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Abstract—In the past decade, complex networks have attracted
much attention from various fields of sciences and engineering.
Synchronization is a typical collective behavior of complex net-
works that has been extensively investigated in recent years. To re-
veal the dynamical mechanism of synchronization in complex net-
works with time delays, a general complex dynamical network with
delayed nodes is further studied. Based on a suitable model, we in-
vestigate the adaptive feedback synchronization and obtain several
novel criteria for globally exponentially asymptotic synchroniza-
tion. In particular, our hypotheses and the proposed adaptive con-
trollers for network synchronization are very simple and can be
readily applied in practical applications. Finally, numerical simu-
lations are provided to illustrate the effectiveness of the proposed
synchronization criteria.

Index Terms—Adaptive feedback synchronization, complex net-
works, delayed nodes.

I. INTRODUCTION

THE so-called complex network refers to a set of nodes con-
nected by edges (graph) that has certain nontrivial topo-

logical features that are not found in simple networks [1]–[4].
Such nontrivial features involve a degree distribution with a
heavy-tail, a hierarchical structure, a high clustering coefficient,
a community structure at different scales, and assortativity or
disassortativity among vertices [2], [5]–[8]. It is well known that
complex networks exist in many natural and man-made systems,
e.g., food webs, neural networks, cellular and metabolic net-
works, electrical power grids, computer networks, technological
networks, the World Wide Web, coauthorship and citation net-
works, social networks, etc. [1], [2].

Time delay inevitably exists in natural and man-made net-
works [9]–[15]. In much of the literature, time delays in the cou-
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plings (edges) are considered [9]–[11]; however, the time delays
in the dynamical nodes [12]–[15], which are more complex, are
still relatively unexplored. As a matter of fact, one can find nu-
merous examples in the real world which are characterized by
delayed differential equations having time delays in the dynam-
ical nodes [12]–[15]. For example, the delayed logistic differen-
tial equation, which has time delay in the dynamical node, is a
representative dynamical model of the electrochemical interca-
lations and physiological systems [15]. It is thus imperative to
further investigate complex dynamical networks with delayed
nodes. However, such complex networks are still relatively un-
explored due to their complexity and the absence of an appro-
priate simplification procedure [9], [10]. Further, the lack of a
general approach or tool to study such kind of complex networks
has also obstructed the progress of development of their analysis
[11]. Recently, we developed a method to deal with such kind of
complex networks [16], and in this paper we further investigate
the synchronization of a general complex dynamical network
with delayed nodes.

Synchronization is now widely regarded as a kind of collec-
tive behavior which is exhibited in many natural systems [1],
[16], [17]. In essence, synchronization is a form of self-organi-
zation. It has been demonstrated that many real-world problems
have close relationships with network synchronization [1], [2],
[8]. For example, theoretical and experimental results show that
a mammalian brain not only displays in its storage of associative
memories, but also modulates oscillatory neuronal synchroniza-
tion by selective perceive attention [18].

Recently, synchronization of complex dynamical networks
has been a focus in various fields of science and engineering.
Wu [5] investigated the synchronization of random directed
networks. Lü and Chen [8] studied the synchronization of
time-varying complex dynamical networks. Li et al. [9], [11]
explored the synchronization of complex dynamical networks
with nonlinear inner-coupling functions and time delays. Zhou
et al. [16] studied the adaptive synchronization of an uncertain
complex dynamical network. Sorrentino et al. [17] investigated
the controllability of complex networks with pinning controllers.
However, the important issue of synchronization of complex
dynamical networks with delayed nodes has only been lightly
covered [9]–[15]. This paper will further investigate the adaptive
feedback synchronization of complex dynamical networks with
delayed nodes. In particular, we obtain several novel criteria for
globally exponentially asymptotic synchronization. It should
be pointed out that our hypotheses and the proposed adaptive
controllers for network synchronization are very simple and easy
to apply.

This paper is organized as follows. Section II introduces a
general complex dynamical network with delayed nodes and
several useful hypotheses. A set of novel adaptive feedback syn-
chronization criteria are given in Section III. Section IV uses two
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representative examples to show the effectiveness of the pro-
posed synchronization criteria. Some concluding remarks are
given in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider a general complex network consisting of de-
layed dynamical nodes [7], [8]. Each node of the network is
an -dimensional nonautonomous dynamical system with time
delay, which is described by

(1)

where ,
are the state variables of node , is the constant

time delay, and are the directed couplings from nodes to
. The matrix is the inner connecting

matrix of each node and the matrix
is the diffusively coupled matrix of the network. That is,

(2)

where represent the coupling strengths from
nodes to . Moreover, are the controllers designed
for the network.

Remark 1: In the network (1), the outer-coupling matrix
is not necessarily to be symmetric and the elements are not
assumed to be only 0 or 1. Moreover, there is no any constraint
on the inner-coupling matrix .

Before starting the main results, some necessary definitions
and assumptions are given in the following.

Assumption 1 (A1): For the delayed differential equation

(3)

where , is a continuous function,
there exists a unique continuous solution for any initial condi-
tion , where is an -dimensional vector.

Assumption 2 (A2): For the vector function ,
suppose that the uniform Lipschitz condition holds,
i.e., for any and

. Then, there exists a positive
constant , such that

(4)
where .

Hereafter, and the
spectral norm of matrix is defined by .
Assume that is a solution of the node system (3) satisfying

(5)

where may be an equilibrium point, a periodic orbit, an
aperiodic orbit, or a chaotic orbit in the phase space.

Definition 1: [4], [7], [8]. Let
be a solution of the controlled network (1), where

. Assume that and

are continuous, .
If there is a nonempty subset , with ,
such that for all , , and

(6)

where and , then the controlled network
(1) is said to achieve asymptotical network synchronization and

is called the region of synchrony for the dynamical
network (1).

Define error vectors as

(7)

where . According to the controlled network (1) and
notice that , the error system is then described by

(8)

where .
Definition 2: The network (1) is said to be globally exponen-

tially asymptotical synchronous if there exist constants
and , such that for any initial condition,

(9)

where and .
In the following, the main goal is to design appropriate adap-

tive controllers and the corresponding updating laws which
make the network (1) globally exponentially asymptotically
synchronous.

III. ADAPTIVE FEEDBACK SYNCHRONIZATION OF A GENERAL

COMPLEX DYNAMICAL NETWORK WITH DELAYED NODES

In this section, we will introduce several useful adaptive feed-
back synchronization criteria for the complex dynamical net-
work (1) with delayed nodes.

Theorem 1: Suppose that A1 and A2 hold. Let the controllers
be with the following updating
laws:

(10)

where and are positive constants. Then, the controlled net-
work (1) is globally exponentially asymptotically synchronous.
Moreover,

(11)
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Proof: Construct the Lyapunov function candidate as
follows:

(12)

By using the inequality , along with
(8) and (10), we have

(13)

Denote , and take ac-
count into the fact , we further have

(14)

Select suitable constants satisfying

(15)

Then, we have . It follows that for any
.

Using the Lyapunov function (12), we have

(16)

Therefore, we obtain

(17)
Thus, . That is, the controlled network (1)
is globally exponentially asymptotically synchronous. Q.E.D.

Theorem 2: Suppose that A1 and A2 hold. Let the controllers
be with the following updating
laws:

(18)

where and are positive constants, then the controlled net-
work (1) is globally exponentially asymptotically synchronous.
Furthermore,

(19)
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Proof: Construct the Lyapunov function candidate as
follows:

(20)

Since , the Dini derivative of
with respect to time along the trajectories of (8) is then

given by

(21)

Now, choose suitable constants satisfying

(22)

Therefore, . Similar to the proof of Theorem 1, we
have

(23)

Thus, . That is, the controlled network (1)
is globally exponentially asymptotically synchronous. Q.E.D.

IV. EXAMPLES

In the foregoing section, Theorems 1 and 2 essentially pro-
vide the criteria for global exponential asymptotic synchroniza-
tion. In this section, we use two representative examples to il-
lustrate how these theorems can be applied to achieve synchro-
nization in complex networks with delayed nodes.

Example 1: We first consider a simple network with 50 nodes
and time delay . The delayed dynamical equation of each
node is described by

(24)

Fig. 1. Solution s(t) of the delayed differential equations (24) with initial
values vector [�10 2 � 3] .

Fig. 2. Synchronization errors e ; e ; e (i = 1; 2; . . . ; 50) under updating
law (10).

Fig. 3. Synchronization errors e ; e ; e (i = 1; 2; . . . ; 50) under updating
law (18).

where , , and .
For the initial vector value , the solu-

tion of system (24) is denoted by ,
which is shown in Fig. 1.
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Fig. 4. Solution s(t) of the delayed logistic differential equation (25) with ini-
tial value x = 1.

Fig. 5. Synchronization errors e (t) (i = 1; 2; . . . ; 50) of the delayed logistic
network with adaptive feedback controllers under (a) updating law (10); and
(b) updating law (18).

Here, we assume that these nodes are globally connected with
weighted edges. For convenience, select . The
coupling configuration matrix is thus given by

...
...

...
...

...

Assume that the inner matrix and the Lipchitz con-
stant . Obviously, assumptions A1 and A2 hold.

If are large enough, according to The-
orems 1 and 2, then the inequalities (15) and (22) hold. Let

. Fig. 2 and 3 show the synchro-
nization errors of under the updating laws
(10) and (18), respectively. Clearly, all synchronization errors
are rapidly converging to zero.

Example 2: Next we consider a more complex node system
that exhibits chaotic behavior. Specifically, we examine the lo-
gistic delay differential equation that characterizes the nonlinear
dynamics of the electrochemical intercalations and physiolog-
ical systems [15]. The logistic delay differential equation of
each node is given by [15]

(25)

where . When , and ,
system (25) is chaotic, as shown in Fig. 4, where the initial value

.
The coupling configuration matrix and the constants

are as given in the earlier example. The syn-
chronization errors of the delayed lo-
gistic network under the updating laws (10) and (18) are shown
in Fig. 5(a) and (b), respectively. All synchronization errors
rapidly converge to zero.

V. CONCLUSION

A general complex dynamical network with delayed nodes
has been studied in this paper. Such a network represents a real-
istic form of networks which has not been thoroughly addressed
previously. Specifically, by constructing appropriate Lyapunov
functions, several novel adaptive feedback synchronization cri-
teria are derived. These criteria are very useful for understanding
the mechanism of synchronization in complex networks with
time delayed nodes. Moreover, the hypotheses and the resulting
adaptive controllers for achieving network synchronization are
expressed in simple forms that can be readily applied in practical
situations. Finally, numerical simulations have been presented
to demonstrate the effectiveness of the proposed synchroniza-
tion criteria.
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