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ABSTRACT 
A large class of physical phenomenon observed in practice 
exhibit non-Gaussian behavior. In this paper, a-stable dis- 
tributions, which have heavier tails than Gaussian distribu- 
tion. are considered to  model non-Gaussian signals. A d a p  
tive signal processing in the presence of such kind of noise 
is a requirement of many practical problems. Since, direct 
application of commonly used adaptation techniques fail in 
these applications, new approaches for adaptive filtering for 
a-stable random processes are introduced. 

1. INTRODUCTION 

In many signal processing applications the noise is modeled 
as a Gaussian process. This assumption has been broadly 
accepted because of the Central Limit Theorem. However, 
a large class of physical observations exhibit non-Gaussian 
behavior, such as low frequency atmospheric noise, many 
types of man-made noise and underwater acoustic noise [1]- 
131. There exists an important class of distributions known 
as a-stable distributions [5 ]  which can be used to  model 
this type of noises. These distributions have heavier tails 
than those of Gaussian distribution, and they exhibit sharp 
spikes or occasional bursts in their realizations. A random 
variable is called a-stable if its characteristic function has 
the following form: 

o ( t )  = ezp{zat - yltl"[I + zpszgn( t )w( t ,  a ) ] }  (1) 

y > 0 ,  0 < (Y 5 2, -1 5 ,8 5 1 and where --x, < a < CO, 

t an (aa /2 )  for a # 1 a log It1 for a = 1. 
u( t ,  a)  = 

There is no compact expression for the probability density 
function of these random variables except a = 1 and 2 
cases which correspond to  the Cauchy and Gaussian distri- 
butions. respectively. 

Llembers of stable distributions also satisfy a general- 
ized central limit theorem which states that  if the sum of 
i i.d. random variables converges then the limit distribution 
is a stable one. If individual distributions are of finite vari- 
ance then the limit distribution is Gaussian. Tails of this 
type of distributions are characterized with the a parameter 
(0  < cy 5 2 )  which is called as the characteristic exponent 
( N  values close to  0 indicates impulsive nature and a val- 
ucs close to 2 indicates a more Gaussian type of behavior). 

With the Gaussian assumption, signals could be treated in 
a Hilbert space framework which would allow the use of Lz 
(or P;) I.--= in various ont,imization criteria. Whereas. the 
linear vector space generated by a-stable distributions is a 
Banach space when (1 5 cy < 2). In the linear space of 
stable processes only p-norms exists for p 5 cy, hence. 
norm cannot be used with an a-stable processes. Modeling 
a-stable processes under a Gaussian assumption leads to  
unacceptable results as is reported in [5]. 

In this paper, various approaches to  adaptive filtering is 
investigated under additive a-stable noise with finite mean 
corresponding to  case of 1 5 a < 2. These approaches are 
also compared to  recently introduced p-norm algorithms 
[4, 51. T h e  p-norm algorithms are presented in Section 2 
and the use of pre-nonlinearity in adaptive filtering is in- 
vestigated in Section 3. The  simulation results are given in 
Section 4. 

2. ADAPTIVE FILTERING FOR a-STABLE 
PROCESSES 

The  objective for a general filtering application is to  find 
an FIR filter of length N, tu, that  relates the input,  z ( n )  to 
the desired signal d ( n ) :  

@) = &(k)' (3) 

where d ( k )  is the estimate of the desired signal a t  time 
instant k, and 

- z(k) = [z(k) z(k - 1) ' .  . z ( k  - N + l)]' . (4)  

Commonly used adaptive filtering algorithms utilize the 
Hilbert space framework. This allows the use of least squares 
cost function whose solution can be found either exactly as 
in Recursive Least Squares (RLS) algorithms or approxi- 
mated by Least-Mean-Squares (LMS) type methods [7, 81. 
However, in the existence of a-stable processes least squares 
cost function cannot be defined because the variance of the 
error is not finite. Hence a new cost function other than 
least squares should be used. 

In this work, we consider an adaptation algorithm for an 
FIR filter of length N. The  problem is to  adaptively update 
the tap weights of the FIR filter, zu, such that  given an input 
sequence ~ ( n ) ,  the output of the filter is close to  the desired 
response d ( n ) ,  both of which is assumed to  be a-stable. In 
this case, i t  is appropriate to minimize the dispersion of the 
error function [5]. 
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This adaptation problem can be solved asymptotically 
by using the stochastic gradient method with the motiva- 
tion of the LMS algorithm [8]. Such an algorithm, least 
mean p-norm (LMP) algorithm, is proposed in [ 5 ] .  This 
algorithm is a generalization of instantaneous gradient de- 
scent algorithm to  a-stable processes, where the gradient of 
the p-norm of the error, 

J = E[l4k)lPJ 
= E[ld(k) - w(k)' E(k)lPl, 0 < P < a ( 5 )  

is used, and the tap  weights, E, are adapted at time step 
k + 1 as follows: 

- w(k + 1) = d k )  + I.L le(k)lP-' s g n ( e ( k ) )  c(k) (6) 

where j~ is the step size which should be appropriately de- 
termined. Note that ,  for p = a = 2 the LMP algorithm 
reduces to  the well-known LMS algorithm [8]. When p is 
chosen as 1, the LMP algorithm is called the Least Mean 
Absolute Deviation (LMAD) algorithm 151: 

- w ( k  + 1) = w(k) + I.L s g n ( e ( k ) )  c(k) (7) 

which is also known as the signed-LMS algorithm. 
In this paper we introduce two normalized adaptation 

algorithms with the motivation of the Normalized-LMS al- 
gorithm. The  first one, Normalized Least Mean p-Norm 
(NLMP) algorithm, uses the following update: 

where P,A > 0 are appropriately chosen update parame- 
ters. In (8) normalization is obtained by dividing the up- 
date term by the p n o r m  of the input vector, ~ ( k ) .  The reg- 
ularization parameter, A, is used to  avoid excessively large 
updates in case of an  occasionally small inputs. For p = 2, 
NLMP (8) reduces to  the Normalized-LMS algorithm [8]. 

The second algorithm, Normalized Least Mean Abso- 
lute Deviation (NLMAD), corresponds to  the case of p = 1 
in (8) with the following time update: 

This adaptation scheme is especially useful when the char- 
acteristic exponent, a, either is unknown or varying in time. 
Among the stable distributions the heaviest tail occur for 
the Cauchy distribution, a = 1. By selecting p = 1 the 
update term is guaranteed to  have a finite magnitude for 
all 1 < a 5 2 .  Due to the above reasons NLMAD is a safe 
choice for the adaptation. 

Recently, another class of normalized LMS type algo- 
rithms are also reported in [9, lo]. These algorithms are 
different from ours and they are developed in different con- 
text for white Gaussian input and Laplacian noise. 

3. USE OF PRENONLINEARITY IN 
ADAPTIVE FILTERING 

In this section the performance of LMS and RLS algorithms 
running on nonlinearly transformed da ta  will be investi- 
gated. In this paper, we consider the use of a softlimiter as 

shown in Figure 1. The  motivation behind this approach 
is able to  reduce the effect of spiky characteristic of the CY- 

stable data.This type of regularization have been used in 
robust signal processing applications [ll]. It  can be easily 
shown that  any random process which is passed through a 
softlimiter has finite variance. Thus, the LMS and RLS al- 
gorithms can be used in adaptation process after the input 
and reference signals have been soft-limited. The  optimal 
filter coefficients which LMS and RLS converge are biased. 
However, the bias so introduced can be kept a t  a reason- 
ably small level by a proper selection of threshold value. 
The  use of softlimiter reduces the spiky characteristics of 
input d a t a  hence a much smoother convergence can be ex- 
pected. Because of the use of a nonlinear mapping we call 
the well-known LMS and RLS algorithms as NMLMS and 
NMRLS. One noteworthy feature of this technique is that 
i t  has the same computational complexity as well-known 
LMS and RLS algorithms. Because of the nonlinear map- 
ping involved we call the proposed algorithms as NMLMS 
and NMRLS. A sample sequence of AR process disturbed 
by a-stable ( a  = 1.8) noise and the output sequence after 
the soft limiter are shown in Figure 2. 

Figure 1: Transform domain adaptive filtering block dia- 
gram. 

150, , , . . . , . , . , 

Figure 2 :  A sample AR process disturbed by a-stable ( a  = 
1.8) noise (a),  and the output process after the soft limiter 
(b). 
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4. SIMULATION STUDIES 

- 0 2 -  

In simulation studies we consider AR(N) a-stable processes, 
which are defined as follows, 

N 

.(n) = a,z(n - 2)  + a(n)  (10) 
t = l  

where U(.) is a a-stable sequence of i.i.d random variables. 
The common distribution of ~ ( n )  is chosen to  be an even 
function ( p  = O ) ,  and the gain factors are all set to  one 
(y  = 1) without loss of generality. I t  can be shown that  z(n)  
will also be a a-stable random variable with the same char- 
acteristic exponent when { a, }  is an absolutely summable 
sequence [5, 61. 

Two sets of simulation studies are performed. In the 
first set, the adaptation algorithms NLMAD, NLMP, LMAD, 
LhW and LMS are compared for a second order a-stable AR 
process with a fixed characteristic exponent, a = 1.2. In the 
second set the performances of NLMAD, NLMP, NMLMS 
and NMRLS algorithms are compared for a second order 
a-stable AR process with different values of the character- 
istic exponent. For both sets, the tap  weights are obtained 
by averaging 40 independent trials of the experiment and 
for each trial, a different computer realization of the process 
{ U ( % ) }  is used. To get a fair comparison between algorithms 
the step sizes of adaptive algorithms are chosen in such a 
way that  they aU had a comparable steady-state variance. 
For both simulation set the coefficients of AR(2) is chosen 
as a1 = 0.99 and a2 = -0.1. 

~ NLMAD - - - -  LMAD 

NLMP - - -  LMS LMp ...... 

"f l /  

I 

Figure 3:  Transient behavior of tap weights in the NLMAD, 
NLMP, L M A D ,  L M P  and LMS algorithms with a = 1.2. 

In the first part of the simulations, AR parameters g 
are estimated by a Z n d  order LMP, LMAD, NLMP, NL- 
M A D  and LMS algorithms. The plot of the t a p  weights is 
given in Figure 3. In the first part we observed that  the 
normalized algorithms NLMAD and NLMP outperformed 
other algorithms. Therefore, in the second part the per- 
formances of NMLMS and NMRLS are only compared to 
NLMAD and NLMP algorithms. 

In the second part of the simulations, A R  parameters 
are estimated by a and order NLMP, NLMAD, NMLMS and 
NMRLS algorithms for two different a-stable AR processes 
with a = 1.2 and a = 1.8. The plots of the tap  weights 
for NLMAD, NLMP and NMLMS algorithms are given in 
Figure 4 and Figure 5 for a = 1.2 and a = 1.8, respectively. 
The  tap  weights convergence performance of the NMRLS is 
given in Figure 6 for a = 1.2 and a = 1.8. 

a2L - NLMAD NLMP - - - -  NMLMS 4 
1 I 
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Figure 4: Transient behavior of tap weights in the N M L M S ,  
NLMAD, NLMP algorithms with a = 1.2.  
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Figure 5: Transient behavior of tap weights in the N M L M S ,  
NLMAD, N L M P  algorithms with a = 1.8. 

5. CONCLUSION 

In this paper, new adaptive filtering approaches in the pres- 
ence of a-stable random processes are introduced. These 
approaches are developed with the motivation of p-norm 
normalization in l p  spaces 1 5 p 5 2, and the use of pre- 
nonlinearity in adaptive filtering. In our simulation studies 
the normalized algorithms NLMAD and NLMP outperform 
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the LMAD, LMP and LMS type algorithms. The  use of pre- 
nonlinearity in LMS type algorithm exhibits a faster con- 
vergence than NLMAD and NLMP algorithms in the tap  
weight adaptations. However, pre-nonlinearity introduced 
an off-set to the steady state values of the tap  weights. 
In our simulation examples, these off-set values are negli- 
gible, but it should be observed for higher order n-stable 
processes. The  convergence of the RLS algorithm with the 
pre-nonlinearity outperforms other algorithms with a higher 
steady state variance. Also, NMRLS algorithm introduces 
an off-set, especially for low a values. The use of other non- 
linearities and the effect of off-set for higher order systems 
will be investigated as a future work. 
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Figure 6: Transient behavior of tap weights in the NMRLS 
algorithm with a = 1.8 (a,),@,), and a = 1.2 (c),(d). 
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