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ABSTRACT In general object detection, scale variation is always a big challenge. At present, feature
pyramid networks are employed in numerous methods to alleviate the problems caused by large scale range
of objects in object detection, which makes use of multi-level features extracted from the backbone for
top-down upsampling and fusion to acquire a set of multi-scale depth image features. However, the feature
pyramid network proposed by Lin et al. adopts a simple fusion method, which fails to consider the fusion
feature context, and therefore, it is difficult to acquire good features. In addition, the fusion of multi-scale
features directly by traditional upsampling is prone to feature misalignment and loss of details. In this
paper, an adaptive feature pyramid network is proposed based on the feature pyramid network to alleviate
the foregoing potential problems, which includes two major designs, i.e., adaptive feature upsampling and
adaptive feature fusion. The adaptive feature upsampling aims to predict a group of sampling points of
each pixel through some models, and constitute feature representation of the pixel by feature combination
of sampling points, while adaptive feature fusion is to construct pixel-level fusion weights between fusion
features through attention mechanism. The experimental results verified the effectiveness of the method
proposed in this paper. On the public object detection dataset MS-COCO test-dev, Faster R-CNN model
achieved performance improvement of 1.2 AP by virtue of the adaptive feature pyramid network, and FCOS
model could achieve performance improvement of 1.0 AP. What’s more, the experiments also validated that
the adaptive feature pyramid network proposed herein was more accurate for object localization.

INDEX TERMS Object detection, feature pyramid network, adaptive feature pyramid network

I. INTRODUCTION

Image object detection algorithm will analyze a given input
image and output the category and accurate localization of
each object contained in the image. In recent years, with rapid
development of convolutional neural network, the object
detection algorithms [1]–[8] based on deep convolutional
neural network have made a great progress. At present, as the
basic task of computer vision, object detection algorithm has
been widely applied to the industry and our life. For example,
the booming automatic drive cannot identify surrounding
pedestrians, cars or other objects without object detection
techniques.

Detecting objects with different scales has always been
a big challenge to object detection. The traditional deep
convolutional neural network is not of scale invariance, but
is extremely sensitive to scale variation of objects. Affected
by scale variation of objects, the dense object detection

method based on pixel regression classification is prone to
imbalance of training. According to the matching strategy
[2] based on IoU, large objects have more positive sample
pixels than small ones, and such imbalance of pixels will
seriously affect the performance of detection algorithms. To
solve this problem, a number of algorithms [3], [5], [9]–[14]
propose to alleviate the problem of scale variation of objects
by multi-scale features. For example, Lin et al. proposed to
build a feature pyramid network [3] (referred to as FPN)
based on the backbone to provide multi-scale features, and
simultaneously allocate the objects of different scales to the
features at different levels, with the features at each level
responsible for processing the objects within a certain scale
range. This multi-scale pyramid features can alleviate the
impact imposed by object scale to a great extent. At present,
feature pyramid network has become an essential module of
object detection algorithms.
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However, the feature pyramid network widely applied to
object detection algorithms is still subject to certain defects.
It can acquire high-resolution features by upsampling of
high-level low-resolution features, and then fuse them with
low-level high-resolution features by means of addition. In
traditional upsampling, four similar points around each tar-
get point will usually be selected as sampling points, and
the features of target points will be acquired by linearly
combining the features of sampling points. This sampling
mode only depends on spatial relationship, and the points
at the boundary or some details are easily affected by other
unrelated pixels. Therefore, it is difficult to obtain fine fea-
tures by such upsampling mode which only relies on spatial
coordinates. In addition, deep convolutional neural network
is subject to multiple downsampling. When the features
after multiple downsampling are restored by upsampling, the
features are prone to misalignment, which will lead to dif-
ferences and even ambiguities between the features restored
by upsampling and primitive features without downsampling
during the fusion. Feature pyramid network employs simple
addition and fusion. For features from different levels of
the backbone, there are differences between features at two
levels to a certain extent, and direct addition will destroy
the representation of features at two levels. Moreover, direct
fusion is not conducive to the areas of some details, or the
detection of small objects and accurate object localization.

To solve the above-mentioned problems, adaptive feature
pyramid network (referred to as AdaFPN) is proposed in this
paper. Compared with the primitive feature pyramid network,
AdaFPN puts forward adaptive feature upsampling (referred
to as AdaUp) and adaptive feature fusion (referred to as AFF)
respectively from the perspective of feature upsampling and
multi-scale feature fusion. AdaUp proposed in this paper no
longer depends on spatial coordinates only, but also relies
on semantic information. It makes use of low-level high-
resolution features1 as spatial reference and combines them
with high-level low-resolution features2 to predict the coordi-
nate offset of a series of related sampling points of each target
point. In this way, (continuous) coordinates of these sampling
points can be achieved by virtue of coordinate offset and the
coordinates of target points. Then features of all sampling
points are calculated by bilinear interpolation, which are
combined as the features of target points finally. Compared
with the traditional interpolation upsampling method, AdaUp
is more flexible and can dynamically adjust the sampling
point location of interpolation based on input features and
spatial location. AFF, by reference to the idea of attention
mechanism, predicts the pixel-level fusion weight by virtue
of high-level and low-level features. Each pixel can dynami-
cally adjust the feature fusion ratio. For pixels in the area with

1Shallow high-level features usually come from the backbone shallow
level, which retain rich spatial information, but lack high-level semantic
information.

2High-level low-resolution features usually come from backbone high
level, which lead to low resolution due to multiple downsampling, but have
a large receptive field and rich context semantic information.

more details, low-level features are more needed to retain
the detail information, while for some other areas with high
judgmental priorities, more high-level semantic information
is required. Compared with direct addition of features at two
levels, adaptive fusion can take into account the features
of each pixel for weight allocation, thus providing more
accurate feature representation.

To validate the effectiveness of AdaFPN proposed here-
in, two classical object detection algorithms, i.e., Faster R-
CNN and FCOS [8], were employed in this paper as ex-
perimental benchmarks. Faster R-CNN, as a classical two-
stage algorithm, predicted the proposals containing objects
at the first stage, and extracted region features correspond-
ing to each proposal by RoI Pooling [1] for classification
and regression at the second stage. FCOS, a single-stage
algorithm, made use of only one stage for direct pixel-
level classification and regression prediction. In this paper,
FPN in Faster R-CNN and FCOS models was replaced by
AdaFPN for training and testing on open object detection
dataset MS-COCO [15]. Under this circumstance, AdaFPN
achieved performance improvement of 1.2 AP and 1.0 AP
respectively on Faster-RCNN and FCOS. In addition, it also
achieved more remarkable results in localization accuracy
and small object detection. WhatÂąÂŕs more, the experimen-
tal results fully validated the effectiveness of adaptive feature
pyramid network proposed in this paper. Moreover, a wealth
of confirmatory experiments were provided in this paper to
analyze and study the proposed method, with a view to that
the adaptive feature pyramid network proposed in this paper
could be widely applied in object detection or other computer
vision field.

II. RELATED WORK

A. IMAGE OBJECT DETECTION

Image object detection algorithms can be divided into two
categories, i.e., two-stage algorithms represented by Faster
R-CNN, and single-stage object detection algorithms repre-
sented by YOLO [6], [7], SSD [5] and RetinaNet [16]. Two-
stage algorithms usually predict object proposals at the first
stage, and extract features in the proposals by RoI Pooling
[1] / RoI Align [17] for classification and fine coordinate
regression at the second stage. Faster R-CNN [2], based
on Fast R-CNN [1], introduces RPN [2] to extract object
proposals, realizing end-to-end object detection. In addition,
FPN proposes a feature pyramid network for object scale
problem and further improves the performance of Faster R-
CNN. Mask R-CNN [17] increases segmentation branch on
the basis of Faster R-CNN, which realizes instance seg-
mentation and further improves the object detection perfor-
mance. Moreover, Libra R-CNN [18] further optimizes the
performance of Faster R-CNN by balancing training samples,
multi-scale features and training loss functions. WhatÂąÂŕs
more, Cai et al. proposed Cascade R-CNN [19], which could
continuously improve the localization accuracy of detection
frames by multiple cascaded R-CNN networks.

Compared with two-stage algorithms, single-stage algo-
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FIGURE 1: The feature pyramid network and its feature fusion block.

rithms directly perform pixel-level object detection and pre-
diction, and the most common methods are based on anchor
boxes, which usually define a series of anchor boxes with
different scales and shapes in each location in advance, and
then directly perform classification and coordinate regression
for each anchor box. SSD [5] is to deal with the scale problem
in object detection by multi-scale features of the backbone,
while RetinaNet [16] puts forward focal loss [16] to alleviate
the imbalance of anchor box classification. In recent years,
a number of researches have gradually abandoned anchor
boxes in consideration of computation overhead and tedious
hyperparameter setting. In addition, CornerNet [20] and Cen-
terNet [21], [22] get rid of anchor boxes with the help of key
points and heatmap prediction, thus performing more flexible
object detection. FCOS [8] can directly predict the distance
to four sides of the object box in each pixel prediction, and
simultaneously categorize each pixel. At present, FCOS has
been widely applied to various fields to solve problems in
object detection because of its simplicity and efficiency. In
this paper, a two-stage classical algorithm, Faster R-CNN,
and a single-stage classical algorithm, FCOS, are employed
for experimental validation.

B. FEATURE PYRAMID NETWORK

The problems of object scale and occlusion are great chal-
lenges to object detection in natural scenarios, and it is
difficult for the traditional convolutional neural network to
perform multi-scale object recognition and localization. In
such case, lots of methods make use of multi-scale features
of the backbone to deal with the objects of different scales.
Feature pyramid networks [3] proposed by Lin et al. can
fuse features of different scales step by step from top to
bottom, and assign objects of different scales to feature
maps of different resolutions. NAS-FPN can search the con-
nection mode [23] of features with different resolutions in
feature pyramid network by neural network search technol-
ogy. PANet [24] is added with a set of bottom-up feature
maps based on FPN, which further enhances the multi-scale
feature representation. Tan et al. proposed a more efficient

BiFPN [25] based on NAS-FPN. In addition, AugFPN [26]
proposes a feature pyramid network which can enhance the
fusion by recombining features of different scales. Zhao et

al. [27] introduced residual and Dilated convolution to further
expand the feature receptive field of feature pyramid network.
However, at present, FPN and the improved methods thereof
mainly focus on the connection mode and structure. Under
this circumstance, fine-grained operators (upsampling and
fusion) of FPN were newly designed and studied in this
paper, and the method proposed herein could still be applied
to NAS-FPN and BiFPN to further enhance the feature rep-
resentation ability.

III. METHOD PROPOSED IN THIS PAPER

In image object detection, scale variability of objects and
occlusion between objects are particularly prominent prob-
lems. At present, the major object detection methods will
build multi-level features with different resolutions by virtue
of feature pyramid networks (FPN), and assign objects of
different scales to the features with different resolutions. The
feature at each resolution will only deal with the objects
within a certain scale range. This method of constructing
multi-level features with different resolutions can effectively
alleviate the problems of occlusion and scale variation in
object detection.

A. FEATURE PYRAMID NETWORK

In object detection model, feature pyramid network is built on
the backbone, from which multi-level features with different
resolutions can be acquired, for example, the features with
four different resolutions from C2 to C5 in ResNet [28],
and multi-scale features of more semantic information con-
structed through upsampling and feature fusion. As shown
in Fig. 1, after features were extracted by the backbone
(blue hollow), feature pyramid network (blue solid) would
continuously improve the resolution of high-level features in
a top-down manner and fuse them with low-level features.
The primitive feature pyramid network performed feature
upsampling only by traditional interpolation method and
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FIGURE 2: The comparison between different upsampling methods: (a) traditional upsampling (b) adaptive upsampling.

multi-level feature fusion by addition. The fused feature Fo

can be acquired according to Eq. 1.

Fo = Upsample(Fl) + Fh (1)

where Fh denotes shallow high-resolution feature, and Fl

denotes deep low-resolution features.
However, because multi-scale features input by feature

pyramid network are derived from the features at different
levels of the backbone, and the backbone obtains image fea-
tures with different resolutions through multiple downsam-
pling, feature misalignment will be caused if these features
are fused by re-upsampling. High-level features are deep and
rich in semantic information, while low-level features are
mostly structural features. In such case, it is difficult to match
semantic information with the structure just by addition and
fusion after simple upsampling, thus destroying low-level
and high-level detail representation or context information.

In this paper, aiming at the primitive feature pyramid
network, adaptive feature upsampling and adaptive feature
fusion were proposed respectively from the perspective of
feature upsampling and feature fusion to alleviate the afore-
said problems, and a novel adaptive feature pyramid network
was constructed.

B. ADAPTIVE FEATURE UPSAMPLING

At present, some traditional methods are usually employed
for the upsampling of images and image features in computer
vision, for example, bilinear interpolation and nearest inter-
polation. As shown in Fig. 2(a), these interpolation methods
only depend on spatial constraint, and the features of each
new interpolation point rely on the corresponding features of
four nearby pixels. The locations of sampled pixels are fixed,
which only rely on the neighborhood relationship without
consideration of the input feature information.

In this paper, an adaptive upsampling method (referred to
as AdaUp) was proposed. The AdaUp no longer relied on
fixed coordinates for interpolation to acquire the features af-
ter upsampling, but adopted shallow high-resolution features
as spatial reference to predict the offset of sampling point
coordinates used for interpolation by virtue of the model. As
shown in Fig. 2(b), AdaUp predicted a series of sampling
points (N points) of each target (high-resolution features)
pixel by the model and features that need upsampling at
present. Compared with the traditional feature upsampling,
AdaUp is more flexible and can alleviate the problems of
misalignment and offset between features of different scales.

Given the deep low-resolution input feature Fl and shallow
high-resolution feature Fh for reference, AdaUp predicted
the relative coordinates △xy of a series of sampling points
based on the reference high-resolution features and low-
resolution features, as shown in Eq. 2. F(·) refers to the offset
prediction model, which is achieved by a simple convolution-
al network.

△xy= F(Fh, Fl) (2)

For each target pixel p of high-resolution features, coor-
dinate pi of each sampling point could be directly worked
out by acquiring the offset {△i

xy}i of N sampling points,

as shown in Eq. 3. The feature F̂h(p) of target pixels was
averaged from the features of each sampling point, as shown
in Eq. 4. Considering that the coordinates of sampling points
are continuous values rather than integer coordinates, cor-
responding features cannot be directly obtained from the
features. Bilinear interpolation was employed in this paper
to extract the features of each continuous sampling point,
and the output feature F̂h(p) was the high-resolution feature
acquired by AdaUp.

pi = p+ △
i
xy (3)
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F̂h(p) =
1

N

N∑

i=1

Bilinear(Fl(pi)) (4)

The structure of AdaUp was presented in Fig. 3. The input
low-resolution feature Fl was preliminarily scaled and con-
catenated with the reference high-resolution feature Fh to di-
rectly predict the offset of spatial coordinates of N sampling
points by virtue of a two-layer convolutional network, with
K = 2N . Then coordinates of the sampling points of each
target pixel were calculated according to Eq. 2 and Eq. 3,
and the corresponding features were extracted from low-
resolution feature Fl. Finally, a new high-resolution output
feature was achieved through combination. The number of
channels for feature input was 256, which would remain
unchanged after 1 × 1 convolution, and then the offset of
sampling points was predicted by 3× 3 convolution.

C. ADAPTIVE FEATURE FUSION

As mentioned in Section 2.1, FPN achieves feature fusion
between different levels by simple addition, but itÂąÂŕs
difficult to balance the context information between different
levels by simple addition and fusion. High-level features
often contain more semantic information, while shallow fea-
tures tend to be rich in detail information. Therefore, an
adaptive feature fusion (referred to as AFF) module based on
attention mechanism was put forward in this paper for pixel-
level adaptive feature fusion by context modeling of high-
level features and shallow features.

Given the input high-level feature Fh and low-level feature
Fl, convolutional network was employed for the prediction
of pixel-level fusion weight, as shown in Eq. 5, where w ∈
R

1×H×W refers to pixel-level weight and H(·) indicates the
weight prediction network.

w = H(Fh, Fl) (5)
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After the pixel-level fusion weight of high-level features
and shallow features was worked out, high-level features and
shallow features could be fused directly based on the weight
w, as shown in Eq. 6.

Fo = w · Fh + (1− w) · Fl (6)

Fig. 4 exhibited the structure of adaptive feature fusion
module, in which high-level features and low-level features
would be simply concatenated for the prediction of pixel-
level fusion weight. The prediction network adopted two con-
volutional layers and Sigmoid activation function to predict
the pixel-level weight. Finally, the ultimate fusion output
features were acquired by weight addition and two-level
features respectively.

D. ADAPTIVE FEATURE PYRAMID NETWORK

Combining the adaptive feature upsampling and adaptive fea-
ture fusion modules as proposed above, the adaptive feature
pyramid network was as shown in Fig.5. The upsampling
and fusion structures of primitive feature pyramid network
were replaced by adaptive upsampling (AdaUp) and adaptive
feature fusion (AFF) respectively. The pyramid network was
still constructed from top to bottom. In the adaptive upsam-
pling module, low-level high-resolution features served as
spatial reference features to provide spatial priors for high-
level low-resolution features. Then AFF was used to achieve
adaptive fusion between the features after upsampling and
low-level high-resolution features, and finally, multi-scale
features were output for subsequent detection tasks.

IV. EXPERIMENT

In this section, experimental validation will be performed on
open object detection dataset MS-COCO [15], and ablation
experiment will also be conducted to prove the effectiveness
of the method proposed in this paper.

A. MODEL IMPLEMENTATION

In this paper, two major object detection models, namely,
a two-stage detection model – Faster R-CNN and a single-
stage detection model – FCOS, were employed for experi-
mental validation. Besides, PyTorch framework 3 and open-
source object detection framework Detectron2 4 were adopt-
ed to implement the method proposed in this paper. The
number of sampling points for adaptive upsampling was 4,
and the subsequent ablation experiment would be performed
to further analyze the influence of the number of sampling
points on model performance. On the basis of Faster R-
CNN and FCOS, the original FPN was directly replaced by
the newly proposed AdaFPN, while other model structures
remained unchanged.

3PyTorch: https://pytorch.org/
4https://github.com/facebookresearch/detectron2

B. DATASET AND EVALUATION CRITERIA

In this paper, experiments were conducted on MS-COCO
dataset, which contained 118,000 training images and object-
level category annotations and object box annotations, as well
as 5,000 validation set images and 20,000 test set images. For
test set, the test results should be submitted to the evaluation
website for evaluation. All models employed in this paper
were trained on MS-COCO training set, and evaluated on val-
idation set and test set. For model evaluation, standard object
detection index AP was adopted, which was the average value
of AP under 10 IoU thresholds ranging from 0.5 to 0.95. APS,
APM and APL respectively represented the detection AP of
small objects, medium objects and large objects.

C. EXPERIMENT SETTING

All models were trained on 4 NVIDIA GPUs by synchro-
nized SGD, with 4 images on each GPU. Following the
training strategies [3], [8] commonly used in detection mod-
els, initial learning rates of 0.02 and 0.01 were employed
for Faster R-CNN and FCOS respectively. The training
went through 90,000 iterations, and the learning rates were
reduced at the ratio of 0.1 in the 60,000th and 80,000th
iterations. The backbone ResNet [28] adopted ImageNet [30]
pre-training model, and froze all BN layers to avoid affecting
the stability of training due to excessively small batch, while
other weights were all randomly initialized. Input images
would all be scaled to 800 pixels at the short edge and no
more than 1,333 pixels at the long edge. In addition, random
flip was used as data enhancement in the training process. All
models in the experiments herein applied the same training
strategy and experiment setting.

D. COCO EXPERIMENTAL RESULTS

In this paper, the improved FPN models, i.e., Faster R-CNN
and FCOS, were compared with public methods at first.
As shown in Table 1, the improved FPN proposed in this
paper achieved significant improvement on the two major
detection models, and had performance improvement of 1 AP
on MS-COCO dataset. In addition, the localization accuracy
index AP75 and small object detection were also significantly
improved, which validated the effectiveness of the improved
FPN method proposed herein. By adaptive feature upsam-
pling, better resolution features could be achieved, while
by adaptive feature fusion, context fusion between features
could be performed better.

E. ABLATION EXPERIMENT

In order to validate the performance and function of each part
of the model, an ablation experiment was further conducted
on MS-COCO dataset to validate the influence of each mod-
ule and parameter setting on model performance. Training
settings were consistent with those before, and the ablation
experiment was performed on Faster R-CNN.
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FIGURE 5: The structure of the Adaptive Feature Pyramid Network

TABLE 1: Experimental results on MS-COCO test-dev for models proposed in the paper.

Modes Feature Network AP AP50 AP75 APS APM APL

DSSD [29] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet [16] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

Mask R-CNN [17] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2

Libra R-CNN [18] ResNet-50-FPN 38.7 59.9 42.0 22.5 41.1 48.7

Libra R-CNN [18] ResNet-101-FPN 40.3 61.3 43.9 22.9 43.1 51.0

Faster R-CNN ResNet-50-FPN 37.8 58.7 40.6 21.3 41.0 49.5

Faster R-CNN ResNet-50-AdaFPN 39.0 58.8 41.8 22.6 42.3 50.0

FCOS ResNet-50-FPN 39.1 57.9 42.1 23.3 43.0 50.2

FCOS ResNet-50-AdaFPN 40.1 58.6 43.2 24.1 43.6 50.6

1) Analysis on Each Module of AdaFPN

In order to fully understand the influence and function of
each part of AdaFPN, the performance of AdaUp and AFF
on Faster R-CNN was validated respectively through exper-
iments. Table 2 presented the results of whether there were
AdaUp and AFF in the FPN on Faster R-CNN. Adding
FPN to the primitive FPN could achieve performance im-
provement of 0.4AP, while using AFF could achieve per-
formance improvement of 0.7AP. It’s worth noting that the
improvements of AdaUp and AFF were all embodied in
localization accuracy (AP75), which could prove that they
were conducive to more accurate object localization. AdaUp
adaptively searched more accurate upsampling points to ac-
quire finer high-resolution feature representation, while AFF
calculated pixel-level weights by the relation between multi-
level features, which enhanced the representation of FPN
multi-scale features at the fusion level. As shown in Table 2,
AdaUp and AFF were employed simultaneously, that is,
compared with the primitive FPN, AdaFPN proposed in this
paper achieved performance improvement of 1.0 AP.

TABLE 2: Experimental results of Faster R-CNN on MS-COCO
for different modules in AdaFPN.

AdaUp AFF AP AP50 AP75

37.7 58.6 40.7

X 38.1 58.7 41.2

X 38.4 58.7 41.3

X X 38.7 58.8 41.5

2) Number of Sampling Points

Nearest neighbor interpolation and bilinear interpolation em-
ploy 1 and 4 sampling points respectively for interpolation,
and there is even bicubic interpolation which takes samples of
16 pixels. Compared with these methods, AdaUp is of more
flexible choices, and can set different numbers of sampling
points through hyperparameter. In order to further analyze
the influence of different sampling points on AdaUp perfor-
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TABLE 3: Experimental results of Faster R-CNN on MS-COCO
for different numbers of sampling points

Points AP AP50 AP75

1 37.3 57.8 40.3

2 37.7 58.5 40.8

4 38.1 58.7 41.2

8 38.2 58.7 41.3

mance, experimental validation was performed in this paper
for different numbers of sampling points, and the number
of sampling points for AdaUp was adjusted to 1, 2, 4 and
8 respectively for training and testing on MS-COCO. Table 3
indicated the influence of AdaUp on the model with different
numbers of sampling points. In case the number of sampling
points was 1, the model would drop by 0.4 AP compared
with the baseline model, and the adaptive interpolation effect
was not good at this time. Nevertheless, when the number
of sampling points was increased gradually, the performance
would be gradually improved. When 4 sampling points were
adopted, the model could achieve performance improvement
of 0.4 AP. Therefore, more sampling points were conducive
to each pixel to find relevant features as much as possible,
thus improving the interpolation accuracy, resulting in stable
performance gains and improving the localization accura-
cy to a certain extent. Although adopting more sampling
points would bring about performance gains, it would also
result in too much computation overhead. In consideration of
the performance improvement and computation overhead, 4
sampling points were adopted in this paper for upsampling.

3) Comparison of Upsampling Methods

To further validate the comparison between AdaUp inter-
polation method and other methods, upsampling methods
in the primitive FPN were directly modified in this paper,
namely, Bilinear, Nearest and AdaUp proposed herein. Ta-
ble 4 presented the results of FPN using different upsampling
methods. Bilinear and Nearest were traditional interpolation
methods, which completely depended on spatial coordinates
for interpolation upsampling, and their performance was
almost the same on MS-COCO. However, the adaptive inter-
polation for AdaUp achieved significant improvement, which
was embodied in localization accuracy. Compared with the
traditional interpolation methods, AdaUp can automatically
capture local context information and find a group of related
feature points for each interpolation point, thus achieving
better multi-scale feature representation.

F. EXPERIMENTAL RESULTS OF DIFFERENT

BACKBONES

Table 5 exhibited the performance gains of different back-
bones. Two commonly used backbones, i.e., ResNet-50 and
ResNet-101, were employed in this paper for experimental
validation. As shown in Table 5, the adaptive feature pyramid

TABLE 4: Experimental results on MS-COCO for different Up-
sampling methods in FPN.

Upsample AP AP50 AP75

Bilinear 37.6 58.6 40.6

Nearest 37.7 58.6 40.7

AlignUp 38.1 58.7 41.2

TABLE 5: Experimental results on MS-COCO for different back-
bones.

AdaFPN Backbones AP AP50 AP75

ResNet-50 37.7 58.6 40.7

X ResNet-50 38.7 58.8 41.5

ResNet-101 39.4 60.3 43.2

X ResNet-101 40.5 60.8 44.1

network proposed herein achieved significant and steady
performance improvement under both the two backbones,
but had better object detection performance under the larger
backbone ResNet-101.

G. VISUALIZATION EXPERIMENTAL RESULTS

To further validate the effect of the method proposed in this
paper, Fig. 6 presented the visualization effect of Faster R-
CNN model based on AdaFPN. The first row showed object
detection results, in which each object box could be accurate-
ly located to each object and classified. The second row pre-
sented pixel-level fusion weights of features at levels P4 and
P5 in AdaFPN. If the color of each pixel is darker (blue), it
means that this point needs low-level high-resolution features
(P4), that is, more detail information. However, if the color
is lighter (yellow), it means that some high-level semantic
information (P5) is more needed here. Similarly, the third row
exhibited the fusion weights of features at levels P3 and P4.
According to the two sets of feature fusion weights, it can be
verified that for some boundaries, occlusions or areas with
too many small objects, there will be more dark color and
detail features will be more important, while in some smooth
areas, semantic information will be more critical.

V. CONCLUSION

In this paper, the novel adaptive feature upsampling and
adaptive feature fusion are proposed respectively for feature
upsampling and multi-scale feature fusion of the primitive
feature pyramid network to enhance feature representation of
the primitive FPN. In addition, the proposed adaptive feature
pyramid network is embedded into the major object detection
models Faster R-CNN and FCOS. The method proposed in
this paper goes through experimental validation on the open
dataset of object detection, and achieves significant improve-
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FIGURE 6: The visualization results of the proposed method.

ment compared with the original design. In the following
work, the adaptive feature upsampling and adaptive feature
fusion will be studied and improved continuously to further
improve the model performance, and an attempt will be made
to apply them to other computer vision tasks.
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