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Abstract—As subsea production of oil and gas reaches deeper
and more remote waters, the need for more compact separation
equipment arises. The gas liquid cylindrical cyclone (GLCC) is
a widely used separation device in topside facilities, but has yet
to reach the same popularity subsea. The GLCC separates gas
and liquid by inducing a swirl on the multiphase flow. Because
of its small size, the GLCC is sensitive to flow variations which
may reduce separation performance. The performance of the
GLCC can be improved by control. In this paper we consider
a nonlinear dynamic model of a GLCC containing unmeasured
variables and states. We present an adaptive feedback lineariz-
ing controller and prove that the origin of the gas pressure and
liquid level error systems are locally asymptotically stable in
the sense of Lyapunov on a specified domain. The model and
controller are implemented in Simulink and simulations show
that the controller works very well, even with uncertainties in
assumed known parameters, and measurement noise.

I. INTRODUCTION

The gas liquid cylindrical cyclone or GLCC is a widely

used separation device and is currently installed in over 6000

onshore gas production and processing plants around the

world [1]. While popular in onshore production, the GLCC

has yet to reach the same popularity in subsea and offshore

production and processing facilities.

Subsea separation and gas-liquid separation in particular

is described by [2] as an enabler for (i) more efficient liquid

boosting, (ii) longer range gas compression from subsea to

onshore, (iii) cost efficient hydrate management, (iv) more

efficient riser slug depression and (v) access to challenging

field developments. Subsea separation is also considered one

of the main enablers for what is referred to as Subsea Factory,

an all subsea oil and gas production facility concept able to

produce and deliver oil and gas directly to customers without

sending the produced fluids topside for processing [3].

The offshore oil and gas industry is currently relying

on large vessels for separation. These vessels, commonly

referred to as gravity separators, are robust and have high

performance, but their use are limited by their size. In ultra

deep waters (≥ 3000 m), the required size of the gravity sep-

arators makes the installation and maintenance economically

challenging [2]. When the size of gravity separators increases,

so does their weight and there is a limited amount of ships

available for installation of such large vessels [1]. This is

why the offshore and subsea industry is leaning towards more

compact separation technology such as the GLCC.

Fig. 1. Schematic of a GLCC.

The GLCC is equipped with a downward inclined tan-

gential inlet and two outlets. It separates gas and liquid by

inducing a swirl on the multiphase flow. The difference in

density between the phases and the centrifugal forces induced

by the swirl will cause the liquid to migrate to the walls and

the gas to the center. The migration of the liquid creates a

falling and swirling liquid film along the walls and the liquid

accumulates at the bottom of the GLCC, establishing a liquid

level. The swirling gas creates a gas core that penetrates the

liquid level. A schematic of a typical GLCC is shown in

Fig. 1.

The GLCC has many applications, e.g, multiphase meter-

ing, slug dampening and bulk separation [4]. When used as a

bulk separator, the operational objective is to keep the gas and

liquid quality within some specified requirements as well as

minimizing downstream flow variations. Because of its small

volume, the GLCC is sensitive to inlet flow variations. These

variations are always present and may cause a significant

reduction in separation performance. This directly affects

downstream equipment like pumps and compressors and may

cause economic loss.

The performance of the GLCC can be improved by control.

In [5], a dynamic model of the GLCC is derived and PI and

PD controllers are used to stabilize the pressure and liquid



Fig. 2. Cascade control structure. The adaptive feedback linearizing con-
troller calculates desired flows of liquid and gas and the PI controller adjusts
the valves so the correct flows are reached.

level, respectively. The model used does not account for

imperfect separation. In [6] a control strategy that provides

unique valve positions for given flow conditions is presented.

This strategy is similar to a gain-scheduling strategy and

is able to stabilize the liquid level with different inflow

conditions. In [7], a feed forward control scheme is combined

with traditional feedback control to counteract the effect

variations in the inlet flow has on the liquid level. Results

show a significant decrease in level fluctuations when using

the feed forward controller. An adaptive control method is

presented in [8] where an adaptive tuning algorithm run on a

microcontroller is used to reduce the movement of the liquid

control valve while maintaining the desired liquid level.

A common factor in [5]–[8] is that the model used only

considers the liquid level and gas pressure and does not take

the separation dynamics into account; they assume perfect

separation.

More recently, a control-oriented model of a GLCC in-

cluding the phenomena of liquid carry over (LCO) and gas

carry under (GCU) has been developed [9]. This model used

empirical data for GCU and LCO calculations and thus gave

a more correct representation of the dynamics of a GLCC.

A feed forward control strategy was implemented and it was

shown that the GCU or LCO can be limited, but the control

strategy induced oscillations in the control valve and outlet

flows that may damage the valve and cause problems for

downstream process equipment like compressors and pumps.

In this paper we consider the model derived in [10].

This model is based on the physical mechanisms of GCU

and LCO, includes more dynamics and hence enables

model-based controller design. The model has been used to

derive a feedback linearizing controller [11] and in this paper

we relax some of the assumptions and requirements of [11]

and derive an adaptive feedback linearizing controller.

Local asymptotic stability, in the sense of Lyapunov, of the

liquid level and gas pressure is proven and the results are

verified in simulations. These also show that the controller

is robust to parameter uncertainty and measurement noise.

Our proposed controller provides us with desired outflow of

liquid and gas which are used in a cascade control structure.

The desired outlet flows are sent to a PI controller that

operates the outlet valves for gas and liquid. See Fig. 2.

The paper is divided into the following sections: Section

II describes the model. The proposed controller is derived

in Section III. Section IV presents the results and Section V

concludes the paper.

II. DYNAMIC MODEL

The dynamic model of the GLCC separator used to study

control was presented in [10] with only immediate separation

of the inlet flow. The model was later extended to also

describe continuous separation [12]. The following section

provides a brief summary of this model.
The model consists of four mass balances and includes

separation performance. The separation performance is de-

scribed by four nonlinear separation factors; two describing

immediate separation of the inlet gas-liquid flow and two

describing the continuous separation between the gas and

liquid volumes inside the GLCC separator.
The incomplete separation of the gas-liquid inlet flow

results in a gas volume containing liquid droplets and a liquid

volume containing gas bubbles. Therefore, the gas volume is

called wet gas (WG) and the liquid volume is called light

liquid (LL).
The dynamic model is on state-space form with the fol-

lowing states:

• mLL,L: accumulated liquid in LL [kg]

• mLL,G: accumulated gas in LL [kg]

• mWG,L: accumulated liquid in WG [kg]

• mWG,G: accumulated gas in WG [kg] .

The ordinary differential equations describing the dynam-

ics are given by

ṁLL,L = win,L − wim,L + wL2LL − wLL,L (1)

ṁLL,G = wim,G − wG2WG − wLL,G (2)

ṁWG,L = wim,L − wL2LL − wWG,L (3)

ṁWG,G = win,G − wim,G + wG2WG − wWG,G, (4)

where ṁLL,L and ṁLL,G are the time derivatives of liquid

and gas in the LL, respectively, ṁWG,L and ṁWG,G are the

time derivatives of liquid and gas in the WG, respectively,

win,L and win,G are the inlet mass flows of liquid and gas,

respectively, wLL,L and wLL,G are the outlet mass flows of

liquid and gas from the LL, respectively, wWG,L and wWG,G

are the outlet mass flow of liquid and gas from the WG,

respectively.
The immediate separation (the mass flows wim,L and wim,G)

describe the separation of the inlet liquid to the WG and inlet

gas to the LL, respectively, while the continuous separation

is described by the mass flows wL2LL and wG2WG describing

the continuous separation of liquid from the WG to the LL

and of gas from the LL to the WG, respectively.
Gas mass fractions are generally defined as

βx =
mx,G

mx,L +mx,G

, (5)

where βx ∈ [0, 1] is the gas mass fraction of x where x can

represent either inlet, LL or WG.
The definition (5) is used to divide the multiphase flows

into separate gas and liquid flows yielding

wx = wx,L + wx,G = (1− βx)wx + βxwx. (6)



The separation performance is determined by the amount

of LCO and GCU that occurs at any given time. These

phenomena are described by nonlinear separation factors

resulting in highly nonlinear dynamics. The separation flows

are described as

wim,y = ǫim,ywin,y (7)

wy2z = ǫyβzmz,y (8)

where ǫim,y ∈ [0, 1] is the immediate separation factor of y

from the inlet flow and ǫy ∈ [0, 1] is the continuous separation

factor of y to z. The subscript y represents either gas or liquid,

while z represents either LL or WG. The separation factors

are highly nonlinear functions of the states and not further

described this section. The interested reader is referred to [10]

and [12] for details.

The liquid level hL and gas pressures pG are given by

hL =
mLL,L +mLL,G

a
(9)

pG =
bmWG,G

aH − (mLL,L +mLL,G)
, (10)

where H is the total tank height and a = ρLA > 0 and

b = ρLRT
MWG,G

> 0 are model parameters. We assume that the

liquid level and gas pressure are available as measurements

and thus, these variables constitute the controlled variables.

III. CONTROL

A. State transformation

The following state transformation was first presented

in [11], but is repeated here for completeness. The dynamics

of the liquid phase is governed by the liquid and hence is

described by the state x1. Since the weight of the liquid is

much higher than the weight of the gas, the gas dynamics

are considered as a coupling of the liquid and gas dynamics

and hence it is separated into two states, x2 and x3. The new

states are

x ,





x1

x2

x3



 =





mLL,L +mLL,G

mWG,L

mWG,G



 (11)

Differentiating (11) with respect to time gives

ẋ1 = ṁLL,L + ṁLL,G = f1(·) + f1,s(·)− wLL (12)

ẋ2 = ṁWG,L = f2,s(·)− wWG,L (13)

ẋ3 = ṁWG,G = f3(·) + f3,s(·)− wWG,G (14)

where

f1(·) = win,L (15)

f1,s(·) = −wim,L + wL2LL + wim,G − wG2WG (16)

f2,s(·) = wim,L − wL2LL (17)

f3(·) = win,G (18)

f3,s(·) = −wim,G + wG2WG (19)

where wLL = wLL,L + wLL,G. Function arguments will be

left out for the rest of this paper. The inlet mass flow is

described by f1 and f3 and the immediate and continuous

separation is described by f1,s, f2,s,f3,s. We assume these

functions to be slowly time-varying. We assume that the

system is designed such that ||wLL||∞ > ||f1 + f1,s||∞ and

||wWG,G||∞ > ||f3 + f3,s||∞, i.e., the possible outflow is

always higher than the highest possible inflow and separation

flow (this allows draining the tank no matter the inflow). The

inlet functions f1 and f3 are assumed to satisfy the following

conditions

0 < δ1 ≤ f1 ≤ δ2wLL,max (20)

0 < δ3 ≤ f3 ≤ δ4wWG,max (21)

with δ1, δ3 > 0, δ2, δ4 ∈ (0, 1) and wLL,max and wWG,max

are the maximum possible outlet mass flows of liquid and

gas respectively, giving well defined minima and maxima of

the functions f1 and f3. Furthermore, wLL ∈ [0, wLL,max] and

wWG,L + wWG,G = wWG ∈ [0, wWG,max].
We want to control the liquid level and the gas pressure.

In the transformed state-space, these variables are given by

y1 = hL =
1

a
x1 (22)

y2 = pG =
b

aH − x1
x3 . (23)

The physical domain of the system is defined by the opera-

tional limits for liquid level and gas pressure, namely hHAL,

hLAL, pHAL and pLAL where HAL refers to the high alarm

limit and LAL to the low alarm limit. Reaching any of these

limits would initiate system shut down. Thus the operating

domain is defined as

O1=
{

y∈ R
2
∣

∣hHAL> y1> hLAL, pHAL> y2> pLAL

}

. (24)

Differentiating the outputs y1 and y2 gives

ẏ1 =
1

a
[f1 + f1,s − wLL] (25)

ẏ2 =
b

aH − x1

[

f3 + f3,s −
x3

x2 + x3
wWG

+
x3(f1 + f1,s − wLL)

aH − x1

]

. (26)

The input appears in the first derivative of both outputs, hence

each output has a relative degree of 1, summing up to a

total relative degree of 2. Since the system has 3 states the

transformed system has 1 internal state and 2 external states.

The state transformation is given by

z = T (x) = [η, ξ1, ξ2]
T

(27)

where ξ = y = [y1, y2]
T

is the external state and η = φ(x)
is the internal state. It is shown in [11] that by choosing the
internal state as η = x2

x3

and extending the physical domain
O1 to

O2=
{

z ∈ R
3
∣

∣η > 0, hHAL > ξ1 > hLAL, pHAL > ξ2>pLAL

}

(28)

we can apply the state transformation

T (x) =

[

x2

x3
,
x1

a
,

bx3

aH − x1

]T

(29)



which is a diffeomorphism on

I =

{

x ∈ R
3
∣

∣x1 > 0, ahHAL > x2 > ahLAL,

aHpHAL

b
> x3 >

aHpLAL

b

}

(30)

because both T (x) and T−1(x) exist and are continuously

differentiable on the domain. The resulting transformed sys-

tem is given as

η̇ =
b

aξ2(H − ξ1)
[f2,s − η(f3 + f3,s)] (31)

ξ̇1 =
1

a
[f1 + f1,s − wLL] (32)

ξ̇2 = F

[

f3+f3,s−
1

η + 1
wWG+

ξ2
b
(f1 + f1,s − wLL)

]

(33)

where F = b
a(H−ξ1)

.

B. Adaptive feedback linearizing controller

In the following we will assume that the system parameters

a and b are known as well as the total tank height H .

We want the external states to track the constant references

ξ1,d and ξ2,d, which are the desired liquid level and gas pres-

sure, respectively. We define the error variables ξ̃1 = ξ1−ξ1,d
and ξ̃2 = ξ2 − ξ2,d.

To ensure local asymptotic stability when tracking a refer-

ence, the input to the system must be allowed to take negative

values. This is impossible if we consider the outflows wLL

and wWG as inputs, since wLL, wWG ≥ 0. Instead, we consider

the net flow ∆wLL = wLL − f1 as input to system (32) and

the net flow ∆wWG = wWG − f3 as input to system (33).

These inputs satisfy

wLL ≤∆wLL ≤ wLL (34)

wWG ≤∆wWG ≤ wWG (35)

where wLL = −δ2wLL,max < 0, wWG = −δ4wWG,max < 0,

wLL = wLL,max − δ1 > 0 and wWG = wWG,max − δ3 > 0.

The error dynamics are given by

η̇ =
b

a(ξ̃2 + ξ2,d)(H − ξ̃1 − ξ1,d)
[f2,s − η(f3 + f3,s)]

(36)

˙̃
ξ1 =

1

a
[f1,s −∆wLL] (37)

˙̃
ξ2 = F

[

f3,s −∆wWG + σwWG +
ξ2
b
(f1,s −∆wLL)

]

(38)

where σ = 1− 1
η+1 .

The error systems (37) and (38) are written in linear

parameterized form as

˙̃
ξ1 = φ1(θ1 −∆wLL) (39)

˙̃
ξ2 = θT

2φ2 −F(∆wWG +
ξ2
b
∆wLL) (40)

where φ1 = 1/a, θ1 = f1,s, θ2 =
[

f3,s σ θ1
]T

and

φ2 =
[

F FwWG
Fξ2
b

]T
. We assume that the unknowns,

θ1 and θ2 are small (|θ1| ≪ |wLL|, ||θ2||2 ≪ |wWG + wLL|)
and constant or slowly varying with θ̇1 = θ̇2 = 0.

Theorem 1. Choosing

∆wLL = θ̂1 +
1

φ1
k1ξ̃1 (41)

∆wWG = −
ξ2
b
θ̂1 −

ξ2
bφ1

k1ξ̃1 +
1

F

(

k2ξ̃2 + θ̂T
2φ2

)

(42)

where k1, k2 > 0, as input to (39) and (40), respectively and

using

˙̂
θ1 = γ1Proj(θ̂1, φ1ξ̃1) (43)

˙̂
θ2 = Γ2Proj(θ̂2, φ2ξ̃2) (44)

where γ1,Γ2 > 0, as update laws for the estimated param-

eters θ̂1 and θ̂2 renders the origin of the error systems (39)

and (40) locally asymptotically stable.

Proof. Inserting (41) into (39) gives

˙̃
ξ1 = −k1ξ̃1 + θ̃1φ1 , (45)

where θ̃1 = θ1 − θ̂1. Inserting (41) and (42) into (40) gives

˙̃
ξ2 = −k2ξ̃2 + θ̃T

2φ2 (46)

where θ̃2 = θ2− θ̂2. Consider the positive definite Lyapunov

function candidate

V =
1

2
ξ̃21 +

1

2
ξ̃22 +

1

2γ1
θ̃21 +

1

2
θ̃T
2Γ

−1
2 θ̃2 (47)

where γ1 > 0 and Γ2 = ΓT
2 > 0 are adaptation gains.

The time derivative of (47) along the trajectories of the

system (45), (46) is given by

V̇ = −k1ξ̃
2
1 − k2ξ̃

2
2 + θ̃1φ1ξ̃1 + θ̃T

2φ2ξ̃2

+
1

γ1
θ̃1

˙̃
θ1 + θ̃T

2Γ
−1
2

˙̃
θ2 (48)

= −k1ξ̃
2
1 − k2ξ̃

2
2 + θ̃1

(

φ1ξ̃1 +
1

γ1

˙̃
θ1

)

+ θ̃T
2

(

ξ̃2φ2 + Γ−1
2

˙̃
θ2

)

. (49)

The projection operator in (43) and (44) ensures that the

estimates θ̂1 and θ̂2 are bounded and prevents windup issues

due to the bounds on the control inputs ∆wLL and ∆wWG.

The projection operator is defined in [13, App. B] as

Proj(θ̂, y) ,

{

y if g(θ̂) < 0 ∨ g(θ̂) ≥ 0 ∧∇gTy ≤ 0

y − ∇g∇gTyg(θ̂)
||∇g||2 , if g(θ̂) ≥ 0 ∧∇gTy > 0

(50)

where the logic symbols ∨ and ∧ represents or and and,

respectively, and g(θ̂) is a smooth function

g(θ̂) =
(ǫθ + 1)θ̂Tθ̂ − θ2max

ǫθθ2max

(51)



with ǫθ > 0 as the projection tolerance bound, ||θ||22 ≤ θ2max

and gradient ∇g(θ̂) = 2 ǫθ+1
ǫθθ2

max
θ̂.

We choose a set Ω0 such that θ1 ∈ Ω0 ⊂ Ω1 and θ̂1 ∈ Ω1

and a set Ω2 such that ||θ2||2 ∈ Ω2 ⊂ Ω3 and θ̂2 ∈ Ω3.

Inserting the update laws (43) and (44) into (49) and

utilizing the fact that θ̇1 = θ̇2 = 0,
˙̃
θ1 = θ̇1 −

˙̂
θ1 = −

˙̂
θ1

and
˙̃
θ2 = θ̇2 −

˙̂
θ2 = −

˙̂
θ2, gives

V̇ = −k1ξ̃
2
1 − k2ξ̃

2
2 + θ̃1(φ1ξ̃1 − Proj(θ̂1, φ1ξ̃1)) (52)

+ θ̃2(φ2ξ̃2 − Proj(θ̂2, φ2ξ̃2))

≤ −k1ξ̃
2
1 − k2ξ̃

2
2 ≤ 0 ∀ ξ̃1, ξ̃2 . (53)

where [13, Property B.2] ensures that θ̃1(φ1ξ̃1 −
Proj(θ̂1, φ1ξ̃1)) ≤ 0 and θ̃2(φ2ξ̃2 − Proj(θ̂2, φ2ξ̃2)) ≤ 0.

This implies that V (t) ≤ V (0) and that the origin of the

systems (45), (46), (43), (44) are stable [14, Th. 4.1]. We

assume that the initial errors ξ̃1(t0), ξ̃2(t0) are bounded, and

hence ξ̃1(t) and ξ̃2(t) are bounded.

The time derivative of V̇ is

V̈ = −2k1ξ̃1
˙̃
ξ1 − 2k2ξ̃2

˙̃
ξ2 (54)

where all signals are bounded and consequently V̈ is bounded

and V̇ is uniformly continuous. By application of Barbǎlat’s

lemma in the same manner as in [15], convergence of V̇
to zero and consequently asymptotic convergence of ξ̃1, ξ̃2
to zero is guaranteed. From (43), (44), this in turn implies

that
˙̂
θ1 and

˙̂
θ2 converge to zero asymptotically. Combining

the proof of convergence with the proof of stability, we have

proof of asymptotic stability in the sense of Lyapunov of the

origins of the systems (39) and (40).

In the error system (45), we are in fact guaranteed conver-

gence of θ̃1 → 0. We have shown that ξ̃1 → 0 =⇒
˙̃
ξ1 → 0

which is only true if θ̃ → 0. In the error system (46), it is

required that φ2 is a persistently exciting (PE) signal in order

to guarantee parameter convergence [16, Ch. 4.2]. Having

this signal be sufficiently PE, however, is not desired, as the

manipulated variable in φ2 is the gas flow wWG and enforcing

PE on this signal would cause significant wear and tear on

the valve controlling the gas flow. Since the focus of the

controller is stabilization, not parameter estimation, having

the φ2 signal be sufficiently PE is not considered necessary.

Parameter convergence is not guaranteed when the con-

troller is implemented on the more accurate model described

in Section II, since our assumptions are not necessarily

satisfied and we include valve dynamics in the simulations

which alters the total dynamics of the system.

By replacing θ1 and θ2 with estimates θ̂1 and θ̂2, we relax

the assumptions from [11], where these are assumed known.

The internal state η enters system (33) and it is important

that this state is upper bounded and not equal to −1. It is

shown in [11] that 0 < |η| ≤ h(|η(t0)|, t− t0) < ∞ where h
is a class KL function, if certain inlet conditions are satisfied.

We use the same system and inlet conditions in this paper

as described in [11] and hence, the conditions are satisfied.

The interested reader is referred to [11] for the full proof of

boundedness of η.

C. Cascade control

In the stability analysis in the previous section, we defined

the inputs to the error systems as ∆wLL and ∆wWG. Since

the actual inputs to the GLCC are the valve openings of the

liquid and gas valves, we need to transform this signal to

a corresponding valve opening. This is done by a cascade

control structure, as shown in Fig. 2.

We define the desired outlet flows of liquid and gas as

wLL,d = ∆wLL + f1 and wWG,d = ∆wWG + f3 for the liquid

and gas outlet, respectively. These flows are used as refer-

ences to a PI controller that determines the corresponding

valve opening. The PI controllers takes the form

uL=−kL

(

(wLL −wLL,d)+
1

τL

∫ t

0

(wLL − wLL,d) dt

)

(55)

uG=−kG

(

(wWG −wWG,d)+
1

τG

∫ t

0

(wWG−wWG,d) dt

)

(56)

where wLL and wWG are the actual mass flows through the

valves. The PI controller parameters kL > 0, τL > 0, kG > 0
and τG > 0 are the proportional gain and integral time for

the liquid and gas flow controllers.

IV. RESULTS

A. Simulations of the simplified system

We first simulate the system (36)–(38) in Simulink to

verify that the controller works on the system for which it is

designed. We do not consider the dynamics of the separation

factors or the uncertainty of the system parameters, i.e., the

separation mass flows f1,s, f2,s and f3,s are constants and

the system parameters a, b and H are known exactly. We

use ∆wLL and ∆wWG as inputs without considering valves,

but using the bounds. The controller parameters used in this

simulation is listed in Table I. As can be seen in Fig. 3, the

controller is able to bring the states to the desired references

as expected. We also see that the unknown parameter θ1 is

estimated correctly, but the parameter vector θ2 is not correct

as this would require a PE signal in the update law (44).

B. Simulations of the full system

We also simulate the closed-loop system on the more ac-

curate model described in Section II, with varying inlet flows

which in turn induces changes in the separation flows. The

simulations are run for 3600 seconds and we use the variable-

step ode15s solver. We assume a constant backpressure of 48
bar and a constant temperature of 60◦C. We also introduce

the cascade controller and send the generated valve signals

through a low-pass filter h(s) = 1
2s+1 to emulate the valve

dynamics seen in Fig. 2.

The inlet liquid mass flow changes between nominal

(∼ 9.5 kg/s), high (∼ 19 kg/s) and low (∼ 4.8 kg/s). The

same goes for the inlet gas mass flow. This also changes

between nominal (∼ 2.4 kg/s), low (∼ 1 kg/s) and high



TABLE I
PARAMETERS USED IN SIMULATION 1

Parameter Value Description
γ1 1 Adaptation gain
Γ2 5× 10

−5
I
3×3 Adaptation gain

k1 25 Feedback gain level controller
k2 5 Feedback gain pressure controller

TABLE II
PARAMETERS USED IN SIMULATIONS 2 AND 3

Parameter Value Description
γ1 5 Adaptation gain
Γ2 20× 10

−5
I
3×3 Adaptation gain

k1 250 Feedback gain level controller
k2 10 Feedback gain pressure controller
kL, kG 10 Cascade controller P gain
τL, τG 100 Cascade controller time constant

(∼ 3.4 kg/s). This results in 3 different inlet conditions,

namely nominal, low gas / high liquid and high gas / low

liquid. The inlet conditions are shown at the bottom of Fig. 4.

We also introduce changes in the desired liquid level and gas

pressure.

As bound on θ1 we choose θ1,max = wLL = 22 [kg/s] and

for θ2 we choose ||θ2,max||2 = θ1,max + wWG = 27 [kg/s].

The projection tolerance bound is chosen as ǫθ = 1 for both

projection update laws.

As can be seen in Fig. 4, the controller performs very

well. The states quickly converges to their desired values

and the disturbances caused by the changes in inlet flows are

attenuated. The desired outlet flows are tracked very well by

the cascade controller. The controller parameters used in the

simulation are listed in Table II.

To demonstrate the robustness of the controller we intro-

duce an error to the variable φ2, which is used in ∆wWG

and in the update law for θ̂2. More specifically, we multiply

the values of a and b by 0.5 and 0.7, respectively. We also

add white noise with a sample time of 1 second and a

power of 0.0001 to all measurements. The results of this

simulation are shown in Fig. 5. We see that even under these

conditions, the controller performs well. The performance is

of course limited by the dynamics of the valves and the fact

that the noisy measurements are not filtered. We use the same

controller parameters as in Simulation 2.

V. CONCLUSIONS

In this paper we have proposed an adaptive feedback

linearizing controller for gas liquid cylindrical cyclones ca-

pable of asymptotically controlling the liquid level and gas

pressure. The dynamics of the liquid level and gas pressure

are affected by the nonlinear separation factors which cannot

be measured. By applying a state transformation and using

a Lyapunov approach we derived control laws for the liquid

and gas outflows as well as update laws for the unknown

parameters. We used a projection-based adaptation law pre-

venting windup issues related to limitations of the control

input.
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Fig. 3. The behaviour of the liquid level and gas pressure error systems
with constant separation flows f1,s, f2,s and f3,s and no valve dynamics.

The origins of the transformed system error dynamics were

proven to be locally asymptotically stable in the sense of

Lyapunov. We verified the theoretical results in three different

simulations; one on the nominal system and two on a more

complex model. In the first simulation scenario, the results

match those expected from the theoretical results. In the

two other simulation scenarios, in addition to using a more

complex plant model, the calculated desired outflow was used

in a cascade control setting with PI controllers as secondary

controllers.

Simulations were carried out with and without measure-

ment noise and parameter uncertainties. In both cases the con-

troller is capable of tracking the desired references, indicating

robustness of the controller. Parameter tracking, however, can

not be guaranteed. The mathematical proof of boundedness

of the error systems (39) and (40) under the presence of

measurement noise is left as future work.

As future work we also recommend designing observers

for the liquid level and gas pressure, as these measurements

may not be available or they may be highly contaminated by

noise and delays.
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