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Classification of land cover based on hyperspectral data is very challenging because typi-
cally tens of classes with uneven priors are involved, the inputs are high dimensional, and
there is often scarcity of labeled data. Several researchers have observed that it is often
preferable to decompose a multi-class problem into multiple two-class problems, solve
each such sub-problem using a suitable binary classifier, and then combine the outputs
of this collection of classifiers in a suitable manner to obtain the answer to the original
multi-class problem. This approach is taken by the popular error correcting output codes
(ECOC) technique, as well by the binary hierarchical classifier (BHC). Classical tech-
niques for dealing with small sample sizes include regularization of covariance matrices
and feature reduction. In this paper we address the twin problems of small sample sizes
and multi-class settings by proposing a feature reduction scheme that adaptively adjusts
to the amount of labeled data available. This scheme can be used in conjunction with
ECOC and the BHC, as well as other approaches such as round-robin classification that
decompose a multi-class problem into a number of two (meta)-class problems. In partic-
ular, we develop the best-basis binary hierarchical classifier (BB-BHC) and best basis
ECOC (BB-ECOC) families of models that are adapted to “small sample size” situa-
tions. Currently, there are few studies that compare the efficacy of different approaches
to multi-class problems in general settings as well as in the specific context of small sam-
ple sizes. Our experiments on two sets of remote sensing data show that both BB-BHC
and BB-ECOC methods are superior to their non-adaptive versions when faced with
limited data, with the BB-BHC showing a slight edge in terms of classification accuracy
as well as interpretability.

Keywords: multi-class problems, multiple classifier systems, hierarchical classifiers, error
correcting output codes, small sample size problem, remote sensing.

1. Introduction

The increasing availability of data from hyperspectral sensors has generated tremen-

dous interest in the remote sensing community because these instruments character-

ize the response of targets (spectral signatures) with greater detail than traditional

sensors and thereby can potentially improve discrimination between targets30,32. A

common application is to determine the land cover label of each (vector) pixel by
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using labeled training data (ground truth), X , to estimate the parameters of the

label-conditional probability density functions, P (x1, x2, . . . , xD|Li), i = 1, . . . , C,

or to directly estimate the aposteriori class probabilities. Unfortunately, classifica-

tion of hyperspectral data is challenging for several reasons. The dimensionality of

the data (D) is high (∼ 200), and the number of classes C is often in the teens.

The sensor measurements obtained from a given land cover type can vary some-

what over time and space, and thus the class-conditional likelihoods can vary from

image to image. Obtaining labeled data is expensive and time consuming because it

either involves field campaigns or manual interpretation of high resolution imagery.

However, hyperspectral data tend to be correlated both spectrally and spatially,

and these two properties can often be exploited to make the classification problem

more tractable.

In our previous work on land cover classification28, we had addressed the prob-

lem of being faced with a moderately large number of classes by systematically

decomposing a C-class problem into a binary hierarchy of C − 1 simpler two-class

problems that could be solved using a corresponding hierarchy of classifiers, each

involving a simple discriminant (Fisher projection). The use of a simple feature

extraction process also helped deal with the high dimensionality of the input space.

The resulting top-down Binary Hierarchical Classifier (TD-BHC), which is really

an ensemble of classifiers arranged as a hierarchy, provided superior results in terms

of test accuracies as compared to using a variety of direct approaches to the multi-

class problem. In addition, the hierarchies of classes automatically derived from

the data yield valuable domain knowledge about the relationships among different

types of land cover.

This paper addresses a different challenge stemming from the scarcity of labeled

data, which is often of limited quantity relative to the dimensionality D, at least

for some poorly represented classes. This leads to the well-studied small sample

size problem. For example, a classifier using Fisher’s linear discriminant function

requires the inversion of the within-class covariance matrix. For the covariance ma-

trix of D-dimensional data, there are D(D + 1)/2 parameters to estimate and,

minimally there must be D + 1 observations of each class to ensure estimation of

non-singular/invertible class specific covariance matrices2. A popular rule-of-thumb

is that there should be at least 5D data points/class for adequate estimation of the

covariance matrix22. Existing hyperspectral classifiers including the BHC are thus

susceptible to small sample size issues31. This paper introduces a technique for

adaptively reducing the dimensionality of the feature space by recursively combin-

ing highly correlated, adjacent spectral bands until the reduced dimensionality is

commensurate with the amount of data available. The more classic approach of reg-

ularization of covariance estimates is also embodied in this technique, which can be

used in conjunction with both the BHC and error correcting output codes (ECOC).

Experiments show that the resulting multi-classifier systems with adaptive feaure

reduction modules provide substantial improvements over a range of small sample
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sizes, without compromising performance for larger data sets.

2. Related Work

This paper addresses the issue of solving multi-class problems as well as tackling

small sample size situations in the context of hyperspectral data. This section de-

scribes related work in these areas.

2.1. Solving multi-class problems through output space

decomposition

Many real-life problems such as handwriting recognition involve more than two

classes. In such cases, one has two choices: solve the problem directly using a single

classifier that can provide multiple class labels, or decompose the output space into

multiple two-class problems that are solved by different binary classifiers, and then

combine the outputs of these classifiers in a suitable way to determine the final

class label. A straightforward way of directly solving for multiple classes is to use

a universal approximator such as the multi-layer perceptron (MLP) or radial basis

function network, with C output units. A 1-of-C coding has to be used to obtain the

desired outputs for training purposes, i.e., for a given input, the desired response is

1 for the output unit corresponding to its class label, and 0 for all the other output

units. Theoretically, given such an encoding and a well trained network with an

adequately large number of hidden units, it can be shown that the outputs of such

a network approximate the corresponding aposteriori class probabilities42,5 in the

mean square sense. Thus, one can approach the Bayes optimum decision as closely

as desired. In practice, with limited data, imperfect training and complex class

boundaries, this becomes increasingly difficult to achieve as the number of classes

increases.

Several other classification models such as decision trees (C5.0, CHAID, CART

etc) can also directly address multi-class problems. However, several classifiers are

more naturally suited to binary classification. A topical example is the support

vector machine (SVM) in its original formulation52. Although several extensions

of SVMs to multi-class problems have been subsequently suggested (see papers

referred to in 18), the results of 18 show that such direct approaches are inferior to

decomposing the problem into several binary classification problems, each addressed

by a binary SVM.

Over the years, several approaches to decomposing the output space, rather than

directly solving for the C-class problem, have been proposed. These approaches can

be categorized as:

1. solving C one-versus-rest two-class problems;

2. examining
(

C

2

)

pairwise classifications,

3. applying error correcting output codes11,

4. miscellaneous approaches, and
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5. binary hierarchical classifiers.

We briefly summarize and compare the first four approaches before presenting the

hierarchical output space decomposition approach proposed by us recently.

2.1.1. One-versus-rest.

The traditional approach to multi-class problems is to develop C classifiers, each fo-

cussed on distinguishing one particular class from the rest. Often this is achieved by

developing a discriminant function for each of the C classes. A new data point is as-

signed the class label corresponding to the discriminant function that gives the high-

est value for that data point. For example, in Nilsson’s classic linear machine38, the

discriminant functions are linear, so the decision boundaries are constrained to be

hyperplanes that intersect at a point. This is an example of the discriminant analy-

sis family of algorithms, that includes Quadratic Discriminant Analysis, Reg-

ularized Discriminant Analysis12, and Kernel Discriminant Analysis16.

The essential difference among different discriminant analysis methods is the nature

and bias of the discriminant function used.

Anand et.al.1 did a detailed empirical evaluation of the one-versus-rest method

as compared to a one-shot approach when MLPs are used as classifiers. They showed

that training an MLP with C output nodes, one for each class, was much slower

than the modular alternative, at comparable levels of generalization performance.

They also theoretically analyzed the spatial crosstalk phenomenon that hinders the

one-shot approach. However, note that when C is large, there will be some classes

for which the number of training data is much less than that for the rest of the

classes combined, i.e. the corresponding two-class problem will encounter highly

imbalanced priors. This leads to performance degradation and slower convergence,

even for an MLP trained using error back-propagation, as shown for example, in 4.

2.1.2. Pairwise classification.

Also known as round robin classification15, these approaches learn one classifier

for each pair of classes (employing a total of
(

C

2

)

classifiers in the process), and

then combine the outputs of these classifiers in a variety of ways to determine the

final class label. This approach has been investigated by several researchers13,17,3,39.

Typically the binary classifiers are developed and in parallel, a notable exception

being the efficient DAG structured ordering given in 39. A straight-forward way of

finding the winning class is through a simple voting scheme used for example in 13,

which evaluates pairwise classification for two versions of CART and for the nearest

neighbor rule. Alternatively, if the individual classifiers provide good estimates of

the two-class posterior probabilities, then these estimates can be combined using

an iterative hill-climbing approach suggested by 17.

Our first attempt at output space decomposition was to apply a pairwise clas-

sifier framework for land cover prediction problems involving hyperspectral data27.



October 29, 2003 8:38 WSPC/INSTRUCTION FILE ij

Adaptive feature spaces for land cover classification with limited ground truth data 5

For this application, class-pair specific feature extraction not only yielded superior

classification accuracies, but also provided important domain knowledge with regard

to what features were more useful for discriminating specific pairs of classes. While

such a modular learning approach for decomposing a C-class problem is attrac-

tive for a number of reasons, including focussed feature extraction, interpretability

of results and automatic discovery of domain knowledge, the fact that it requires

O(C2) pairwise classifiers might make it less attractive for problems involving a

large number of classes. Further, the combiner that integrates the results of all the
(

C

2

)

classifiers must resolve the couplings among these outputs that might increase

with the number of classes.

2.1.3. Error correcting output codes (ECOC).

Inspired by distributed output representations in biological systems, as well as by

robust data communication ideas, ECOC is one of the most innovative and popular

approaches to have emerged recently to deal with multi-class problems11. A C-class

problem is encoded as C̄ binary problems. For each binary problem, one subset of

the classes serves as the positive class (target = 1) while the rest form the negative

class (target = 0). As a consequence, each original class gets encoded into a C̄

dimensional binary vector. The C × C̄ binary matrix is called the coding matrix.

A given test input is labelled as belonging to the the class whose code is closest to

the code formed by the outputs of the C̄ classifiers in response to that input.

In the original ECOC paper11, four ways of chosing the subsets of classes and

therefore determining the code matrix were investigated. In general, it was believed

that selecting matrices with good row and column separation would give better

results. Most empirical studies using ECOCs employ a large number of binary

classifiers (C̄ � C), and sometimes C̄ is in the hundreds or more. Given such long

codewords, subsets of classes chosen at random may perform nearly as well. In fact,

the advantage of carefully crafted codewords seems to be clear only when the code

lengths are short56. Moreover, the problem of designing an optimal binary code

matrix is NP-Complete9.

2.1.4. Miscellaneous Approaches.

There are some approaches to multi-class problems proposed by other authors that

do not fall into the three categories described above. Sequential methods impose

an ordering among the classes, and the classifiers are developed in sequence rather

than in parallel. For example, one can first discriminate between class “1” and the

rest. Then for data classified as “rest”, a second classifier is designed to separate

class “2” from the other remaining classes, and so on. Problem decomposition in the

output space can also be accomplished implicitly by having C classifiers, each trying

to solve the complete C-class problem, but with each classifier using input features

most correlated with only one of the classes. This idea was used in 50 for creating
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an ensemble of classifiers, each using different input decimation. This method not

only reduces the correlation among individual classifiers in an ensemble, but also

reduces the dimensionality of the input space for classification problems. Significant

improvements in misclassification error, together with reduction in the number of

features used, was obtained on various public domain datasets using this approach.

2.1.5. The Binary Hierarchical Classifier.

The top down BINARY HIERARCHICAL CLASSIFIER (TD-BHC) framework

was introduced in 28,29 as a way of recursively decomposing a C-class problem into

C − 1 two-(meta)class problems. It results in a multi-classifier system with C − 1

classifiers arranged as a binary tree. The root classifier tries to optimally partition

the original set of classes into two disjoint meta-classes while simultaneously de-

termining the Fisher discriminant that separates these two subsets. This procedure

is recursed, i.e., the meta-class Ωn at node n is partitioned into two meta-classes,

(Ω2n, Ω2n+1), until the original C classes are obtained at the leaves28. Fig. 1 shows

an example of a C-class BHC. Note that the partitioning of a parent set of classes

into two sets of metaclasses is not arbitrary, but is obtained through a determinis-

tic annealing process that encourages similar classes to remain in the same parti-

tion. The tree structure also allows the easier discriminations to be accomplished

earlier20. The TD-BHC was found to be competitive with pairwise classification

and superior to a range of direct methods for classification of hyperspectral data28.

Further results in 26 show that it performed well for several other data sets from

UCI and NIST as well.

Subsequently, a bottom-up version (BU-BHC) was developed based on an ag-

glomerative clustering algorithm used for recursively merging the two most similar

meta-classes until only one meta-class remains26. Fisher’s discriminant was again

used as the distance measure for determining the order in which the classes are

merged. The bottom-up procedure is computationally more expensive than the

top-down version, but sometimes produces even better results, although it is lo-

cally more greedy.

Comments and Comparisons. A common characteristic of the first three

approaches described above, is that they do not take into account the underly-

ing affinities among the individual classes (for example, their closeness or amount

of separation) while deciding on class selection/grouping for binary classification.

Both one-versus-rest and pairwise methods treat each class the same way, while in

ECOC, design of the code matrix is based on the properties of this matrix, rather

than the classes they represent. That is why it is helpful to have a strong base

learner when applying ECOC, since some of the groupings may lead to compli-

cated decision boundaries. In contrast, the groupings in BHC are determined by

the properties of the class distributions. Not being agnostic to class affinities helps

us in determining natural groupings that facilitate both the discrimination process

and the interpretation of results.
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Fig. 1. An example of a BINARY HIERACHICAL (multi)-CLASSIFIER for solving a C-class
problem. Each internal node n comprises of a feature extractor, a classifier, a left child 2n, and a
right child 2n + 1. Each node n is associated with a meta-class Ωn.

Two noteworthy studies have emerged recently that compare one-versus-rest,

pairwise and ECOC approaches. Furnkranz15 shows that the
(

C

2

)

learning prob-

lems of pairwise classification can be learned more efficiently than the C problems

of the one-versus-rest technique. His analysis is independent of the base learning

algorithm. He also observes that both of these approaches are more efficient than

ECOC. A large number of empirical results are shown using Ripper and C5.0 as

base classifiers. The BHC uses only C − 1 classifiers, similar to one-versus-rest, but

since the class groupings are based on affinities, the binary classifications are sim-

pler in general. Hence BHCs do not compromise much on efficiency in the process

of reducing the number of classifiers needed.

Hsu and Lin18 completed a detailed study comparing one-versus-rest and pair-

wise classification, both using the SVM as base classifier, to two approaches for

directly generalizing the SVM algorithm to multi-class problems. The pairwise

method performed the best, both in terms of accuracy and training time. One-
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versus-rest was second, and both methods were better than the direct generaliza-

tions of SVM.

2.2. Small sample size problems

The substantial methodology in this area can be largely categorized as one of four

approaches41. Regularization methods, including shrinkage, try to stabilize the es-

timated covariance matrix directly by weighting the sample covariance matrix as

well as supplemental matrices46. The covariance matrix can be shrunk toward the

identity matrix or a pooled covariance matrix. Hybrid approaches assign weights

to the sample covariance matrix and a pooled covariance matrix47,35. While this

may reduce the variance of the parameter estimates, the bias of the estimates can

increase dramatically. Rather than stabilizing the covariance matrix directly, the

pseudo-inverse of the covariance matrix can be substituted for the true inverse.

Pseudo-inversion utilizes the non-zero eigenvalues of the covariance matrix14,46.

However, in addition to poor performance when the ratio of training data to dimen-

sionality is very small, the pseudo-inverse has a peaking effect in its performance.

Let |X | represent the cardinality of the (training) set X . It has been shown that the

pseudo-inverse performs best when |X | = D/2 and that the performance degrades

as |X | approaches D45,40.

An alternate approach involves transforming the input space into a reduced

feature space via feature extraction or selection2,14. Such transformations may result

in some loss of interpretability and may be poorly estimated due to the limited data.

A third approach is to exploit an unlabelled examples that may be available

using “semi-supervised learning” methods. Specific techniques for identifying and

augmenting the existing training data with unlabeled data already exist and have

been shown to enhance strictly supervised classification48,19,6,23,36,10,43. The quality

of these approaches is very sensitive to the initial (guessed) labels of the unlabelled

data, to the selection of the initial training samples and to outliers. Note that one

can also artificially add labelled examples, sometimes called virtual examples, by

perturbing the data or by exploiting any known invariances about the data44.

The fourth approach uses an ensemble of weaker classifiers. Bagging, Simple

Random Sub-sampling, and a variety of Arcing (adaptively reweighting and com-

bining methods such as boosting) involve selecting subset samples of the original

data and generating a classifier specific to each sub-sample7. When the data set

is very small, however, these methods are inadequate because the degradation in

individual classifier performance (because of lack of data) cannot be compensated

for by the gains from using an ensemble49.

2.3. Feature Extraction from Hyperspectral Data

Hyperspectral sensors simultaneously acquire information in hundreds of spectral

bands. A hyperspectral image is essentially a three-dimensional array I(p, q, d),

where (p, q) denotes a pixel location in the image, and d denotes a spectral band
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(wavelength). The value stored at I(p, q, d) is the response (reflected or emitted

energy) from the pixel (p, q) at a wavelength corresponding to spectral band d. The

input space for a hyperspectral data (classification problem) is an ordered vector

of real numbers of length D, the number of spectral bands, wherein the response

of bands that are spectrally “near” each other tend to be highly correlated within

certain regions of the spectrum.

Analysis of hundreds of simultaneous channels of data necessitates the use of

either feature selection or extraction algorithms prior to classification. Feature selec-

tion algorithms for hyperspectral classification are costly, while feature extraction

methods based on Karhunen Loeve (KL) transforms, Fisher’s discriminant, or Bhat-

tacharya distance cannot be used directly in the input space because the covariance

matrices required by all these approaches are highly unreliable, given the ratio of

the amount of training data to the number of input dimensions. The results are also

difficult to analyze in terms of the physical characteristics of the individual classes

and are not generalizable to other images.

Several authors have proposed approaches for extracting features from remotely

sensed hyperspectral data28,25,29,32. Lee and Landgrebe33,34 proposed methods for

feature extraction based on decision boundaries for both Bayesian and neural net-

work based classifiers. In these methods, a classifier is first learned for a two-class

problem in the input space. A decision boundary is computed by moving along the

closest samples in the two classes, and a vector normal to the decision boundary is

noted. Eigenvectors of the decision boundary feature matrix formed by collection

of these normal vectors yield the direction of projection for the two-class problem.

The C-class problem is then solved using a (weighted) sum of the decision boundary

feature matrices.

Jia and Richards proposed a Segmented Principal Components Transformation

(SPCT) that exploits the observation that the original input features - the bands

of the hyperspectral data - that are spectrally close to one another, tend to be

highly correlated24,25. Edge detection algorithms are used to transform the original

D individual bands into subsets of adjacent bands that are highly correlated, based

on the estimated population correlation matrix. From each subset, the most signifi-

cant principal components are selected to yield a feature vector that is significantly

smaller in dimension than D. Although this approach exploits the highly correlated

adjacent bands in hyperspectral data, it does not guarantee good discrimination

capability because the Principal Component Transform preserves variance in the

data rather than maximizing discrimination between classes. Additionally, the seg-

mentation approach of SPCT is based on the correlation matrix over all of classes,

and thus loses the often-significant variability in the class conditional correlation

matrices. Subsequently, Kumar et al. proposed band combining techniques inspired

by Best Basis functions30. Adjacent bands were selected for merging (alt. splitting)

in a bottom-up (alt. top-down) fashion using the product of a correlation measure

and a Fisher based discrimination measure28. Although these two methods utilize
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the ordering of the bands and yield excellent discrimination, they are computation-

ally intensive. Additionally, the quality of the discrimination functions, and thus

the structure of the resulting feature space, is affected by the amount of training

data, and this critical issue is not addressed.

3. An Adaptive Feature Space for Hyperspectral Data

We propose a simple method for tuning the amount of feature reduction to the

quantity of available training data. The basic idea is to progressively merge adjacent

bands that are highly correlated, so that the input dimensionality is reduced without

significant loss in discriminatory power. While this method was originally designed

for and is particularly suited to hyperspectral data37, it can be applied to other

high-dimensional data sets for which sequential inputs are highly correlated. We

first describe how the technique is used in conjunction with the BHC, although the

method can also be employed to reduce the input features used for other classifiers.

3.1. Integrating Band Combination into Hierarchical,

Multi-Classifier Systems

The proposed approach can be viewed as a best-basis version of BHC (BB-BHC)

that performs a band-combining step prior to the partitioning (top-down variant)

or combining (bottom-up variant) of meta-classes. Band combining is performed

on highly correlated AND spectrally adjacent bands as this intuitively leads to the

least loss in discrimination power. Because the correlation between bands varies

among classes, the band reduction algorithm must be class dependent. In order to

estimate the correlation for a group of adjacent bands (meta-bands) B = [p : q]

over a set of classes Ω, we define the correlation measure Q(B) as the minimum of

all the pairwise correlations within that group:

Q(B) = min
Lk∈Ω

min
p≤i<j≤q

QLk

i,j = min
Lk∈Ω

min
p≤i<j≤q

SLk

i,j
√

SLk

i,i SLk

j,j

(1)

where SLk

i,j is the (i, j)th element of the sample covariance matrix for class Lk .

The correlation measure (1) is used to determine which set of adjacent meta-bands

should be merged at each successive step of the algorithm. Once the number of

group bands is small enough, we maximize the discrimination between classes in

the reduced space.

To address small sample sizes, rather than using a threshold on the correla-

tion measure to determine whether bands or group-bands should be merged, our

algorithm focuses on preserving as many of the original bands as possible, com-

mensurate with the amount of training data available. Thus the band-combining

algorithm ensures that the least amount of discriminatory information is lost while

trying to achieve a satisfactory ratio of training data to dimensionality. For linear

models, the ratio of the number of training samples to the input dimensionality is
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considered to be the most important indicator of whether the training set is ad-

equate. Because the literature recommends different thresholds for the minimum

αratio ≤ |X|
D

, we allow this to be a user-defined input31,21,41,53. Note that |X | rep-

resents the number of data points in a child meta-class, and this number decreases

as we proceed toward the leaves.

In pseudo-code, the adaptive band-combining algorithm that is performed before

partitioning or merging meta-classes is:

1. D∗ = min
(

D, |X|
αratio

)

2. Initialize l = 0, N = D, and Bk
l = [k, k], ∀k = 1, . . . , D

3. If N > D∗ then continue. Otherwise, stop.

4. Find the best pair of band to merge: K = argmaxk=1,...,N−1Q(Bk
l ∪ Bk+1

l )

5. Update band structure:

• l = l + 1, N = N − 1

• If K > 1 then Bk
l = Bk

l−1, ∀k = 1, . . . , K − 1

• BK
l = BK

l−1 ∪ BK+1
l−1

• If K < N then Bk
l = Bk+1

l−1
, ∀k = K + 1, . . . , N

6. Return to step 3.

3.2. Best Basis and Limited Data

When constructing a basis specific to each split in the BB-BHC, the quality of

the correlation measure, computed from the class conditional covariance matrices,

is dependent on the quantity of training data available to estimate the meta-class

covariance matrices. This becomes even more critical for the low branches of the

BB-BHC as the meta-classes become smaller in cardinality, and the amount of

training data per meta-class decreases. In particular, the class specific correlation

matrices QLk

i,j =
S

Lk
i,j

q

S
Lk
i,i

S
Lk
j,j

are required in (1) to estimate the correlation measure

Q(B). However, if the label specific SLk covariance matrices are not suitable for

inversion, failure to stabilize their estimation before constructing the basis unsat-

isfactorily passes the disadvantage of the small sample size from the estimate of

Fisher’s discriminant and linear discriminant function to the basis construction.

Therefore, the label specific sample covariance matrices must be stabilized. The

shrinkage technique35 can be suitably employed for this purpose, taking advantage

of the natural hierarchy provided by the BHC framework. We define the ances-

tor sample covariance matrix SAnc as being the sample covariance matrix which

is estimated from at least αratioD observations and is most closely related to Lk

based on the BB-BHC structure. Because the trees can be constructed either in

a top-down or bottom-up manner, the search for SAnc must be performed differ-

ently for the two approaches. In the top-down framework, if meta-class Ωk is being

considered for partitioning, then SΩk =
∑

Li∈Ωk
P (Li)S

Li is the first candidate for

SAnc. However, if |XΩk
| ≤ αratioD, then the BB-BHC tree structure is climbed in
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search of a meta-class where |XΩk
| ≥ αratioD. With the bottom-up framework, if

{Ω2n, Ω2n+1} are being considered for agglomeration, the first candidate for SAnc

is SPooled = P (Ω2n)SΩ2n +P (Ω2n+1)S
Ω2n+1 . However, because the BB-BHC is now

being constructed bottom-up, the structure cannot be climbed in search of a suit-

able SAnc. Therefore, if |XΩi+Ωj
| ≤ αratioD, then SAnc =

∑C

i=1
P (Li)S

Li . Note

that this estimate for SAnc is used, even when the total quantity of training data

available is less than αratioD. When applicable, the stabilized estimates of the label

specific covariance matrices are utilized to estimate the correlation measure in (1).

4. Empirical Studies

4.1. Multiple Classifier Systems Studied.

The base methods for comparison are the bottom-up and top-down versions of BHC,

denoted by TD-BHC and BU-BHC respectively. Applying the pseudo-inverse for

tree construction (estimating Fisher’s discriminant) and feature extraction (calcu-

lating Fisher’s linear discriminant function) yields TD-P-BHC, BU-P-BHC, while

using the adaptive best-basis construction results in TD-BB-BHC and BU-BB-

BHC. We also wanted to compare these methods with other approaches to multi-

class problems. Previously we had shown that, for a hyperspectral data set with

at least 180 samples per class, the TD-BHC gives comparable results to a pairwise

classifier architecture that utilizes a best-basis technique for combining bands28.

For smaller sample sizes, the pairwise architecture is expected to suffer even more

that BHC or ECOC because each of its
(

C
2

)

component binary classifiers can only

use data from two of the original classes. In contrast, the BHC deals with meta-

classes at all levels above the leaf classifiers. At the root, all the data are available,

and the amount of data available at each internal node progressively diminishes,

as the number of original classes in each metaclass decreases. Thus, it is clear that

the pairwise or round-robin architecture will be at a further disadvantage as the

sample sizes shrink, and hence is not considered in this study.

Instead we compare the results with those obtained by an ECOC architecture.

As mentioned earlier, each component classifier in this framework solves a binary

problem, with the original set of classes divided into two groups based on the

corresponding column of the code matrix. Thus each classifier uses all the data!

Moreover, if the code matrix is chosen so that the two groups always have roughly

the same number of classes, and the priors of these classes are comparable, then

each two-metaclass problem is reasonably balanced. Thus one would expect the

ECOC method to be much less susceptible to small size problems as compared to

pairwise classification.

We decided to use the Bose-Chaudhuri-Hochquenghem (BCH) code, which

shows excellent separation among both rows and columns. BCH codes are mul-

tilevel, cyclic, error-correcting, variable-length digital codes used to correct errors

up to approximately 25% of the total number of digits. They are based on Galois

field theory and have superior error correcting properties to well-known Hamming
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Table 1. BCH Table

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1
3 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0
4 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1
5 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0
6 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1
7 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0
8 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1
9 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0

10 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1
11 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
12 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1
13 1 0 1 0 0 0 0 1 1 1 0 1 1 0 0
14 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1
15 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0
16 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

codes, and were also recommended in the original ECOC paper11 for a larger num-

ber of classes. The two datasets studied in this paper involve 11 and 13 classes

respectively. We chose to use a code-length of 15 to accommodate up to 32 classes.

This choice provides an error correction of 3 bits. Therefore any two rows have a

Hamming distance of at least 7 bits. The first 16 rows of the BCH code for this

choice are shown in Table 1. For the experiments, the first 11 and first 13 rows were

chosen respectively. Note that the most significant data bit is all zeros (it is all ones

for the next 16 entries), and thus this column (number 11 in Table 1) is deleted,

leaving 14 binary classifiers. This number is comparable to the C−1 classifiers used

in the BHC.

4.2. Empirical Results

The proposed algorithms were tested on hyperspectral data obtained from two sites:

Bolivar Peninsula, Galveston, Texas and NASA’s John F. Kennedy Space Center

(KSC), Florida.

4.2.1. Bolivar Peninsula

Bolivar Peninsula is located at the mouth of Galveston Bay and is part of the low

relief barrier island system on the Texas Gulf coast. The area contains two general

vegetation types, wetlands and uplands, with the marsh area further characterized

in terms of sub-environments. For classification purposes, 11 classes representing

the various land cover types were defined for the site (Table 2). These include:

water, wetlands (low proximal marsh, high proximal marsh, high distal marsh, and

pure salicornia) and uplands (trees, general uplands, two agricultural classes, sand

flats, and a transition zone)51,55. The low proximal marsh corresponds to tidal flats



October 29, 2003 8:38 WSPC/INSTRUCTION FILE ij

14 J. T. Morgan, A. Hennegulle, J. Ham, M. M. Crawford, and J. Ghosh

Table 2. Classes for Bolivar Peninsula and the quantity of
training data per class

Class Name Total Observations

1 Water 1019
2 Low Proximal Marsh 1127
3 High Proximal Marsh 910
4 High Distal Marsh 752
5 Sand Flats 148
6 Agriculture 1(pasture) 3073
7 Trees 222
8 General Uplands 704
9 Agriculture 2(bare soil) 1095

10 Transition Zone 114
11 Pure Salicornia 214

comprised of Spartina alterniflora, which experiences frequent flooding. The high

proximal marsh, which is composed of a mixture of Spartina alterniflora and Salicor-

nia virginica, is flooded less frequently and has more continuous vegetation cover.

The high distal marsh, which is inundated even less frequently than the proximal

marshes, contains Spartina patens, Salicornia virginica and Juncus roemerianus.

Adjacent to the high distal marsh, a small highly saline region of sand flats sur-

rounded by pure Salicornia virginica delineates the boundary between the wetlands

and uplands. The topography of these areas is mainly a function of sedimentary

processes such as high-energy wave and low-energy tidal and wind processes. As a

result, the frequency of the inundation, soil salinity, and vegetation cover all depend

on this topography55. HyMap (Hyperspectral Mapper) collected data over Bolivar

Peninsula on September 17, 1999, at 5m spatial resolution. Data were acquired in

126 bands with almost contiguous spectral coverage from 440-2480 nm8. After re-

moving water absorption and low SNR bands, 122 bands were used in the analysis.

Multiple experiments were performed using stratified (class specific) sampling

at percentages of: 75, 50, 30, 15, 5, and 1.5. Even at the sampling percentage of 75,

the amounts of training data for classes 5 and 10 are still less then D (sand flats

|XL5
| = 111 and transition zone |XL10

| = 86). We used αratio = 5 for all sampling

percentages except for 1.5% (αratio = 1.5). The lower threshold ensured that there

were at least two observations per label Li. Ten experiments, using simple random

sampling of the training data, were performed at each percentage for the bottom-

up and top-down frameworks of the traditional BHC [TD-BHC, BU-BHC], the

traditional BHC using the pseudo-inverse for tree construction (estimating Fishers

discriminant as a distance measure) and feature extraction (calculating Fishers lin-

ear discriminant function) [TD-P-BHC, BU-P-BHC], and the adaptive best-basis

BHC [TD-BB-BHC, BU-BB-BHC]. Ten additional experiments were conducted us-

ing a best basis implementation of ECOC [BB-ECOC] for comparison. The results

are presented in Figure 2. Each data point in Figure 2 (top) denotes the mean value
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Fig. 2. Classification (test set) accuracies for Bolivar Peninsula

of test set accuracy. The corresponding standard devations are shown separately in

Figure 2 (bottom) to reduce clutter.

By adapting the size of the feature space to reflect the amount of training data

available, a high level of classification accuracy is preserved for an extremely low

number of observations. At 75% sampling, the performance of all 7 classifiers is

comparable in terms of both the average and standard deviations of the accuracies

of the test data. At 50% sampling, which is typically used to separate data sets

into training and testing, the average overall accuracies of the classifiers are still

similar. The variability of the BHC, increases somewhat, as does the TD-P-BHC.

Importantly, even though using the pseudo-inverse does not improve the average

accuracies at 50% sampling, because there are at least D+1 observations per Li, the

results indicate that while the covariance matrices are non-singular, they are still

poorly estimated. Not only does the BB-BHC perform the best at every sampling

percentage with respect to the other TD and BU classifiers, but the accuracies

are generally more stable (smaller standard deviation of accuracies) as well. The

BB-BHC also yields the consistently higher accuracies than the BB-ECOC, even

with the classifier diversity introduced by the ECOC. However, as expected, the
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ECOC produces extremely stable results, as indicated by the standard deviation of

the accuracies at each sampling percentage. Thus, combating the limited amount of

training data by using the correlation matrix for feature reduction helps retain the

information necessary for successful land cover prediction in both the structured

BHC and the ECOC. Overall classification accuracies of > 90% can still be achieved

at the 5% sampling rate, and > 80% accuracies were obtained at the 1.5% sampling

rate, although the results are dominated at this level by the classes with larger

samples.

4.2.2. Cape Canaveral

The wetlands of the Indian River Lagoon system, located on the western coast of

the Kennedy Space Center (KSC) at Cape Canaveral, Florida, are a critical habi-

tat for several species of waterfowl and aquatic life. The test site for this research

consists of a series of impounded estuarine wetlands of the northern Indian River

Lagoon (IRL) that reside on the western shore of the Kennedy Space Center. The

impoundments were created during the 1950s and 1960s for the purpose of mosquito

control. The marshes along the IRL contain both high and low marsh communities.

The three dominant marsh groups that comprise the high marsh communities are

cabbage palm savanna, sand cordgrass, and black rush. The cabbage palm savanna

consists of isolated canopies of Cabbage Palm (Sabal palmetto) and a graminoid

layer of sand cordgrass (Spartina bakerii) and black rush marsh (Juncus roemeri-

anus). Salt tolerant grasses and halophytes dominate the low marsh communities.

The primary salt tolerant grass is Distichilis spicata. Halophytes typically include

Batis maritima and Salicornia virginica. This study also includes investigation of

upland vegetation, as it is adjacent to the impounded wetlands. In addition, accu-

rate classification and mapping of upland vegetation is important for monitoring

habitat of the endangered Florida Scrub Jay. The majority of the upland vegetation

at KSC is oak scrub and saw palmetto scrub. Other upland communities include

slash pine (Pinus elliottii) and hardwood swamps that are dominated by decidu-

ous trees such as Red Maple (Acer rubrum). Dense hammocks of Cabbage Palm

(S. palmetto) and Live Oaks (Quercus virginiana) are also common54. Discrimina-

tion of land cover for this environment is difficult due to the similarity of spectral

signatures for certain vegetation types. For classification purposes, 13 classes rep-

resenting the various land cover types that occur in this environment have been

defined for the site (Table 3).

The NASA AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) spec-

trometer acquired data over the KSC, Florida on March 23, 1996. AVIRIS acquires

data in 224 bands of 10 nm width from 400 - 2500 nm. The KSC data, acquired

from an altitude of approximately 20 km, have a spatial resolution of 18 m. After

removing water absorption and low SNR bands, D = 176 bands were used for the

analysis. Again, multiple experiments were performed using stratified (class spe-

cific) sampling at percentages of: 75, 50, 30, 15, 5, and 1.5. At 75% sampling rate,



October 29, 2003 8:38 WSPC/INSTRUCTION FILE ij

Adaptive feature spaces for land cover classification with limited ground truth data 17

Table 3. Classes for Kennedy Space Center and the quantity
of training data per class

Class Name Total Observation

1 Scrub 761
2 Willow Swamp 243
3 CP Hammock 256
4 CP/Oak Hammock 252
5 Slash Pine 161
6 Oak/Broadleaf Hammock 229
7 Hardwood Swamp 105
8 Graminoid Marsh 420
9 Spartina Marsh 520

10 Cattail Marsh 397
11 Salt Marsh 419
12 Mud Flats 447
13 Water 927

the quantity of training data for classes 5, 6, and 7 is less than D and, at 50%,

so are classes 2, 3, and 4. Ten experiments, using simple random sampling, were

performed at each percentage for all seven classifiers. The results are presented in

Figure 3.

The overall trends in test set accuracies for Cape Canaveral are very similar to

those of Bolivar Peninsula, although the performance of the BHC degrades even

more quickly. At the lower sampling percentages, the covariance matrices of the

BHC are very poorly estimated in the full dimensional space, yet the accuracies are

still fairly high using pseudo-inversion, indicating that the differences in class means

is the main reason the level of discrimination is being maintained. This result is also

reflected by the standard deviations of the accuracies, which increase dramatically

at the 15%-30% sampling rate for the pseudo-inverse classifiers where the covariance

matrices are still helping maintain a higher level of classification accuracy (than the

1.5%-5% range), though unstable. Although average accuracies are somewhat lower

than those produced by the BB-BHC, the BB-ECOC yields quite stable results at

all sampling levels.

5. Conclusions and Future Work

The dependency of classification accuracy on the ratio of training data size to the

dimensionality of the data has been widely noted and needs to be addressed in the

design of a classifier. While the advent of hyperspectral sensors has provided unique

opportunities in remote sensing, the high-dimensional features provided by these

sensors signify that researchers should take note of classifiers that are designed to

be more tolerant of the quantity of training data available. This paper presented a

multiple classifier framework that utilizes the flexibility gained by transforming the

output space and input space simultaneously to combat both the small sample size

problem and the issue of being faced with a large number of classes. By reducing
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Fig. 3. Classification (test set) accuracies for Cape Canaveral

the size of the feature space in a directed manner, dependent on the quantity

of training data available in the binary hierarchy of meta-classes, a high level of

classification accuracy is preserved even when the quantity of training data for some

classes is low. In addition, the adaptive feature space technique can be used with

other multiple classifier approaches to multi-class problems, most notably, the error

correcting output code technique.

Combating the small sample size problem with the dynamic best-basis algo-

rithm helps preserve the interpretability of the data, but using Fisher’s linear

discriminant function as the feature extractor at each internal node of the BHC

diminishes this attractive characteristic. While the discriminant function weights

on each band/group-band could be analyzed to determine the respective bands

importance, the interpretation and insight should be improved if feature selection

were performed rather than feature extraction. Therefore, the use of feature selec-

tion rather than feature extraction, and the ensuing trade-off between classification

accuracy and retention of domain knowledge, should be investigated further.

Another contribution of this paper is that it provides an overview of several
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approaches to multiple-class problems, and also provides the first comparison of

the BHC method with the powerful and popular ECOC approach. The results are

quite flattering to the BHC, at least for the two challenging hyperspectral datasets

that we examined.

Most likely, this is due to the grouping of classes based on affinities rather than

on a code matrix that does not consider the properties of the individual classes.

However, this advantage is perhaps amplified because the base classifiers used in

this study are not very powerful. One needs to note that the design space is indeed

very broad for both methodologies. For example, the ECOC can be used with a

variety of base classifiers and feature selection/extraction methods, and there are

several ways of obtaining suitable coding matrices as well56. Similarly other types of

classifiers and feature extraction modules can be organized in a hierarchical fashion

as well. A very large number of experiments need to be performed to explore this

rich design space. Finally, while the focus of this paper was on hyperspectral data

classification, one also needs to experiment with other types of data sets, such as

letter recognition, that exhibit a moderately large number of classes and fairly high

input dimensionality, to fully flush out the scope and power of the methodologies

proposed in this paper.
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