
2798 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 24, NO. 10, OCTOBER 2020

Adaptive Feature Selection Guided Deep Forest
for COVID-19 Classification With Chest CT
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Abstract—Chest computed tomography (CT) becomes
an effective tool to assist the diagnosis of coronavirus
disease-19 (COVID-19). Due to the outbreak of COVID-19
worldwide, using the computed-aided diagnosis technique
for COVID-19 classification based on CT images could
largely alleviate the burden of clinicians. In this paper, we
propose an Adaptive Feature Selection guided Deep Forest
(AFS-DF) for COVID-19 classification based on chest CT
images. Specifically, we first extract location-specific fea-
tures from CT images. Then, in order to capture the high-
level representation of these features with the relatively
small-scale data, we leverage a deep forest model to learn
high-level representation of the features. Moreover, we pro-
pose a feature selection method based on the trained deep
forest model to reduce the redundancy of features, where
the feature selection could be adaptively incorporated with
the COVID-19 classification model. We evaluated our pro-
posed AFS-DF on COVID-19 dataset with 1495 patients of
COVID-19 and 1027 patients of community acquired pneu-
monia (CAP). The accuracy (ACC), sensitivity (SEN), speci-
ficity (SPE), AUC, precision and F1-score achieved by our
method are 91.79%, 93.05%, 89.95%, 96.35%, 93.10% and
93.07%, respectively. Experimental results on the COVID-
19 dataset suggest that the proposed AFS-DF achieves
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superior performance in COVID-19 vs. CAP classification,
compared with 4 widely used machine learning methods.

Index Terms—COVID-19 classification, deep forest,
feature selection, chest CT.

I. INTRODUCTION

S
INCE Decemeber 2019, the outbreak of coronavirus

disease-19 (COVID-19) [1], [2] has infected more than

20 million people worldwide, and causing more than 800,

000 deaths. World Health Organization (WHO) has declared

the COVID-19 as a global health emergency on January 30,

2020 [3]. The chest computed tomography (CT) has shown

to be useful to assist clinical diagnosis of COVID-19 [4]–[9].

However, the rapid growth of COVID-19 patients results in the

shortage of the clinicians and radiologists. It is highly desired

to develop automatic methods for computer-aided COVID-19

classification with chest CT images.

A few machine learning methods have been proposed for

COVID-19 classification using chest CT images. For exam-

ple, [10] employs a logistic regression method for COVID-19
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Fig. 1. Pipeline of the proposed adaptive feature selection guided deep forest for COVID-19 vs. CAP classification. We first extract the location-
specific features from chest CT images. Then, the proposed AFS-DF is leveraged to train the classifier based on the location-specific features.
Finally, based on the location-specific features, the trained AFS-DF is adopted for COVID-19 identification task.

classification by using clinical and laboratory features. [11],

[12] use random forest model with the handcrafted features

for COVID-19 classification. Moreover, some deep learning

based methods are proposed for the diagnosis of COVID-19.

For instance, [13] leverages a deep learning method to learn

the feature representation of the chest CT image, and then uses

the learned features for COVID-19 classification by combining

decision tree and Adaboost algorithm. In addition, [14] employs

an end-to-end network to map the CT images to label space for

COVID-19 disease identification.

In summary, the existing machine learning methods for

COVID-19 diagnosis are mainly based on the handcrafted fea-

tures or the learned image representation by deep neural net-

works. However, simply adopting handcrafted features cannot

fully utilize the high-level information for COVID-19 classi-

fication, while the features learned by neural networks require

great effort for parameter tuning with a small amount of medical

image data.

To this end, in this paper, we propose a novel adaptive feature

selection guided deep forest method that takes advantage of the

high-level deep features with small number of medical image

data for the classification between COVID-19 and CAP. Specif-

ically, as shown in Fig. 1, we first extract the location-specific

features from the chest CT image. Then, a deep forest model [15]

is introduced to learn the latent high-level representations of

these features, which can effectively describe the high-level

information within the extracted location-specific features by

using a small-scale training data. Intuitively, the use of the

feature selection could promote the performance of the classifi-

cation task. Hence, in our study, we also introduce a task-driven

feature selection method to adaptively reduce the redundancy

of features. In particular, the feature selection operation will

discard a portion of unimportant features based on the feature

importance which is calculated from trained forests in each deep

forest layer. Hence, the feature selection and classifier training

are adaptively incorporated into a unified framework. Finally,

the trained adaptive feature selection guided deep forest is used

for COVID-19 prediction.

The major contributions of this paper are three-fold. First, a

deep forest is leveraged to learn the high-level feature repre-

sentation of the location-specific features from chest CT for the

diagnosis of COVID-19. Second, we propose an adaptive feature

selection method to adaptively select the discriminative features

for the diagnosis of COVID-19. Third, the proposed method is

evaluated on the collected COVID-19 dataset, which consists of

1495 COVID-19 patients and 1027 CAP patients. Experimental

TABLE I
DEMOGRAPHIC INFORMATION OF THE STUDIED 2522 CHEST CT SCANS

FROM COVID-19 DATASET. M/F: MALE/FEMALE

results demonstrate that our method achieves superior classifi-

cation performance than the comparison methods.

The rest of the paper is organized as follows. We first introduce

the materials used in this study and the proposed adaptive feature

selection guided deep forest in Section II. Then, in Section III,

we present experimental settings and results. In Section IV, we

study the influence of parameters in the proposed methods and

present the limitations of the current study as well as possible

future directions. We finally conclude this paper in Section V.

II. MATERIALS AND METHOD

In this section, we first introduce the dataset used in this

study. Then, we present the feature extraction procedure for the

location-specific features. Next, we describe the proposed adap-

tive feature selection guided deep forest (AFS-DF). Finally, we

provide the implementation details for our proposed AFS-DF.

A. Materials

A total of 2522 chest CT images are used in our study, pro-

vided by China-Japan Union Hospital of Jilin University, Ruijin

Hospital of Shanghai Jiao Tong University, Tongji Hospital

of Huazhong University of Science and Technology, Shanghai

Public Health Clinical Center of Fudan University, Hangzhou

First People’s Hospital of Zhejiang University, and Sichuan

University West China Hospital. In this dataset, 1495 cases

are from the confirmed COVID-19 cases diagnosed by positive

nucleic acid testing. The other 1027 case are from CAP patients.

COVID-19 images are acquired from Jan. 9, 2020 to Feb. 14,

2020, and CAP images are obtained from Jul. 30, 2018 to Feb.

22, 2020. The demographic information of these 2522 subjects

is summarized in Table I.

All patients underwent chest CT scans with thin section.

Specifically, CT scanners include uCT 780 from UIH, Optima

CT520, Discovery CT750, LightSpeed 16 from GE, Aquilion

ONE from Toshiba, SOMATOM Force from Siemens, and

SCENARIA from Hitachi. CT protocol includes: 120 kV, re-

constructed slice thickness ranging from 0.625 to 2 mm, with
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breath hold at full inspiration. All images are de-identified

before sending for analysis. The study are approved by the

Institutional Review Board of participating institutes. Written

informed consent is waived due to the retrospective nature of

the study.

We evaluate the COVID-19 vs. CAP classification using 5-

fold cross-validation on the collected chest CT images. Specifi-

cally, all subjects are randomly partitioned into 5 subsets (the first

four subsets consist of 504 subjects, respectively. The last subset

contains 506 subjects). Each subset is sequentially selected as

the testing set (containing 504/506 subjects), while the remain-

ing four subsets (containing 2018/2016 subjects) are treated as

training set. The training set is further divided into five subsets

for 5-fold cross-validation to choose the hyper-parameters in the

proposed method and the competing methods. Then, we use all

training data with chosen hyper-parameters to train the model.

Finally, we test the trained model on the testing data (containing

504/506 subjects).

B. Feature Extraction

Similar to [12], we extract the location-specific features (i.e.,

infection locations and spreading patterns) to represent the chest

CT images for diagnosis of COVID-19. Specifically, the chest

CT images are first automatically segmented into infected lung

regions and lung fields bilaterally by using VB-Net [16]. The

infected lung regions are mainly related to mosaic sign, ground

glass opacity (GGO), lesion-related signs (air bronchogram) and

interlobular septal thickening. The lung fields include left lung,

right lung, five lung lobes, and eighteen pulmonary segments.

Then, we extract four kinds of location-specific handcrafted

features, including volume, infected lesion number, histogram

distribution and surface area from chest CT images. Meanwhile,

we also extract the radiomics features for describing the CT

images. More details are as follows.

1) Volume features: Based on the segmented infected lung

regions, we extract the total volume of infected region,

and then calculate the percentage of the infected region

of the whole lung. Meanwhile, according to the lung field

segmentation results, we further extract the volume and

percentage in each lobe and each pulmonary segment,

respectively. Since there are evidence that pneumonia

caused by COVID-19 more likely occurs in both right and

left lungs, we also calculate the infected lesion difference

as well as the percentage difference between left and right

lungs.

2) Infected lesion number: In comparison to CAP, most of

the COVID-19 infections encompass bilateral lungs with

multifocal involvement [6], [7], and COVID-19 generally

has concentrated infection lesions while CAP shows small

in volume and patchy in distribution [17]. Therefore, we

calculate the features of the total number of infected

regions in the bilateral lungs, lung lobes, and pulmonary

segments, respectively.

3) Histogram distribution: The predominant chest CT find-

ings show that bilateral and peripheral GGO and consoli-

dation are a radiologic hallmark of COVID-19 [18], [19].

GGO is a pattern of hazy increased lung opacity with

preservation of bronchial and vascular margins, whereas

consolidation is characterized by a homogeneous increase

in lung parenchymal attenuation that obscures the margins

of vessels and airway walls on CT images [17]. To extract

the intensity distribution of the infected regions in chest

CT images, we calculated the histogram features of the

infected regions.

4) Surface area: In previous study [20], it has been found

that COVID-19 had a predominate distribution in the

posterior and peripheral lung, and the abnormalities of

lung parenchyma eventually spread to the central area

and bilateral upper lobes [6]. Therefore, we constructed

the infection surface as well as the lung boundary sur-

face. We further calculated the distance of each infection

surface vertex to the nearest lung boundary surface, and

categorized them into 5 ranges, i.e., 3, 6, 9, 12 and 15

voxels. For each feature, the number of infection surface

vertices within each range of distances to the lung wall

is calculated. Furthermore, the percentage of infection

vertex number against the number of whole infection

surface vertices in each range is also considered.

5) Radiomics features: Radiomics features extracted from

infected lesions, including intensity features (e.g., av-

erage gray level intensity, range of gray values) and

texture features (e.g., gray level co-occurrence matrix,

gray-level run-length matrix, gray-level size-zone matrix,

and neighborhood gray-tone difference matrix) are used

in our study.

Besides, we also adopt the age and gender into the location-

specific features for the diagnosis of COVID-19. In summary,

a total of 239 dimensions features are used in our study. More

details of these features are presented in [12].

C. Adaptive Feature Selection Guided Deep Forest

As mentioned in Section II-B, we extract location-specific

features from the chest CT images. But, simply using these fea-

tures cannot adequately describe the high-level information for

COVID-19 classification. In this work, we propose an adaptive

feature selection guided deep forest to learn the latent high-level

representation of the extracted location-specific features with

adaptive task-driven feature selection process for diagnosis of

COVID-19. The architecture of proposed adaptive feature se-

lection guided deep forest is shown in Fig. 2.

As shown in Fig. 2, each layer of proposed adaptive feature

selection guided deep forest consists of N independent random

forests and a feature selection unit. Here, each random forest pro-

duces a probability distribution of the COVID-19 and CAP (the

yellow rectangle in Fig. 2). Then, the N probability distribution

vectors of the COVID-19 and CAP are concatenated with the

input feature vector. To reduce the redundancy of the features,

we further perform an adaptive feature selection operation. In

particular, for each trained random forest, we calculate the

feature importance for each feature within the input feature

vector. Thus, we calculate the overall feature importance ci for

i-th feature as follows,

ci =
1

N

N∑

n=1

ci,n (1)
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Fig. 2. Overview of the proposed adaptive feature selection guided deep forest. Each layer of the proposed adaptive feature selection guided
deep forest consists of N random forests and an adaptive feature selection unit.

where ci,n is the feature importance for i-th feature in n-th

random forest. Herein, we discard the features with low feature

importance by a specific ratio based on the calculated feature

importance. Hence, the feature selection and classifier training

are adaptively incorporated into a unified framework. Thus, the

selected feature vector as the input of the next layer. Finally, we

cascade multiply layers to learn the deep discriminative feature

representation for COVID-19 classification task.

D. Implementation

As shown in Fig. 2, in the proposed adaptive feature selec-

tion guided deep forest, we employ a Xgboost [21] with 20

trees, a random forest [22] with 20 trees, and two extremely

randomized trees [23] with 20 and 50 trees, respectively. We

empirically set the feature discard ratio as 0.2 in our study. In the

training stage, we feed the extracted location-specific features to

the adaptive feature selection guided deep forest. The training

set is further divided to 5 subsets for 5-fold cross-validation.

Thus, the numbers of cascade layers and selected features are

automatically determined by using the cross-validation strategy.

Hence, the adaptive feature selection guided deep forest can

adaptively train the feature selection and classification model

in a task-driven manner. Notably, the AFS-DF is trained in a

layer-to-layer manner.

In the testing stage, we also feed the location-specific fea-

tures of test subject to the trained adaptive feature selec-

tion guided deep forest model. In the last layer, each for-

est will produce a probability distribution p for the identifi-

cation of COVID-19. For each subject, we use the follow-

ing equation to ensemble the predicted value for diagnose of

COVID-19,

p(l = c) =
1

N

N∑

n=1

p(l = c|n) (2)

where p(l = c|n) is the probability of subject belongs to cat-

egory c (i.e., COVID-19 or CAP) that is provided by the n-th

forest in last layer. Finally, we use the MAP criterion to obtain

the label for each subject, i.e., argmaxcp(l = c)

III. EXPERIMENT

In this section, we first illustrate the competing methods and

experimental settings in our study. Then, we present experimen-

tal results achieved by different methods on the chest CT images

with 1495 patients of COVID-19 and 1027 patients of CAP.

A. Competing Methods

In our experiments, we compare our proposed AFS-DF with

the following four widely adopted machine learning methods.

1) Logistic Regression (LR): A Logistic regression method

is employed for COVID-19 classification by using the

extracted location-specific features.

2) Support Vector Machine (SVM): The extracted

location-specific features are fed into the SVM [24] clas-

sifier by using radial basis function kernel, and C = 1.0
via cross-validation.

3) Random Forests (RF): The random forest classifier is

applied on the location-specific features for COVID-19

classification, and the number of trees in random forest is

set as 500 via cross-validation.

4) Neural Networks (NN): In this method, a fully connected

neural network is employed for COVID-19 classification.

Specifically, we empirically set the mini-batch size as 64,

the number of epochs as 100, and the learning rate as

0.001.

B. Experimental Settings

For all extracted location-specific features from chest CT

images, we first perform the normalization with center 0 and

deviation 1 for each feature. In order to measure the classification

performance of different methods, six evaluation metrics are

adopted, including classification accuracy (ACC), sensitivity

(SEN), specificity (SPE), the Area Under the receiver operating

characteristic Curve (AUC) [25], precision and F1-score. Here,

the ACC, SEN, SPE, precision and F1-score are defined as,

ACC =
TP + TN

TP + TN + FP + FN
(3)

SEN =
TP

TP + FN
(4)
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TABLE II
PERFORMANCE OF COVID-19 VS. CAP CLASSIFICATION ACHIEVED BY LR, SVM, RF, NN AND AFS-DF. THE TERMS a AND b IN “a± b” DENOTE THE MEAN

AND STANDARD DEVIATION, RESPECTIVELY

SPE =
TN

TN + FP
(5)

Precision =
TP

TP + FP
(6)

F1-score =
2× Precision × SEN

Precision + SEN
(7)

where TP, TN, FP and FN in Eqs.3–5 represent True Positive,

True Negative, False Positive, and False Negative, respectively.

C. Classification Performance

We evaluate the COVID-19 vs. CAP classification on the

collected chest CT images dataset. Table 2 shows the quantitative

results (i.e., ACC, SEN, SPE, AUC, Precision and F1-score)

achieved by different methods.

From Table 2, we can observe that our AFS-DF archives the

best results in the terms of ACC, SEN, SPE, AUC, Precision and

F1-score. In particular, our AFS-DF method achieves the highest

classification accuracy (i.e., 91.79%), which is better than the

LR (i.e., 89.81%), SVM (i.e., 89.97%), RF (i.e., 89.41%) and

NN (i.e., 89.96%). In general, the proposed AFS-DF achieves

1.98%, 1.82%, 2.38% and 1.83% improvements in terms of ACC

over the LR, SVM, RF and NN, respectively. We also perform

the t-test between AFS-DF and the competing methods. AFS-DF

shows significant improvement (p < 0.05) over LR (p-value =
0.0034), SVM (p-value = 0.0009), RF (p-value=0.0023) and

NN (p-value = 0.0275). The possible reason for improvements

is that our AFS-DF not only leverages the high-level feature rep-

resentation by using the deep forest to improve the performance

of COVID-19 vs. CAP, but also employs the discriminative

features by using the adaptive feature selection process. The

deep methods (i.e., NN and AFS-DF) show better classification

accuracy in task of diagnosis of COVID-19 when compared with

the conventional classifiers (i.e., LR, SVM and RF). The possible

reason is that, the deep models can learn the high-level feature

representative, which can boost the classification performance. It

is worth noting that COVID-19 is the highly contagious disease,

the higher SEN should have practically meaningful advantage

for timely COVID-19 diagnosis to prevent the spread of the

COVID-19. The SEN achieved by our AFS-DF for COVID-

19 vs. CAP is 93.05%, which is better than other baseline meth-

ods. These results imply that using the adaptive feature selection

guided deep forest model can improve the identification ability

of COVID-19. We show the misclassification cases in Fig. 3. As

shown in Fig. 3, the false negative cases are mostly the patients

Fig. 3. Illustration of false negative cases and false positive cases.

Fig. 4. ROC curves achieved by LR, SVM, RF, NN and AFS-DF in
COVID-19 vs. CAP classification.

with small abnormality regions. In contrast, the false positive

cases are mostly the patients with large abnormality regions.

As shown in Fig 4, our proposed AFS-DF method produces

the best classification performance when compared with the

baseline methods. These results further validate that using the

high-level representation and adaptive feature selection strategy

could improve the performance for COVID-19 vs. CAP classi-

fication. The top 30 important features in the extracted location-

specific features are shown in Fig. 5. We calculate the average of

normalized feature importance of location-specific features over

the last layer in 5 trained AFS-DF model (as shown in Fig. 5(a))

and normalized feature importance of location-specific features

in each trained AFS-DF model (as shown in Fig. 5(b)-Fig. 5(f)).

Fig. 5 shows that the surface area features are more important

on each fold for COVID-19 classification.
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Fig. 5. The top 30 important features of location-specific features in AFS-DF. (a) average importance on all trained AFS-DF and (b) − (f) the
importance on each trained AFS-DF.

IV. DISCUSSION

In this section, we first compare our proposed adaptive feature

selection guided deep forest with several state-of-the-art meth-

ods for COVID-19 classification. Then, we study the influence

of the adaptive feature selection strategy and the selected deep

features that are learned by adaptive feature selection guided

deep forest. Finally, we present the limitations of this work as

well as possible future research directions.

A. Comparison With State-of-the-Art Methods

Since several attempts have been made for COVID-19 clas-

sification, we now compare our proposed AFS-DF with state-

of-the-art methods. [13] employs a convolutional neural net-

works (CNN) to extract the features of chest CT images, and

then combines the decision tree and Adaboost to produce the

classification result of COVID-19 vs. typical viral pneumonia

(using a total of 670 CT scans). [14] leverages a ResNet [27]

to predict the COVID-19, Influenza-A viral pneumonia, and

healthy cases (using a total of 618 CT scans). [10] extracts

clinical and laboratory features and uses a logistic regression

model for non-severe and severe patient classification (using a

total of 196 CT scans). [11] extracts quantitative features, and

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS FOR COVID-19

CLASSIFICATION

introduces a random forest method to assess the severity of the

COVID-19 patient (using a total of 176 CT scans). [12] extracts

location-specific handcrafted features, and proposed an infection

size-adaptive random forest for COVID-19 classification (using

a total of 2685 CT scans). [26] integrates the CNN and traditional

machine learning method for COVID-19 vs. SARS-Cov-2 clas-

sification (using a total of 1324 CT scans).

The results are reported in Table 3. One can observe from

Table 3 that the proposed AFS-DF shows competitive classifi-

cation performance for COVID-19 patient identification. The

underlying reason could be that our AFS-DF can utilize the
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TABLE IV
PERFORMANCE OF COVID-19 VS. CAP CLASSIFICATION BY USING LASSO, ELASTICNET, DF AND AFS-DF

high-level discriminative representation of the extracted fea-

tures. It is worth noting that the deep forest-based method could

handle the small-scale data, and just spend less computational

resource than the deep neural network-based methods.

B. Influence of Adaptive Feature Selection

To study the effectiveness of the proposed adaptive feature

selection, we compare it to two feature selection methods (i.e.,

Lasso and ElasticNet [28]) and its variant (i.e., Deep Forest

(DF)). Lasso is used to select a discriminative subset of features

from the feature vector by using l1-norm sparsity constraint. The

parameter for the sparsity constraint in this method is set as 0.001

by using cross-validation. In ElasticNet, a l1-norm is leveraged

to reduce dimension of extracted features. Also, a l2-norm is

further introduced into the classification model to ensure the

smoothness of the linear model. The parameters for the sparsity

constraint and smoothness constraint in ElasticNet are set as

0.001 and 0.1 by using cross-validation, respectively. DF is a

variant of the proposed AFS-DF, which employs the same initial

architecture of our AFS-DF model without feature selection

block. Hence, the predictions of each layer are concatenated

with all original features, which will be fed into next layer for

prediction. Note that this variant method has same parameter

setting with AFS-DF for training and test in our study. The

experimental results are reported in Table 4.

As shown in Table 4, the proposed AFS-DF achieves the

best classification performance, when compared with Lasso,

ElasticNet and DF. In particular, compared with the feature

selection methods (i.e., Lasso and ElasticNet), the proposed

AFS-DF achieves better performance by using the high-level

feature representation. Meanwhile, by using the adaptive feature

selection operation, AFS-DF achieves better performance when

compared with DF. These results imply the effectiveness of

the proposed AFS-DF. Besides, as can be seen from Table 2,

Table 3 and Table 4, the feature selection methods (i.e., Lasso,

ElasticNet and proposed AFS-DF) show the competitive results.

The possible reason is that the extracted features by using the

deep learning methods or handcraft features may degrade clas-

sification performance due to heterogeneity between extracted

features and subsequent traditional classification algorithms

(i.e., decision tree, Adaboost, etc.). While the feature selection

methods could select the features that are more relevant to the

COVID-19 classification for subsequent classification task.

C. Influence of Features

To evaluate the effectiveness of the selected deep features

(e.g. the features used in the last layer of AFS-DF) for COVID-

19 vs. CAP classification, we further develop three methods

Fig. 6. Visual illustration of original location-specific features (a), the
features of the last layer in DF (b), and the features of the last layer
in AFS-DF (c), which uses the t-SNE to do the feature dimensionality
reduction.

based on LR, SVM and RF by using the selected deep features

(i.e., AFSDF-LR, AFSDF-SVM and AFSDF-RF). Meanwhile,

we also compare these methods with LR, SVM and RF based

on the features used in deep forest (i.e., DF-LR, DF-SVM and

DF-RF). We evaluate these nine methods for COVID-19 vs. CAP

classification, with the results reported in Table 5.

As can be seen from Table 5, the proposed AFSDF-LR,

AFSDF-SVM and AFSDF-RF outperform their counterparts

(i.e., LR, SVM and RF) in most of evaluation metrics. Of note,

the proposed methods consistently achieve better results in terms

of ACC and SEN. For example, AFSDF-LR, AFSDF-SVM and

AFSDF-RF achieve 1.38%, 1.15% and 1.11% improvement

over LR, SVM and RF in terms of ACC for COVID-19 vs.

CAP classification, respectively. Compared with LC, SVM and

RF, the AFSDF-LR, AFSDF-SVM and AFSDF-RF also show

improvement in terms of SEN for COVID-19 vs. CAP clas-

sification, respectively. The possible reason is that, with the

selected deep features by using AFS-DF, the features include

the high-level and discriminative information. Hence, the con-

ventional machine learning methods (i.e., LR, SVM and RF)

can use these selected deep features to improve the performance

of COVID-19 classification task. In addition, the AFSDF-based

methods achieve better classification results over the DF-based

methods (i.e., DF-LR, DF-SVM and DF-RF). Besides, In Fig 6,

we plot the original location-specific features, the features of the

last layer in DF, and the features of the last layer in AFS-DF,

which performs dimensionality reduction by using t-SNE [29].

As shown in Fig 6, our AFS-DF produces more discriminative

features for COVID-19 vs. CAP classification. Although the
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TABLE V
PERFORMANCE OF COVID-19 VS. CAP CLASSIFICATION BY USING LR, DF-LR, AFSDF-LR, SVM, DF-SVM, AFSDF-SVM, RF DF-RF AND AFSDF-RF

deep forest could learn the high-level features, the learned

features are still difficult to classify.

D. Limitations and Future Work

There are still several limitations in the current study. First, the

adaptive feature selection guided deep forest is only validated

on COVID-19 vs. CAP classification task. In the future, we plan

to collect more data with multiple diseases, and perform our

proposed method on other COVID-19 classification tasks (e.g.,

COVID-19 vs. Influenza-A viral pneumonia and CAP, severe

patients vs. non-severe patients, etc.). Second, we extract the

handcraft features by using prior knowledge in current work,

in future, the features learned by deep learning method are ex-

pected to leverage our proposed method for further performance

improvement.

V. CONCLUSION

In this paper, we propose an adaptive feature selection guided

deep forest for COVID-19 vs. CAP classification by using the

chest CT images. Specifically, the AFS-DF uses the deep forest

to learn the high-level representation based on the location-

specific features. Meanwhile, an adaptive feature selection op-

eration is employed to reduce the redundancy of features based

on the trained forest. Experimental results on the collected

COVID-19 dataset with 1495 COVID-19 cases and 1027 CAP

cases show that our proposed AFS-DF approach can achieve

superior performance on COVID-19 classification with chest

CT images in comparison with several existing methods.
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