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Adaptive Filtering for Non-Gaussian Stable Processes 
Orhan Arikan, A. Enis Cetin, and Engin Erzin 

Abstract-A large class of physical phenomenon observed in 
practice exhibit non-Gaussian behavior. In this letter, a-stable 
distributions, which have heavier tails than Gaussian distribution, 
are considered to model non-Gaussian signals. Adaptive signal 
procesgSng in the presence of such a noise is a requirement of 
many practical problems. Since direct application of commonly 
used adaptation techniques fall in these applications, new algo- 
rithms for adaptive filtering for a-stable random processes are 
introduced. 

I. INTRODUCTION 
N many signal processing applications, the noise is modeled I as a Gaussian process. This assumption has been broadly 

accepted because of the central limit theorem. However, a large 
class of physical observations exhibit non-Gaussian behavior, 
such as low frequency atmospheric noise, many types of 
man-made noise and underwater acoustic noise [ 11441. There 
exists an important class of distributions known as a-stable 
distributions [5 ]  that can be used to model this type of noises. 
These distributions have heavier tails than those of Gaussian 
distribution, and they exhibit sharp spikes or occasional bursts 
in their realizations. A random variable is called a stable if its 
characteristic function has the following form: 

d(t) = exp{iat - rltl"[l+ iPsgn(t)w(t ,  a ) ] }  (1) 

where -00 < a < 00, y > 0, 0 < a 5 2, -1 5 P 5 1, and 

There is no compact expression for the probability density 
function of these random variables except a = 1 and 2 cases, 
which correspond to the Cauchy and Gaussian distributions, 
respectively. 

Members of stable distributions also satisfy a generalized 
central limit theorem which states that if the sum of i.i.d. 
random variables converges then the limit distribution is a 
stable one. If individual distributions are of finite variance 
then the limit distribution is Gaussian. Tails of this type of 
distributions are characterized with the a parameter (0 < 
a 5 2), which is called as the characteristic exponent (a 
values close to 0 indicates impulsive nature and a values close 
to 2 indicates a more Gaussian type of behavior). With the 
Gaussian assumption, signals could be treated in a Hilbert 
space framework that would allow the use of L2 (or &) 
norm in various optimization criteria, whereas the linear vector 
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space generated by a-stable distributions is a Banach space 
when (1 5 a < 2). In the linear space of stable processes 
only p norms exists for p 5 a; hence, C2 norm cannot be 
used with an a-stable processes. Modeling a-stable processes 
under a Gaussian assumption leads to unacceptable results as 
is reported in [ 5 ] .  

In this letter, we introduce new algorithms for adaptive 
filtering under additive a-stable noise with finite mean corre- 
sponding to 1 5 a < 2. The performance of these approaches 
will be compared with those of the already existing approaches 
in the literature. The algorithms are presented in Section 11, and 
simulation results are given in Section 111. 

11. ADAPTIVE FILTERING FOR a-STABLE PROCESSES 

The objective for a general filtering application is to find an 
FIR filter of length N, U, that relates the input z(n) to the 
desired signal d ( n ) :  

&) = @)' g (3) 

where d ( k )  is the estimate of the desired signal at time instant 
k, and 

- z ( k )  = [z(k) z ( k  - 1) . . . 5 ( k  - N + l)]' . (4) 

Commonly used adaptive filtering algorithms utilize the 
Hilbert space framework. This allows the use of least squares 
cost function whose solution can be found either exactly as in 
recursive least squares (RLS) algorithms or approximated by 
least-mean-squares (LMS) type methods [7], [8]. However, in 
the existence of a-stable processes, least squares cost function 
cannot be defined because the variance of the error is not 
finite. Hence, a new cost function other than least squares 
should be used. 

In this work, we consider an adaptation algorithm for an 
FIR filter of length N .  The problem is to adaptively update 
the tap weights of the FIR filter g such that given an input 
sequence z(n), the output of the filter is close to the desired 
response d(n), both of which is assumed to be a stable. In 
this case, it is appropriate to minimize the dispersion of the 
error function [ 5 ] .  

This adaptation problem can be solved asymptotically by 
using the stochastic gradient method with the motivation of 
the LMS algorithm [8]. Such an algorithm, least mean p- 
norm (LMP) algorithm, is proposed in [5]. This algorithm is a 
generalization of instantaneous gradient descent algorithm to 
a-stable processes, where the gradient of the p-norm of the 
error 

J = m(~)lpl 
= E[ld(k) - w(k)' E(k)lp], 0 < P < a ( 5 )  
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is used, and the tap weights 
as follows: 

are adapted at time step k + 1 

- w ( k  + 1) = w(k) + ple(k) lP- l  sy71(e(k)) ~ ( k )  (6) 

where /A  is the step size that should be appropriately deter- 
mined. Note that for p = a = 2, the LMP algorithm reduces 
to the well-known LMS algorithm [8]. When p is chosen as 1, 
the LMP algorithm is called the least mean absolute deviation 
(LMAD) algorithm [SI: 

- w ( k  + 1) = w(k)  + p s g 7 ~ ( e ( k ) )  z ( k )  (7) 

which is also known as the signed-LMS algorithm. ilmr eiep (k) 

In this letter, we introduce two normalized adaptation alga- 
rithIn3 with the motivation of the normalized-LMS algorithm. 
The first one (the normalized least mean p-norm (NLMP) 
algorithm) uses the following update: 

Fig. I .  Transient behavior of tap weight adaptations in the NLMP, NLMAD, 
LMAD, LMP, and LMS algorithms with cy = 1 .2  for .?R(1) process. AR 
parameter is chosen as = 0'99' 

where [j, X > 0 are appropriately chosen update parameters. 
In (8), normalization is obtained by dividing the update term 
by the p-norm of the input vector, ~ ( k ) .  The regularization 
parameter X is used to avoid excessively large updates in case 
of an occasionally small input. For p = 2 ,  NLMP (8) reduces 
to the normalized-LMS algorithm [8]. 

The second algorithm (the normalized least mean absolute 
deviation (NLMAD)) corresponds to the case of p = 1 in (8) 
with the following time update: 

This adaptation scheme is especially useful when the char- 
acteristic exponent Q either is unknown or varying in time. 
Among the stable distributions, the heaviest tail occur for 
the Cauchy distribution a = 1. By selecting p = 1, the 
update term is guaranteed to have a finite magnitude for all 
1 < ( x  5 2. Due to the above reasons, NLMAD is a safe 
choice for the adaptation. 

Recently, another class of normalized LMS type algorithms 
are also reported in [9]. These algorithms are different from 
ours and they are developed in different context. 

111. SIMULATION STUDIES 

In 151, the performance of the LMAD algorithm is compared 
with that of the LMS algorithm for a first order a-stable AR 
process and it was observed that LMAD outperforms LMS 
especially for low a values. In this section, we compare the 
performances of the new algorithms with the LMAD, LMP, 
and LMS algorithms. 

In simulation studies, we consider AR( ,V) a-stable pro- 
cesses, which are defined as follows: 

w 
4 7 1 )  = u,lr.(n - i )  + U (  n )  (10) 

2=1 

where U(.) is a a-stable sequence of i.i.d random variables. 
The common distribution of U(.) is chosen to be an even 
function (113 = O), and the gain factors are all set to one (y = 1) 

without loss of generality. It can be shown that x(n) will also 
be a a-stable random variable with the same characteristic 
exponent when {a,} is an absolutely summable sequence [ 5 ] ,  
[61. 

Two sets of simulation studies are performed. In the first 
set, the adaptation algorithms are compared for the cases of 
first- and second-order a-stable AR processes with a fixed 
characteristic exponent a = 1.2. In the second set, the 
performances of LMAD, NLMAD, and NLMP algorithms 
are compared when a fourth-order a-stable AR process with 
different values of the characteristic exponent is used. For 
both sets, the tap weights are obtained by averaging 100 
independent trials of the experiment, and for each trial, a 
different computer realization of the process {U(.)} is used. 
To get a fair comparison between algorithms the step size 
of the LMS is adjusted as large as possible while ensuring 
the convergence. Then the step sizes of other algorithms are 
chosen in such a way that they all had a comparable steady- 
state error. 

In the first simulation set, tap weight adaptation is performed 
for AR(1) and AR(2) processes with first- and second- 
order LMP, LMAD, NLMP, NLMAD, and LMS algorithms, 
respectively. The coefficient of AR(1) process is chosen as 
u1 = 0.99. In Fig. 1, the transient behaviors of the tap 
weight adaptations for AR( 1) process are plotted. The NLMP 
and NLMAD algorithms introduced in this study has a better 
convergence behavior than the LMAD [5], LMP 151, and the 
LMS algorithms. 

For AR(2) process, the coefficients are chosen as a1 = 0.99 
and a2 = -0.1. In Fig. 2, the transient behaviors of the 
tap weight adaptations for AR(2) process are plotted. In this 
case, the NLMP and NLMAD algorithms again show faster 
convergence. 

Second simulation set tests the performances of the LMAD, 
NLMAD, and NLMP algorithms for a values 1.2,1.5, and 
1.9 with an AR(4) process. The AR(4) process is chosen as a 
fourth-order LPC synthesis filter of a voiced speech frame [ 101 
A(z) = 1.3232-1 - 0 . 1 5 2 ~ - ~  - 0 . 0 9 7 ~ - ~  - 0 . 1 1 5 ~ - ~ .  The 
adaptation performances are plotted in Fig. 3. The NLMAD 
and NLMP algorithms have comparable performances for 
small N values both of which converge faster than the LMAD 
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Fig. 2. Transient behavior of tap weight adaptations in the NLMP, NLMAD, 
LMAD, LMP, and LMS algorithms with a = 1.2 for AR(2)  process. AR 
parameters are chosen as a1 = 0.99  and a2 = -0.1. 
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Fig. 3. Tap weight error powers for (a) a = 1.2, (b) a = 1.5, 
and (c) a = 1 .9  in LMAD, NLMAD, and NLMP algorithms. 
E(k) = lltu(k) - g*1I2, where ~ ( k )  and E’ are the current tap 
weight and optimal solution vectors, respectively. 

algorithm. When a gets larger, e.g., a = 1.9, the performances 
of all the three algorithms are comparable to each other. 

IV. CONCLUSION 
In this paper, new adaptive filtering algorithms in the 

presence of a-stable random processes are introduced. These 

algorithms are developed with the motivation of p-norm nor- 
malization in lp spaces 1 < p 5 2. The performances of 
these normalized algorithms are found to be superior to that 
of LMS and LMAD algorithms in simulation studies. Based on 
the experience gained in the simulation studies, it is observed 
that a safe choice of p value is 1 in the case of imprecise 
knowledge of a. This corresponds to the use of NLMAD 
algorithm in such cases. 

Transformation of both the input and the desired signal by 
using a reversible nonlinearity to another domain in which 
Hilbert space framework exists is under investigation. The 
effects of the adaptation in the transform domain will be con- 
sidered. In addition, a generalization of recursive least squares 
(RLS) algorithm to a-stable processes will be investigated as 
a future work. 
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