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ABSTRACT

Ultrasonography is considered a relatively safe option for the diagnosis of benign

and malignant cancer lesions due to the low-energy sound waves used. However, the visual

interpretation of the ultrasound images is time-consuming and usually has high false alerts

due to speckle noise. Improved methods of collection image-based data have been proposed

to reduce noise in the images; however, this has proved not to solve the problem due to the

complex nature of images and the exponential growth of biomedical datasets. Secondly,

the target class in real-world biomedical datasets, that is the focus of interest of a biopsy, is

usually significantly underrepresented compared to the non-target class. This makes it dif-

ficult to train standard classification models like Support Vector Machine (SVM), Decision

Trees, and Nearest Neighbor techniques on biomedical datasets because they assume an

equal class distribution or an equal misclassification cost. Resampling techniques by either

oversampling the minority class or under-sampling the majority class have been proposed

to mitigate the class imbalance problem but with minimal success. We propose a method of

resolving the class imbalance problem with the design of a novel data-adaptive feature en-

gineering model for extracting, selecting, and transforming textural features into a feature

space that is inherently relevant to the application domain.
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We hypothesize that by maximizing the variance and preserving as much variability

in well-engineered features prior to applying a classifier model will boost the differentia-

tion of the thyroid nodules (benign or malignant) through effective model building. Our

proposed a hybrid approach of applying Regression and Rule-Based techniques to build

our Feature Engineering and a Bayesian Classifier respectively.

In the Feature Engineering model, we transformed images pixel intensity values

into a high dimensional structured dataset and fitting a regression analysis model to esti-

mate relevant kernel parameters to be applied to the proposed filter method. We adopted

an Elastic Net Regularization path to control the maximum log-likelihood estimation of the

Regression model. Finally, we applied a Bayesian network inference to estimate a subset

for the textural features with a significant conditional dependency in the classification of

the thyroid lesion. This is performed to establish the conditional influence on the textu-

ral feature to the random factors generated through our feature engineering model and to

evaluate the success criterion of our approach.

The proposed approach was tested and evaluated on a public dataset obtained from

thyroid cancer ultrasound diagnostic data. The analyses of the results showed that the

classification performance had a significant improvement overall for accuracy and area

under the curve when then proposed feature engineering model was applied to the data.

We show that a high performance of 96.00% accuracy with a sensitivity and specificity of

99.64%) and 90.23% respectively was achieved for a filter size of 13 × 13.
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CHAPTER 1

INTRODUCTION

Information Technology (IT) is considered to be an integral part of the workflow

process in many disciplines and has inspired rapid growth in various application domains

such as Health Information Technology (Health-IT) and Biomedical Informatics (BMI).

Health-IT refers to IT technology and infrastructure used for the design, storage, exchange,

and analysis of electronic health information. Methods in Health-IT have also been

successfully applied in Biomedical Informatics to understand the fundamentals of human

biology and unravel the complexities in the diagnosis, treatment, and prevention of

diseases, as illustrated in Figure 1.1.

1.1 Thyroid Cancer

The thyroid gland is a butterfly-shaped organ in the endocrine system responsible

the production and secretion of thyroid hormones, namely, thyroxine (T4), and triiodothy-

ronine (T3) hormones [2]. The main function of thyroid hormones is to regulate the body’s

metabolic activity and ensure the normal growth and development of other organs like the

brain, heart, liver and muscles, particularly in infants. There levels in the bloodstream

are regulated by the both hypothalamus and pituitary gland through the release of thyroid-

stimulating hormone (TSH). Thus, a drop in T3 & T4 hormone blood levels will trigger an

1
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Figure 1.1 Ecosystem of Evidence-based medicine [1]

increase in the production of TSH hormone, which in turn will stimulate the thyroid gland

to produce more T3 & T4 hormones. In contrast, a rise in T3 & T4 hormone blood levels

triggers the production of TSH hormone to halt [3], however, an imbalance could occur if

the thyroid gland is unable to regulate T3 & T4 hormone production.

Studies show that thyroid hormone imbalance could lead to potential life-threatening

health conditions such as hypothyroidism (under-active thyroid) or hyperthyroidism (over-

active thyroid) [3]. The most common cause of hyperthyroidism and hypothyroidism is

abnormal growth of thyroid cells, forming nodules within the thyroid gland.

1.2 Biomedical Informatics (BMI)

BMI is an interdisciplinary science encompassing the deployment of Health

Information Technology (Health-IT) alongside Biological knowledge-bases and human

interaction. It applies computational techniques on biomedical data for the purpose of
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understanding and solving biological problems [4], with emphasis on data, information,

and knowledge.

The current progress in BMI research is been driven by the significant improvement

in technologies for management and analysis of data, leading to an exponential growth

in the volume of healthcare data and development in biomedical imaging and processing

techniques.

1.2.1 Biomedical Imaging Techniques

Biomedical images are a visual representation of the internal structure of a body

like muscles, organ tissues, and bones. Images in clinical datasets are represented as

usually as 2 or 3-dimensional arrays pixels of varying texture and color. The datasets go

through well-designed data collection procedures by specialized physician. It is common

to have abnormal growth of cell tissue leading to the formation of nodules. A biopsy is

performed to confirm whether a nodule is benign or malignant. To assist in the diagnosis

process, Clinical Decision Support Systems (CDSS) are used to improve the time taken and

minimize the misdiagnosis of non-malignant nodules.

1.2.2 Clinical Decision Support Systems (CDSS)

A CDSS is any computer system whose aim is to provide knowledge to health

care providers in support of their decision to maintain or improve the health of human

beings. The knowledge obtained from CDSS is used to support the decision-making

process for health care providers when diagnosing and/or treating an illness or physical

injury of patients. It is also beneficial in determining the type of clinical data and diagnosis

procedures required to perform specific health care test. In addition, CDSS can be used
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as a guide by senior management to determine health-related risk and financial impact of

decisions made by clinicians.

One of the early adoptions of a CDSS by Staniland et al. [5] was used to study the

surgical and laboratory diagnostic process performed at the University of Leeds to explain

the seven possible causes of acute abdominal pain. They used Bayesian Probability Theory

and assumed conditional independence of seven causes of sudden offset of acute pain for

various diagnosis procedures and had a diagnosis accuracy of 91.8% compared to 65%-

80% by the clinicians.

Tools used in CDSS are classified in five categorizes according to the functions that

affect their implementation, i.e.:

• their intended use,

• the process in which advice is provided,

• the consultations style by physicians,

• the decision-making process applied, and

• the level of human-computer interaction.

1.3 Diagnostic Imaging Techniques

In 1895, while studying the effect of a high voltage current passed through a

charged cathode tube, Willhelm Röntgen discovered that a new kind of invisible ray would

pass through an opaque black sheet of paper that was wrapped around the tube. In later

experiments, he discovered that the invisible ray of light, known as an x-ray, could be used

to expose the structure of bones and metals when passed through human tissue. In this
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section, we briefly describe the history of diagnostic imaging techniques and illustrate its

evolution in Table 1.1.

1.3.1 Digital-Based Imaging Techniques

In Radiography, an image pattern is produced when a beam of electrons with

varying amplitude is released from an x-ray’s tube through a target area. This variation

in amplitude is responsible for producing the image when the electrons are captured on a

medium or screen film. Fluoroscopy is a variant of the radiography imaging technique

that projects x-ray beams at a lower frequency rate than the traditional radiography

technique and exposes an image on a fluorescent screen. Despite the significant progress

of clinical diagnosis brought about by the introduction of Radiographic image and low-

quality fluoroscopic images, their 30% rate of misidentifying a lesion was considered high

and insufficient.

The medical imaging has significant improvement from the time of x-rays to

producing real-time 3-D images of the human body. Digital-based imaging techniques

like the Computed Tomography (CT), Magnetic Resonance Image (MRI) and Ultrasound

(US), were later introduced to produce near-real-time results and resolve issues of high

misdiagnosis rates experienced with photographic film-based techniques.

Unlike Radiography, the x-rays in CT are produced by a computer detector system

that eliminates electronic noise. The single x-ray detector can be used to produce a flat

view of a target image by setting it in a fixed position. Multiple rotate detector can also be

used to produce a 3-D view of the target image. In the MRI technique, an illustration of

the chemical composition of a body tissue is produced by applying an oscillating magnetic
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field over a weak radio frequency signal whereby producing hydrogen atoms in the body.

An image is then generated by determining the variation of the magnetic field and rate at

which the atoms return to an equilibrium. MRI is considered relatively safer than x-ray

based techniques because of its non-ionizing properties.

1.3.2 Ultrasound (US) Imaging

US Imaging technique is based on sound waves to produce the internal composition

of a human body. It works by exposing a high frequency sound wave of 1 to 5 MHz through

the target body region and reflected the waves back to the emitting device. The distance

and time traveled by the sound over alternating regions of low and high pressure are used

to determine the density and structure of the image.

Despite the fact that US diagnostic imaging is considered to be the safest and least

convoluted, it is prone to common image degradation errors like acoustic and speckle

patterns caused by echo interference [7]. Secondly, in a real-world biomedical dataset, the

target object that is the focus of interest of a biopsy is usually significantly underrepresented

compared to the non-target object and artifacts in the image. This makes it difficult to train

traditional classification models on biomedical datasets because they assume an equal class

distribution or an equal misclassification cost.

The low probability of a specific cancerous tumor to be observed in the general

population is also another cause of class imbalance in biomedical datasets. Various feature

extraction and resampling techniques have been proposed to mitigate the class imbalance

problem by either oversampling the minority class or under-sampling majority class;
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Table 1.1 Evolutionary history of diagnostic imaging techniques since last 50 years [6]

1950-1960
Fluoroscopic ImageIntensifier and

Gamma Camera for Radionuclide Imaging

1960-1970 Automated Film Processor

1970-1980

Advanced Projection Radiography,

Digital Subtraction Angiography (DSA),

CT

US

1980-1990

Computed Radiography (CR),

MRI,

Color Doppler Ultrasound

1990-2000

Flat Panel Detector (FPD) Systems,

Magnetic Resonance Angiography (MRA),

Ultrafast-MRI,

Positron Emission Tomography (PET) and

Tissue Contrast Harmonic Imaging (CHI)

2000-todate

Realtime 3D Ultrasound Imaging,

Parallel MRI, PET\CT,

Molecular Imaging, and

Picture Archiving and Communication Systems (PACS)

however, this could lead to the generation of a high-dimension dataset, and a problem

in selecting an appropriate resampling technique that maintains feature relevance.

1.3.3 Imaging of Thyroid Nodules

The American Association of Clinical Endocrinologists (AACE), American Col-

lege of Endocrinology (ACE) and the Associazione Medici Endocrinologi (AME) [8]

designed a set of standardized guidelines for identifying relevant anatomical characteristics

thyroid nodule features from extensive literature reviews and physician’s expert opinion.
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The motivation for the guidelines is to optimize the clinical diagnosis process of thyroid

lesions by ranking the risk of malignancy into three categories, i.e., benign, indeterminate,

or suspicious for malignancy (see Table 1.2). The guidelines provide recommendations to

applied by clinical practitioners, such as:

• confirming the presence of a thyroid nodule when the physical evaluation is

ambiguous;

• evaluation and identification of thyroid nodule internal structures;

• rating the malignancy risk of thyroid nodules based on their appearance;

• radioisotope scanning on patients with low thyroid-stimulating hormone levels or

with patients from geographic regions with iodine deficiency; and

• to provide recommendations prior to performing a surgical treatment.

1.4 Problem Statement

It is common to have abnormal growth of thyroid cells in the tissues of the thyroid

gland which introduces the formation of nodules in the thyroid [2]. Approximately 90%

of the population is likely to have at least one thyroid nodule by the time we reach 80

years old. The probability of developing a thyroid nodule regardless of be benign (non-

cancerous) or malignant (cancerous) is higher as we age [9]. It is also noted that most of

the thyroid nodules are benign while only a small percentage are malignant.

Benign thyroid nodules are non-life-threatening hence treatment is not necessary

unless the nodule grows too big that it is difficult to breathe. Nonetheless, it is crucial to

detect the malignant thyroid nodules at an early stage and to seek immediate treatment as

shown in Figure 1.2 [2]. Generally, there are four main types of thyroid cancers. They are
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Figure 1.2 Evidence-based evaluation and treatment of patient thyroid nodules [8].

namely, anaplastic, follicular, medullary, and papillary thyroid cancer [2]. These four types

of cancers are based on characteristics of the cancer cells when viewed under a microscope.

However, the growth of these thyroid nodules exhibits almost no symptoms [9].

Therefore, they can only be discovered during a routine health examination. It would

probably be too late for treatment if the malignant thyroid nodules are detected at an

advanced stage. According to the American Cancer Society [10], it was estimated that
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Table 1.2 Characteristics of ultrasound thyroid nodule features [8].

Benign Features

Isoechoic spongiform appearance (microcystic spaces comprising of >50% of the

nodule)

Simple cyst with thin regular margins

Mostly cystic (>50%) nodules containing colloid (hyperechoic spots with a

comet-tail sign)

Regular “Eggshell” calcification around the periphery of a nodule.

Malignant Features

Papillary Carcinoma:

– Solid hypoechoic (relative to prethyroid muscles) nodule, which may

contain hyperechoic foci without posterior shadowing (i.e., microcalcifica-

tions);

– Solid hypoechoic nodule, with intranodular vascularity and absence of

peripheral halo;

– “Taller-than-wide” nodule (anteroposterior >transverse diameter when im-

aged in the transverse plane).

Hypoechoic nodule with spiculated or lobulated margin

Hypoechoic mass with a broken calcified rim and tissue extension beyond the

calcified margin

Follicular neoplasm (either follicular adenoma or carcinoma)

Isoechoic or mildly hypoechoic homogeneous nodule with intranodular vascular-

ization and well-defined halo

Indeterminate Features

Isoechoic or hyperechoic nodule with hypoechoic halo

Mild hypoechoic (relative to surrounding parenchyma) nodule with smooth

margin

Peripheral vascularization

Intranodular macrocalcification

there were 56,870 new cases of thyroid cases in the United States in the year 2017. It was

also reported that the number of deaths due to thyroid cancer that year was 2,010.
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The images in Figure 1.3 are visual representations of a healthy thyroid (shown in

Figure 1.3.a) and tumors in a cancerous thyroid (shown in Figure 1.3.a). It can be clearly

seen that a cancerous thyroid has nodules growing in the image for thyroid cancer. Whereas

there is no abnormal growth of nodules in the image with a healthy thyroid, it is noted that

not all the nodules formed are cancerous. A major challenge in classification of thyroid US

(a) A healthy thyroid (b) Cancerous thyroid

Figure 1.3 A typical image of a healthy Figure 1.3.a and cancerous Figure 1.3.b thyroid

images is the degree of correctness due to the high variation in the follicular composition

of thyroid nodules and low quality of US image. This poses a risk of a high rate of false-

positive diagnosis leading to unnecessary Fine-Needle Aspiration (FNA) biopsy and/or

medical over-treatment. A typical benign and malignant thyroid lesion image is represented

in Figure 1.4.

1.4.1 Goals and Overview

Ultrasound equipment are common medical imaging modality tools used to locate

and evaluate thyroid lesions [11] using Ultrasonography. It is a safe, non-ionizing, and
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(a) Benign follicular lesion (b) Malignant

Figure 1.4 Ultrasound images of (a) benign and (b) malignant thyroid lesions with the

Regions of Interest (ROI) marked in red

non-invasive technique to examine the thyroid glands [12]. However, the medical diagnosis

images captured with the ultrasound machine are indistinct and are not easily differentiable,

especially for benign and malignant thyroid lesions (see Figure 1.4). A study of data

management techniques for CDSS [13] shows that the most common factors that influence

the quality of data in medical imaging are: (i) accuracy or correctness (ii) completeness

(iii) timeliness and, (iv) the quality of evidence. Thus, the visual inspection of the

ultrasound images must be analyzed by ultrasonographers who have adequate experience

and expertise to ensure an accurate diagnosis. Otherwise, the diagnosis of the ultrasound

images may be inaccurate and subjective. We propose to develop a computer-aided

diagnosis (CAD) system that will mitigate this challenge in a twofold objective, namely:

• to assist ultrasonographers in giving an objective second-opinion of the thyroid lesion

diagnosis (to determine if it is benign or malignant);
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• and to make the proposed CAD system time-efficient by minimizing any manual

interpretation of the images that is laborious.

In Chapter 2, we describe the background in the classification of biomedical

informatics image data and the choice of our research approach. In Chapter 3, we describe

an adaptive feature engineering model for classification of ultrasound diagnostic images.

We hypothesize that minimizing the variance and maximizing correlation among textural

features addresses this classification problem. In Chapter 4, we present an image classifier

model using Bayesian inference based on the knowledge discovered from artifacts of the

ultrasound images. In Chapter 5 we demonstrate the usefulness of automatically learning

the structure of Bayesian networks by solving a classification problem from clinical

decision support, namely, the classification of Ultrasound Images for Clinical Decision

Support. We evaluate our model on a public dataset obtained from ovarian and thyroid

cancer ultrasound diagnostic data in the final chapter.



CHAPTER 2

RELATED WORKS

The textural features of the diagnostic images were extracted using the following

approaches from related literature. Textural features are useful in capturing morphological

features that are reflected as nonlinear changes in texture in images. These nonlinear

changes are captured as suitable texture features that can quantify the changes in the

intensity, regularity, coarseness, contrast, homogeneity, etc. of the pixels of the image.

In this chapter, we review popular extraction techniques used for extracting texture

descriptors, from the simplest techniques like thresholding to complex rule-based methods

for extracting textural characteristics of an image. We later present classification techniques

that have been proposed in CAD systems for image processing of medical image data.

2.1 Image Thresholding

Thresholding is a process of creating a binary image from a grayscale one.[14] It is

the simplest form of segmentation (separating an image into regions). It uses the simplest

property that pixels in a region can share the intensity. Hence, thresholding is a natural way

of separating light and dark regions of the image. In simple words, all pixels with intensity

value below some threshold are being assigned zero and all pixels with intensity above this

14
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threshold one. Pixels that are equal the threshold value are treated either as zero or one but

the behavior needs to be consistent.

Let f(x, y) be the gray level of a pixel (x, y) and T be the threshold value, then the

thresholded image g(x, y) is defined as:

g(x, y) =



















1 if f(x, y) >= T

0 otherwise

(2.1)

Every point (x, y) for which f(x, y) >= T is then called an object point, whereas all the

other ones are said to be background points.

2.1.1 Challenges in Image Thresholding

The most significant issue with thresholding is the fact that only the intensity is

considered and no relationship between pixels. This can lead to the inclusion of external

pixels that are not part of the original region. Similarly, isolated pixels can be lost from a

region. The presence of noise in the image can easily worsen the outcome, because pixels

intensity may not represent the normal intensity in the region. The usage of thresholding

is often based on experimentation and small adjustments. Still, a large portion of a region

may be lost or the area may be extended with extraneous background pixels (especially

when shadows of objects are presents, causing them to be included as part of a dark object

on a light background).
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One of the disadvantages of global image thresholding is also the fact that it is not

particularly effective when changes in illumination occur in the image. This drawback

can partially be mitigated by determining thresholds locally. Therefore, instead of a single

global threshold value, the threshold itself can actually vary across different parts of the

image.

2.2 Image Filtering

Filtering is a technique for modifying or enhancing an image. It is used either to

emphasize some features of the image or to remove some other. Images can be filtered with

various Low-Pass Filters (LPF) or High-Pass Filters (HPF). HPFs are useful for detecting

image edges whereas LPFs are typically applied image blurring for removing noise.

2.2.1 Correlation and Convolution

These are basic operations that can be applied in order to extract information

from an image. In a sense, they are the simplest operations that can be performed but,

nevertheless, extremely powerful and useful. Due to their simplicity, they are also well

understood, easy implementable, and efficiently computable. Both of these operations

fulfill two features, namely:

• linearity, and

• shift in-variance.

Given a square filter with an odd number of elements represented by a (2N+1) x (2N+1)

matrix F (N ∈ N) and the image matrix I , the results of correlation can be computed by

aligning the center of the filter with a pixel. Overlapping values are then multiplied together
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and summed up to make the result corresponding to that given pixel. It can be written as:

(F ⊗ I)(x, y) =
N
∑

i=−N

N
∑

j=−N

F (i, j)I(x+ i, y + j) (2.2)

Convolution is very similar to correlation, but the filter is flipped both horizontally and

vertically beforehand:

(F ⋆ I)(x, y) =
N
∑

i=−N

N
∑

j=−N

F (i, j)I(x− i, y − j) (2.3)

2.2.2 Image Blurring

To achieve a smoothing effect, the image is convolved with a LPF kernel. This

particular type of filtering removes high-frequency content from the image (for example

noise). Unfortunately, edges also can be blurred a bit while applying this operation,

although there are also smoothing filters that prevent edges from being blurred. The

OpenCV library provides a user with various filters with the most popular ones are:

• Averaging, it takes the average of all the pixels under kernel area;

• Gaussian, instead of box filter, a Gaussian kernel is used;

• Median, in this case, the median value of all the pixels under kernel area is used; and

• Bilateral, slower compared to other filters, but it keeps edges sharp.

2.2.3 Finding Contours

A contour is a list of points that represent, in one way or another, a curve in an

image. They come in handy for analyzing the shape of an object, for its detection and for

recognition. For better results, it is good to use binary images, so the process of contours

finding should be applied after thresholding or edge detecting.
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2.2.4 Edge Detection

An edge is a place of a sudden discontinuity in an image, which can arise from

surface normal, surface color, depth, illumination, or other discontinuities. This rapid

change in the image intensity function can be observed in places where the first derivative

of this function has local maxima. The primary steps taken in the edge detection process

include:

• Smoothing derivatives to suppress noise and compute gradient,

• Threshold to find regions of ”significant” gradient,

• Thinning to get localized edge pixels, and

• Connecting edge pixels.

2.2.5 Discrete Wavelet Transform (DWT)

DWT basically acts as low-pass and high-pass filter. When an image of size (M ×

N) passes through DWT, it yields four different coefficients. Approximate coefficients

of level 1 A1 are obtained by applying a low-pass filter to both the horizontal row and

vertical columns of pixels. Detailed horizontal coefficients of level 1 (Dh1) are obtained

by applying low-pass filter to the horizontal rows of pixels and high-pass filter to the vertical

columns of pixels. Detailed vertical coefficients of level 1 (Dv1) are obtained due to high-

pass filter to the horizontal rows of pixels and low-pass filter to the vertical columns of

pixels. Detailed diagonal coefficients of level 1 (Dd1), due to high-pass filter to both

horizontal rows and vertical columns of pixels, are also extracted in the process. Similarly,

Dh2, Dv2, Dd2, and A2 are the resultant matrices of the second level of 2D-DWT.
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A wavelet basis bi-orthogonal wavelet was selected to decompose the fundus

images in [15] based on the energy values in the various sub-bands are used as features

as shown below:

Energysub−band =
1

(M ×N)

∑

x=M

∑

y=N

(Dsub−band
x,y )2 (2.4)

In any image (xi, yi) where i = 1, 2, . . . , K represents the edge points of an object, while

the Fourier descriptors of its edge can be represented by the following approach [16]. Each

point can be treated as a complex number such that:

s(k) = xi + jyi (2.5)

and the discrete Fourier transform (DFT) of s(k) is:

a(u) =
k−1
∑

k=0

s(k)e−j2π uk
K . (2.6)

If the length of DFT of any sequence is the same as an original sequence, the number of the

descriptors varies as the length of the edge changes. Here, the power coefficient of Fourier

descriptors is computed as follows

PAC =
∑

u 6=0,v 6=0

(F 2
R(u, v) + F 2

1 (u, v)) (2.7)

where, FR(u, v) and FR(u, v) are real and imaginary segments of the Fourier transforms of

the image, and u and v are the frequencies along the x and y axes of the image respectively.

Fourier descriptors are not invariants to scaling and translation.

2.2.6 Histogram-Based Method

These methods are used to represent image regions by encoding texture information

of its local descriptors. One such method is the Binarized Statistical Image Features (BSIF)

[17] that takes an image and a set of filters and bit size values as input parameters to produce
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a textural description of the image. For a given bit size b and filter length f , the BSIF

method extracts textural representations from a set of images img of size n such that;

BSIF (f, b, n, img) = Dp,n (2.8)

where p = 2f , p are textural feature representations (dimensions) for each image and n are

the number of instances in the data-set D. The new number of columns returned after a

BSIF textural extraction is proportional to the filter length f parameter passed during the

extraction process. For example, processing a images using the BSIF method with filter

length 5 (f=5) returns a representation of the image with 23 textural features 25 = 32. We

use the BSIF method to extract information from a set of diagnostic images and present

the information in a group of multi-dimensional datasets with varying dimension sizes by

using a set of bit sizes bset and filter lengths fset. The resulting clusters of datasets of

varying dimensional sizes per cluster.

2.3 Feature Extraction

The textural representation of an images can be obtained from Textural Filter

Methods that perform different measurements on the gray-scale intensity of a single or

subset of image elements in a localized region of the image. These filter methods are

classified as either performing structure extraction operations like distance measure to

describe macro structures of the image, or statistical operations like gray-scale correlation

and frequency domain analysis to describe its statistical properties of an image.

Traditional texture descriptors are Local Binary Pattern (LBP), Laws Texture

Energy (LTE), Entropies, Hus invariant moments [18]. In their study, they employed

two popular techniques namely, Discrete Wavelet Transform (DWT) [19], and the Fourier
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spectrum [16]. They then extracted the entropy coefficients from these descriptors and used

these features to classify images.

Hybrid models like the Gabor Filter [20]–[22] and Haralick Features Method [23]–

[25] has recently gained popularity in diagnostic classification of images in the medical

field because of the advantages of performing both structures and statistical operations.

2.3.1 Binarized Statistical Image Features (BSIF)

Binarized statistical image features (BSIF) is a local image descriptor that produces

binary codes for each pixel in the thyroid ultrasound image [15]. The pixels in the image

are described as binary-coded strings, and every individual pixel is assigned a code value

that represents the intensity distribution in the image. We then use the image histogram to

identify texture properties within individual sub-region of the image. Given a neighborhood

of n×n pixels with a set of x linear filters of the same size, the x-bit label value of every bit

in the binary code string is obtained by binarizing with a linear filter with zero thresholds.

This is shown in Equation (2.9).

s = Wl (2.9)

In the Equation (2.9), l is the n2 × n vector representation of the n× n neighborhood, and

W is the x×n2 matrix denoting the stack of the vector notations of the filters. Every single

bit is related with a different filter, and the required length of the bit string sets the number

of filters. Likewise, Equation (2.10) shows that the ith value of s is the function of the ith

linear filter wi.

si = wT
i li (2.10)
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The different filters are learned from a training set of image patches by maximizing the

statistical independence of the filter responses. Hence, the BSIF descriptors learn and

recognize the filters by independent component analysis (ICA) filters. Each bit of the BSIF

value can be attained through Equation (2.11).

Bi =



















1 if si > 0

0 if si <= 0

(2.11)

The two parameters in the BSIF descriptor (filter size and the length of the binary code

string) can be varied. In this work, the BSIF images are passed through 7 filter sizes

{5, 7, · · · , 17} and 8-bit length {5, 6, · · · , 12}.

2.3.2 Haralick Textural Features

Haralick textural features [23] are features calculated based on spatial dependencies

of a Gray Level Co-occurrence Matrix (GLCM) in the region of interest (ROI). Texture

features obtained from the Haralick method have been used to classify abnormalities in

lung CT images as either having tumors or a buildup of fluid. Tables 2.1 to 2.4 explain in

detail the notations and equations applied to obtain Haralick Textural Features.

2.4 Image Classifiers

Classification is a predictive technique that determines the correct target class of

a discrete dependent variable. The most common type of classification technique is the

binary classification where there are two possible outcomes. Multi-label classification

technique is characterized with having multiple outcomes for a single target variable,

while Multi-Target classification technique has two or more target variables with binary

or multiple values.
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Table 2.1 Haralick texture features notations.[23]

Notations Definition

Element i, j x(i, j)

Number of Gray levels N

p(i, j)
x(i, j)

∑N

i=1

∑N

j=1 x(i, j)

px(i)
N
∑

j=1

p(i, j)

py(j)
N
∑

i=1

p(i, j)

µx

N
∑

i=1

px(i)

µy

N
∑

j=1

py(j)

σ2
x

N
∑

i=1

(i− µx)
2 · px(i)

σ2
y

N
∑

j=1

(j − µy)
2 · py(j)

px+y(k)
N
∑

i=1

N
∑

j=1

p(i, j)

px−y(k)
N
∑

i=1

N
∑

j=1

p(i, j)

µx+y

2N
∑

k=2

k · px+y(k)

µx−y

N−1
∑

k=0

k · px−y(k)

HX −
N
∑

i=1

px(i)log(px(i)), where k = i+ j

HY −
N
∑

i=1

py(j)log(py(j)), where k = |i− j|

HXY −
N
∑

i=1

N
∑

j=1

p(i, j) · log(p(i, j))
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Table 2.2 Haralick texture features notations (continued).[23]

Notations Definition

HXY1 −
N
∑

i=1

N
∑

j=1

p(i, j)log(px(i) · py(j))

HXY2 −
N
∑

i=1

N
∑

j=1

px(i) · py(j) · log(px(i) · py(j))

Q(i, j)
N
∑

k=1

p(i, j)p(j, k)

px(i)py(k)

The task of a classification algorithm is to learn a model function that maps a

non-empty set of observations to one or more outcomes/targets. However, the number

of observations/features observed in medical studies are usually larger than the number

of samples size. This could result in performance degradation of the classification

algorithms due to the curse of dimensionality phenomenon. Robust supervised machine

learning algorithms have been developed to process datasets with a significantly small

sample size relative to the large number of features. Methods like the linear discriminant

analysis (LDA) and the quadratic discriminant analysis (QDA) and their variants have been

successfully applied to high dimensional data; however, these require the probabilities of

the observed output to be known a priori.

Traditional classification techniques like Support Vector Machine, Random Forest

and Linear Regression and Logistic Regression Analysis techniques are used when the

class probability is not known a priori, which is the case for most real world domains.

Classification and regression analysis techniques are supervised learning techniques that

are used to predict the value of an output variable given a set of real or categorical

input values. Their choice of application is determined in terms of target output to
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Table 2.3 Gray-level co-occurrence matrix (GLCM) notation[23].

Features Definition

Entropy −
N
∑

i=1

N
∑

j=1

p(i, j)log(p(i, j))

Energy

N
∑

i=1

N
∑

j=1

p(i, j)2

Difference Entropy −
N−1
∑

k=0

px−y(k)log(px−yk)

Sum Entropy −
2N
∑

k=2

px+y(k)log(px+y(k))

Homogeneity

N
∑

i=1

N
∑

j=1

p(i, j)

1 + (i+ j)2

Inverse Difference

N
∑

i=1

N
∑

j=1

p(i, j)

1 + |i− j|

Max. Probability max
i,j

p(i, j)

Sum Average, µx+y

2N
∑

k=2

kpx+y(k)

Sum of Squares

N
∑

i=1

N
∑

j=1

(i− µ)2p(i, j)

Cluster Prominence

N
∑

i=1

N
∑

j=1

(i+ j − 2µ)3p(i, j)

Contrast

N
∑

i=1

N
∑

j=1

(i− j)2p(i, j)

Cluster Shade

N
∑

i=1

N
∑

j=1

(i+ j − 2µ)4p(i, j)

Dissimilarity

N
∑

i=1

N
∑

j=1

|i− j| · p(i, j)

Sum Variance

2N
∑

k=2

(k − µx+y)
2px+y(k)

Correlation (Cor)

N
∑

i=1

N
∑

j=1

i− µx

σx

j − µy

σy

p(i, j)

Max Cor. Coefficient
√

λ2Q(i, j)
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Table 2.4 Gray-level co-occurrence matrix (GLCM) notation (continued)[23].

Features Definition

Info. Measure of Cor 1
HXY −HXY 1

max(HX,HY )

Info. Measure of Cor 2
√

1− exp[−2(HXY 2−HXY )]

Autocorrelation

N
∑

i=1

N
∑

j=1

(i · j)p(i, j)

Difference Variance

N−1
∑

k=0

(k − µx−y)
2px−y(k)

be estimated. While classification techniques are used to predict discrete target output,

Regression Analysis fit a model that estimates a target output to a continuous set of value.

An independent sample set is introduced to the model to evaluate performance.

As more observations are A Regression problem can be transformed into a classi-

fication problem during the pre-processing steps by discretizing the continuous dependent

variables into a set of intervals but it is not recommended to transform a classification

problem into a Regression Analysis problem due to the infinite and unordered nature of

continuous dependent variables.

2.4.1 Logistic Based Classifiers

Du, X., et al. [26] evaluated eight classification methods for the classification of

epileptic electroencephalogram (EEG) signals from epilepsy. In their study, the Regression

Model achieved the highest True Positive and Area Under Curve rates for the classification

of the “before seizure” class when a relatively high Principal Components Analysis (PCA)

percentage was applied.
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2.4.2 Rule-Based Classifiers

Rule-based classifiers have gained considerable interest in decision support systems

because of their ease of interpretability [27]. Dua, S., et al., [28] proposed a rule-based

data-adaptive shrinking approach with Partial Decision Trees (PART) to classify high di-

mensional physiochemical properties of protein structures. In their study, they hypothesize

that feature descriptors can be deprived through measurement of their sparseness in the

feature domain. Singh, H., et al., in [29] proposed a quantization-based dimensionality

reduction technique for mining Association rules in their work. They identify isomorphic

relationships of protein physiochemical properties to segment and classify a multi-domain

protein family.

Jang, et al., [30] suggested the use of an Adaptive-Network-Based Fuzzy Inference

System (ANFIS). It uses the fuzzy modeling procedure whereby it learns information about

a data-set from the data-set itself. Here the membership functions are determined from the

given set of features and rules are generated by adjusting the weights using both the forward

pass and back-propagation algorithms.

Fuzzy-based computer-aided diagnosis (CAD) techniques were used in the diag-

nosis of diabetic retinopathy [31] for feature extraction and classification while Nayak et

al. [32] proposed the application of textural features in conjunction with a feed-forward

Artificial Neural Network (ANN) for the classification of diabetic Maculopathy. Nayak et

al. [32] reported in their findings a sensitivity of 95.4% and a specificity of 100%. Similarly,

the work presented by Chowriappa et al. [33] proposed an ensemble selection technique to

build an ensemble classifier from a library of models. They reported an average accuracy

of 96.7%, with the highest recorded accuracy of 97.8%.
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2.4.2.1 Bayesian Classifiers

Rule-based Bayesian Network models provide the means to capture distributions

structures of real-life phenomena, that are difficult to model without expert knowledge of

the domain. They can also be used to learn BN model structures from raw data if the

domain structure is unknown. The process of learning a BN model is divided into two

phases, the parameter learning and structure learning phases.

Sahu, S., et al., [34] proposed a Bayesian approach for modeling a speckle removal

algorithm for noise reduction and edge preservation in medical ultrasound images. They

suggested using a Cauchy prior to model the true wavelet while the Gaussian Probability

Density Function was used to model the noisy coefficients. An optimized Bayesian Least

Square Estimation (BLSE) approach in the work presented by Nagaraj, Y., et al., [35] was

proposed for detecting and denoising of speckles in ultrasound images of the carotid artery.

This is beneficial for estimating thickness of tunica intima and tunica media and predicting

risk of the cardiovascular disease. Related works [36], [37] in fundus classification rely

on novel features extraction techniques to classify images to their corresponding classes.

These features describe morphological characteristics of the fundus image such as cup-to-

disc (c/d) ratios [36], diameter of the optic disc, the distance between the optic disc center

and Optic Nerve Head (ONH), and ratio of area of blood vessels in inferior-superior side

to the area of blood vessels in the nasal-temporal side[32].

In recent years, textural features have gained prominence in fundus image classi-

fication. Enhancement to the extraction of textural features for classification is described

in the work by Acharya et al., [37]. They proposed the use of texture and higher-order
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spectra features for the classification of glaucoma using fundus images. They classified

fundus images into normal and glaucoma classes and achieved a classification accuracy

of 91%. Similarly, the work by Dua et al. [36] also proposed the use of wavelet-based

energy features on fundus images to classify glaucomatous images. They reported an

overall accuracy of 93.33%.



CHAPTER 3

RESEARCH METHODOLOGY

In this study, we propose an adaptive convolution kernel filtering method that

suppresses speckle noise and enhances edges of objects detected in the image using

a deterministic approach of obtaining the kernel filter. We address the challenge of

learning kernel filter parameters as a supervised learning task and address the challenge

of extracting relevant features in a high-dimensional and sparse dataset. The main task

in regression analysis is to understand the relationship between the independent and

continuous dependent variables by fitting a predictive model that minimizes the error of

the predicted and actual output.

Our method uses a trained Regression model to approximate optimal values for the

kernel values. The Haralick method is then applied to extract features that represent texture

characteristic of the image. We propose an image filtering method the adapts to information

obtained from the image domain using a trained regression model. The proposed method

summarized in Figure 3.1 consists of the following steps:

1. Image Pre-processing

2. Filter Design

(a) Regression Model Design

(b) Estimate Kernel Parameters

30
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3. Feature Extraction

4. Model Evaluation

Figure 3.1 The Block Diagram for the proposed Computer-Aided Diagnosis (CAD) System

for the automated distinction of benign and malignant thyroid lesions
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3.1 Research Approach

Ultrasonography as a non-invasive diagnostic technique has gained popularity as

a safe diagnostic process due to the low operational costs and non-radiation exposure

involved [38]. The drawback to this process, however, is that air and bone tissues tend

to distort the sound waves rendering the image to be very noisy. A study of linear and

non-linear filtering methods like the Discrete Wavelet Transform (DWT) [39] methods for

suppressing speckle noise in ultrasound images demonstrated a significant improvement in

the quality of the images. An evaluation of thyroid and carotid artery images showed a

significant relationship between higher kurtosis and filtered images when filtered with 16

different de-speckling methods [40].

3.2 Data Preparation

The dataset after the extraction of BSIF consisted of fifty-six individual BSIF files.

Each file represented a filter size and bit length combination, consisting of 344 samples.

The number of attributes for each file varied. Diagrammatic presentation of the dataset

after performing the BSIF extraction method is illustrated in Figure 3.2 and Figure 3.3.

Definition 3.1. A data set D represented by a set of matrices x
(b×f)
(i,j) with each individual

matrix of size n is defined as;

D = {X, Y } (3.1)

where X =
{

x
(b,f)
(i,j) | i represents a sample (1 ≤ i ≤ n) ; j represents the BSIF

attributes ∀ (b, f); with bit length b ∈ B, B = {5, · · · , 12}, filter size f ∈ F, F =

{5, 7, 9, 11, 13, 15, 17}
}

, and yi ∈ {0, 1}
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Figure 3.2 A Multilevel dimensional dataset using 3 BSIF filter levels

Figure 3.3 Data matrix in the BSIF features space

3.3 Image Pre-processing

During pre-processing, attenuation artifacts within the ultrasound images were

handled applying a Contrast Limited Adaptive Histogram Equalization (CLAHE) [41],

[42]. We believe that the CLAHE method will enhance the contrast, thereby improving

the resolution quality and reduces noise representation in the image [43]. An inverse

transformation is performed to enhance detection of geometric information in the spatial

domain.
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3.4 Proposed Image Filter Design

The selected sampled image patch was transformed into a 1-dimensional structured

dataset with the target response represented by the expected pixel value after applying (b)

high-pass filtering within regions of interest (ROI) and (c) low-pass filtering on out-of-

scope regions (non-ROI) region. A linear regression model is fitted to the transformed

data set to estimate model coefficient parameters. An Elastic-Net regularization path was

used to control the concentration and shrinkage of coefficient parameters during the model

training process.

3.4.1 Regression Model

A Regression Model was used to model the relationship between independent input

variables and their dependent target variables by fitting an equation. The association

between the input and target variables can be determined by first examining the data

points onto a scatter-plot and analyzing their correlation coefficient. A positive correlation

coefficient value indicates that there exists a positive association between the variables

and a negative values for the correlation coefficient indicates a negative association. The

regression coefficient values can be estimated using singular values decomposition.

3.4.1.1 Linear Regression

A Linear Regression assumes the residual error are random follows a normal

distribution for input variables X and dependent variables Y such that the model equation

is defined as:

Yi = β0 + βXi,∗ + ǫi∀j ∈ 1, . . . , p (3.2)

= β0 + β1Xi,1 + · · ·+ βpXi,p + ǫi
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where i are the number of observations for i = 1, . . . n, j are the features for j = 1, . . . p,

β = (β1, . . . , βp) are coefficient parameter β and ǫi ∼ N(0, σ2) are the residual error

parameters with a probability density function:

f (yi) =
(

2πσ2
)− 1

2 exp

[

− (yi −Xi,∗)
2

2σ2

]

(3.3)

The prediction of Yi of the regression model is equal to:

Ŷ = Xβ̂ = X(XTX)−1XTY (3.4)

3.4.1.2 Singular Value Decomposition (SVD)

Singular Value Decomposition proposed in [44] is a matrix decomposition method

commonly used in dimensionality reduction in high dimensional and strongly collinearity

matrix. The singular value decomposition of a matrix A is defined as:

A = UDV T (3.5)

where D an n × n diagonal matrix with the singular values, U an n × n matrix of left

singular vectors, V a p × n matrix of right singular vectors, and columns of U and V are

orthonormal, i.e:

UUT = I = V V T (3.6)

The Equation (3.4) can be rewritten in terms of the SVD-matrices in Equation (3.5) to

estimate coefficient parameters β̂ of the linear regression model as:

β̂ = (XTX)−1XTY (3.7)

= (XTX + λI)−1XTY
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where λ is the tuning parameter (Ridge penalty parameter), λ ∈ [0,∞) and I is a (p× p)-

dimensional identity matrix. The Newton-Raphson equation is applied iteratively to find

the roots of the log-likelihood estimation function in Equation (3.2) to derive new values

of the coefficient as:

β̂new = β̂old + (XTWX)−1XT
[

Y = g−1(X; β)
]

(3.8)

= (XTWX)−1XTW
{

Xβ̂old +W−1
[

Y − g−1(X; β)
]

}

= (XTWX)−1XTWZ

= argmax
β

(Z −Xβ)TXTW (Z −Xβ)

where W is a (n× n)-dimensional diagonal matrix with Wi,i ∈ [0, 1] representing the

weight of the ith observation, Z is the adjusted response Z = Xβ̂old + W−1[Y −

g−1(Xi,∗; β
old)]. The Link function g(; ) is a function that links responses to observed

variables Xi,∗ such that:

p(Xi,∗) = p(Yi) = g(Xi,∗; β)
−1 =

exp(Xi,∗; β)

1 + exp(Xi,∗; β)
(3.9)

The likelihood estimates of the Linear Regression is thus defined as:

L(Y |X; β) =
n
∏

i=1

1√
2πσ

exp

[

− (yi −Xi,∗β)
2

2σ2

]

(3.10)

and is rescaled to a log-likelihood estimation as:

L(Y |X; β) = −n log
√
2πσ − 1

2πσ2

n
∑

i=1

(yi −Xi,∗β)
2

(3.11)

3.4.1.3 Logistic Regression

Logistic Regression or Logit Regression is a type of probabilistic statistical

classification model used to explain the response of binary targets. The Logistic Regression
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algorithm iterative applies a Maximum Log-likelihood estimator to obtain a set combina-

tion of the coefficients of the observations. The coefficients are the fit to a regression loss

function that approximates the probability of the discrete target value. Because Linear

Regression functions are unbound, a logarithmic transformation is performed to obtain a

Logistic Regression function of the form:

Yi = β0 +Xi,∗βi → ln

[

p(Xi,∗))

1− p(Xi,∗)

]

(3.12)

= β0 +Xi,∗βi, ∀p(Xi,∗) ∈ [0, 1]

where p(Xi,∗) is a logistic link function that links the response values to input variables.

A numerical root-finding method, like the Newton-Raphson method, is used

interactively to approximate the coefficient parameters β by converging to a maximum

log-likelihood estimate. The Likelihood estimation function of the Logistic Regression

model is defined as:

L(Y |X; β) = −
n
∏

i=1

[(p(y = 1|Xi,∗)
Yi(p(y = 0|Xi,∗)

1−Yi)] (3.13)

The Equation (3.13) is rescaled using logarithms to reduce the likelihood of estimations

being skewed towards large values. This is known as the log-likelihood estimation function

as L(Y |X; β) denoted as:

L(Y |X; β) = − 1

n

n
∑

i=1

[Yi · (β0 +XT
i,∗β) (3.14)

+ ln(1 + exp(β0+XT
i,∗β))] (3.15)
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3.4.2 Regularization

The model coefficients β̂ of high-dimensional data are known to be highly sparse

and tend to have an infinite number of possible estimations for a single coefficient.

Regularization controls the coefficients by modeling an objective path that reduces both the

variance and the Sum of Square Errors (SSE) between the observed and predicted targets.

This is achieved by applying a penalty factor to the log-likelihood function of a Logistic

Regression model as denoted below:

L∗(Y |X; β) = max
β0,β
{L(Y |X; β) +Obj(P ; β)} (3.16)

where Obj(P ; β) is the objective function for setting a penalty parameters P .

3.4.2.1 Ridge Regularization

The Regularization paths proposed to handle such challenges include the Ridge,

Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net Regularization

Paths. The Ridge Regularization Path shrinks correlated coefficients towards a common

estimated value and its objective function is denoted as:

LRidge(Y |X; β) = L(Y |X; β) + λ · 1
2

p
∑

j=1

β2
j (3.17)

3.4.2.2 Least Absolute Shrinkage and Selection Operator Regularization(LASSO)

The Least Absolute Shrinkage and Selection Operator (LASSO) Regularization

path eliminates irrelevant coefficients from the model its objective function is defined as:

LLASSO(Y |X; β) = L(Y |X; β) + λ ·
p

∑

j=1

|βj| (3.18)

where λ ∈ R
+ set to control the

∑p

j=1 |βj| (LASSO) L1 normalization and
∑p

j=1 β
2
j

(Ridge) L2 normalization.
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3.4.2.3 Elastic Net Regularization

The Elastic Net Regularization sets a balance between the Ridge and LASSO paths

by introducing of a trade-off parameter α, 0 ≤ α ≤ 1. The path taken by the Elastic Net

will be similar to that of a Ridge Path if α is equal to 1 and a path similar to LASSO if α is

equal to 0. The log-likelihood function for the Elastic Net Regularization is denoted as:

LENet(Y |X; β) = L(Y |X; β) + λ · [(1− α)
1

2

p
∑

j=1

β2
j + α ·

p
∑

j=1

|βj|] (3.19)

3.4.2.4 Coefficient Shrink Factor

In addition to the Ridge and LASSO factors, a rate of shrink factor of each

coefficient can be set to the objective function Obj(Pλ,α; β) to control the penalty ratio

of each coefficient individually. The Objective function in an Elastic Net Regularization

model can be transformed into a weighted Objective function as:

Obj(Pλ,α; β) = λ

p
∑

j=1

ωj[(1− α)
1

2
β2
j + α|βj|] (3.20)

where where ωj is the rate of shrink of coefficient j, for 0 ≤ ωj ≤ 1

3.4.3 Estimating Kernel Parameters

Variations of the filter kernel are generated from the estimated model coefficients

that were achieved from adjusting the L1 and L2 penalties by applying Elastic Net

regularization and minimizing the root square error.

A set of Kernels were obtained from sampling different image patches sizes

(i.e., 5, 7, · · · , 29) corresponding to the sizes of the resultant kernels. The resulting filters

were applied to the images to extract Haralick texture features illustrated in Figure 3.4.
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Figure 3.4 Transformation of image patches to a 1-D data frame

3.4.4 Spectral Analysis

In this work, the ultrasound images are transformed from an image domain to a

spectrum domain in order to analyze their natural repeating patterns. The Spectral analysis

techniques this we use in this work is a Fourier Series technique. Fourier Series is an

approximation of a complex periodic function as simplified infinite sums of cosine and

sine functions for the purpose of the analyzing the function in another domain other than

its original domain. In order to model a function as Fourier Series, we assume that the

sampled periodicity of the function is bound by a finite non-zero interval and repeats in

either time or space or both time and space like in wave motion.

A 1-dimensional function f(x) is said to be periodic if it repeats over a period

x ∈ [−L
2
, L
2
] within the interval L if f(x + L) = f(x), ∀x ∈ R. The function f(x) can be

modeled as a Fourier Series of the form;

f(x) =
1

2
a0 +

∞
∑

n=1

[

ancos
(nxπ

L

)

+ bnsin
(nxπ

L

)]

(3.21)

with the where a0, an and bn are Fourier coefficients denoted as;

a0 =
1

π

∫ pi
2

−pi
2

f(x)dx (3.22)
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an =
1

π

∫ pi
2

−pi
2

f(x)cos
(nxπ

L

)

dx (3.23)

an =
1

π

∫ pi
2

−pi
2

f(x)sin
(nxπ

L

)

dx (3.24)

In order to represent Equation (3.20) as a Fourier Series of the form of Equation (3.21),

we assume that for a fixed set of Ridge and LASSO regularization penalty terms, there

exists a continues weighted coefficient terms ωj with a periodic interval of [0, 1] and that

ωj represents the degree of magnitude for the coefficients βj . We also assume that the

log-likelihood function is bound by a maximum estimate of Obj(Pλ,α; β). We propose an

analysis of the Fourier Series of the Ultrasound Images (Figure 3.5) as an expansion of the

Logistic Regression problem as;

Obj(Pλ,α; β) = f(ω) = λ

p
∑

j=1

ωj

[

(1− α)
1

2
β2
j + α |βj|

]

(3.25)

(a) Surface view of Fourier coefficients (b) Heat map plot of Fourier coefficients

Figure 3.5 2-D gray-scale intensity of ultrasound image after a fourier transformation.
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3.5 Feature Engineering

Our next task was to select features that are not highly correlated. We adopted a

two-phase approach, namely, Feature Extraction to extract domain-relevant features and

later Feature Selection on the extracted features and to select features that maintain and/or

contribute information towards the domain classification problem. In the Feature Selection

phase, the Principal Component Analysis (PCA) was applied alongside the Boruta Feature

Selection Algorithm to perform dimensionality reduction and provide scalability of the

proposed model.

3.5.1 Feature Extraction

In the first phase, we applied the Haralick Texture Feature Extraction method and

evaluated the classification performance of the extracted features against traditional image

feature extraction methods like the Binarized Statistical Image Features (BSIF).

3.5.1.1 Haralick Texture Features

The Haralick texture features method [23] was used in this work to identify and

extract texture features of the ultrasound image. Haralick texture features are statistical

calculations of an image or region of interest (ROI) in the image based on spatial

dependencies of a Gray Level Co-occurrence Matrix (GLCM) using four angular mean.

This approach assumes that spatial dependence frequencies between neighboring cells in a

gray scale image are a function of the angular relationship and their distance as illustrated in

Appendix F. Geometrical relationships of GLCM measurements are applied to four radian

angles θ = 0, π/4, π/2, π/4 and the distance d = max {|x|, |y|} to adjacent neighboring

cells.
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3.5.2 Feature Selection

The goal of feature selection in classification is to select of a subset of features that

when excluded from the dataset would not affect the accuracy performance of the classifier.

The features are known to have minimal predictive information relative to other features in

the same sample set. Feature Selection methods are categorized in three major techniques,

namely, Filter Selection, Wrappers and Embedded techniques.

Filter Selection Techniques select a subset of features based on statistics methods

like the Chi-Square Test [45] and Information Gain [46] to determine their relevance while

Wrapper methods determine the subset to be selected by measuring their importance to

a classifier obtained from a learning machine. Examples of wrappers include Recursive

Feature Elimination [47] and Sequential Forward Selection [48], [49]. Embedded

techniques are similar to Wrappers in that they too use learning methods to evaluate feature

relevance; however, this process is incorporated in the training model design. An example

of a algorithm that applies the Embedded technique for feature selection is the Boruta

method.

3.5.2.1 Feature Selection with Principal Component Analysis (PCA)

The principal components are computed by the Eigen-decomposition technique

that assigns each component a weighted linear composite of the original attributes.

The resultant weighted feature vectors represent the ordered variance retained by the

components corresponding to the original data.

Definition 3.2. After PCA, the transformed data set D̂ is defined as,

D̂ =
{

λ(i,j), Yi

}

(3.26)
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where λ(i,j) =
{

λ
(b×f)
(i,j) | λ(i,j) represents the principle components of the attribute matirx

of x̂(i,j) ∀ (b× f)
}

3.5.2.2 Boruta Feature Selection Algorithm

The Boruta algorithm [50], is a wrapper based feature selection algorithm that uses

the Random Forest (RF) ensemble classifier. In this method, illustrated in Figure 3.6,

features are selected in random subsets and each subset is evaluated based on a derived

measure of importance referred to as the Z Score. Given a random forest with M trees

Figure 3.6 System architecture diagram of the Boruta feature selection algorithm

and a set of features λi,j in each tree Tm for 1 ≤ m ≤ M , the Z-score (ZS) for feature is
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defined as:

ZS =
dam −MDAm

σm

(3.27)

where dam and σm and MDAm are the decrease of accuracy, standard deviation and Mean

Decrease Accuracy (MDA) of each feature λi,j in tree Tm.

The MDA is computed as:

MDAm =
1

M

M
∑

k=1

dak (3.28)



CHAPTER 4

BAYESIAN BASED CLASSIFICATION

The Bayes’ Theorem (also known as Bayes’ Rule) was formulated by the British

statistician and Royal Society Fellow Thomas Bayes (1701 - 1761). He proposed a theorem

for solving problems where there are two or more competing hypotheses, given prior

knowledge of the data. After his death, his work was carried on by Richard Price (1764)

[51] and popularized by Pierre-Simon Laplace [52] in 1774.

4.1 Bayesian Networks (BN)

A Bayesian Networks (BN) is a probabilistic graphical model representing a

set of variables and their conditional dependence through a directed acyclic graph (no

directed cycles) and a set of probability distributions for each variable. A BN for a set

of random variables is built by computing the Joint Probability distribution of all their

possible outcomes and then applying the simple Markov Chain rule to extract conditional

probabilities [53]. The Markov Chain rule states that if the current probability of observing

an event or state of a node is known, there is no need to compute its previous probability

in order to determine what the future probability will be. This simple rule is applied to the

construction of a Directed Acyclic Graph (DAG) structure assuming a node is independent

to all other nodes on condition that they are not descendants of its parent node.

46
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In this section, we introduce terms that are frequently used when explaining a

probabilistic models.

A Marginal Probability (MP) p(xA) is the unconditional probability of an event xA

to occur, thus there is no conditional assumption or dependency from another event for the

current event xA to occur.

The formula for the MP is defined as;

p(xA) =

∫

p(xA,xB)dxB (4.1)

where the integration is carried out only on the domain of random variables xB, xB ⊆ R.

The Conditional Probability of xA is the Conditional Probability of an event xA

given that another event xB occurs. The formula for Conditional Probability of p(xA|xB)

is defined as;

p(xA|xB) =
p(xA,xB)

p(xB)
(4.2)

given that p(xB) > 0 and p(xB) 6= 0.

The Joint Probability xA and xB is the probability of both events A and event B

occurring. The Joint Probability distribution of events in Figure 4.1 can be represented as:

p(xA,xB,xC ,xD) = p(xA)× p(xB|xA) (4.3)

× p(xC |xA)× p(xD|xB,xC)

× p(xE|xD)
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Figure 4.1 Illustration of a joint probability distribution for events: A, B, C, D and E

4.2 Markov Chains

A Markov Chain is a state-wise algorithm used to infer the uncertainty of

parameters of a complex non-linear mechanical and probabilistic problems through a

Markov Network. In Bayesian Networks, a Hidden Markov Chain can be used to solve

the scalability challenges of naive inference algorithms. Unlike the Markov Chain where

the transition information for each state in the Markov Network is visible for all, state

information in a Hidden Markov Chain are not directly visible to the observer. However,

the probability distribution of each state to transition to another state is available to the

observer.

A Hidden Markov Chain on a state space S is defined as a sequence of random

variables {x(i); i ≥ 0} where the states represent successive iterations, such that the

Conditional Probability distribution of x(i+1) follows the Markov assumption that:
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• the current state is conditionally independent of all the other past states given the

state on the previous time steps; and

• the evidence at a time ts depends only on the state S .

The Markov Chain is defined by its Joint Probability;

p
(

x(i+1) |x(i),x(i−1), . . . ,x(0)

)

= p
(

x(i+1) |x(i)

)

(4.4)

where S is the state space of all possible outcomes of the random variables x(i) and p
(

x(0)

)

is the initial MP distribution of x(0) at state i = 0

As an example of a discrete-state Markov chain (see Figure 4.2), consider a 3-state

Markov chain representing changes of weather condition with S = {Rainy, Sunny,Cloudy}

and a transition probability matrix P such that:

P =





























p(Rain — Rain) p(Sun — Rain) p(Cloudy — Rain)

p(Rain — Sun) p(Sun — Sun) p(Cloudy — Sun)

p(Rain — Cloudy) p(Sun — Cloudy) p(Cloudy — Cloudy)





























(4.5)

=





























0.15 0.20 0.65

0.22 0.63 0.15

0.20 0.05 0.75





























The Bayesian Network Structure in Figure 4.3 is used to represent the uncertain

domains of the nodes A, B, C, D and E from their Joint Probability distribution
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Sunny

Rainy Cloudy

0.63

0.22 0.15

0.15

0.20

0.65
0.75

0.20

0.05

Figure 4.2 Graph representation of a 3-state Markov Chain

P (A,B,C,D,E). The directed arrows are drawn between nodes to describe their

conditionally (or unconditionally) independent relationships.

4.3 Bayesian Classifiers

Bayesian Classifiers are a kind of Machine Learning Classifiers that apply Bayes’

Rule to build a Probabilistic Model that predicts the class membership of a target output

given a set or subset of the features based on assumptions between the features. The

Probabilistic Model applies Bayes’ Rule to estimate posterior probabilities of the feature

from deriving prior probabilities and likelihood estimates.
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Figure 4.3 A Bayesian inference network illustrating the conditional probability of the

weather forecast

A key challenge in learning a Bayesian classifier from data is selecting an optimal

network structure that minimizes the posterior expected loss. This is equivalent to

maximizing the information gain in Decision Tree Algorithms in Equation (4.8).

For a given data set D with n independent and identically distributed (i.i.d.) events,

the goal of Bayesian Theorem is to estimate a prior probability distributions θ, where θ

is the probability for any of the events to occur prior to observing the data. Inferences

about θ (posterior distribution) can be made by considering its conditional distribution

after observing the data. We denote variables or attributes with x while their values are

denoted with x. The posterior distribution p(θ|x) for the observed data x ∈ (x1, . . . , xn)

can be expressed with Bayes’ rule as:

p(θ|x1:n) =
p(x1:n|θ)p(θ)

p(x1:n)
∝ p(x1:n|θ)p(θ) (4.6)
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p(θ|x) = p(x1|θ)× p(x2|θ)× · · · × p(xn|θ)× p(θ)

where p(θ) is the prior distribution before any data is observed, p(x|θ) is the likelihood that

is conditional on θ, and p(x) is the evidence or marginal likelihood of the observed data.

Its general expression is derived as:

P (x) =
n
∏

xi

P (xi|Pxi) (4.7)

where Pxi are the parents of node xi in Bayesian Network BN . Information Gain

(or Entropy Reduction) formula in Equation (4.8) is used to evaluate the influence each

attributes x contributes to affect the class probability.

log2 p(θ|x)− log p(θ) (4.8)

4.3.0.3 Parameter Learning

The principle aims of parameter learning in BN models is to estimate probability

distribution that explains constraints and uncertainty/subjective belief in the data given

available and newly observed evidence. This is a contradiction to the Generative models

that use a frequentist approach of estimating the data distribution for a fixed parameter θ

from the observed data.

4.3.0.4 Structure Learning

In the absence of expert knowledge, BN models can be used to learn the graph

structure of the network from the data. These learning tasks are primarily categorized into

three types with respect to the their algorithm design, namely Constraint-based, Score-

based and Hybrid Learners.
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Constraint-based Structure Learners apply conditional independence tests to build

the BN Structure through an Inductive-Causation Algorithm (Verma and Pearl, 1991).

Examples of such learners algorithms include the Grow-Shrink (GS) [54], Incremental

Association algorithms (IAMB) [55] and the Fast-Incremental Interleaved Incremental

Association algorithms (Fast-IAMB)[56].

Alternatively, Score-Based Structure Learner use heuristic greedy algorithms that

determine a fitness score used for implementing the BN. These include the Hill-Climbing

(HC) Algorithms [57] and a variation of HC known as Tabu Search (TABU) [58]. TABU

Algorithm addresses the limitation of a local optima experienced in the HC algorithm.

Hybrid Structure Learners; however, apply both Constraint-based and Score-based

learning techniques to reduce the searchable nodes within a BN structure, while optimizing

the network within the reduced structure. Examples of Hybrid algorithms include the Max-

Min Hill-Climbing (MMHC) Algorithm [59] and the Hybrid Parents and Children(HPC)

Algorithm [60].

4.4 Bayesian Model

We developed our Bayesian Model for a multivariate posteriors distribution with

Random Effect Factors in Equation (4.9) and adopted the Monte Carlo Markov Chain

(MCMC) algorithm proposed by Metropolis and Hastings [61] to estimate the posteriors.

yn = xn + ǫn (4.9)
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where ǫn ∼ normal(0,Σ) and a Probability Mass Function of;

F(y | θ) =































θ if y = 1, and

1− θ if y = 0.

We then modify our Model in Equation (4.9) by introducing the random factors from the

Feature Engineering process to finally attain a Probability Mass Function as;

F(y | x, α, β, γ) =
∏

1≤i≤n

F(yi | logit−1(αi + xi · β))

=
∏

1≤i≤n































logit−1(αi +
∑

1≤j≤m(xij · βj + γr)) if yi = 1, and

1− logit−1(αi +
∑

1≤j≤m(xij · βj + γr)) if yi = 0.

where x ∈ R
n·m are the input variables, α ∈ R

n is the intercept, βj ∈ R
m are the Fixed

effect factors, and γr ∈ R
k for k Random factors. The density calculations of the posteriors

estimates distributions returned MCMC Algorithm (see Figure 4.4) are used to further filter

our data by eliminating poorly performing factors.

In the study, these factors translate to the filter size, Bit Lengths, and the Alpha

Regression parameter α applied in Equation (3.20). We test the wellness of out model using

the Hamiltonian Monte Carlo algorithm. As can be seen in Figure 4.5, the divergences in

the the marginal energy distribution is indicated with a light blue tail thus establishing

whether our model had a challenge during sampling for estimated posteriors.
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Figure 4.4 Posterior distributions means of the proposed model using Monte Carlo Markov

Chain

Figure 4.5 Model performance diagnostic with the Hamiltonian energy divergences



CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Experimental Data

Ultrasound image data of benign and malignant thyroid lesion used in this work was

obtained from the Computer Imaging and Medical Applications Laboratory (CIM@LAB)

Figure 5.1. The CIM@LAB is a web-based open access dataset system developed the

National University of Colombia - Universidad Nacional de Colombia (UNC) and Instituto

de Diagnostico Medico (IDIME) [62]. A total of 388 individual patient cases with 400

diagnostic observation were used in this study. Each observation was stored in two formats,

namely:

• an uncompressed JPEG image, and

• an annotated XML file.

Each Patient’s case was annotated by expert radiologists and the information is

saved in an XML file. This information included age, gender, description of the thyroid

nodule, shape, margin, calcification, echogenicity and a Thyroid Imaging Reporting and

Data System (TI-RADS) scale described in Table 5.1. The TI-RADS lexicons 1, 2 & 3

were categorized as benign while 4a, 4b, 4c & 5 were categorized as malignant. New

cases with respective patient information (as an Ultrasound JPEG image and an XML file)

are upload to the database periodically. The images were captured with various ultrasound

56
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Figure 5.1 A screen shot of the computer imaging and medical applications laboratory

system[62].

equipment, namely a TOSHIBA Nemio 30, a TOSHIBA Nemio MX, and an Ultrasound

linear and convex transducers set at 12MHz. Hence, not at all the ultrasound scans from

every subject uses the same ultrasound machine.

We assumed the data followed a Gaussian distribution from the analysis in Figure

5.2 and scaled it to a standard normal distribution with a mean of 0 and a standard deviation

of 1. We partitioned the data into a 60/40 split for training set and testing sets. Random

samples non-overlapping image patch from a training set were then selected to be fitted
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Table 5.1 The Thyroid Imaging Reporting and Data System (TI-RADS) scale used to

describe thyroid lesions

Scale Description Classification

1 Normal thyroid Benign

2 Benign Follicular Nodule Benign

3 No suspicious lesion Benign

4a 1 suspicious lesion Malignant

4b 2 suspicious lesion Malignant

4c 3 or 4 suspicious lesions Malignant

5 5 or more lesions Malignant

to a Linear Regression model. The training set was encapsulated inside a 10-fold cross

validation procedure illustrated in Appendix B. Nine folds were fitted to the model and one

of the folds was retained for validation of the model. The cross-validation process was then

repeated 10 times. Estimated model coefficients at varying L1 and L2 configurations of an

Elastic Net regularization were structured into a matrix of filter kernels.

(a) A histogram of ultrasound pixel intensity for

thyroid cystic nodules

(b) Comparison of ultrasound pixel intensity for

different Thyroid Imaging Reporting and Data

(TIRAD) Categories

Figure 5.2 Ultrasound images of benign thyroid lesions.
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Examples of the XML format for benign and malignant thyroid lesion images are

shown in Figure 5.3.a and Figure 5.3.b and examples of the JPEG images for Benign thyroid

lesion and Malignant thyroid lesion used in this study are shown in Figure 5.4 and Figure

5.5 respectively.

(a) Benign follicular lesion (b) 3 or 4 suspicious Malignant lesions

Figure 5.3 Expert annotations of benign Figure 5.3.a and malignant Figure 5.3.b thyroid

lesions [62].

(a) Benign follicular lesion (b) Unsatisfactory follicular lesions [62].

Figure 5.4 Ultrasound images of benign thyroid lesions.
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(a) 3 or 4 follicular neoplasm (b) Malignant

Figure 5.5 Ultrasound images of malignant thyroid lesions [62].

5.2 Image Filter

We select a moving rectangular windows of a specified filter size (see Figure 5.6)

and slide it along regions in a 2-dimensional data set. The sampled regions are then

transformed into a 1-dimensional structured data set with the region-of-interest as the

class label (see Figure 5.7). We then estimate the kernel parameters from coefficients of a

Gaussian and Binomial Regression modal using the LASSO and Ridge regularization (see

Figure 5.8.a and Figure 5.8.b). We adopt the Elastic Net Regularization model and analyze

its weighted objective function when expressed as a Fourier Series (see Figure 5.8.c and

Figure 5.8.d).

5.3 Feature Selection

5.3.1 Kruskal-Wallis Test for Feature Selection

We performed partial dependence test of each selected Haralick features estimated

from the single class and multilabel class models Figure 5.9 below. The partial dependence

is the approximation of the relationship between a subset of the feature space. Feature

importance measures were also computed by applying the Boruta algorithm with the
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Figure 5.6 Target region with sliding filter window.

Figure 5.7 Transformation of image pixel data into a structured data set
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Random Forest (RF) classifier of 500 trees and
√
n randomly selected features for

each tree. On completion, the Boruta algorithm categorized the features into three

groups, namely: important, tentative, and unimportant in Figure 5.10. Using a Bayesian

network structure, when established conditional dependencies between Haralick features

and spatial-independent features (as seen in Figure 5.11), space-based features (as seen

in Figure 5.12), and moment-based features (as seen in Figure 5.13). We observed a

(a) LASSO regularization

(α = 1)

(b) Ridge regularization

(α = 0)

(c) Transformed image illustrating

detected filter edges

(d) Transformed image illustrating

detected filter edges

Figure 5.8 Illustration of kernel filter estimated and their respective filter transformation
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higher conditional dependency between Haralick and spatial-independent features than

with space-based and moment-based features.

5.3.2 Proposed Bayesian Network Structure (BNS)

In our model, we propose to extract Haralick texture features with the feature

extraction method introduced in Chapter 3. Components are a good way of explaining

the maximum variance using PCA. Prior to applying the PCA algorithm, we used

a Box Cox transformation to transform non-normal dependent variables into normal-

shape dependent variables for analysis of variance. We fitted our model onto multiple

classifiers (illustrated in Table 5.2) and analyzed the performance of our proposed feature

Figure 5.9 Mean features Kruskal measure of statistical significant
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Figure 5.10 Principal Component Importance levels for all features

Spatial-Independent Features

Haralick Features

Legend:

Class Label

Mean

Q05

SdVar

Con

Dva

Cor

F12

F13

Mad Q099

Q095

Q005

Q001

Sav Sva

Idm

Sen

Asm Ent Den

Figure 5.11 Bayesian network with Spatial-independent feature properties
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Table 5.2 Evaluation of feature preprocessing techniques fitted to classification models

PCA PCA Outliers Outliers

+ + + + PCA +

PCA Outliers Boruta Outliers Boruta Boruta Boruta

Random Forest 0.67 0.78 0.76 0.80 0.75 0.92 0.88

Linear Discrimant Analysis

(LDA)

0.67 0.70 0.77 0.81 0.73 0.72 0.70

Logistic Model (GLM) 0.60 0.62 0.81 0.76 0.74 0.82 0.77

K-NN (k=1) 0.87 0.87 0.78 0.70 0.61 0.57 0.67

K-NN (k=10) 0.67 0.70 0.66 0.71 0.79 0.72 0.71

Naive Bayes with Gaussian 0.78 0.70 0.67 0.87 0.79 0.82 0.83

Shape-based Features

Haralick Features

Legend:

Class Label

Area

Perimeter

Max Radius(φ)

Mean φ

Min φ

Sd φ

Dva

Cor F12

F13

Con

Var

Sav

SvaIdmSen

Asm Ent Den

Figure 5.12 Bayesian network with Shape feature properties

preprocessing techniques. The normality assumption is an important assumption for many

statistical techniques and is illustrated in the dimensionality reductions of the topmost

features with Kruskal measurements in Figure 5.9 and PCA components in Figure 5.10.
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Moment-based Features

Haralick Features

Legend:

Class Label

x-Centroid

SavVar

Con

Dva

Cor F12

F13

Eccentricity

y-Centroid

Major Axis

Sva

Idm

Sen

Theta Den Ent

Asm

Figure 5.13 Bayesian network of Moment feature properties

We later applied scaled entropy method by selecting a subset of the input variables

with the highest information gain that influences the cancer label. The Information Gain

IG(·) in Equation (5.1) is the expected value of the entropy reduction of an instance A

attended from learning a set of random variables S.

IG (S,A) = IE (S)−
n

∑

i=1

[

p
(

⊂Ai

S

)

× IE
(

⊂Ai

S

)]

(5.1)

where;

• IE (S) and IE
(

⊂Ai

S

)

is the Shannon Entropy of set S and a subset Ai of S

respectively, and

• p
(

⊂Ai

S

)

is the probability of the instance in a subset Ai of S → size
(

⊂
Ai
S

)

size(S)
.
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5.4 Model Validation

We applied filtering of the data with filters kernels constructed from the proposed

method and calculated gray-level co-occurrence matrices using the Haralick texture

features. A subset of features from images with a significant height to-width ratio were

then filtered and fitted to a classifier. A comparison of the proposed model with the BSIF,

Gaussian, and Laplacian of Gaussian extraction methods was performed using a Random

Forest and Recursive Partitioning classifiers on the training set.

The 40 split disjointed testing data set was then used to evaluate the proposed

model and the classification performance was used to evaluate it. We fitted the independent

testing data set to Recursive Partitioning and Random Forest Classifiers and evaluated their

performance by measuring the classification Accuracy and Specificity (1-False-Positive

Rate) against the Sensitivity (True-Positive Rate). The results of the experiments were

evaluated by :

Specificity =
TN

TN + FP
(5.2)

Sensitivity =
TP

TP + FN
(5.3)

Accuracy =
TP + TN

TP + TN + FP + FN
(5.4)

where TP is the true positive, TN is the true negative, FP is the false positive and FN is

the false negative.

Thus, Specificity is 1 the proportion of the number of benign samples that were

identified as malignant, while the Sensitivity is the proportion of malignant samples that

are correctly identified as malignant.
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5.4.1 Classifier Evaluation

The performance of a classifier can be evaluated by measuring it:

• Accuracy, it refers to how well a classifier predicts the correct class for unseen

examples (that is, those not considered for learning the classifier);

• Classification time, how long it takes the classification process to predict the class,

once the classifier has been trained;

• Training time, how much time is required to learn the classifier from data;

• Memory requirements, how much space in terms of memory is required to store the

classifier parameters;

• Clarity, if the classifier is easily understood by a person.

5.4.2 Entropy Uncertainty

Entropy is a measure of uncertainties in an image. Let f(x, y) be the image with

various gray levels. The normalized histogram Ci for an image of size (A×B) is given by:

Ci =
Pi

A× B
, and (5.5)

Shannon Entropy[63]:Se =−
R−1
∑

i=0

Cilog2Ci (5.6)

where R represents the number of grey levels present in the given image.

Renyi Entropy [63]:Re =
1

(1− φ)
log2

R−1
∑

i=0

Cφ
i (5.7)

where φ 6= 1, φ > 0.

Kapur Entropy [21], [63]:Ke =
1

σ − φ
log2

∑R−1
i=0 Cφ

i
∑R−1

i=0 Cσ
i

(5.8)

where φ = σ, φ > 0, σ > 0.

For α 6= 1; β > 0;α + β − 1 > 0, where α and β are diversity indices.
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When α = 0.5 and β = 0.7, we apply Yager’s Measure as:

Yager’s Measure [21], [63]:Ye =1−
∑R−1

i=0 |2Ci − 1|)
|A× B| (5.9)

where A and B are rows and columns of the given image respectively.

5.5 Results

The analyses of the results obtained below show the classification performance from

BSIF, Gaussian, and Laplacian filters against the proposed Adaptive Filter method in Figure

5.14. Before performing feature selection, we obtained an overall Accuracy of 75% with

the Random Forest classifier and 83.33% with k-NN classifier where k=10 as illustrated in

Table 5.3 and Table 5.4. After feature selection, we obtained an overall Accuracy of 92.88%

with Random Forest and 86.21% with Recursive Partitioning. The Area Under the Curve

in Figure 5.15.b was used to plot the Specificity and Sensitivity rates for the Random Forest

classifier model for different filter sizes. A threshold is a percentage cut-off point that is

used to make a decision when to classify a sample as positive (malignant). A low threshold

value could increase the probability of a positive class detection (high sensitivity) but

increase the false alarms (low specificity). Our model illustrates that a decision threshold

of 0.99 will archive a 99.64% Sensitivity and 90.23% Specificity measure. We obtained

the AUC to quantify the wellness of our model in distinguishing the two predictive values.

The Elastic-Net parameters α = 0, 0.1, · · · , 0.1 and λ = 0, 0.5× 102, · · · , 103 were used to

generate kernel values for filter sizes = (5×5), (7×7), · · · ,(17×17). The AUC of 99.00%

for the (13 × 13) Filter represents the probability for the model to correctly separate the

benign cancer samples from malignant cancer.
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Figure 5.14 Filter performances with the Random Forest and Recursive Partitioning

classifiers

Table 5.3 Evaluation of the proposed filter method fitted to various classifiers.

Extract: Gaus LoG

Features: Haralick Shape Moment Haralick Shape Moment

Random Forest 0.79 0.69 0.70 0.55 0.64 0.69

Recursive Partitioning 0.84 0.80 0.75 0.80 0.59 0.50

Naive Bayes 0.87 0.79 0.87 0.58 0.75 0.77

Logistic (GLM) 0.75 0.69 0.87 0.77 0.65 0.72

Support Vector Machine 0.48 0.47 0.42 0.57 0.61 0.68

k-NN (k = 10) 0.59 0.69 0.60 0.70 0.82 0.70

5.6 Discussion

Table 5.5 and Table 5.6 shows a summary of different CAD algorithms which

researchers have employed in the study of distinguishing the benign from malignant thyroid
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(a) Predictive performance of Random Forest classifier before feature selection
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(b) Predictive performance of Random Forest classifier after feature selection

Figure 5.15 Analysis plots above show the performance of the proposed filter method at

different filter sizes Figure 5.15.a before and Figure 5.15.b after feature selection.
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Table 5.4 Evaluation of the proposed filter method fitted to various classifiers (continued).

Extract: BSIF Proposed Method

Features: Haralick Shape Moment Haralick Shape Moment

Random Forest 0.87 *0.90 0.81 0.88 0.67 0.70

Recursive Partitioning 0.84 0.84 0.87 0.84 0.75 0.41

Naive Bayes 0.89 0.78 0.67 0.97 0.71 0.77

Logistic (GLM) 0.65 0.84 0.74 0.87 0.81 0.78

Support Vector Machine 0.67 0.42 0.47 0.68 0.72 0.58

k-NN (k = 10) 0.68 0.75 0.64 *0.96 0.68 0.86

lesions with ultrasound images. Most of the researchers extracted highly significant textural

features [20], [64]–[67] for the classification of the two classes (benign and malignant).

Statistical [66] and higher-order statistical [68] based features are also extracted from

the thyroid images. Discrete wavelet transform (DWT) is also a technique employed by

researchers to denoise the thyroid images before the extraction of features [64], [69].

Further, an integrated index, namely: the thyroid malignancy index [64], [65],

[69], and the thyroid clinical risk index [67], was formulated for a quick differentiation

of benign or malignant thyroid lesions using a range of numerical values. Also, lately,

a Convolutional Neural Network (CNN) model is implemented to distinguish benign

and malignant thyroid lesions [70]. CNN is one of the promising machine learning

techniques which requires the least pre-processing with no features extraction or selection

and classifier [71], [72],[73]. This model can self-learn the necessary representations for

the classification of the two classes (benign and malignant) through the different layers

in the CNN architecture [71]. However, Chi et al. [70] incorporated the RF classifier to

classify thyroid lesions. They did not fully utilize the benefits of a CNN model.
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Table 5.5 Selected studies on the CAD system for automated diagnosis of thyroid lesions

(benign and malignant) with ultrasound images.

Authors

(Year)

Number of

images
Techniques Performance

Ding et al.

(2011) [66]

Benign: 69

Malignant: 56

Statistical and textural

features, support vector

machine classifier

Acc = 93.60%

Sen = 94.60%

Spec = 92.80%

Acharya et al.

(2011) [69]

Benign: 400

Malignant: 400

DWT, KNN classifier,

thyroid malignancy index

Acc = 98.90%

Sen = 98.00%

Spec = 99.80%

HRUS

Benign: 400

Malignant: 400

HRUS

Acc = 100.00%

Acharya et al.

(2012a) [65]

CEUS

Benign: 400

Malignant: 400

Grayscale texture,

thyroid malignancy index
CEUS

Acc = 98.10%

Acharya et al.

(2012b) [64]

Benign: 400

Malignant: 400

DWT, texture features,

perceptron classifier,

thyroid malignancy index

Acc = 100.00%

Sen = 100.00%

Spec = 100.00%

Acharya et al.

(2012c) [68]

Benign: 400

Malignant: 400

Higher-order statistics

based, fuzzy classifier

Acc = 99.10%

Sen = 99.80%

Spec = 98.50%

Acharya et al.

(2016) [20]

Benign: 211

Malignant: 31

Gabor transform,

textural features,

decision tree classifier

Acc = 94.30%
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Table 5.6 Selected studies on the CAD system for automated diagnosis of thyroid lesions

(benign and malignant) with ultrasound images (continued).

Authors

(Year)

Number of

images
Techniques Performance

Raghavendra et al.

(2017) [67]

Benign: 211

Malignant: 31

Spatial gray level

dependence and

fractal texture features,

thyroid clinical risk index

Acc = 97.52%

Sen = 90.32%

Spec = 98.57%

Public: Public:

Benign: 71

Malignant:357

Acc = 98.29%

Sen = 99.10%

Spec = 93.90%

Private: Private:Chi et al.

(2017) [70]
Benign:129

Malignant: 35

Convolutional neural

network, random

forest classifier
Acc = 96.34%

Sen = 86.00%

Spec = 99.00%

Present work
Benign: 246

Malignant: 142

Adaptive Filter Method

with Haralick Texture Features,

Random Forest and

Recursive Partitioning Classifiers

Acc = 96.00%

Sen = 99.64%

Spec = 90.23%

Unlike traditional filtering methods that use heuristic methods of determining the

filter parameters, we propose an adaptive method by fitting a Linear Regression Model on a

subset of image pixel data and constructing the filter kernel from the coefficients estimated

from the fitted model.

From the best of the authors’ knowledge, no study has been done on the differen-

tiation of benign and malignant thyroid lesions with the CNN. Nevertheless, recently Ma

et al. [74] adopted the CNN model to automatically identify thyroid nodules in ultrasound
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images. They achieved a high detection performance of 98.51%. However, their proposed

CNN architecture could only pick up thyroid nodules from normal thyroid nodules. They

did not extend to further categorize their thyroid nodules into either benign or malignant

class. Therefore, the authors intend to adopt the CNN model to categorize the thyroid

lesions into benign or malignant class in future studies. The CNN model is not employed

in this work mainly due to the lack of images for both the benign and malignant thyroid

lesions. Big data is required to yield maximum performance with CNN model.

In this work, a novel feature engineering model for extracting texture descriptors to

differentiate the benign and malignant thyroid nodule. A high performance of 96.00%

accuracy, with a sensitivity and specificity of 99.64% and 90.23% respectively (see

Figure 5.16), is reported for filter size 13 × 13 in the differentiation of benign and

malignant thyroid using the proposed framework. Nevertheless, the proposed methodology

can be further improved for maximum detection accuracy and then be considered for

implementation in the hospitals. This CAD system can be easily installed in the hospitals as

it is portable and cost-effective. Also, hospitals can organize a mass screening for thyroid

nodules annually for an early detection so that the thyroid nodules can be treated at an

earlier stage. This can help to decrease the number of end-stage thyroid cancers in the

society.
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(a) Recursive Partitioning Classifier
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Figure 5.16 Model Performance of (Figure 5.16.a) Recursive Partitioning and (Figure

5.16.b) Random Forest Classifiers using Image Filters from size 5 to 17.



CHAPTER 6

CONCLUSIONS

In this work, a novel feature engineering model for extracting texture descriptors

to differentiate the benign and malignant thyroid nodule. A high performance of 96.00%

accuracy, with a sensitivity and specificity of 99.64%) and 90.23% respectively, is reported

for filter size 13 × 13 in the differentiation of benign and malignant thyroid using the

proposed framework. Nevertheless, the proposed methodology can be further improved for

maximum detection accuracy and then be considered for implementation in the hospitals.

This CAD system can be easily installed in the hospitals as it is portable and cost-effective.

Also, hospitals can organize a mass screening for thyroid nodules annually for an early

detection so that the thyroid nodules can be treated at an earlier stage. This can help to

decrease the number of end-stage thyroid cancers in the society.

6.1 Conclusions

It was observed that there was a boost in accuracies using the data-adaptive

partitioning method to generate the membership function. To validate this finding, we

compared our results with traditional non-fuzzy rule-based classification algorithms such

as ANN, SVM, Decision trees, Naı̈ve bayes, KNN, Rule induction, and ID3 (As shown

in table 4). We know that these classification techniques work on the assumption that

77
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all the features are independent of each other and the data is normally distributed.

The Independent Component Analysis (ICA) was used to obtain a class-conditional

representation to support this assumption. In ICA, multi-dimensional data is decomposed

into components that are maximally independent in the Negentropy sense, uncovering

disjoint underlying trends in the data.

6.1.1 Model Complexity

The direct computation of posterior probabilities in Bayesian Theorem is compu-

tationally expensive and an analysis of the complexity of a Bayesian Model is crucial for

the successful application in a Bayesian Rule-based Decision System. The complexity

of a simple problem can be determined by its ability to complete, thus deterministic or

non-deterministic. A deterministic problem, e.g. One-dimensional State Machine, has a

finite number of states and a known action to accept or halt a transition from one state to

another. The time complexity of such a task is determined by the number of steps needed

to complete it. This time is also not as polynomial time (P).

On the contrary, a non-deterministic problem requires a decision-making process

to determine the transition action to perform, i.e., accept, reject or halt a task. The time

complexity of a non-deterministic problem, referred to non-deterministic polynomial time

(NP), is determined by the maximum possible steps the problem to satisfactory complete,

given a defined set of input.

Other commonly referred complexity classifications for computational problems

are the NP-Hard and NP-Complete. NP-hard are problems where there exists an algorithm

for every NP problem that can reduce it in a polynomial time by a deterministic machine
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while an NP-complete problems are the intersection of NP and NP-Hard problems. Note

that all NP-Complete problems are NP Hard, but not all NP Hard problems are NP-

complete. Bayesian Network inference problems are generally NP-Hard that can be

Figure 6.1 The relationship between complexity of different classes

reduced in polynomial time by identifying the optimal Directed Acyclic Graph (DAG) by

using techniques like the Markov Chain Monte Carlo (MCMC) methods [53], Metropolis-

Hastings algorithm [61] and Gibbs Sampling[75].

6.2 Future Work

The work presented in this dissertation has is based on the description of natural

phenomena in the research of biomedical image diagnosis research and we recommend

further exploration in this study in the future. We identified that data mining techniques

for extracting domain relevant texture information from natural images are not domain

specific to the area of application. This opens up avenues for research into domain-

adaptive techniques as an alternative to the data-adaptive technique introduced in this

study. Secondly, the recent improvement in technology (both in software and hardware) has

made it possible to design more efficient computational models that are cost and resource
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effective. However, we noted that thyroid ultrasound image diagnostic techniques are not

as comprehensive as other image diagnostic techniques that use MRI and X-Ray due to

the limitation in thyroid diagnosis process noted in Figure 1.2. We envision research

in compatibility of traditional data mining models like the Bayesian Inference to Hyper

Computing Technologies like the used of Graphics Processing Unit (GPU).
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Algorithm 1: Ridge regression algorithm

Input : Independent variables : {x1, . . . ,xm}
Target variable: {y1, . . . , ym}

Output: Model predictions F (∗) = {F (x1), . . . , F (xm)}
1 Function Ridge(Y,X, γ):

2 Initialize A = γI;
3 b = 0;

4 For t = 1 to m Do:

5 Read new xt;

6 F (xt) = b
⊺
A

−1
xt (prediction) ;

7 A = A+ xtx
⊺

t ;

8 Read new yt;
9 b = b+ ytxt;

10 End

11 return F (∗)
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Algorithm 2: Cross validation procedure using k folds

Input : DataSet, k number of folds

Output: CVModels

1 Function CrossValidation(DataSet, k):

// Initialize Parameters:

// Randomly split dataset into k disjoint sets

2 SubSet[1, · · · , k]← DataSet ;

3 For i = 1→ k Do:

4 TrainSet← SubSet[1, · · · , i− 1, · · · , k] ;

5 TestSet← SubSet[i] ;

6 TrainModel← Train(TrainSet) ;

7 Classifier← Classify(TrainModel,TestSet) ;

8 Predict← ConfusionMatrix(Classifier) ;

9 Append(CVModels,Score(Predict));

10 End

11 return CVModels
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Algorithm 3: Discrete fourier transform (DFT) algorithm

Input : Data, flags

Output: DFTData

1 Function DFTMTX(N):

2 return Wx,y = e
j2πxy

N ;

3 Function IDFTMTX(N):

4 return Wix,y = e
−j2πxy

N ;

5 Program DFT2D(Data, flags):

6 M = number of rows in Data;

7 N = number of columns in Data;

8 if flags = 1 then

9 WM = DFTMTX(M )

10 WN = DFTMTX(N )

11 return WMfWN;

12 else

13 W
i

M
= IDFTMTX(M );

14 W
i

N
= IDFTMTX(N );

15 return 1
MN

W
i

M
f
i
WN;

16 end

17 return DFTData
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Algorithm 4: 2-D fast fourier transform algorithm

Input : A
Output: Â

1 Function FFT(k, ω):

2 Initialize: Â(x), Â(xE), Â(xO);
3 RESIZE(A(x), 2k)

4 if k == 0 then

5 Â(x) = A(x0);
6 else

7 A(xE) = A(x0), A(x2), · · · , A(x2k−2) ;

8 A(xO) = A(x1), A(x3), · · · , A(x2k−1) ;

9 Â(xE) = FFT(A(xE), k − 1, ω2) ;

10 Â(xO) = FFT(A(xO), k − 1, ω2) ;

11 end

12 forall i = 0→ 2k−1 do

13 Â(xi) = Â(xE
i ) + ωi · Â(xO

i ) ;

14 Â(xi+2k−1) = Â(xE
i )− ωi · Â(xO

i ) ;

15 end

16 return Â
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Algorithm 5: Image filter algorithm

input : Original Image Orig img(w × h), Filter Filt img(u× v)
output: Processes Image Conv img

1 Function Convolution(Orig img, F ilt img):

2 Conv img ← new: Image(w × h) ;

3 for y = 0 to h do

4 for x = 0 to w do

5 sum← 0;

6 for j = -v to v do

7 for i = -u to u do

8 sum← sum + Filt img(i, j)×Orig img(x+ i, y + j);
9 end

10 end

11 Conv img(x, y) = sum;

12 end

13 end

14 return Conv img
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Algorithm 6: Haralick image feature algorithm

input : Img Input image (width w, height h), ρ0 threshold condition

output: ImgOUT

1 Function Haralick(Img, F ilt img):

// 5× 5 masks is used to estimate coefficients k1 · · · k25
2 im← input image;

3 forall pixel i in image im do

4 neighbors← 5× 5 neighborhood of pixel i in image im;

5 for j = 1 · · · 10 do

6 kj ← Convolution(neighbors,mask[j]);

7 end

8 C2 ← k2
2
k4+k2k3k5+k2

3
k6

k2
2
+k2

3

, C3 ← k3
2
k7+k2

2
k3k8+k2k

2

3
k9+k3

3
k10

(
√

k2
2
+k2

3
)3

;

9 if |C2/3C3| ≤ ρ0 & C3 < 0 then

10 ImgOUT [i]← 255;

11 else

12 ImgOUT [i]← 0;

13 end

14 end

15 return ImgOUT
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Table G-1 Table of symbols used in this study.

Notation Description

Main Dataset S

Training Dataset Dtrain

Testing Dataset Dtest

Number of points of the data set S Ns

Number of points of the data set Dtrian Ntr

Number of points of the data set Dtest Ntest

One-dimensional Target Class Variable of size n Rows × 1
Column

Y

Two-dimensional Input Variable of size n Rows × p Columns X

Values corresponding to the Variables X and Y x, y

Input values at Column i xI,∗

Input values at Row j x∗,j

Set of edges of the BN E

Set of parameters of local pdfs for entire BN T

Number of edges of the BN m

Directed Acyclic Graph (DAG) of a BN G

Markov blanket of variable X B(X)

Set of direct neighbors of variable X in Bayesian network N(X)

Set of parents of xI,∗ Pai

Set of parents Pai of x∗,i for each member assignment j paI,j

Number of values of discrete variable x∗,i ri

Number of configurations of the set of parents of x∗i qi

Counts of a multinomial distribution with K bins c1

Parameters (bin probabilities) of a multinomial distribution p1

Penalty Parameters of the Logistic Regression Function λα

Coefficients of the Logistic Regression Function β
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Table G-2 Bayesian Theory notations

Notation Expression

Likelihood p(x|θ)
Prior Probability p(θ)

Posterior Probability p(θ|x)
Expectation p(x)

Posterior Predictive p(xn+1|x1:n)

Loss Function / Posterior Expected Loss ℓ(s, a)
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