν(t) is the control input, σν is the number of the

remaining healthy actuators, ϑ and ζ(t) are the actuator fault

pattern parameters describing the types of faults. The vector

ϑ could change with the fault evolution, but is fixed in a time

interval.

For actuator fault-tolerant control design of high-speed

trains, the assumption for faults is given as: (A1) there is no

more than n̄ (n̄ < n) actuators fail, and the fault parameter ϑ
is bounded and satisfies ||ϑ||2 ≤ ϑ0, where ϑ0 > 0 is a known

constant. It implies that for n − n̄ ≤ σν ≤ n, the remaining

healthy actuators can still achieve the desired control objective.

Objective. The objective of this paper is to develop an

adaptive fault-tolerant sliding-mode control scheme for the

high-speed trains described by (3) and (4), to guarantee the

stability and asymptotic tracking properties, in the present of

the actuator uncertainty ∆m(t) and actuator faults modeled in

(7)-(9).

III. SLIDING-MODE CONTROLLER DESIGN FOR HEALTHY

CASE

In this section, a controller is to be designed to make

the close-loop system (3)-(4) stable and achieve the tracking

performance. For high-speed trains, the Curve-To-Go is always

achieved through speed tracking. Let the desired speed trajec-

tory be xd(t), and the desired displacement trajectory yd(t).
Then, ẏd(t) = xd(t).

Sliding-surface design. Denote the tracking errors e1(t) =
x1(t) − yd(t) and e2(t) = x2(t) − xd(t). From (3)-(4), the

tracking error dynamic equation can be written as:

ė1(t)= e2(t), (10)

ė2(t)= (m+∆m(t))F (t) − a− bx2(t)− cx2
2(t)

+d̄(t)− ẋd(t). (11)

For error dynamical system (10)-(11), design a sliding

function:

δ(e1, e2)=ke1(t) + e2(t), (12)

where k > 0 is a design parameter. The sliding surface δ(t) =
0 can be described by

e2(t)=−ke1(t). (13)

From the structure of system (10)-(11), it is straight forward

to see that system (10) dominates the sliding motion of the

system (10)-(11) with respect to the sliding surface (13). From

(10) and (13), the corresponding sliding mode dynamics can

be described by

ė1(t)=−ke1(t), (14)

which implies

e1(t)= e−kte1(0), e1(0) = x(0)− yd(0). (15)

Due to k > 0, it is clear to see that limt→∞ e1(t) = 0.

The analysis above shows that the sliding motion of the error

dynamical system (10)-(11) associated with the sliding surface

(13) is asymptotically stable. Therefore, after sliding motion

occurs, it has limt→∞(x1(t) − yd(t)) = 0, which implies

that x1(t) tracks the desired signal yd(t) asymptotically. The

objective now is to design a sliding-mode controller such that

the error system (10)-(11) can be driven to the sliding surface

(13) in finite time and maintains the sliding motion thereafter.
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Sliding-mode controller design. For train dynamic system

(3)-(4), consider the controller

F (t)=−
1

m
F0(t)−

1

m
db −

r(t)

m
sgn

(

k(x1(t)− yd(t))

+x2(t)− xd(t)

)

, (16)

where

F0(t)=k(x2(t)− xd(t)) − a− bx2(t)

−cx2
2(t)− ẋd(t), (17)

r(t) is a nonnegative time varying gain to be designed later,

and db satisfies (5).

Then, the following result is ready to be presented.

Theorem 1: The sliding-mode control in (16) drives the

error dynamical system (10)-(11) to the sliding surface (13)

in finite time and maintains a sliding motion on it thereafter

if mb < m and the control gain r(t) in (16) satisfies

r(t)≥
m

m−mb

(

η +
mb

m
(|F0(t)|+ db)

)

, (18)

for η > 0.

Proof: From (12) and (10)-(11), the dynamic equation of

sliding surface can be given by

δ̇(t)=kė1(t) + ė2(t)

=k(x2(t)− xd(t)) + (m+∆m(t))F (t)

−a− bx2(t)− cx2
2(t) + d̄(t)− ẋd(t). (19)

Substituting (16) into equation (19) yields

δ̇(t)=∆m(t)

(

−
1

m
F0(t)−

1

m
db −

r(t)

m
sgn(δ(t))

)

−db + d̄(t)− r(t)sgn(δ(t)), (20)

where δ(t) is the sliding function defined in (12).

From (20) and δ(t)sgn(δ(t)) = |δ(t)|, it follows that

δ(t)δ̇(t)

= δ(t)∆m

(

−
1

m
F0(t)−

1

m
db −

r(t)

m
sgn(δ(t))

)

−r(t)|δ(t)| − δ(t)(db − d̄(t)). (21)

From (5), (21) and r(t) > 0,

δ(t)δ̇(t)

≤|δ(t)|mb

(

1

m
|F0(t)|+

1

m
db +

r(t)

m

)

− r(t)|δ(t)|

=−

(

−
mb

m
(|F0(t)|+ db + r(t)) + r(t)

)

|δ(t)|. (22)

From (18), it has

m−mb

m
r(t)≥ η +

mb

m
(|F0(t)|+ db). (23)

The inequality (23) can be rewritten as

r(t) −
mb

m
r(t) −

mb

m
(|F0(t)|+ db)≥ η, (24)

which implies that

r(t) −
mb

m
(r(t) + |F0(t)|+ db)≥ η. (25)

Substituting (25) into (21), yields

δ(t)δ̇(t)≤−η|δ(t)|. (26)

Therefore, the reachability condition holds and hence the

result follows. ∇
The proposed sliding-mode controller (16) with F0 defined

in (17), can drive the error dynamics (10)-(11) to the sliding

surface (13) in finite time. Since the sliding motion has

been asymptotically stable as analysed earlier, it follows that

limt→∞ e1(t) = 0 and limt→∞ e2(t) = 0. Thus, the proposed

controller (16) can guarantee the tracking errors of health train

system (3)-(4) converge to zero asymptotically.

Remark 3: In Theorem 1, the right hand side of the

inequality (18) is a function dependent on the system state

x2(t) and desired signal xd(t). It is not reasonable to assume

x2(t) is bounded, a priori. Thus, the r(t) is designed to be

a positive function dependent on the system state x2(t) and

desired trajectory xd(t) and ẋd(t). For different faulty cases

discussed in the following sections, the controller parameter

r(t) is also a function dependent on the system states, desired

trajectory, basic function of fault, etc. ✷

Remark 4: The sliding-mode control has been used ex-

tensively to deal with fault-tolerant control (see, e.g. [21]-

[22], [25]- [27]). However, the uncertainty existing in the

input distribution matrix are rarely considered in the existing

work, and specifically, the associate result for high-speed train

has not been available. It should be emphasized that such a

class of uncertainties is interacted with control signal and thus

the traditional design method cannot be applied. This paper

provides the contribution for high-speed train in this regard

for the first time. ✷

IV. FAULT-TOLERANT SLIDING-MODE CONTROLLER

DESIGN

In this section, a fault-tolerant controller will be designed

for the train dynamic model (3)-(4) with the actuator fault

described by (7). For the actuator fault model (7), the fault

parameter ϑ could be changed, and be a constant during a

certain time instant. According to Assumption (A1) that the

remaining healthy actuators can achieve the control perfor-

mance, the fault parameter ϑ can be assumed to be bounded.

Faulty system. From (3)-(4) and (7), the dynamics of the

faulty system can be rewritten as:

ẋ1(t)=x2(t), (27)

ẋ2(t)=(m+∆m(t))(σνν(t) + ϑT ζ(t))− a− bx2(t)

−cx2
2(t) + d̄(t),−cx2

2(t) + d̄(t), (28)

where ν(t) is system input, σν is the number of the remaining

health actuators and satisfies n− n̄ ≤ σν ≤ n, ϑ and ζ(t) are

defined in (8) and (9), and ||ϑ||2 ≤ ϑ0 with ϑ0 being a known

constant.

With the tracking errors e1(t) = x1(t)− yd(t) and e2(t) =
x2(t)− xd(t), The error dynamic equation can be written as:

ė1(t)= e2(t), (29)

ė2(t)= (m+∆m(t))(σνν(t) + ϑT ζ(t)) − a− bx2(t)

−cx2
2(t) + d̄(t)− ẋd(t). (30)
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The objective now is to design a fault-tolerant sliding-

mode controller for the error system (29)-(30), such that the

close-loop signal is bounded and the tracking errors satisfy

limt→∞ e1(t) = 0 and limt→∞ e2(t) = 0, in the presence of

the unknown actuator fault ϑ and actuator uncertainty ∆m(t).

Fault-tolerant sliding-mode controller design. The mod-

ified control law is proposed to be

ν(t)=−ϑ̂T
ν (t)ζ(t) − ρ̂ν(t)

{

1

m
F0(t) +

1

m
db

+
r(t)

m
sgn

(

k(x1(t)− yd(t)) + x2(t)− xd(t)

)}

,(31)

where ϑ̂ν(t) and ρ̂ν(t) are the estimates of ϑ∗
ν = ϑ

σν

and ρ∗ν =
1
σν

, respectively, F0(t) is defined in (17), r(t) is a nonnegative

time varying gain, and m and db are given in (5).

For arbitrary initial estimate ϑ̂ν(0) and the initial estimate

ρ̂ν(0) ∈ [ 1
n
, 1
n−n̄

], the adaptive terms ϑ̂ν(t) and ρ̂ν(t) are

updated by the following adaptive laws:

˙̂
ϑν(t)=Γϑζ(t)δ(t), (32)

˙̂ρν(t)=Γρ

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

δ(t)

+gν(t), (33)

where the adaptive law gains Γϑ = ΓT
ϑ > 0, Γρ is a positive

constant, and gν(t) is given as

gν(t)=















0, if ρ̂ν(t) ∈ ( 1
n
, 1
n−n̄

) or

if ρ̂ν(t) =
1
n
, g(t) ≥ 0 or

if ρ̂ν(t) =
1

n−n̄
, g(t) ≤ 0,

−g(t), otherwise,

(34)

with g(t) = Γρ

(

1
m
F0(t) +

1
m
db +

r(t)
m

sgn(δ(t))
)

δ(t).

Then, the following result is ready to be presented.

Theorem 2: The closed-loop system formed by apply-

ing the sliding-mode control in (31) and the adaptive laws

given in (32)-(33) to the faulty system (27)-(28), is state

bounded and its tracking errors satisfy limt→∞ e1(t) = 0
and limt→∞ e2(t) = 0, if mb < m, the number of the failed

actuators n̄ in Assumption (A1) and the control gain r(t) in

(31) satisfies

n̄≤
n(m−mb)

m
, (35)

r(t)≥
m

m−mbn|ρ̂ν(t)|

(

η +
mb

m

(

mn|ϑ̂T
ν (t)ζ(t)|

+mϑ0||ζ(t)||2 + n|ρ̂ν(t)| (|F0(t)|+ db)

))

, (36)

for η > 0.

Proof: Consider the sliding function (12). From (29)-(30),

by direct calculation, it follows that the time derivative of δ(t)
is given by

δ̇(t)= (m+∆m(t))(−σν ϑ̂
T
ν (t)ζ(t) + ϑT ζ(t))

−mσν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

−∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

+F0(t) + d̄(t)

=mσν ϑ̃
T
ν (t)ζ(t) + ∆m(t)

(

−σν ϑ̂
T
ν (t)ζ(t) + ϑT ζ(t)

)

+mσν ρ̃ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

−∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

−db + d̄(t)− r(t)sgn(δ(t)), (37)

where ϑ̃ν(t) = ϑ∗
ν − ϑ̂ν(t), and ρ̃ν = ρ∗ν − ρ̂ν(t).

For system (27)-(28) with adaptive laws in (32)-(33), choose

a Lyapunov function candidate as

V =
1

2
δ2 +

mσν

2
Γ−1
ϑ ϑ̃T

ν ϑ̃ν +
mσν

2
Γ−1
ρ ρ̃2ν . (38)

Let (Tj , Tj+1), j = 0, 1, . . . , N , with T0 = 0, be time

intervals, and the actuators only fail at time Tp. Then, the

actuator fault pattern is fixed during these time intervals, which

means that ϑ is a constant for t ∈ (Tj , Tj+1), and discontinues

for t ∈ [0,∞). For t ∈ (Tj , Tj+1), j = 1, . . . , N , take the time

derivative of V :

V̇

= δ(t)δ̇(t) +mσνΓ
−1
ϑ ϑ̃T

ν (t)
˙̃
ϑν(t) +mσνΓ

−1
ρ ρ̃ν(t) ˙̃ρν(t)

= δ(t)∆m(t)
(

−σν ϑ̂
T
ν (t)ζ(t) + ϑT ζ(t)

)

−δ(t)∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

−r(t)|δ(t)| − δ(t)(db − d̄(t)) +mσνΓ
−1
ρ ρ̃ν(t)gν(t), (39)

where mσνΓ
−1
ρ ρ̃ν(t)gν(t) ≤ 0, due to (ρ∗ν − ρ̂ν(t))gν(t) ≤ 0

with gν(t) defined in (34).

Consider that σν , the number of the remaining healthy

actuators, satisfies σν ≤ n. With the bounded condition

||ϑ||2 ≤ ϑ0, it follows from (39) and |d̄(t)| ≤ db in (5) that

V̇ ≤|δ(t)|mb

(

n|ϑ̂T
ν (t)ζ(t)| + ϑ0||ζ(t)||2

+n|ρ̂ν(t)|

(

1

m
|F0(t)|+

1

m
db +

r(t)

m

))

− r(t)|δ(t)|

=−

(

−
mb

m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)| (|F0(t)|+ db + r(t))

)

+ r(t)

)

|δ(t)|. (40)

According to Assumption (A1), n − n̄ ≤ σν ≤ n implies
1
n
≤ ρ∗ν ≤ 1

n−n̄
, i.e., 1

n
≤ ρ̂ν(t) ≤

1
n−n̄

. Inequality (35) can

lead to 1
n−n̄

≤ m
mbn

, so that 1
n
≤ ρ̂ν(t) ≤

m
mbn

, which means

m−mbn|ρ̂ν(t)| > 0.

Using m−mbn|ρ̂ν(t)| > 0 and (36), it has

m−mbn|ρ̂ν(t)|

m
r(t) ≥ η +

mb

m

(

mn|ϑ̂T
ν (t)ζ(t)|

+mϑ0||ζ(t)||2 + n|ρ̂ν(t)||F0(t)|+ n|ρ̂ν(t)|db

)

, (41)

which implies that

r(t) −
mbn|ρ̂ν(t)|

m
r(t) −

mb

m

(

mn|ϑ̂T
ν (t)ζ(t)|

+mϑ0||ζ(t)||2 + n|ρ̂ν(t)||F0(t)|+ n|ρ̂ν(t)|db

)

≥ η. (42)
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Due to the discontinuous parameter ϑ, V (·) is not contin-

uous with respect to time t. With (40) and (42), the time

derivative of V for t ∈ (Tj , Tj+1), j = 0, 1, . . . , N , becomes

V̇ ≤−η|δ(t)|. (43)

Since the number of faults occurring in the system is finite,

it has

V̇ ≤−η|δ(t)| ≤ 0, t ∈ (TN ,∞). (44)

Therefore, all the variables δ(t), ϑ̃ν = ϑ∗
ν − ϑ̂ν(t) and ρ̃ν =

ρ∗ν − ρ̂ν(t), are bounded, and so are ϑ̂ν(t) and ρ̂ν(t). From

(44), we have a finite energy sliding function δ(t):
∫ ∞

0

|δ(t)|dt

≤
1

η
(V (δ(0), ϑ̃ν(0), ρ̃ν(0))− V (δ(∞), ϑ̃ν (∞), ρ̃ν(∞)))

<∞, (45)

which implies δ(t) ∈ L1.

Furthermore, from (12) and (29), it follows that

ė1(t)=−ke1(t) + δ(t),

i.e., e1(t)=
1

s+ k
[δ](t), k > 0. (46)

Because k > 0 and δ(t) is bounded, e1(t) and ė1(t) are

bounded, and so are e2(t) and x2(t). According to [28],

δ(t) ∈ L1 results in e1(t) ∈ L1. Then, with the structure

of the fault-tolerant controller (31), the boundedness of ν(t)
is ensured. Based on Barbǎlat Lemma, it has limt→∞ δ(t) = 0
and limt→∞ e1(t) = 0. Then, limt→∞ e2(t) = 0. ∇

2x
1x

,d dy x, , , , ba b c m m

0 ( )F t

� ( )t

� ( )t

( )t

Fig. 1: The adaptive fault-tolerant sliding-mode controller

The inputs of the controller are the desired and actual

distance and speed, and the parameters a, b, c, m, mb, db,
the signal ζ(t) are also needed to construct the adaptive laws.

Then, the output of the controller is the traction force signal

ν(t), which requires the traction system to provide. The detail

process is shown in Fig. 1.

Discussion. Comparing with the results for the healthy case

in Section III, an additional condition about the number of the

failed actuators is given as (35). From (44), we can see that the

adaptive law given in (33) can make the estimate ρ̂ν(t) belong

to [ 1
n
, 1
n−n̄

]. Then, combining with the condition (35), the

proposed fault-tolerant sliding-mode controller can make the

faulty system (27)-(28) with the actuator uncertainties ∆m(t)
and fault (7) to achieve the displacement tracking.

From (44), it can be seen that the proposed adaptive fault-

tolerant sliding-mode controller (31) cannot guarantee the

error dynamics (29)-(30) to be driven to the sliding surface

(12), in finite time; while the controller (16) for the healthy

system (3)-(4) can drive the error dynamics (10)-(11) to the

sliding surface (12) in finite time. The reason is that for

the fault-tolerant controller (31), the adaptive law (32)-(33)

is required to deal with the unknown fault parameter ϑ.

Although the fault-tolerant controller (31) cannot drive the

error dynamics (29)-(30) to the sliding surface (12) in finite

time, but the tracking errors can be guaranteed to converge

to zero, when t goes to infinity, while the tracking error

e1(t) exponentially converge to zero in the healthy case. The

proposed fault-tolerant controller (31) can handle the actuator

uncertainty ∆m(t) and fault ϑ simultaneously, to guarantee the

closed-loop states boundedness and tracking performances.

Remark 5: There are many results about the fault-tolerant

sliding-mode control design (see for example [21]- [22], [25]-

[27]). However, the considered faults are always assumed to

have known bounds or more information of faults, except the

contributions mentioned in Remark 4. We would like to point

out that the works of the adaptive technique combined with

the sliding-mode control are rarely founded, especially for

the high-speed trains. Due to the unknown system faults, we

introduce the adaptive laws to estimate the faults, while the

sliding-mode technique is used to deal with the input distri-

bution matrix uncertainty and achieve the trajectory tracking.

Moreover, when the bounds of the actuator uncertainties are

unknown, a new adaptive law is employed to estimate the

bounds, which will be shown in the next section. ✷

V. CONTROLLER DESIGN FOR THE UNKNOWN BOUND mb

CASE

For the healthy and faulty cases in the above sections,

the bound mb on the input distribution ∆m(t) is known. In

this section, the case that the bound mb is unknown, will be

discussed. The design procedure of the fault-tolerant sliding-

mode controller for the unknown mb is similar to that of (31),

in which the unknown parameter mb should be replaced by

its estimation m̂b(t).
For the initial estimate m̂b(0) ∈ [0,m], the adaptive term

m̂b(t) is updated by the following adaptive law:

˙̂mb(t)=Γm

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

|δ(t)|+ gm(t),(47)

where Γm is a positive constant, ϑ̂ν(t) and ρ̂ν(t) are give in

(32) and (33), F0(t) is defined in (17), m and db are given

in (5), r(t) is a nonnegative time varying gain, and gm(t) is

given as

gm(t)=















0, if m̂b(t) ∈ (0,m) or

if m̂b(t) = 0, ḡ(t) ≥ 0 or

if m̂b(t) = m, ḡ(t) ≤ 0,
−ḡ(t), otherwise,

(48)

with ḡ(t) = Γm

(

mn|ϑ̂T
ν (t)ζ(t)| + mϑ0||ζ(t)||2 + n|ρ̂ν(t)|

(|F0(t)|+ db + r(t))

)

|δ(t)|.
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Then, the following theorem can be obtained.

Theorem 3: The closed-loop system formed by applying

the sliding-mode control in (31) and the adaptive laws given

in (32)-(33) and (47) to the faulty system (27)-(28), is state

bounded and its tracking errors satisfy limt→∞ e1(t) = 0 and

limt→∞ e2(t) = 0, if the number of the failed actuators n̄ in

Assumption (A1) and the control gain r(t) in (31) satisfy

n̄≤
n(m− m̂b(t))

m
, (49)

r(t)≥
m

m− m̂b(t)n|ρ̂ν(t)|

(

η +
m̂b(t)

m

(

mn|ϑ̂T
ν (t)ζ(t)|

+mϑ0‖ζ(t)‖2 + n|ρ̂ν(t)(|F0(t)|+ db)

))

, (50)

for η > 0.

Proof: The dynamic δ(t) is the same as (37). Choose a

Lyapunov function candidate modified from (38) as

V =
1

2
δ2 +

mσν

2
Γ−1
ϑ ϑ̃T

ν ϑ̃ν +
mσν

2
Γ−1
ρ ρ̃2ν +

1

2
Γ−1
m m̃2

b , (51)

where ϑ̃ν(t) = ϑ∗
ν − ϑ̂ν(t), ρ̃ν = ρ∗ν − ρ̂ν(t), m̃b(t) = mb −

m̂b(t), ϑ
∗
ν = ϑ

σν
and ρ∗ν = 1

σν
.

For the fault pattern fixed time intervals t ∈ (Tj , Tj+1),
j = 1, . . . , N , using σν ≤ n and (31), take the time derivative

of V

V̇ ≤|δ(t)|mb

(

n|ϑ̂T
ν (t)ζ(t)| + ϑ0||ζ(t)||2

+n|ρ̂ν(t)|

(

1

m
|F0(t)|+

1

m
db +

r(t)

m

))

−r(t)|δ(t)| + Γ−1
m m̃b(t) ˙̃mb(t)

=
m̂b(t)

m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

|δ(t)|

+

(

mb

m
−

m̂b(t)

m

)(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

|δ(t)|

−r(t)|δ(t)| + Γ−1
m m̃b(t) ˙̃mb(t). (52)

From (47), (52) can be rewritten as

V̇ =−

(

−
m̂b(t)

m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

+ r(t)

)

|δ(t)|

+Γ−1
m m̃b(t)gm(t), (53)

where Γ−1
m m̃b(t)gm(t) ≤ 0, due to (mb − m̂b(t))gm(t) ≤ 0

with gm(t) defined in (48).

According to (50), it has

r(t) −
m̂b(t)

m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

≥ η. (54)

Further, from (53) and (54), it follows that

V̇ ≤−η|δ(t)| ≤ 0, t ∈ (TN ,∞), (55)

which implies that all the variables δ(t), ϑ̃ν(t), ρ̃ν(t), and

m̃b(t) are bounded, and δ(t) ∈ L1. From the definitions of

ϑ̃ν(t), ρ̃ν(t) and m̃b(t), ϑ̂ν(t), ρ̂ν(t) and m̂b(t) are bounded.

Furthermore, from (12) and (29), e1(t) and ė1(t) are bounded,

and so are e2(t) and x2(t). According to [28], δ(t) ∈ L1

results in e1(t) ∈ L1. Then, with the structure of the fault-

tolerant controller (31), the boundedness of ν(t) is ensured.

Based on Barbǎlat Lemma, it has limt→∞ δ(t) = 0 and

limt→∞ e1(t) = 0. Then, limt→∞ e2(t) = 0. ∇

Discussion. To handle the unknown bound of the input

uncertainty ∆m(t), the adaptive law (47) is introduced to deal

with the unknown parameter mb, which is used to design the

controller function r(t). It should be noted that the adaptive

law (47) is a differential equation, and contains the function

r(t). Due to r(t) > 0, we can choose r(t) as the right hand

side of inequality (50) adding a positive constant ǫ, i.e., r(t) =
m

m−m̂b(t)n|ρ̂ν(t)|

(

η + m̂b(t)
m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0‖ζ(t)‖2+

n|ρ̂ν(t)(|F0(t)|+ db))) + ǫ with ǫ being a positive constant.

Then, r(t) can be substituted into (47). The fault-tolerant

sliding-mode controller proposed in Theorem 3 guarantees

that the corresponding closed-loop system is uniformly

bounded and the tracking errors converge to zero.

Remark 6: For the controller design, we need the distance

and speed of the train, which are available in the real high-

speed train control systems. Since the distance and speed

of the train are essential information, the train will stop to

ensure the safety if these signals are not available under some

faulty cases. Thus, there are redundant sensors to measure

these signals and guarantee their accuracies. If there is one

sensor failed, the remaining health sensors can provide the

information that the controller needs. If there are two or more

sensors failed, perhaps the train will stop, and the controller

will not work. For the sensor noise, the filter method has been

employed in the automatic train operating control system. ✷

VI. EXTENSION TO THE UNPARAMETERIZED FAULT CASE

In this section, the fault-tolerant control problem for the

unparameterized time-varying fault will be investigated. In this

case, the faulty system (27)-(28) is rewritten as

ẋ1(t)=x2(t), (56)

ẋ2(t)= (m+∆m(t))(σνν(t) + ϑ(t))− a− bx2(t)

−cx2
2(t) + d̄(t), (57)

where ϑ(t) is the bounded time-varying actuator fault, and

|ϑ(t)| ≤ ϑ1 with ϑ1 unknown.

The fault-tolerant control law is proposed to be

ν(t)=−ϑ̂ν(t)− ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

1

m
v(t)

+
r(t)

m
sgn(δ(t))

)

, (58)
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where ϑ̂ν(t) and ρ̂ν(t) are the estimates of ϑ∗
ν = ϑ1

σν

and

ρ∗ν = 1
σν

, respectively, F0(t) is defined in (17), v(t) is a design

signal, and r(t) is a nonnegative time varying gain.

For the initial estimate ρ̂ν(0) ∈ [ 1
n
, 1
n−n̄

], the design signal

v(t) and the adaptive terms ϑ̂ν(t) and ρ̂ν(t) are designed as

˙̂
ϑν(t)=Γϑδ(t), (59)

˙̂ρν(t)=Γρ

(

1

m
F0(t) +

1

m
db +

1

m
v(t)

+
r(t)

m
sgn(δ(t))

)

δ(t) + gν(t), (60)

v(t)=−µ|δ(t)|, (61)

where the adaptive law gains Γϑ and Γρ are positive constants,

µ > 0, and gν(t) is given as

gν(t)=















0, if ρ̂ν(t) ∈ ( 1
n
, 1
n−n̄

) or

if ρ̂ν(t) =
1
n
, g(t) ≥ 0 or

if ρ̂ν(t) =
1

n−n̄
, g(t) ≤ 0,

−g(t), otherwise,

(62)

with g(t) = Γρ

(

1
m
F0(t)+

1
m
db+

1
m
v(t)+ r(t)

m
sgn(δ(t))

)

δ(t).

Then, the following result is ready to be presented.

Theorem 4: The sliding-mode control in (58) with the

adaptive laws (59)-(60) applied to the faulty system (56)-

(57) guarantees that the sates of the closed-loop system and

the tracking errors are uniformly ultimately bounded, if the

number of the failed actuators n̄ in Assumption (A1) and the

control gain r(t) in (58) satisfies

n̄≤
n(m−mb)

m
, (63)

r(t)≥
m

m−mbn|ρ̂ν(t)|

(

η +
mb

m

(

mn|ϑ̂T
ν (t)|

+n|ρ̂ν(t)|(|v(t)| + |F0(t)|+ db)

))

, (64)

for η > 0.

Proof: With ϑ̃ν(t) = ϑ∗
ν − ϑ̂ν(t), and ρ̃ν = ρ∗ν − ρ̂ν(t), the

dynamic δ(t) is expressed as

δ̇(t)

=mσν ϑ̃ν(t) +m(−ϑ1 + ϑ(t)) + ∆m(t)
(

−σν ϑ̂ν(t) + ϑ(t)
)

+mσν ρ̃ν(t)

(

1

m
F0(t) +

1

m
db +

1

m
v(t) +

r(t)

m
sgn(δ(t))

)

−∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

1

m
v(t)

+
r(t)

m
sgn(δ(t))

)

− v(t)− db + d̄(t)− r(t)sgn(δ(t)), (65)

where δ(t) is the sliding function defined in (12).

Choose a Lyapunov function candidate as

V =
1

2
δ2 +

mσν

2
Γ−1
ϑ ϑ̃2

ν +
mσν

2
Γ−1
ρ ρ̃2ν . (66)

Then, from (65), (59) and (60), the time derivative of V is

given by

V̇ = δ(t)m(−ϑ1 + ϑ(t)) + δ(t)∆m(t)(−σν ϑ̂ν(t) + ϑ(t))

−δ(t)∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

1

m
v(t)

+
r(t)

m
sgn(δ(t))

)

− δ(t)v(t) − r(t)|δ(t)|

−δ(t)(db − d̄(t)) +mσνΓ
−1
ρ ρ̃ν(t)gν(t). (67)

Using (59)-(61), it follows that

V̇ ≤−η1|δ(t)|+mbϑ1|δ(t)| − µ|δ(t)|2. (68)

where η1 = η+m(ϑ1−ϑ(t)). Because |ϑ(t)| ≤ ϑ1 and m > 0,

it has m(ϑ1−ϑ(t)) ≥ 0, which means (η+m(ϑ1−ϑ(t)) > 0.

The term mbϑ1|δ(t)| − µ|δ(t)|2 attains a maximum value
m2

b
ϑ2

1

4µ at |δ(t)| = mbϑ1

2µ for t ∈ [0,+∞), i.e.,

V̇ ≤−η1|δ(t)| +
m2

bϑ
2
1

4µ
. (69)

Therefore, for any initial state δ(0), the solution of the

closed-loop system is uniformly ultimately bounded, i.e., δ(t),
ϑ̃ν and ρ̃ν are uniformly ultimately bounded. From (46), it has

e1(t) is uniformly ultimately bounded. Then, so is e2(t). ∇

Discussion. To handle the unparameterized fault ϑ(t) with

unknown bound ϑ1, the nonlinear damping is applied. With the

sliding-mode technique, the proposed fault-tolerant controller

(58) can make the closed-loop system is uniformly bounded,

in the presence of actuator uncertainty ∆m(t) and unknown

actuator fault ϑ. Compared with the tracking performances of

controller (16) for healthy case and the fault-tolerant controller

(31) for the case that the bound of fault parameter is known,

although the performance of the controller (58) is degraded,

the tracking errors can be smaller enough by choosing appro-

priate controller parameters.

For high-speed trains, the topic of the reliability and safety

has attracted many researchers and engineers. Until now,

there are still some problems in the existing fault diagnosis

and fault-tolerant control scheme for high-speed trains. For

example, the actuator uncertainties that are modelled as the

input distribution matrix uncertainty, are not taken into account

in the controller and fault-tolerant controller design. This paper

considers uncertainty in input matrix in high-speed train using

adaptive and sliding-mode techniques, for the first time. This

is one of the main contributions in the area. Moreover, in the

future, the high-speed trains will have higher speeds, which

require advanced control to achieve the high-accuracy speed

and position tracking to guarantee the safety of the trains.

Considering that the sliding-mode technique is wildly used

in industrial systems, we propose the adaptive fault-tolerant

sliding-mode controller.

Remark 7: The controllers proposed in Theorems 1-4, show

the traction force that the traction system provides to the train

for achieving the desired trajectory tacking, in the presence

of the actuator uncertainties and faults. From Theorems 1-4,

it can be seen that the information (desired and actual speed,

distance and some parameters of the train) that the controller
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design needs, are all available in practice. Then, the proposed

control methods can be implemented in the automatic train

operating control system. Moreover, perhaps there are some

delays in the information transfer. Due to the robustness of the

sliding-mode controller, the proposed adaptive fault-tolerant

sliding-mode controller can handle some small delays. ✷

Remark 8: In train control, there are mainly two types

of models used in the literatures, namely, the single mass

point model and the cascade mass point model. The proposed

method can be extended to the cascade mass point model

with inputs acting on every car. Under the assumption that

the speeds of all cars are synchronous, the cascade mass point

model can be considered as a single mass point model. The

high-speed trains require advanced control to achieve the high-

accuracy speed and position tracking to guarantee the safety

of the trains. For this case, the disturbances, uncertainties and

faults should be considered and dealt with. So, it is meaningful

to study the uncertainty existing in the input distribution

matrix, which is rarely investigated in both train and car

vehicles. ✷

VII. SIMULATION STUDY

To demonstrate the effectiveness of the proposed adaptive

fault-tolerant sliding-mode controllers, the simulation studies

on a high-speed train will be presented. The considered train

contains 8 vehicles (4 locomotives and 4 carriages), which

means there are 16 motors in the considered system, and the

simulation parameters are from a CRH type train in [29].

Simulation conditions. The parameters of the train are cho-

sen as M̄ = 380 (ton), a = 8.63×10−3 (kN), b = 7.295×10−6

(kN s/m), c = 1.12 × 10−6 (kN s2/m2), ∆M (t) = 20 (ton),

∆f (t) = 1− e−0.05t, and ∆F (t) = 10 sin(0.03t) (kN).

Case 1 (Healthy mode): The disturbance is set as

d(t)=







0, t ∈ [0, 200);
200(1− e−10t), t ∈ [200, 500);
100 sin(0.03t), t ∈ [500, 2000].

(70)

which can represent that the train runs in a straight track

during 0 ≤ t < 200. During 200 ≤ t < 500, as the train

accelerates, the aerodynamic force increases, then the train

enters a tunnel. From t = 500, the train travels in a slope

track, and has some time-varying disturbances, such as winds,

meeting another train, etc. We choose the parameter of sliding

surface as k = 8 and the initial sates as x(0) = [0.55 0]T .

Case 2 (Known fault bound mode): For the train with 4

locomotives, there are 16 motors with same type, i.e., n = 16.

Because most faults can be considered as the effectiveness loss

of the traction force, the parameters of the fault expression in

(7) are chosen as σν = 15 and

(i) for t ∈ [400, 600), ξ = 2× 105, ̟(t) = 1;

(ii) for t ∈ [600, 800), ξ = 2× 105, ̟(t) = 1 + sin(0.05t−
30);

(iii) for t ∈ [800, 2000], ξ = 0, ̟(t) = 1;

which means at the beginning, a motor has a constant fault

and after some time, the fault becomes a time-varying fault.

The failed motor completely stops working, at last. Further, it

has ϑ0 = 4× 105.

The initial parameter estimates are 80% of their ideal values,

and the initial conditions are chosen as x(0) = [0.5 0]T . The

gains of the adaptive laws in (32)-(33) are chosen as 0.2, and

the parameter of sliding surface as k = 8.

Case 3 (Unknown fault bound mode): The fault is the

same as Case 2, while mb is unknown. The initial parameter

estimates are 90% of their nominal values, and the initial

conditions are chosen as x(0) = [0.1 0]T . The gains of

the adaptive laws in (32)-(33) are chosen as 0.2, and the

parameters as k = 12 and µ = 2.

Case 4 (Unparameterized fault mode): In this case, an

unparameterized time-varying fault is considered, whose cor-

responding parameters are chosen as σν = 15 and

ϑ(t)=2× 105 sin(0.01t− 30), for t ≥ 600, (71)

which implies a fault occurs in a motor after 600s. ϑ(t) is

unknown.

The initial parameter estimates are 90% of their nominal

values, and the initial conditions are set as x(0) = [0.05 0]T .

The gains of the adaptive laws in (59)-(60) are chosen as 0.2,

and the parameters as k = 12 and µ = 3.
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Fig. 3: The tracking errors for the healthy system

Simulation results. The simulate results for the four cases

above are shown in Figs. 1-5, respectively. The operating con-

ditions including acceleration, reacceleration, constant speed,

deceleration, constant speed, redeceleration, and slowing down

until fully stop, are considered [8]. The total running time is

2000 seconds (about 34 minutes), which can describe a train

running from a station to another one.

The simulation results of the healthy system including the

plant distance (solid) and desired distance (dashed) are shown

in Fig. 2, and the distance and speed tracking errors for cases

1-4 are shown in Figs. 3-6.
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In fig. 3, there are some transit responses occurring at the

instants that the accelerations are abruptly changed. Since the

acceleration information is used to design the controller, it

is better to choose a smooth acceleration curve to avoid the

transit responses.

Figs. 4-6 demonstrate that, while the actuator fault occurs

at the 400th or 600th second, the proposed adaptive fault-

tolerant sliding-mode controller can regulate the train speed

and displacement states close to the desired trajectories after

some transit responses, so that the tracking performances and

the system stability is achieved, during the train operation.

It is visible from the simulation results that a little bit

chattering occurs in Figs. 3-6. This is caused by the dis-

continuous controllers (16), (31) and (58), due to the sign

function, which results in a discontinuous right hand side in

the dynamical equations. The chattering has been reduced by

using boundary layer method in which the discontinuous sign

function is approximated by the continuous saturation function

proposed in [30], [31] and [32]. To show the sliding-mode

properties, the chattering is not completely removed and the

small accepted amplitude of the chattering is retained.

These simulation results show that the proposed adaptive

fault-tolerant sliding-mode controller can achieve the close-

loop stability and asymptotic tracking properties of the train

even in the presence of unknown actuator uncertainties and

faults.
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VIII. CONCLUSIONS

In this paper, a new adaptive fault-tolerant sliding-mode

control scheme is proposed for high-speed train with unknown

actuator uncertainties and faults. For the healthy train system,
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a sliding-mode controller is designed to guarantee that the

tracking error dynamics can asymptotically converge to zero.

The cases that the bound of the actuator fault parameter is

known, the bound of the actuator uncertainty is unknown,

and the fault is modelled as an unparameterized time-varying

function, have been considered as well. Combining with the

adaptive technique, an adaptive fault-tolerant sliding-mode

control scheme is proposed to handel the actuator uncertainties

and faults, simultaneously. The simulation examples on a

realistic train dynamic model are given to demonstrate the

effectiveness of the proposed methods.
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